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A Neural-Reinforcement-Learning-based Guaranteed
Cost Control for Perturbed Tracking Systems

Xiangnan Zhong, Member, IEEE, and Zhen Ni, Senior Member, IEEE

Abstract—AI-based learning control plays a critical role in
the evolution of intelligent control, particularly for complex
network systems. Traditional intelligent control methods assume
the agent can learn from safe data in the tasks. However, many
application scenarios exist perturbations caused by noise and/or
malicious attack, which make the received data unreliable and
may cause the failure of the learning process. In this paper,
we focus on developing an intelligent guaranteed cost control
method for nonlinear tracking systems subject to unknown
matched and mismatched perturbations. By developing appro-
priate cost functions for the nominal plants, we transform the
robust tracking control problem into a stabilization design for
both kinds of perturbations. The explicit proofs are provided
to show the equivalence of the transformation for these two
situations respectively. Then, the neural-reinforcement-learning-
based algorithm with guaranteed cost control is developed to
learn the cost functions and optimal control laws adaptively.
The designed method can also guarantee the boundedness of
a given cost function. Three simulation studies are provided to
demonstrate the effectiveness of the proposed method and also
validate the theoretical analysis.

Impact Statement—Over the past decades, AI-based learning
control has received growing attention. In particular, the rein-
forcement learning method, which enables the agent to learn
in an interactive environment, shows the potential to offer
advantages over traditional control methods. It has been recently
introduced into the tracking control problem, which is crucial
in many applications, including robotics, aerospace, manufac-
turing, and process control. Despite the advances, reinforcement
learning method may face significant challenges when used in
the environment that exists perturbations or being attacked.
This is because the perturbations can affect the observations
or measurements that the agent relies on to learn its control
action. The situation will become worse when the perturbations
change over time. This limitation makes the learning control
hard to be generalized well to changes. Therefore, in this paper,
we design an intelligent control method through robust-optimal
transformation for perturbed tracking systems to guarantee the
control performance.

Index Terms—Reinforcement learning, neural networks, track-
ing control, matched and mismatched perturbations, and guar-
anteed cost control.

NOMENCLATURE

x State vector
u Control input
f, h, d System functions
ε Unknown perturbations
ξ Perturbation term
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ξf Upper bound of ∣∣ξ∣∣
r Reference trajectory
ρ Tracking error, ρ = x − r
fc Tracking function
J Cost function
Λ Utility function
M,R,P Positive definite symmetric matrices
JT Modified cost function for the auxiliary

nominal plant (8)
λmax Maximal eigenvalue of a matrix
η Design parameter, η > λmax(R)

h+ Moore-Penrose pseudoinverse matrix of h
b Augment state vector, b = [ρT , rT ]T

F ,G,ZA,ZB System functions with respect to b
Aξ Upper bound of ∣∣ξ∣∣ with respect to b
Ξ Ξ(⋅) = h+(⋅)d(⋅)
Vh Upper bound of ∣∣Ξ(⋅)ξ(⋅)∣∣
JS Modified cost function for the auxiliary

nominal plant (24)
ΛS Utility function with respect to b
MI Positive definite symmetric matrix, MI =

diag{M, 0n×n}
σ Design parameter, 0 < σ < 1

2
JG Unified cost function for general perturbed

tracking system (46)
rS , pS Positive definite symmetric matrices, R =

rS ⋅ r
T
S

, P = pS ⋅ pTS
ι Binary signal
ωc Ideal critic network weights for cost func-

tion JT approximation
δc Activation function of critic network for

cost function JT approximation
ϕc Reconstruction error of critic network for

cost function JT approximation
ω̂c Estimated critic network weights for cost

function JT approximation
αc Learning rate of critic network for cost

function JT approximation
ωS Ideal critic network weights for cost func-

tion JS approximation
δS Activation function of critic network for

cost function JS approximation
ϕS Reconstruction error of critic network for

cost function JS approximation
ω̂S Estimated critic network weights for cost

function JS approximation
αS Learning rate of critic network for cost

function JS approximation
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I. INTRODUCTION

Artificial intelligence (AI) and reinforcement learning meth-
ods have attracted great attention in the study of control
systems over the past decades. By effectively approximating
the solution of Hamilton-Jacobi-Bellman (HJB) equation, rein-
forcement learning method has been widely recognized as one
of the core methodologies to achieve optimal learning-based
control [1]–[5]. Extensive studies have been dedicated to ad-
vance the evolution of intelligent control in the society [6]–[8].
Recent research efforts, particularly the integration of neural
networks and reinforcement learning, have further propelled
the field and facilitated more efficient and adaptable control
systems. Many research projects have been conducted with
this neural-reinforcement-learning-based structure in terms of
theoretical analysis [9]–[11], algorithm optimization [12]–
[15], architecture development [16], [17] and real-world ap-
plications [18]–[20].

This method has also been applied to solve the trajec-
tory tracking problems. For instance, an event-driven neuro-
control method was designed in [21] to solve the tracking
problem for continuous stirred tack reactor. In [22], an in-
tegral reinforcement learning method with neural networks
implementation was applied on the optimal tracking control
problem for constrained-input systems. By building an aug-
ment plant, authors in [23] developed a neuro-optimal tracking
control method with value iteration for nonaffine discrete-
time systems. In [24], an approximate optimal controller was
established for unknown nonlinear tracking systems based on
the recurrent neural network model and actor-critic learning
algorithm. In these articles, the optimal tracking controller
was designed based on the trustable received data. However,
if the communication network is vulnerable to noise and/or
malicious attack, the learning systems will suffer from un-
certainties or perturbations, which make the received data
unreliable. Therefore, the reinforcement learning methods can
not be applied directly.

Recent studies on data-driven robust control showed the
feasibility to stabilize the perturbed systems with correspond-
ing optimal control results [25]–[29]. In [30], the event-based
mechanism was considered in the robust-optimal transforma-
tion process to save the communication resource. A bounded
robust controller was designed in [31] for finite-time-horizon
nonlinear systems with uncertainties. In [32], the system
with constrained input was studied and the robust adaptive
control algorithm was designed with equivalent transforma-
tion analysis. A power system application was considered in
[33] with actor-critic robust stabilization design by proper
transformation. This idea has also been introduced into the
robust trajectory tracking control in [34] for the system with
general uncertainty. Particularly, the authors designed a self-
learning robust tracking control method by integrating the
partial derivatives of cost function into the auxiliary cost
function for transformation design.

Besides, the guaranteed cost control becomes popular in
robust control problems to not only stabilize the system for
all admissible perturbations, but also guarantee the bounded-
ness of the given cost function [30], [35]–[37]. In [38], the

guaranteed cost tracking control method was developed for
continuous-time systems with matched uncertainty. However,
mismatched uncertainty or perturbation also exists and is
sometimes more general in practice.

Motivated by the above observations and literature stud-
ies, this paper develops a neural-reinforcement-learning-based
guaranteed cost control method for a class of continuous-
time nonlinear tracking systems with matched and mismatched
perturbations. The major contributions of this paper can be
summarized as follows.

