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Abstract—Crowd counting in smart surveillance systems plays
a crucial role in Internet of Things (IoT) and smart cities,
and can affect various aspects, such as public safety, crowd
management, and urban planning. Using surveillance data to
centrally train a crowd counting model raises significant privacy
concerns. Traditional methods try to alleviate the concern by
reducing the focus on individuals, but the concern still needs
to be thoroughly resolved. In this work, we develop a horizontal
federated learning (HFL) framework to train the crowd counting
models which can preserve privacy simultaneously. This frame-
work enables the smart surveillance system to learn from model
aggregation without accessing the private data stored on local
devices. Therefore, it eliminates the need for video data transmis-
sion, reduces communication costs, and avoids raw data leakage.
Due to the lack of federated learning (FL) crowd counting
data sets, we design four non-independent and identically dis-
tributed (non-IID) partitioning strategies, including feature-skew,
quantity-skew, scene-skew, and time-skew, to simulate real-world
FL scenarios. In addition, we present an efficient fully convo-
lutional network (e-FCN) for each client to demonstrate the
practical applicability of the proposed framework. The e-FCN
adopts an encoder—decoder architecture with fewer parameters,
making it communication-friendly and easier to train. This design
can achieve competitive performance compared to more com-
plex models in surveillance crowd counting in literature. Finally,
we evaluate the proposed HFL framework with e-FCN under
our skew strategies on multiple real-world data sets, including
crowd surveillance, ShanghaiTech PartB, WorldExpo’10, FDST,
CityUHK-X, UCSD, and MALL. Extensive experiments allow us
to present our developed Federated Crowd Counting benchmark
as a reference for future research and provide guidance for FL
algorithm selection in smart surveillance system deployment.

Index Terms—Convolutional neural networks (CNNs), crowd
counting, data partition, federated learning (FL), non-
independent and identically distributed (non-IID) partitioning
benchmarks, smart surveillance system.

I. INTRODUCTION

MART surveillance systems play a critical role in smart
S city development and are widely recognized as important
Internet of Things (IoT) applications [1], [2], [3]. Intelligent
surveillance systems make use of cameras to monitor the
presence and movement of crowd in public spaces. With the
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Fig. 1. (a) Representative images of CS data set [11]. (b) Representative

images of ground-truth of the density map. By integrating the density map,
we can easily get the number of people in any region.

continued growth of urbanization, the importance of crowd
counting in surveillance systems has grown significantly, espe-
cially in highly populated public areas, such as subway
stations, stadiums, concerts, and exhibition centers [4]. Large
gatherings of people can pose a significant risk of stam-
pedes, which have resulted in tragic loss of life in recent
years [5], [6]. These casualties are often caused by mechan-
ical asphyxiation due to crowd crushing, which can occur
rapidly depending on the pressure level [7]. One effective
way to prevent such incidents is through the use of smart
surveillance systems that monitor crowd density trends and
take action before they reach critical levels. Given the signif-
icance of this issue, there has been a significant amount of
research conducted on the development of automated crowd
counting techniques using image and video analysis.

With the development of convolutional neural networks
(CNNs), CNN-based architectures have demonstrated power-
ful automatic feature extraction capabilities [8], [9], [10], [11],
[12], [13], [14], [15]. They have been widely adopted due to
their superior performance compared to traditional methods.
CNN-based methods in crowd counting typically use crowd
density estimation, which involves predicting the density map
of a crowd scene using CNN models. As shown in Fig. 1,
the density map represents the number of people at any loca-
tion within an image or video frame and the total number of
people present. Compare with simply getting the number, the
spatial information in a density map helps prevent crowd crush
and stampede events because it identifies subregions with high
crowd density and counts the people separately [5]. By ana-
lyzing the density map, we can proactively identify hotspots
with high crowd density, take proactive measures to prevent
crowd crush and stampede events, and ensure the safety of
events and public places.

However, the effectiveness of CNN-based architectures is
highly dependent on large-scale training in data centers [16].
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Collecting a large number of surveillance videos as training
data can raise serious privacy concerns. Because monitoring
collects not only information about the number of people, but
also personal faces, clothing, and body posture, which can be
used for inappropriate purposes. In addition, the surrounding
environment captured by surveillance can also be a risk of
abuse.

To address such issues, some studies have tried to develop
a privacy-friendly crowd counting method. Chan et al. [17]
proposed a privacy-preserving system for crowd counting.
They recognized that previous methods, such as detecting
and tracking individuals over time to count the number, vio-
lated privacy. Instead, they extracted overall features based
on segments, edges, and textures from images to estimate
the overall number of people. Alleviate privacy concerns
by minimizing the focus on personal identities. Similarly,
semi-supervised [18], [19] and weakly supervised [20], [21]
approaches can significantly reduce the annotation on peo-
ple. Crowd counting tasks are usually labeled by pointing out
the center coordinates of the person’s head or using a bound-
ing box to frame the head position. Reducing the number of
annotations can reduce the focus on individuals. However, the
given approach still uses crowd images for training in a data
center. It cannot be considered a privacy-preserved approach.
Synthetic data sets, such as CVCS [22] and GCC [23], pro-
vide a large amount of training data without privacy concerns.
Unfortunately, synthetic data sets have discrepancies from the
real world, and real-world data is still needed to fine-tune
models to achieve adequate performance [24]. In addition
to using visible light images, Tse et al. [25] designed a
privacy-aware crowd-counting system using thermal cameras
to classify and count people indoors. Moreover, there are
some nonimage-based counting methods, such as those based
on WiFi [26], [27] and IoT sensors [28]. However, these
methods cannot effectively use existing surveillance equip-
ment, and some incur additional costs. They also typically
only provide a rough estimate of the crowd size over a
large area.

To address the above challenge, we integrate crowd counting
with the federated learning (FL) framework. FL is a promis-
ing solution that allows multiple parties to collaboratively train
models while keeping their local data decentralized [29]. This
approach is particularly beneficial in smart surveillance scenar-
ios. By employing the FL. method, original surveillance data
does not need to be uploaded, effectively mitigating the risk of
data leakage during transmission, and reducing transmission
costs. However, non-independent and identically distributed
(non-IID) data can negatively impact model performance,
which is one of the key challenges in FL. Non-IID refers to
a data distribution that deviates from the assumption that all
samples in a data set are both statistically independent and
drawn from the same probability distribution. In crowd count-
ing, it is usually caused by variations in camera settings and
crowd conditions.

While several studies have attempted to develop effective
FL algorithms [29], [30], [31], [32] under non-IID conditions,
systematic experimental research to understand their strengths
and weaknesses remains lacking. This is due to the absence
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of real-world FL data sets. McMahan et al. [29] proposed
FL data distribution strategies in image classification and text
prediction tasks. LEAF [33] offered a partitioning strategy
based on actual image or text data. Li et al. [34] provided
several partition settings for classification tasks. OARF [35]
and Senthilkumar et al. [36] suggested FL data sets by com-
bining various real-world public data sets, but they did not
offer algorithmic-level comparisons. The majority of exist-
ing research provides limited emphasis on the specific task of
crowd counting in smart surveillance. While the skew settings
come from image classification and text prediction tasks offer
valuable insights, they do not address the unique complexi-
ties inherent to our task. Additionally, while merging multiple
public data sets can create complex scenarios, this complex-
ity primarily from the inherent heterogeneity of each data set.
Quantifying the heterogeneity poses a significant challenge,
complicating the creation of a controlled and reproducible
research environment.

The fully convolutional network (FCN) [37], was designed
specifically for pixel-wise tasks, such as semantic segmen-
tation. The FCN is characterized by its replacement of the
fully connected layer, typically seen in traditional CNNs,
with a convolutional layer. This modification ensures that the
network can accept images of arbitrary sizes and generate
corresponding size outputs. The simplicity and effectiveness
of FCN make it a popular choice for counting tasks in a
wide range of applications [38]. To achieve higher accuracy
on high-density data sets, deeper and more complex FCN
architectures are often used [4], [13], [15], [23]. However,
the practical application of these complex structures is lim-
ited by the constrained computing resources of client devices,
and the inherently high communication costs associated with
the FL environment. Concurrently, smart surveillance systems
often operate in high-traffic scenarios where crowd density is
relatively sparse.

Our main contributions are as follows.

1) This article develops a horizontal FL. (HFL) frame-
work for preserving privacy of crowd counting in smart
surveillance systems. Unlike conventional methods that
alleviate privacy concerns by reducing the focus on
individuals, this framework protects client privacy by
aggregating models without accessing sensitive data on
local devices, It can effectively eliminate the need for
raw data transmission, alleviate the burden of data trans-
fer, and mitigate the risk of data leakage during the
transmission process.