● By developing appropriate auxiliary cost functions and
constructing augment systems, we transform the robust
tracking control problem into an optimal stabilization
design. Therefore, the learning-based robust control can
be solved with the help of the transformed optimal control
problem. The equivalence of the developed transforma-
tion is provided for matched and mismatched perturbation
scenarios, respectively. In addition, we also establish the
unified solution of learning-based control for both kinds
of perturbations. This is important for perturbed tracking
systems in general.

● An adaptive reinforcement-learning-based algorithm with
guaranteed cost control is developed to asymptotically
stabilize the closed-loop design. Comparing with [34],
our developed cost function does not include its partial
derivatives, which reduces the computational complexity,
especially when dealing with large state space problems.
Furthermore, we also provide the theoretical analysis for
the boundedness guarantee of the given cost function.

● The online learning method is designed with neural
networks implementation. Specifically, we implement the
developed method with a critic-only structure, which
plays a key role in computing the solution of the modified
HJB equation efficiently. The learned control law is
subsequently applied on the original perturbed system
for robust trajectory tracking control. The stability of
the developed online learning process is also provided
to ensure the tracking performance.

Note that our developed neural-reinforcement-learning-based
guaranteed cost control method is an online learning process.
Therefore, the neural networks are established and trained
based on the real-time data for cost function estimation
and control law calculation. In contrast to the traditional
optimization-based control methods, which are known for their
stability but rely on accurate models and may not handle com-
plex or high-dimensional systems effectively, our developed
approach is data-driven. It does not require the explicit system
models, which is more flexible and adaptable.

The rest of the paper is organized as follows. In Section
II, the tracking control problem with unknown matched and
mismatched perturbations are formulated. In Section III, we
convert the robust tracking control problem into the corre-
sponding stabilization design with appropriate auxiliary cost
function for both kinds of perturbations. Furthermore, the
guaranteed cost control algorithm is developed based on the
reinforcement learning techniques to stabilize the transformed
system in two scenarios respectively. The online learning
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method with neural networks implementation is developed in
Section IV and the stability analysis of the learning process
is also provided. In Section V, three simulation studies are
given to demonstrate the effectiveness of the proposed method,
including a very unstable problem, i.e., triple-link inverted
pendulum balancing system (eight state variables). Finally,
Section VI concludes this paper.

II. TRACKING CONTROL UNDER PERTURBATIONS

Consider a class of nonlinear systems in the nominal con-
dition as follows

ẋ(t) = f(x(t)) + h(x(t))u(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input, f(⋅) ∈ Rn and h(⋅) ∈ Rn×m are the drift and input
dynamics, respectively, with f(0) = 0.

The reference tracking trajectory r(t) ∈ Rn is assumed
bounded and given as

ṙ(t) = fc(r(t)). (2)

Define the tracking error as ρ(t) = x(t) − r(t). Based on
(1) and (2), the dynamics of ρ(t) is

ρ̇(t) = f(x(t)) − fc(r(t)) + h(x(t))u(t). (3)

In this paper, we consider that the data communication
network is vulnerable. This means the exchanged data may
alter. Most attacks and faults can be modeled by additive inputs
on system actuator and/or sensor measurements. Therefore,
the general description of the altered system dynamics can be
provided as follows

ẋ(t) = f(x(t)) + h(x(t))u(t) + ε(x(t)) (4)

where ε(x(t)) = d(x(t))ξ(x(t)) is the unknown perturba-
tion caused by attacks or faults. In this paper, we consider
two kinds of system perturbations, i.e., matched perturbation
(d(x(t)) = h(x(t))) and mismatched perturbation (d(x(t)) ≠
h(x(t))). The perturbation term ξ(x(t)) ∈ Rp is upper
bounded by a known function ∣∣ξ(x(t))∣∣ ≤ ξf(x(t)) with
ξf(0) = 0. This assumption is reasonable and aligns with the
physical limits inherent in the systems.

Therefore, the dynamics of tracking error becomes

ρ̇(t) = f(x(t)) − fc(r(t)) + h(x(t))u(t) + ε(x(t)). (5)

The cost function is given as

J(ρ(t)) = ∫
∞

t
Λ(ρ(τ), u(τ))dτ (6)

where Λ(ρ(t), u(t)) = ρT (t)Mρ(t) + uT (t)Ru(t) is the
utility function with Λ(0,0) = 0. Also, we have M ≻ 0 and
R ≻ 0 are the symmetric matrices.

Our goal is to develop a data-driven robust controller u(t),
such that the closed-loop system (5) with all the admissible
perturbations is guaranteed stable, and the cost function (6)
is upper bounded by a finite function. Then, the designed
controller u(t) is the guaranteed cost control law and the upper
bound function is the guaranteed cost function. A neural-
reinforcement-learning-based guaranteed cost control method
is developed in this paper to achieve this goal. Note that
we eliminate the time index t in the following statement for
presentation simplification.

III. ADAPTIVE REINFORCEMENT-LEARNING-BASED
ALGORITHM DESIGN WITH GUARANTEED COST CONTROL

In this section, we start with the development of a data-
driven guaranteed cost control algorithm for tracking system
with matched perturbation. Then, the case with mismatched
perturbation is explored and discussed. The theoretical foun-
dation of the developed algorithm is studied for both cases re-
spectively. Furthermore, we also establish the unified solution
of data-driven learning-based control for the general perturbed
tracking systems.

A. Design with Matched Perturbation

Consider the fact x = ρ + r and we reconstruct the system
function with tracking dynamics as

[
ρ̇
ṙ
] = [

f(ρ + r) − fc(r)
fc(r)

] + [
h(ρ + r)
0n×m

]u + [
ε(ρ + r)
0n×m

] (7)

where ε(ρ + r) = d(ρ + r)ξ(ρ + r) = h(ρ + r)ξ(ρ + r) is
the matched perturbation and ∣∣ξ(ρ + r)∣∣ = ∣∣ξ(x)∣∣ ≤ ξf(x) ≜
ξf(ρ, r). Here, we consider the augment state ρ+ r instead of
x to show the tracking dynamics. This is an alternative repre-
sentation of dynamics [ρ̇, ṙ, ẋ] with ρ̇ = f(x)−fc(r)+h(x)u+
ε(x), ṙ = fc(r), and ẋ = ρ̇+ ṙ. The design in (7) simplifies the
system function by reducing the state dimensions, which will
further facilitate the analysis and reduce computation cost.

The nominal part of system (7) is given as

[
ρ̇
ṙ
] = [

f(ρ + r) − fc(r)
fc(r)

] + [
h(ρ + r)
0n×m

]u (8)

which is assumed controllable.
It is desired to find the feedback control law u to minimize

the modified cost function

JT (ρ) = ∫
∞

t
{ηξ2f(ρ(τ), r(τ)) +Λ(ρ(τ), u(τ))}dτ (9)

where η is the design parameter and JT (0) = 0. Hence,
the robust tracking control problem has been converted into
an optimal stabilization design with the system dynamics
provided in (8) and the cost function modified in (9).