2) This article designs an efficient FCN (e-FCN), a stream-
lined architecture for crowd counting in smart surveil-
lance systems. It is intended for deployment on each
client device within an HFL framework. Comparing with
the complex multicolumn or multitask structures which
was usually used in the existing methods, our developed
e-FCN simplifies the structure by integrating the decon-
volution layers to restore spatial information. Given the
limited resources of client devices, the simplified design,
end-to-end training, and competitive performance of
e-FCN make it a compelling choice for deployment in
federated crowd counting systems.
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3) Four non-IID partition strategies are designed in this arti-
cle: a) feature skew; b) quantity skew; c) scene skew; and
d) time skew. These strategies are applied across seven
real-world surveillance data sets, which effectively emu-
late federated crowd counting scenarios and establish a
reliable platform for the evaluation of FL algorithms.
We recognize that existing methods for constructing
non-1ID scenarios fall short of reflecting the realities
of crowd counting tasks. Therefore, the design of these
new strategies is critical, as they facilitate more real-
istic non-IID construction and enable the improvement
of variable control. This work establishes the Federated
Crowd Counting benchmark, which can serve as a ref-
erence for future research. It also provides valuable
insights for deploying smart surveillance systems.

We conducted extensive experiments on seven surveillance-
perspective crowd counting data sets to evaluate the accuracy
of four advanced FL algorithms. These data sets cover a
range of smart surveillance systems application scenarios and
provide insights into the development of privacy-preserving
crowd counting in an FL framework under non-IID conditions.
The experimental results also offer guidance for the practical
deployment of the framework in various environments.

II. PROPOSED COUNTING METHOD

In this section, we first introduce our HFL-based surveil-
lance crowd counting framework to address privacy concerns.
Then we introduce our proposed surveillance crowd counting
network for the client, which has a simpler architecture that is
easy to train and communicates friendly. Finally, we introduce
the corresponding HFL training method.

A. HFL Crowd Counting Framework

We seamlessly integrate the task of crowd counting in
surveillance videos with the HFL framework. This fusion elim-
inates the need for raw video data transmission, significantly
reduces communication costs and avoids data leakage during
transmission.

As shown in Fig. 2, the framework includes a cloud server
and multiple clients. The server maintains a global model but
doesn’t hold any data, while clients have their own data sets
and models. In this framework, we consider all models to
have the same structure. The server initiates communication
by sending training requests to clients and clients accepting
requests based on their training device availability. Once sev-
eral requests are accepted, it signifies the start of a round of
communication. First, the server sends global model parame-
ters to all participating clients and waits for them to train their
models. Then, clients initialize their counting models with
global parameters and train the models using local surveillance
data. After training, clients upload their model parameters to
the server. It is important to note that the uploaded data does
not include any raw data, significantly reducing the risk of
privacy leaks. After all clients finish training and upload their
weights, the server uses FL algorithms to aggregate and gen-
erate the global model. The communication cycle will repeat
until the global model reaches satisfactory accuracy.
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Fig. 2. Surveillance images are captured by Client and saved locally. Only
the model parameters are involved in the communication with the server to
protect the client’s privacy. There are a total of K clients, k numbered starting
from 0. The FL process includes four steps: (I) distributing the global model to
clients, (2) training local models with the local surveillance data, (3) uploading
the local models back to the server, and @ updating the global model with
the aggregated local models.

We discuss the impact of non-IID distribution and FL algo-
rithm selection on surveillance crowd counting tasks in subse-
quent sections. Overall, our HFL-based framework improves
the accuracy of the global model while ensuring the privacy of
sensitive raw data. This is achieved by only uploading model
weights to the central server. Although the uploading weights
carry some risk of information leakage [39], our framework is
still promising and useful, as it eliminates the need to share
sensitive raw data. In actual operations, however, communicate
conditions are often difficult to control and the computational
power of the client is usually limited. We develop an effi-
cient crowd counting network with fewer parameters and easy
training.

B. e-FCN Architecture

To reduce training time, memory consumption and num-
ber of parameters, we use the truncated VGG-16 [40] as the
front-end of our efficient FCN (e-FCN) for crowd counting, as
shown in Fig. 3. We keep only the first 13 layers and remove
the fully connected layer and some convolution and pooling
layers. This results in our front-end having fewer parameters
and a larger feature map (1/8 of input size), which retains as
much spatial information as possible. For decoding high-level
semantics and recovering spatial information, our back-end
starts with a 3 x 3 convolutional layer that reduces channel
number from 512 to 128. This is then followed by three con-
secutive 4 x 4 transposed convolutional layers with a stride of
2 and padding of 1. Each transposed layer halves the number
of channels and doubles the size of the feature map. Finally,
a 1 x 1 convolution layer transforms the feature map into a
density map, reducing the number of channels from 16 to 1.
All convolution layers are followed by ReL.U activation. Our
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Fig. 3. e-FCN Network Architecture. Each cube represents a feature map of

a convolutional layer. Conv1—4 represent the front-end, which correspond to
the first 13 layers of VGG-16. Starting from conv3, the back-end structure is
presented, where deconvl-3 represent 4 x 4 transposed convolutional layers
with a stride of 2 and padding of 1. The final convl x 1 represents a 1 x 1
convolutional layer that transforms the feature map into a density map.

network architecture can be represented as follows:
F = D(E(L; ©F); ©P) (1)

where ©F and ©P denote the model parameters of the
encoder E and decoder D, respectively. For a video frame I;

Df = F(I;; ©) )

where Df € RHFXWx1 representative the final predicted density
map, has the same resolution as the input image I; € RF*Wx3,
Such structure allowing us to generate high-quality density
maps.

C. Training Procedure

We use a straightforward approach on each client to train
e-FCN as an end-to-end structure. In the first communica-
tion round, the server initialize the first ten convolution layers
©F as a pretrained VGG-16 [40] on ImageNet [41]. For ©F,
the initial values come from a Gaussian initialization with a
0.01 standard deviation.

We deploy the Euclidean distance as the loss function in
clients. These metrics are commonly used in crowd counting
tasks and are known to be effective in measuring the accuracy
of density maps

= g 2|t —off;

where N is the number of images, Df’ represents the predicted
density map, DF is the ground truth (GT), i represents the ith
sample, and || - ||% represents the Euclidean distance.

We use the Adam optimizer on the client side to minimize
the loss function during training with learning rate of 5e-5. To
further improve the performance of the network, we use data
augmentation techniques during training, including random
flipping and cropping of the input images. Data augmentation
is a powerful tool that helps improve the network’s gener-
alization by creating new training samples from the existing
ones. This can prevent overfitting and improve the network’s
performance on unseen data. This is especially helpful in FL.
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TABLE I
SURVEILLANCE CROWD COUNTING DATA SETS

Ditaad Scene Number Average
Attribute | of Samples | Crowd Counts
Crowd Surveillance [11] Free 13,945 28
ShanghaiTech PartB [8] Free 716 123
WorldExpo'10 [42] 108 Fixed 3,980 50
FDST [43] 13 Fixed 15,000 27
CityUHK-X [44] 55 Fixed 3,191 33
UCSD [17] 1 Fixed 2,000 25
MALL [45] 1 Fixed 2,000 31

in surveillance scenarios due to the limited number of scenes
and samples held by each client.

III. PROPOSED PARTITIONING STRATEGIES

Our goal is to create a valuable FL. benchmark by sim-
ulating real-world federated scenarios, aiming to facilitate
research on the impact of non-1ID settings on crowd count-
ing. We first introduce the seven data sets used in our
work for surveillance crowd counting. Then, we present four
data partitioning methods based on the characteristics of the
data sets.

We utilize real-world data sets and divide them into small
subsets to create appropriate skew settings for FL crowd
counting. Our approach allows researchers to easily manage
imbalanced settings while independently studying the behavior
of each algorithm under different scenarios, which is crucial
for developing practical frameworks. We considered real-world
scenarios in smart surveillance systems and identified feature,
quantity, scene, and time distribution skew as possible non-IID
data settings. We also discussed the potential for mixed types
of skews.

We used seven real surveillance perspective crowd count-
ing data sets, including two free scenes surveillance data sets
crowd surveillance (CS) [11] and ShanghaiTech PartB [8],
three fixed multiscenes WorldExpo’10 [42], FDST [43] and
CityUHK-X [44] and two fixed single-scenes UCSD [17] and
MALL [45]. Free scenes refer to data sets consisting of images
captured from various surveillance cameras, as opposed to
fixed scenes where images originate from a limited number
of cameras. Among them, feature skew applies to all data
sets, quantity skew applies to free scenes, scene skew applies
to fixed multiscenes, and time skew applies to fixed single
scenes. Table I shows the detailed information of each data
set. For the IID setting, we shuffle all images in a data set and
distribute them evenly to each client. Next, we describe our
non-IID skew in detail.

Feature Distribution Skew: In feature distribution skewness,
although the scene and time distribution are the same, the
feature distribution varies among parties. In a surveillance sce-
nario, camera sensors and network transmissions can all cause
image noise. Thus, we design a feature imbalance distribu-
tion based on noise. The Gaussian noise is a common type of
image noise that affects the details of the image [34], making it
blurry and reducing contrast. In crowd counting tasks, it often
leads to increased counting error [46]. Therefore, analyzing the
performance of Gaussian noise on crowd counting algorithms
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Fig. 4. Scenes skew distribution of WorldExpo’ 10 data set. Each rectangular
segment represents an individual scene, and the training set has a total of
103 scenes. Each scene has a different number of video frames.

in FL surveillance environments is crucial. We added different
noise levels to each client k. I ~ Gau(o - k/K) for client Cg,
where I is the video frame and Gau(o - k/K) is a Gaussian
distribution with mean 0 and variance o - k/K. We make the
parties present characteristic differences by setting different o
for each client. By default, o takes the value of 0.2. Due to
the prevalence of noise in image data, this strategy is used for
all data sets in this article.