Define the Hamiltonian of the transformed optimal control
problem as

H(ρ, r,u,∇JT ) = ηξ
2
f(ρ, r) +Λ(ρ, u)

+ (∇JT (ρ))
T

(f(ρ + r) − fc(r) + h(ρ + r)u) (10)

where ∇JT (ρ) = ∂JT (ρ)/∂ρ is the partial derivative of JT (ρ)
with respect to ρ.

Based on Bellman’s optimality equation, the optimal cost
function is the minimal result of (9), which is

J∗
T
(ρ) =min

u
∫

∞

t
{ηξ2f(ρ(τ), r(τ)) +Λ(ρ(τ), u(τ))}dτ.

(11)

Therefore, the optimal control law can be derived as

∂H(ρ, r, u,∇J∗
T
)

∂u
= 0⇒

u∗ = −
1

2
R
−1hT

(ρ + r)∇J∗
T
(ρ). (12)
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Substituting (12) into (10), we have the HJB equation as

H(ρ, r, u∗,∇J∗
T
) = 0. (13)

The following theorem provides the equivalence of this
robust-optimal transformation, which shows the designed con-
trol law (12) is the result of the orignal robust tracking problem
with matched perturbation.

Theorem 1: If J∗
T
(ρ) is the solution of HJB equation

(13), then the designed optimal control law (12) of system
(8) guarantees the closed-loop asymptotic stability of system
(7) with matched perturbation.

Proof: Apply the optimal control law u∗ to the perturbed
system (7). Define J∗

T
(ρ) as the Lyapunov function. Then, the

first derivative of J∗
T
(ρ) is given as

J̇∗
T
(ρ) = (∇J∗

T
(ρ))

T

(f(ρ + r) − fc(r) + h(ρ + r)u
∗
)

+ (∇J∗
T
(ρ))

T

ε(ρ + r). (14)

Considering the HJB equation (13), it follows

J̇∗
T
(ρ) = − ηξ2f(ρ, r) −Λ(ρ, u

∗
) + (∇J∗

T
(ρ))

T

ε(ρ + r)

= − ηξ2f(ρ, r) − ρ
T
Mρ − u∗TRu∗

+ (∇J∗
T
(ρ))

T

h(ρ + r)ξ(ρ + r). (15)

Based on (12), we have (∇J∗
T
(ρ))Th(ρ + r) = −2u∗TR. By

adding and subtracting the term ξT (ρ + r)Rξ(ρ + r) on the
equation (15), it can be further rewritten as

J̇∗
T
(ρ) = − ηξ2f(ρ, r) − ρ

T
Mρ + ξT (ρ + r)Rξ(ρ + r)

− (u∗ + ξ(ρ + r))
T

R(u∗ + ξ(ρ + r))

≤ − ρTMρ − (η − λmax(R))ξ
2
f(ρ, r) (16)

where λmax(⋅) is the maximal eigenvalue of a matrix. If the
design parameter η > λmax(R), we have

J̇∗
T
(ρ) ≤ −ρTMρ < 0,∀ρ ≠ 0. (17)

Hence, the designed feedback control law (12) can asymptoti-
cally stabilize the system (7) with matched perturbation, which
completes the proof. ∎

Therefore, the designed control law (12) can guarantee the
stability of system (7), i.e., ρ → 0, when t →∞. Considering
the fact ρ = x − r, it follows x → r when t → ∞. This
means the designed control law (12) can guarantee the tracking
performance of the orignal tracking system (4) with matched
perturbation.

Comparing the modified cost function (9) with (6), we can
easily obtain

J(ρ) ≤ JT (ρ) ≜ BJ (ρ) (18)

which ensures the boundedness of (6). This demonstrates
the guaranteed cost control for the tracking system (4) with
matched perturbation. In other words, the designed control
law (12) is the guaranteed cost control law and the upper
bound BJ (ρ) is the guaranteed cost function. Furthermore,

the optimal bound can be derived by B∗
J
(ρ) = minu JT (ρ)

and it normally satisfies the condition

min
u
H(ρ, r, u∗,∇B∗

J
(ρ)) = 0 (19)

where ∇B∗
J
(ρ) = ∂B∗

J
(ρ)/∂ρ.

B. Design with Mismatched Perturbation

In this section, we develop the data-driven guaranteed
cost control method for tracking system with mismatched
perturbation, i.e., d(x) ≠ h(x). Decompose the perturbation
term into two parts as the matched and mismatched elements:

d(x)ξ(x) = h(x)h+(x)d(x)ξ(x)

+ (In − h(x)h
+
(x))d(x)ξ(x) (20)

where h+(x) is the Moore-Penrose pseudoinverse matrix of
h(x). Hence, the tracking error dynamics can be rewritten as

ρ̇ = f(x) − fc(r) + h(x)u + h(x)h
+
(x)d(x)ξ(x)

+ (In − h(x)h
+
(x))d(x)ξ(x). (21)

Define an augment state b = [ρT , rT ]T ∈ R2n. Since ρ =
x − r, the dynamics of this augment state is given as

ḃ = F(b) + G(b)u +ZA(b)ξ(b) +ZB(b)ξ(b) (22)

where

F(b) = [
f(ρ + r) − fc(r)

fc(r)
] , G(b) = [

h(ρ + r)
0n×m

] ,

ZA(b) = [
h(ρ + r)h+(ρ + r)d(ρ + r)

0n×p
] ,

ZB(b) =

⎡
⎢
⎢
⎢
⎢
⎣

(In − h(ρ + r)h
+(ρ + r))d(ρ + r)

0n×p

⎤
⎥
⎥
⎥
⎥
⎦

. (23)

Here, ZA(b) and ZB(b) represent the matched and mis-
matched elements of perturbation, respectively.

For the new dynamics (22), the perturbation term ξ(b) is
also bounded as ∣∣ξ(b)∣∣ = ∣∣ξ(x)∣∣ ≤ ξf(x) ≜ Aξ(b). Therefore,
design the following nominal plant with an auxiliary control
variable v ∈ Rp as

ḃ = F(b) + G(b)u +ZB(b)v. (24)

Note that v is not used in the robust control process, but it
helps to obtain the feedback control law u in the optimal
learning process.