Quantity Distribution Skew: In quantity skewness, each
client has a different volume of local data set. To control vari-
ables, we assume that the data distribution remains consistent
among parties and investigate the impact of quantity imbal-
ance in FL for crowd counting in surveillance perspectives.
We first shuffle all images and then assign different quanti-
ties of data samples to each party according to a log-normal
distribution. Specifically, we sample from the shuffled data
set D and assign the sampled I); ~ Logy (0, o2) as training
data to the corresponding client C;. Although quantity imbal-
ance is a common scenario in many FL environments, in the
context of surveillance videos, each client owns its camera.
And, the data captured by one camera is usually stored in the
same place. Ignoring this natural barrier by shuffling and ran-
domly distributing all surveillance images does not align with
reality. Thus, the simple quantity distribution skew is only
applied to the CS and ShanghaiTech PartB data sets which
have free-scenes.

Scene Distribution Skew: In Scene distribution skew, con-
sidering the distribution of surveillance cameras, we divide the
training images among clients based on the scene captured by
the cameras. As shown in Fig. 4, using WorldExpo’10 as an
example, the training set has 103 fixed scenes. In this strat-
egy, we first sort the data by scene labels, divide it into five
sets of scene slices with sizes ranging from 19 to 21, and
assign one set to each client. This distribution approach is
more realistic and closer to the real-world surveillance scenar-
ios. It includes the natural separation of video frames between
different scenes, variations in camera equipment frame rates
and angles, the complexity of the scene, and shifts in crowd
density, making it a challenging data distribution skew. The
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Frames[0, 160] Frames[C #step, (Ci+1)*step] Frames[640, 800]
Client 0 Client k Client 4
Fig. 5. Time skew distribution of MALL data set, organized by time

sequence. Each client contains a consecutive time period, no overlap between
clients.

skew was applied to the multifixed scenes data sets, including
WorldExpo’10, FDST, and CityUHK-X.

Time Distribution Skew: In certain data sets, there is only
one scene available, thus we divide the data based on time.
The data is first sorted by time and then allocated to each
client in sequence without any overlap in time. This skew is
illustrated in Fig. 5. The data set contains N images. There are
a total of K clients, kK numbered starting from 0. The number of
frames assigned to each client k is [Cy x step, (Cr+ 1) x step].
For the same camera, data collected at different times may
also suffer from independence due to factors, such as weather,
lighting, and crowd flow. This skew is applied to surveillance
crowd counting data sets containing only one scene, including
UCSD and MALL.

Mixed Types of Skews: In practical applications, mixed
biases may arise, leading to increased complexity. We discuss
two categories of mixed skew in this study. The first category
combines scene and feature skew, which is suitable for the
data set consists of multiple fixed scenes. The second cate-
gory combines quantity and feature skew and is applicable to
the data set consists of free scenes. In real-world scenarios,
each client typically holds video frames with similar image
quality. Therefore, we first allocate images to clients and then
apply feature skew separately for each client. By examining
these two categories of mixed skew, we aim to better simulate
real-world federated crowd counting environments and pro-
vide more accurate guidance for deploying federated crowd
counting frameworks.

IV. EXPERIMENTS

Our experimental goal is to learn an effective global
model under settings that closely mimic real-world data
distributions and provide guidance for algorithm selection
in deploying the framework. We selected four popular FL
algorithms. To investigate the effectiveness of existing FL
algorithms on crowd counting in smart surveillance systems,
we conduct extensive experiments on seven public surveil-
lance perspective data sets, including CS [11], ShanghaiTech
PartB [8], WorldExpo’10 [42], FDST [43], CityUHK-X [44],
UCSD [17], and MALL [45].

FedAvg [29] is a widely used FL technique. The algorithm
employs weighted averaging of locally computed weights from
each client’s model to generate the global model, where the
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weights are proportional to the client data volume to ensure
larger volumes contribute more significantly.

FedProx [30] improves FedAvg by introducing an L2 reg-
ularization term in the local objective function to limit the
distance between the local and global models, making the
average model closer to the global optimal. The regulariza-
tion weight is controlled by the hyperparameter p, which need
to carefully adjust. If p is too small, regularization has little
effect. If u is too large, updates are small and convergence is
slow.