Assume the system (24) is controllable. The objective is to
find the optimal control law [u∗T , v∗T ]T that minimize the
following modified cost function

JS(b) = ∫
∞

t
{V

2
h(b(τ))+σA

2
ξ(b(τ))

+ΛS(b(τ), u(τ), v(τ))}dτ (25)

where 0 < σ < 1/2 is the design parameter, Vh(b) is an upper
bound of ∣∣Ξ(b)ξ(b)∣∣ ≤ Vh(b) and Ξ(b) = h+(ρ + r)d(ρ + r).
The function ΛS(b, u, v) = bTMIb + uTRu + σvTPv with
ΛS(0,0,0) = 0, where MI = diag{M, 0n×n} and P ≻ 0 is a
symmetric matrix. In this paper, we consider R and P are the
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identity matrices with appropriate dimensions in the controller
design for tracking system with mismatched perturbation.
Hence, it follows ΛS(b, u, v) = bTMIb + u

Tu + σvT v. The
modified cost function (25) is expected to solve the robust-
optimal transformation where ΛS(b, u, v) is designed for the
optimal system (24) and the term V2

h(b)+σA
2
ξ(b) reflects the

perturbation.
We can further derive the infinitesimal version of (25) as

V
2
h(b) + σA

2
ξ(b)+ΛS(b, u, v) + (∇JS(b))

T

⋅ (F(b) + G(b)u +ZB(b)v) = 0 (26)

with JS(0) = 0. Thus, the Hamiltonian can be defined as

HS(b, u, v,∇JS) = V
2
h(b) + σA

2
ξ(b) +ΛS(b, u, v)

+ (∇JS(b))
T

(F(b) + G(b)u +ZB(b)v) (27)

where ∇JS(b) = ∂JS(b)/∂b.
The optimal cost function is given as

J∗
S
(b) =min

u,v
∫

∞

t
{V

2
h(b(τ)) + σA

2
ξ(b(τ))

+ΛS(b(τ), u(τ), v(τ))}dτ (28)

which satisfies the HJB equation

HS(b, u
∗, v∗,∇J∗

S
) = 0. (29)

Then, the optimal control law is provided as

∂HS(b, u, v,∇J
∗

S
)

∂u
= 0⇒ u∗ = −

1

2
G
T
(b)∇J∗

S
(b), (30)

∂HS(b, u, v,∇J
∗

S
)

∂v
= 0⇒ v∗ = −

1

2σ
Z

T
B
(b)∇J∗

S
(b). (31)

The following theorem proves that the designed optimal
control law (30) can stabilize the perturbed system (22) and,
therefore, can ensure the perturbed tracking system (4) follows
the trajectory of reference.

Theorem 2: Consider the system (24) with modified cost
function (25). Then, the designed feedback control law (30)
guarantees the closed-loop asymptotic stability of system (22)
with mismatched perturbation.

Proof: Consider J∗
S
(b) as a Lyapunov function. Applying

J∗
S
(b) on the perturbed system (22), we have

J̇∗
S
(b) =(∇J∗

S
(b))

T

(F(b) + G(b)u∗ +ZA(b)ξ(b)

+ZB(b)ξ(b))

=(∇J∗
S
(b))

T

(F(b) + G(b)u∗ +ZB(b)v
∗
)

+ (∇J∗
S
(b))

T

(ZA(b)ξ(b) +ZB(b)(ξ(b) − v
∗)).

(32)

Considering the HJB equation (29), it follows

J̇∗
S
(b) = − V2

h(b) − σA
2
ξ(b) −ΛS(b, u

∗, v∗) + (∇J∗
S
(b))

T

⋅ZA(b)ξ(b) + (∇J
∗

S
(b))

T

ZB(b)(ξ(b) − v
∗). (33)

Based on (30) and (31), we have

(∇J∗
S
(b))

T

G(b) = −2u∗T , (34)

(∇J∗
S
(b))

T

ZB(b) = −2σv
∗T . (35)

Since

(∇J∗
S
(b))

T

ZA(b) = (∇J
∗

S
(b))

T

G(b)Ξ(b) (36)

we can rewrite (33) as

J̇∗
S
(b) = − V2

h(b) − σA
2
ξ(b) − b

T
MIb − u

∗Tu∗ − σv∗T v∗

− 2u∗TΞ(b)ξ(b) − 2σv∗T (ξ(b) − v∗). (37)

The mathematical deduction brings

−u∗Tu∗ − 2u∗TΞ(b)ξ(b) =

− ∣∣u∗ +Ξ(b)ξ(b)∣∣2 + ∣∣Ξ(b)ξ(b)∣∣2 (38)

and the inequality

−2σv∗T ξ(b) ≤ σ(∣∣v∗∣∣2 + ∣∣ξ(b)∣∣2). (39)

Substituting (38) and (39) into (37), we have

J̇∗
S
(b) ≤ − V2

h(b) − σA
2
ξ(b) − σv

∗T v∗ − bTMIb

− ∣∣u∗ +Ξ(b)ξ(b)∣∣2 + ∣∣Ξ(b)ξ(b)∣∣2 + σ∣∣v∗∣∣2

+ σ∣∣ξ(b)∣∣2 + 2σv∗T v∗

≤ − (V
2
h(b) − ∣∣Ξ(b)ξ(b)∣∣

2
) − bTMIb

− ∣∣u∗ +Ξ(b)ξ(b)∣∣2 + 2σv∗T v∗. (40)

It follows,

J̇∗
S
(b) ≤ − bTMIb + 2σv

∗T v∗

≤ − (1 − 2σ)bTMIb + 2σ(v
∗T v∗ − bTMIb). (41)

Since 0 < σ < 1/2, if v∗T v∗ ≤ bTMIb, we have J̇∗
S
(b) < 0,

∀b ≠ 0. Hence, the designed optimal control law u∗ can
asymptotically stabilize the perturbed system (22), which
means the tracking error ρ is asymptotically stable. This
completes the proof. ∎

Theorem 2 shows the stability of the tracking error ρ with
the designed control law (30). Since ρ = x − r, the robust
control of tracking system (4) with mismatched perturbation
is achieved. Furthermore, we can observe that the modified
cost function (25) is an upper bound of (6), i.e.,

J(ρ) ≤ JS(b) ≜ BS(b). (42)

This means the designed method is the guaranteed cost control
for tracking system (4) with mismatched perturbation, where
u∗ in (30) is the guaranteed cost control law and the upper
bound BS(b) is the guaranteed cost function. Besides, the
optimal bound can be obtained as B∗

S
(b) = minu,v JS(b).

Setting ∇B∗
S
(b) = ∂B∗

S
(b)/∂b(t), we have B∗

S
(b) satisfies the

condition minu,vH(b, u
∗, v∗,∇B∗

S
(b)) = 0.

In this paper, we assume R and P are the identity matrices
in the control design for tracking system with mismatched
perturbation. In fact, we can choose proper parameters for the
modified cost function when R and P are only the positive
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and symmetric matrices. Specifically, by setting R = rS ⋅ r
T
S

and P = pS ⋅ pTS , we have the cost function revised as

J∗
S0
(b) = min

u0,v0
∫

∞

t
{∣∣rS ∣∣

2
V
2
h(b(τ)) + σ∣∣pS ∣∣

2
A

2
ξ(b(τ))

+ΛS(b(τ), u(τ), v(τ))}dτ. (43)

The corresponding feedback control law becomes

u∗0 = −
1

2
R
−1
G
T
(b)∇J∗

S0
(b), (44)

v∗0 = −
1

2σ
P
−1
Z

T
B
(b)∇J∗

S0
(b). (45)

where ∇J∗
S0
(b) = ∂J∗

S0
(b)/∂b. It can be proved that u∗0 is the

guaranteed cost control law which can asymptotically stabilize
the perturbed system (22) and JS0(b) is the guaranteed cost
function.