FedNova [31] improves FedAvg by addressing the issue of
different parties conducting different numbers of local steps
during each round of FL. This can occur due to variations
in computation power or local data set size. To ensure unbi-
ased global updates, FedNova normalizes and scales the local
updates of each client according to their number of local steps.

SCAFFOLD [32] improves FedAvg by applying variance
reduction techniques. It introduces control variates for the
server and each client to estimate the update direction of the
global model and the update direction of each local model.
The difference between these two update directions approxi-
mates the drift in the local training. SCAFFOLD corrects the
local updates by adding this drift. Compared to the above three
algorithms, SCAFFOLD doubles the communication size per
round because of the additional control variates.

A. Implementation

The default number of participating clients is 5. Our ablation
study shows that the client numbers have an influence on the
allocation of images, which is a rise in client numbers can
lead to the insufficiency of images for each client. This makes
it difficult to accurately evaluate the algorithm performance.
All parties participate in every round to eliminate the effect of
randomness brought by party sampling [29]. The batch size
is set to 16 and the number of local epochs is set to 5. We
run all the studied algorithms for the same number of rounds
for fair comparison. The number of communication rounds is
set to 50 by default, except for the ShanghaiTech PartB and
WorldExpo’10 data sets with 200 rounds.

The network directly converts the input image into a den-
sity map in training. The loss can be calculated as the mean
absolute error (MAE) defined as follows:

1 N
Mmzﬁgwﬂdﬂ @)

where N is the number of validation images, C? is the GT of
counting. Cf represents the predicted number by integrating
the network output, which is defined as follows:

H W
cl=>" Y Dih.w )

h=1w=1

where (h, w) is a specific coordinate the predicted density map,
while H and W show the total height and width. To unify the
FL settings, we generated ground-truth density maps [9] using
a Gaussian kernel with a fixed sigma of 4 for all data sets.
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TABLE II
FEDERATED CROWD COUNTING BENCHMARK. THE MAE FROM
DIFFERENT APPROACHES. FOR FEDPROX, WE TUNE p FROM {0.001,
0.01, 0.1, 1} AND REPORT THE BEST ACCURACY. THE ABBREVIATION
CS IN THE TABLE REFERS TO THE CS DATA SET, SHB REFERS TO
THE SHANGHAITECH PARTB DATA SET, AND WE’ 10 REFERS
TO THE WORLDEXPO’ 10 DATA SET

SCAF-

Dataset FedAvg | FedProx | FedNova FOLD
CS 73 8.7 7.1 6.1
SHB 9.6 9.2 9.7 93
WE'1D 80 83 6.4 82
11D FDST 1.67 1.66 1.76 158
CityUHK-X 8.6 87 8.1 8.6
UCSD 1.04 1.02 097 1.04
MALL 1.56 1.51 1.54 1.52
CS 84 8.1 94 74
SHB 9.7 10.1 103 9.6
Reaniti WE’'10 8.1 8.3 6.2 73
i FDST 1.77 1.83 1.46 1.78
CityUHK-X 8.7 85 84 83
UCSD 1.08 1.07 1.04 1.11
MALL 1.52 1.50 153 1.53
Quantity Cs 6.3 5.6 6.6 59
skew SHB 94 93 109 9.0
— WE’'10 84 8.1 6.1 8.6
e FDST 34 37 3.0 32
CityUHK-X 89 88 8.6 8.6
Time UCSD 1.47 1.49 113 1.27
skew MALL 1.58 1.56 1.57 1.55

B. Overall Accuracy Comparison

Table II shows the accuracy under different non-1ID data
settings. Although it is difficult to be met in real-world
applications, we still provide results of the IID scenario
(i.e., homogeneous partition) for comparison.

Comparison Among Different Non-IID Settings: First, the
feature skew in the WorldExpo’10 and MALL data sets per-
formed better with a lower MAE, and the impact on other data
sets was relatively small. This may be because the random
Gaussian noise creates a similar effect as data augmentation,
improving the generalization ability of local models. Second,
scene skew is considered to be the most challenging scenario.
It resulted in twice MAE of the IID setting for the FDST data
set. However, the WorldExpo’10 data set was less affected.
This may be due to the difference in the number of scenes in
the two data sets. The FDST training set contains 13 scenes,
which results in each client only containing 2-3 scenes. The
WorldExpo’10 training set contains 103 scenes, and each client
contains over 20 scenes. The fewer independent scenes that
each client holds, the greater the challenge. We also observed
that the time skew was present challenges. The UCSD data
set, with four time periods, was greatly affected, for each
client contains only 1 to 2 independent time periods. While
the MALL data set, with only one continuous period, had a
lower accuracy but less impact. Third, in terms of quantity
skew, FedProx and SCAFFOLD handled this scenario well by
regularization and weighted average. Overall, limited scenes
or time periods per client have a significant negative impact on
crowd counting accuracy. Existing algorithms still have room
for improvement in handling scene or time imbalance.