It is worth noting that if both matched and mismatched
perturbations exist in the system dynamics, we have

ρ̇ = f(x) − fc(r) + h(x)u + h(x)ξ1(x) +Z(x)ξ2(x) (46)

where ξ1(x) and ξ2(x) are the perturbation terms, and Z(x) ≠
h(x). Therefore, h(x)ξ1(x) is the matched perturbation and
Z(x)ξ2(x) is the mismatched one.

We can reformulate (46) as

ρ̇ = f(x) − fc(r) + h(x)u + [h(x) Z(x)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(x)

[
ξ1(x)
ξ2(x)

]

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
ξ(x)

. (47)

Since d(x) does not consist with the input dynamics h(x), we
have reconstructed the function as the system with mismatched
perturbations. Then, the cost function (28) and the control law
(30) can be used to solve this problem.

Besides, consider the system dynamics with matched per-
turbation (7) and the corresponding nominal plant (8). If we
define the augment state as b = [ρT , rT ]T , the nominal plant
(8) can be rewritten as ḃ = F(b) + G(b)u with F(b) and
G(b) are provided in (23), alongside the cost function (11) and
control laws (12) revised as J∗

T
(b) = minu ∫

∞

t {ηA
2
ξ(b(τ)) +

bTMIb + u
TRu}dτ and u∗ = − 1

2
R−1GT (b)∇J∗

T
(b). Com-

paring the design with the results of system with mismatched
perturbation (43) and (44), we can unify the control law for
the general perturbed tracking systems as

u∗ = −
1

2
R
−1
G
T
(b)∇J∗

G
(b) (48)

where ∇J∗
G
(b) = ∂J∗

G
(b)/∂b and J∗

G
(b) is the unified cost

function provided as

J∗
G
(b) =min

U
∫

∞

t
{ι∣∣rS ∣∣

2
V
2
h(b(τ)) + (ισ∣∣pS ∣∣

2

+ (1 − ι)η)A2
ξ(b(τ)) +ΛG(b(τ),U(τ))}d(τ) (49)

in which U = [uT , vT ]T for mismatched perturbation and
U = u for matched perturbation, ΛG(b,U) = bTMIb+u

TRu+
ισvTPv, and ι is a binary signal, such that ι = 1 for
mismatched perturbation and ι = 0 for matched perturbation.

IV. PROPOSED ONLINE LEARNING METHOD WITH
STABILITY ANALYSIS

In this section, the online learning method is designed based
on neural networks implementation to estimate the solution
of the HJB equation. This paper establishes the critic-only
structure for both types of perturbed tracking systems, such
that the computation cost can be reduced. The stability analysis
of the designed learning process is also provided to guarantee
that the estimation errors of learned neural network weights
are uniformly ultimately bounded (UUB).

A. Adaptive Neural Network Architecture

Consider the controller design with matched perturbation
and apply the neural networks to reconstruct the cost function
J∗
T
(ρ) as

J∗
T
(ρ) = ωT

c δc(ρ) + ϕc(ρ) (50)

where ωc are the ideal weights for function approximation,
δc(ρ) is the activation function, and ϕc(ρ) is the reconstruction
error.

Since the ideal weights ωc are unknown, we build a critic
network with the estimated weights ω̂c to approximate the cost
function as

JT (ρ) = ω̂
T
c δc(ρ). (51)

The partial derivative of JT (ρ) is given as ∇JT (ρ) =
(∇δc(ρ))

T ω̂c. Considering (12), we have

u = −
1

2
R
−1hT

(ρ + r)(∇δc(ρ))
T ω̂c. (52)

This is an estimated version of the feedback control law
u∗ = − 1

2
R−1hT (ρ + r)((∇δc(ρ))

Tωc + ∇ϕc(ρ)). Now our
task becomes to adaptively learn the suitable critic network
weights ω̂c.

Considering (10), the approximate Hamiltonian with the
established critic network can be provided as

H(ρ, r, u,∇δTc ω̂c) =

ηξ2f(ρ, r) + ρ
T
Mρ −

1

4
ω̂T
c ∇δc(ρ)h(ρ + r)R

−1hT
(ρ + r)

⋅ (∇δc(ρ))
T ω̂c + ω̂

T
c ∇δc(ρ)(f(ρ + r) − fc(r)). (53)

Therefore, we can define the objective error function as
Ec = 0.5e2c with ec = H(ρ, r, u,∇δ

T
c ω̂c). Then, the weight

adjustment rule of critic network can be derived as

˙̂ωc = − αc
1

(1 + κTκ)2
(
∂Ec

∂ω̂c
)

= − αc
κ

(1 + κTκ)2
(ηξ2f(ρ, r) +Λ(ρ, u) + κ

T ω̂c) (54)

where αc > 0 is the learning rate and κ = ∇δc(ρ)(f(ρ +

r) − fc(r) + h(ρ + r)u). The term (1 + κTκ)2 is for optional
normalization. Therefore, the learning rule (54) adaptively
updates the weights ω̂c and then constructs the feedback
control law based on (52). The algorithm of this critic-only
learning-based robust controller design for tracking system
with matched perturbation is provided in Algorithm 1.
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Algorithm 1 Controller Design with Matched Perturbation
1: Select the learning time Tc1 > 0 and the execution time

Tc2 > 0. Set parameters η, ξf(ρ), M, R, αc, and a
threshold νc.
Begin the learning process

2: Initialize
3: for t = 0→ Tc1 do
4: Compute u using (52);
5: Take action u and collect ρ from (8);
6: Update JT (ρ) through (51);
7: Update ω̂c from (54);
8: if ∣∣∆ω̂c∣∣ < νc then
9: Stop;

10: end if
11: end for
12: return ω̂c and fix it.

Begin the robust control process
13: for t = 0→ Tc2 do
14: Compute u using (52);
15: Take action u and collect x from (4);
16: end for

Now, we consider the case with mismatched perturbation.
Denote the ideal weights as ωS , the activation function as
δS(b) and the reconstruction error as ϕS(b). Hence, the
cost function J∗

S
(b) can be provided with a neural network

structure as

J∗
S
(b) = ωT

S
δS(b) + ϕS(b). (55)

Based on (30), (31) and (55), the optimal control law can be
provided as

[
u∗

v∗
] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
2
GT (b)((∇δS(b))

T
ωS +∇ϕS(b))

− 1
2
ZT
B
(b)((∇δS(b))

T
ωS +∇ϕS(b))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (56)

Since the ideal weights ωS are unknown, a critic network
with the estimated weights ω̂S is established to approximate
the cost function as

JS(b) = ω̂
T
S
δS(b) (57)

and then the estimated feedback control law can be derived as

[
u
v
] =

⎡
⎢
⎢
⎢
⎢
⎣

− 1
2
GT (b)(∇δS(b))

T
ω̂S

− 1
2
ZT
B
(b)(∇δS(b))

T
ω̂S

⎤
⎥
⎥
⎥
⎥
⎦

. (58)

Note that even though we update both u and v in the optimal
learning process, only u will be applied on the robust tracking
control process.