Comparison Under Mixed Types of Skews: The task of
fixed scenes demonstrates heightened complexity attributed to
mixed biases, whereas such an observation is not present in
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Fig. 6. Comparison of the impact of feature skew, scene skew, quantity skew,
and mixed skew on the test MAE of four approaches for (left) WorldExpo™10
data set and (right) ShanghaiTech PartB data set.
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Decision tree to recommends the FL algorithm given the non-IID

free scenes. As depicted in Fig. 6, we compare the scenar-
ios of solely adding noise, solely introducing scene/quantity
skew, and mixed situations. The number of communication
rounds is fixed at 50. Our observations reveal that in fixed
scenes, the MAE of all methods increases in mixed situations,
as both scene skew and feature skew present challenges dur-
ing training. However, in ShanghaiTech PartB, the presence of
mixed-type bias results in a lower MAE, excluding FedNova.
This effect can be attributed to the inclusion of Gaussian noise,
which relieves the overfitting of clients with fewer samples and
leads to improved accuracy.

Comparison Among Different Algorithms: First, in mul-
tifixed scene data sets, FedNova has a significant advan-
tage. It can cope well with feature skew and scene skew.
FedNova normalizes and scales the local updates of each party
according to their number of local steps before updating the
global model, which plays a crucial role in the FL. Crowd
Counting task under multifixed scenes. However, in the free-
scene data set, FedNova brings the worst performance. In
such scenarios, SCAFFOLD typically achieves superior accu-
racy compared to other evaluated methods. FedProx exhibits
marginally better performance than FedAvg. Nevertheless,
FedAvg is always a reliable and straightforward choice for
free-scene scenarios, considering the additional communica-
tion costs with SCAFFOLD and extra time costs of adjusting
the hyper-parameter p with FedProx.

Algorithm Selection: Based on our above observations, we
draw a decision tree to summarize the appropriate FL algo-
rithms for scene attribute on non-IID setting, as shown in
Fig. 7. This decision tree helps users to select learning algo-
rithms based on the characteristics of the smart surveillance
system and research data sets. For example, if the local data set
have scene distribution skew (e.g., multiple fixed scenes from
different cameras), then FedNova may be the best algorithm
for FL. If the local data set is from free scene, SCAFFOLD
can be considered getting the lowest MAE, but SCAFFOLD
introduces a doubling of the network transmission parameters.
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Fig. 8. Visualization of test examples from CS and FDST. (a) and (d) are
the input samples, (b) and (e) represent estimated density maps by our e-FCN
with FedNova under IID, and (c) and (f) show estimated density maps by
centralized training PGCNet [11] and LSTN [43], respectively.
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Fig. 9. Comparison of different approaches on ShanghaiTech PartB data set
with feature skew (left) and quantity skew (right), where the curves show the
change in test MAE as communication rounds increase.

Comparison With Model for Centralized Training: In large-
scale data sets, our e-FCN combined with the FL algo-
rithm outperforms state-of-the-art algorithms with central-
ized training, such as LSTN [43] (MAE 3.35) in FDST
and PGCNet [11] (MAE 7.2) in CS. As shown in Fig. 8,
our e-FCN structure, via the deconvolution layer, effectively
restores spatial information. Compared to centralized training
PGCNet [11] and LSTN [43], ours introduces less distortion
and noise, while maintaining a higher spatial similarity to the
GT. This not only provides us with more precise density map,
but also results in a greater counting accuracy. In terms of
accuracy, recent work [47] observes that fine-tuning models
independently optimized from the same initialization fall into
the same error basin in the error landscape. Our conjecture
is that the averaging of locally trained models with distinct
optimization directions in FL produces a favorable regulariza-
tion effect that releases the global model from the confinement
of error basins, thereby enhancing accuracy. This is partic-
ularly beneficial in large-scale data sets, as each client has
sufficient local convergence to make a positive contribution to
the global model.

C. Communication Efficiency

Fig. 9 shows the training curves of the studied FL algo-
rithms on the ShanghaiTech PartB data set, including two
settings: 1) feature skew and 2) quantity skew. In view of
the potential instability of the convergence process of crowd
counting, we opted to confine our analysis to a subset of
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Fig. 10. Comparison of different approaches on WorldExpo’10 data set

with feature skew (left) and quantity skew (right), where the curves show the
change in test MAE as communication rounds increase.

GT 23.0

GT 277.0

SRR

Fig. 11. Results of e-FCN for SHB data set optimized with FedProx under
QuantitySkew setting. The first column is the original image; the second col-
umn is the GT density map; the third to sixth columns correspond to the
estimated (EST) density maps of the 25th and 200th communication rounds,
with MAE 13.6 and 9.3, respectively.

rounds (i.e., the 25th, 50th, 100th, and 200th rounds) to mit-
igate the impact of such instability on our evaluation. In the
feature skew setting, FedAvg and SCAFFOLD showed higher
accuracy in the initial training stage. But as training progressed
to the 50th round, the convergence speed and final accuracy of
the four algorithms were very close. In the quantity skew set-
ting, FedProx with regularization terms showed the best overall
performance. At the 200th round, SCAFFOLD achieved the
best accuracy, but only with a slight advantage. When com-
pared in these two cases, our results showed that the presence
of the Gaussian noise had a more significant impact on the
final MAE than uneven quantity distribution in free scenes.

FedNova was designed to eliminate skew by equalizing the
contributions of each participating node to the global model
via the statistical number of mini-batches per client, but it did
not perform well in handling free-scene quantity skew in the
crowd counting task. However, the situation became very dif-
ferent in the WorldExpo’ 10 data set with multiple fixed scenes.
As could be seen from Fig. 10, FedNova had an overwhelm-
ing advantage in both convergence speed and final accuracy.
Experiments showed that, in an FL setting, FedNova’s nor-
malization and scaling of weights per client were crucial for
surveillance crowd counting in multiple fixed scenes.

Fig. 11 shows the results of our e-FCN for the SHB data
set optimized with FedProx under QuantitySkew setting. At
the beginning of the training (at communication round 25),
although there was a noticeable difference between the esti-
mated numbers and GT in high-density scenarios, the density
map was already able to reflect the overall distribution of the
crowd. As the training progressed, we obtained a finer density
map with more accurate numbers of people. It was necessary
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Fig. 12. Comparison of the impact of increasing the local epochs in each
client on test MAE for four approaches under feature skew (left) and quantity
skew (right) conditions on the ShanghaiTech PartB data set.
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Fig. 13. Comparison of the impact of increasing the number of clients on
test MAE for four approaches under feature skew (left) and quantity skew
(right) conditions on the ShanghaiTech PartB data set.

to select a suitable FL algorithm and set a reasonable expected
communication round based on the task requirements, with a
tradeoff between the number of communication rounds and
the final accuracy.

D. Ablation Experiments

Increasing Local Updates: The number of local epochs can
have a large effect on the accuracy of existing algorithms. We
vary the number of local epochs from {5, 10, 20, 30} and
report the final accuracy on ShanghaiTech PartB in Fig. 12.
The number of communication rounds was fixed at 50. We
observed that as the number of local epochs increased, the
error of almost all algorithms decreased. However, excessive
local epochs could greatly extend the local training time on
the client and reduce FL system availability, particularly in the
case of crowd counting tasks that had a large input dimension.
This suggested that reasonable local epochs had to be set based
on the requirements of the task and the availability of FL
IESOUICES.

Increasing Participating Clients: As the number of clients
increases, the MAE of all methods rises. We study the impact
of the number of clients on the performance of our meth-
ods, as shown in Fig. 13. The number of participating clients
ranges from {5, 10, 15, 20}. The number of communication
rounds is fixed at 50. Our findings show that MAE significantly
increases as the number of clients increases. This is particu-
larly evident in the case of FedNova. Its strategy of scaling
according to the number of training steps exhibits instability
on small-scale local data sets. With more clients, the local data
becomes smaller and is more prone to overfitting during the
local training phase.
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V. CONCLUSION

This article develops an HFL framework for crowd counting
in smart surveillance systems. The proposed framework suc-
cessfully tackles the challenge of preserving privacy in crowd
counting while maintaining high accuracy. Our Federated
Crowd Counting benchmarks guides FL algorithm selection
while deploying smart surveillance systems. Our benchmark
shows that the choice of FL algorithm depends on the
specific scenarios of the task. For fixed scenes, FedNova
demonstrates a dominant advantage. In contrast, for free
scenes, the choice between FedAvg/FedProx and SCAFFOLD
depends on whether the scenario is sensitive to communica-
tion parameters. Among our four skews, the scene skew is
considered the most challenging when the number of scenes
per client is limited. Time skew also presents challenges,
while the quantity and feature skew can improve accuracy
in some cases. Furthermore, our e-FCN demonstrates com-
petitive performance compared to centralized training models
on surveillance crowd counting data sets. The results highlight
the potential of FL in preserving privacy and provide improved
accuracy in crowd counting for smart surveillance systems.
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