Based on the neural network design, the approximate Hamil-
tonian can be built as

HS(b, u, v,∇δ
T
S
ω̂S) = V

2
h(b) + σA

2
ξ(b) + b

T
MIb

−
1

4
ω̂T
S
∇δS(b)G(b)G

T
(b)(∇δS(b))

T ω̂S −
1

4
ω̂T
S
(b)

⋅ ∇δS(b)ZB(b)Z
T
B
(b)(∇δS(b))

T ω̂S + ω̂
T
S
∇δS(b)F(b).

(59)

Since HS(b, u
∗, v∗,∇J∗

S
) = 0, we define eS =

HS(b, u, v,∇δ
T
S
ω̂S) and the objective error function as

ES = 0.5e2
S

. Then, we have the weight adjustment rule
derived as

˙̂ωS = −αSΘ(V
2
h(b) + σA

2
ξ(b) +ΛS(b, u, v) + κ

T
S
ω̂S) (60)

where αS > 0 is the learning rate, Θ = κS/(1 + κT
S
κS)

2, and
κS = ∇δS(b)(F(b)+G(b)u+ZB(b)v). The algorithm of this
developed method is provided in Algorithm 2.

Algorithm 2 Controller Design with Mismatched Perturbation
1: Select the learning time TS1 > 0 and the execution time

TS2 > 0. Set parameters σ, Vh(b), Aξ, MI , αS , and a
threshold νS .
Begin the learning process

2: Initialize
3: for t = 0→ TS1 do
4: Compute [uT , vT ]T using (58);
5: Take action [uT , vT ]T and collect b from (24);
6: Update JS(b) through (57);
7: Update ω̂S from (60);
8: if ∣∣∆ω̂S ∣∣ < νS then
9: Stop;

10: end if
11: end for
12: return ω̂S and fix it.

Begin the robust control process
13: for t = 0→ TS2 do
14: Compute u using the first equation of (58);
15: Take action u and collect x from (4);
16: end for

In this way, we develop the online learning process with
critic-only structure. Specifically, the critic network is con-
structed based on (51) and (57) to estimate the cost function
for converted systems, and the control law is determined using
(52) and (58). The critic network weights are updated based
on (54) and (60). These weight updates result in an enhanced
cost function, which, in turn, facilitate the calculation of
an improved control law. This iterative process continuously
improves both the cost function and the control law, which
ultimately achieves optimal control performance.

B. Stability Analysis

The stability analysis of the designed online learning
method is discussed. For the case with matched perturbation,
consider the nominal system (8) and establish the critic net-
work (51) with weight updating rule (54). Define the Lyapunov
function as Lmat = LT (ρ) + L(ω̃c), where LT (ρ) = J∗

T
(ρ)

and L(ω̃c) = α−1c tr(ω̃T
c ω̃c) with ω̃c = ωc − ω̂c as the weight

estimation error. We can obtain ω̃c is UUB. Then, for the
system with mismatched perturbation, the nominal plant is
established in (24). Design the critic network as (57) with
weight updating rule (60). Construct the Lyapunov function
as Lmis = LS(b)+L(ω̃S), where ω̃S = ωS − ω̂S is the weight
estimation error, LS(b) = J∗S(b), and L(ω̃S) = α

−1
S
tr(ω̃T

S
ω̃S).
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Fig. 1. Convergence process of critic network weights for case study 1.
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Fig. 2. System response in the critic training process for case study 1.

The UUB of ω̃S can also be obtained. The detailed theoretical
study of stability analysis is provided in Appendix.

V. SIMULATION STUDIES

Case Study 1: Consider a nonlinear system with the follow-
ing dynamics

[
ẋ1

ẋ2
] = [

x2
1 sin

2 x2 + x2

x3
1 − 1.5x2 cosx2

] + [
0
1
]u + [

0
1
] oT (61)

where x = [x1, x2]
T is the system state with the initial value

as x(0) = [1,−0.5]T , u is the control law and ξ(x) = oT is
the perturbation which is given as

oT = λ1x2 sin(λ2x1x2) (62)

Here, λ1 ∈ [−1, 1] and λ2 ∈ [−100, 100] are the unknown
parameters. Therefore, the perturbation term is upper bounded
by ∣∣oT ∣∣ ≤ ∣∣x∣∣ ≜ ξf(x). In this case, the term oT can be
considered as the perturbation applied directly on the actuator.
We have h(x) = d(x) = [0,1]T , which means the system (61)
contains a matched perturbation.

Assume the reference dynamics are provided as

[
ṙ1
ṙ2
] = [
−r1 cos

2 r2 + r2
−0.2r1 − sin r2

] (63)
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Fig. 3. Tracking error trajectory in robust control process for case study 1.

where r = [r1, r2]
T is the reference state with the initial value

as r(0) = [−0.5, 0.5]T . Since the tracking error ρ = x − r,
we have ρ(0) = [1.5,−1]T . To transfer this robust tracking
problem into a stabilization design, we develop the modified
cost function (9) with the parameters selected as η = 1.5,M =
I2 and R = I .

Design the nominal plant of the tracking error ρ based
on (8). Note that the open loop of the nominal plant is
unstable. A critic network is constructed to estimate the
cost function and iteratively improve both the cost func-
tion and control law. The neuron structure of the critic
network is designed as 5 − 6 − 1, i.e., 5 input neurons, 6
hidden neurons, and 1 output neuron. The initial weights
are chosen randomly within [−0.5, 0.5]. Set the learning rate
of the critic network as αc = 0.01 and select the sam-
pling interval as 0.05s. To guarantee the persistent excitation
condition, we add a small exploratory signal [32] n(t) =
sin2(t) cos(t) + sin2(2t) cos(0.1t) + sin2(1.2t) cos(0.5t) +
sin5(t)+sin2(1.12t)+cos(2.4t) sin3(2.4t) to the control u(t)
for the first 25s of the learning process.

The learning process spans a total of 50s and the con-
vergence evolution of critic network weights between the
hidden and output layers is provided in Fig. 1. We can
observe that the weights can quickly converge to a stable
result [0.3200,−0.1473,−0.3469,−0.3071, 0.1891,0.1507]T .
This verifies the optimal control process of the designed
neural-reinforcement-learning-based method. The system re-
sponse of the critic training process is provided in Fig.2. The
oscillation reflects the probing noise to the control signal.
After that, we fix the learned weights and build the feedback
controller based on (52). We apply the designed controller
on the original perturbed tracking system for 30s to verify
the constructed robust-optimal transformation. In this case
study, we select the perturbed parameters as λ1 = −0.5 and
λ2 = 100. Fig. 3 and Fig. 4 show the tracking error and system
state trajectories, respectively. We can observe that, under
the designed control method, the tracking error can quickly
converge to zero. This implies that the control law derived
from the transformed stabilization design is the result of the
original robust problem and can guide the system towards the
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Fig. 4. State trajectory in robust control process for case study 1.

desired trajectory in the presence of admissible perturbations.
Case Study 2: Now we revise the system (61) to contain an

additional perturbation term oS as

[
ẋ1

ẋ2
] = [

x2
1 sin

2 x2 + x2

x3
1 − 1.5x2 cosx2

] + [
0
1
]u + [

1 0
0 1
] [

oS
oT
] (64)

where oT is given in (62) and oS is provided as

oS = λ3x1 cos (
1

x2 + λ4
) (65)

in which λ3 ∈ [−1, 1] and λ4 ∈ [−100, 0)⋃(0,100] are the
unknown parameters. The perturbation in this case study can
be considered as not only applied on the actuator, but also on
the system sensor. Therefore, we have h(x) ≠ d(x) in this
case study, which means the system contains a mismatched
perturbation.

Considering the tracking error ρ = x − r and the augment
state b = [ρT , rT ]T , we have the augment system dynamics as

ḃ = F(b)+G(b)u

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ3(b1 + b3) cos (
1

b2+b4+λ4
)

λ1(b2 + b4) sin (λ2(b1 + b3)(b2 + b4))

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(66)

where

F(b) =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(b1 + b3)
2 sin2(b2 + b4) + (b2 + b4) + b3 cos

2 b4 + b4
(b1 + b3)

3 − 1.5(b2 + b4) cos(b2 + b4) + 0.2b3 − 1.1b4 sin b4
−b3 cos

2 b4 + b4
−0.2b3 − 1.1b4 sin b4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(67)

G(b) = [0,1,0,0]T (68)

The last term in (66) describes the perturbation and based on
(22), it can be divided as

ZA(b)ξ(b) +ZB(b)ξ(b) (69)
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Fig. 5. Convergence process of critic network weights for case study 2.
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Fig. 6. Stability condition v∗T v∗ ≤ bTMIb verification in the learning
process for case study 2.

Since h+(ρ+ r) = (hT (ρ+ r)h(ρ+ r))
−1

hT (ρ+ r) = [0,1], it
follows

ZA =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 1
0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ZB =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 0
0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ξ(b) = [
oS
oT
] (70)

Apply the designed guaranteed cost control method to solve
this robust tracking problem. We build the nominal plant
based on (24) with F(b), G(b) and ZB(b) given as (67),
(68) and (70), respectively. Note that the auxiliary control law
v = [v1, v2]

T is a two-dimensional variable. But only the first
element v1 is used in the nominal plant considering the design
of ZB. The second element v2 is used in the cost function to
help learn the optimal control law u. Considering the perturba-
tion ξ(b), we have ∣∣Ξ(b)ξ(b)∣∣ ≤ ∣∣

√
(b1 + b3)2 + (b2 + b4)2∣∣ ≜

Vh(b) and ∣∣ξ(b)∣∣ ≤ ∣∣
√
(b1 + b3)2 + (b2 + b4)2∣∣ ≜ Aξ(b). By

choosing σ = 0.4 and M = I2, the cost function JS(b) is
designed as

JS(b) = ∫
∞

t
{1.4(b1(τ)+b3(τ))

2
+ 1.4(b2(τ) + b4(τ))

2

+ΛS(b(τ), u(τ), v(τ))}dτ (71)
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Establish the critic network to learn the cost function JS(b)
and help develop the feedback control law u. The initial
weights of the critic network are randomly chosen within
[−0.5, 0.5]. Select the learning rate as αS = 0.01 and the
sampling interval as 0.05s. To test the performance of the
developed method, we consider that the perturbation applied
on the system jumps among four stages with the parameters
selected as follows:
Stage 1: λ1 = 1, λ2 = −100, λ3 = −1, λ4 = 50;
Stage 2: λ1 = −1, λ2 = 80, λ3 = 1, λ4 = −1;
Stage 3: λ1 = −1, λ2 = −100, λ3 = 1, λ4 = −100;
Stage 4: λ1 = −1, λ2 = 100, λ3 = −0.5, λ4 = −1;

We conduct the learning process based on the developed
neural-reinforcement-learning-based guaranteed cost control
method. The small exploratory signal n(t) has also been added
to the control for the first 25s to ensure the persistent excitation
condition. The evolution of the critic network weights is
provided in Fig. 5, which is observed a convergence result to
[0.1654, 0.0124,−0.0808, 0.2531,−0.4098,−0.1374, 0.5736,
−0.1639]T . The stability condition of the learning process is
verified in Fig. 6. We can observe that v∗T v∗ is consistently
smaller than bTMIb which ensures the asymptotic stability
of the system. After that, we fix the learned weights ω̂S
and design the feedback control law based on (58), which is
applied on the original perturbed system later. Assume the
perturbation starts with Stage 1 and then jumps to Stage 2, 3
and 4 in turn. It lasts 2.5s in Stage 1, 2, and 3, respectively,
and then stays in Stage 4. To show the effectiveness of
the proposed method, we compare our results with the
conventional actor-critic reinforcement learning method,
where the controller is designed based on the perturbed
formulation directly. The comparisons of the tracking error
trajectories under the same initial conditions are provided in
Fig. 7. We can observe that our developed robust-optimal
transformation design can quickly and effectively minimize
the tracking errors. This means the tracking system (64) can
accurately follow the reference dynamics in the presence of
perturbation, even when the perturbation changes over time.
On the other side, the conventional method exhibits higher
level of damping in the tracking error trajectory, particularly
when transitioning between stages, which leads to system
instability. The comparisons of the control laws during this
process are provided in Fig. 8. The results indicate that
our developed control law based on the transformed design
can effectively control the tracking system with admissible
mismatched perturbations to achieve expected performance.

Case Study 3 (Triple-link Inverted Pendulum): We have
tested our proposed method on a more challenging problem,
i.e., triple-link inverted pendulum balancing system (eight state
variables). The objective is to maintain stability and balance
of the cart and all the pendulums assembly in an inverted
position, and also enable the cart to track certain trajectory in
the perturbed environment with single control input. This is a
very complex and difficult problem due to the highly unstable
configuration and non-negligible system nonlinearities. The
existence of perturbations and the requirement of trajectory
tracking further complicate the balancing process. In this case
study, we have successfully implemented our proposed neural-
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Fig. 7. Tracking error trajectory comparisons of the developed neural-
reinforcement-learning-based guaranteed cost control method (developed) and
the conventional reinforcement learning method (conventional) for case study
2, where S1: Stage 1, S2: Stage 2, S3: Stage 3, S4: Stage 4.
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Fig. 8. Control trajectory comparisons of the developed neural-reinforcement-
learning-based guaranteed cost control method (developed) and the conven-
tional reinforcement learning method (conventional) for case study 2, where
S1: Stage 1, S2: Stage 2, S3: Stage 3, S4: Stage 4.

reinforcement-learning-based guaranteed cost control method
on this problem.

Specifically, this system includes three pendulum-like links
connected in series. These links are equipped with motors that
allow them to pivot or rotate around their joints. The entire
pendulum mechanism is attached on a cart, which serves as
a base and can move horizontally along a track. The system
model we considered is the same as that in [39], [40] except
the last term becomes

L(q, u, ξ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ksu +Ksw − sgn(s)µxA37

−sgn(θ1)µ1A38

−sgn(θ2)µ1A39

−sgn(θ3)µ1A40

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(72)

where w is the unknown perturbation which is in voltage and
converted into force by Ks = 24.7125N/V , s is the position
of the cart on the track, θ1 is the vertical angle of the 1st link
joint to the cart, θ2 is vertical angle of the 2nd link joint to
the 1st link, θ3 is the vertical angle of the 3rd link joint to
the 2nd link. Note that we use s to represent the cart position
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Fig. 9. Typical trajectories of a successful trail on the triple-link inverted
pendulum balancing system with perturbation: (a) tracking error of cart
position; (b) vertical angle of the 1st link joint to the cart; (c) vertical angle
of the 2nd link joint to the 1st link; (d) vertical angle of the 3rd link joint to
the 2nd link; (e) velocity error of the cart; (f) angular velocity of the 1st link
joint to the cart; (g) angular velocity of the 2nd link joint to the 1st link; (h)
angular velocity of the 3rd link joint to the 2nd link.

rather than x in [39], [40] to avoid any conflict with the state
variable defined in this paper.

Our goal is to balance the triple-link inverted pendulum
system and let the trajectory of the cart follows a sine wave
ṙ = sin(2πft) where f = 0.02 is the frequency of the wave. We
set the following constraints: (1) the cart track should be within
1m to both sides from the center point (reference trajectory);
(2) each link angle should be within the range of [−20○,20○]
with respect to the vertical axis. For all these two conditions, if
either one fails or both fail, we consider the designed controller
fails the task.

Therefore, define an eight-dimensional state for the system
as x = [ρ, θ1, θ2, θ3, ρ̇, θ̇1, θ̇2, θ̇3], where ρ = s−r is the tracking
error, ρ̇ = ṡ−ṙ is the velocity error of the cart, θ̇1 is the angular
velocity of the 1st link, θ̇2 is the angular velocity of the 2nd
link, and θ̇3 is the angular velocity of the 3rd link. The pertur-
bation is assumed as w = k1x2 sin(x1x2) + k2x1 cos(x3x4)

with the unknown parameters k1, k2 ∈ [−1, 1]. Hence, the
upper bound is defined as ξf = ∣∣x∣∣. We apply the method
developed in this paper to solve the problem. The typical
robust control trajectories of a successful run for all the state
vectors are provided in Fig. 9, i.e., (a) tracking error of cart
position; (b)-(d) the joint angle of the 1st, 2nd, and 3rd link
of the pendulum, respectively; (e) velocity error of the cart;
and (f)-(h) the angular velocity of the 1st, 2nd, and 3rd link
of the pendulum, respectively. It is shown that the designed
control law can balance the system state in the perturbed
environment. Particularly, the tracking error of the cart (Fig.
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Fig. 10. Comparison of the cart position s and reference trajectory r in the
robust control process.

9 (a)) is controlled within [−0.04, 0.04] which is relatively
small comparing to the reference wave magnitude 1. The
vertical angles of all the links (Fig. 9 (b)-(d)) are within the
admissible ranges to ensure the balance of the system. Fig. 10
compares the cart trajectory and the desired reference in the
robust control process. We can observe that with the learned
control law, the cart can track the reference dynamics, i.e.,
sine wave. Therefore, the results indicate that our developed
method is effective in this challenging problem, which again
demonstrate the validity of the method.

VI. CONCLUSION AND FUTURE PLAN

In this paper, we design a data-driven guaranteed cost
control method to solve the robust trajectory tracking problem
for matched and mismatched perturbed systems. The problem
has been converted into the corresponding stabilization design
with appropriate cost function. The equivalent analysis of the
robust-optimal transformation is provided explicitly for the
matched and mismatched cases respectively. The reinforce-
ment learning method is developed with the neural networks
implementation to adaptively learn the optimal control law
and also guarantee the boundedness of the given cost func-
tion. The simulation studies demonstrate the effectiveness and
adaptability of the developed method.

Furthermore, we also notice several directions for future
work and improvement. For example, it would be useful to
expand our results to encompass reference trajectories that
not only specify desired state profiles but also prescribe input
signals. This expansion will enable us to address a broader
range of tracking problems. We also intend to investigate
the development of adaptive strategies that can adjust con-
trol inputs in response to variations in reference trajectories,
which will make our approach more versatile and robust,
and ultimately contribute to its broader utility in real-world
applications.

APPENDIX

Stability Analysis of Online Learning Method: For the case
with matched perturbation, consider the nominal system (8)
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and establish the critic network (51) with weight updating rule
(54). Set the estimation error of the critic network weights as
ω̃c = ωc − ω̂c and define the Lyapunov function as

Lmat = LT (ρ) +L(ω̃c) (73)

where LT (ρ) = J
∗

T
(ρ) and L(ω̃c) = α

−1
c tr(ω̃T

c ω̃c).
The first derivative of (73) is given as L̇mat = L̇T (ρ) +

L̇(ω̃c). Based on Theorem 1, we have L̇T (ρ) ≤ −ρ
TMρ < 0

as long as η > λmax(R). Therefore, we focus on the second
term L̇(ω̃c), which is

L̇(ω̃c) = α
−1
c tr(αcω̃

T
c

κ

(1 + κTκ)2
(ηξ2f(ρ, r)

+Λ(ρ, u) + κT ω̂c)). (74)

Considering the fact ω̂c = ωc − ω̃c, we have

L̇(ω̃c) =α
−1
c tr( − αcω̃

T
c

κκT

(1 + κTκ)2
ω̃c + αcω̃

T
c

⋅
κ

(1 + κTκ)2
(ηξ2f(ρ, r) +Λ(ρ, u) + κ

Tωc)). (75)

We can further rewrite (75) as

L̇(ω̃c) ≤ −

XXXXXXXXXXX

κ

1 + κTκ

XXXXXXXXXXX

2

∥ω̃c∥
2
+
αc

2

XXXXXXXXXXX

κ

1 + κTκ

XXXXXXXXXXX

2

∥ω̃c∥
2

+
∥ηξ2f(ρ, r) +Λ(ρ, u) + κ

Tωc∥
2

αc(1 + κTκ)2
. (76)

Define ΦT =
κ

1+κTκ
and ΩT = ηξ

2
f(ρ, r) + Λ(ρ, u) + κ

Tωc ≤

Ω̄T . It follows,

L̇(ω̃c) ≤ − (1 −
αc

2
)∥ΦT ∥

2
∥ω̃c∥

2
+
Ω̄T
2αc

. (77)

Therefore, we obtain L̇(ω̃c) < 0 as long as the conditions
0 < αc < 2 and ∣∣ω̃c∣∣

2 > Ω̄T
αc(2−αc)∣∣ΦT ∣∣2

hold. It follows L̇mat =

L̇T (ρ)+ L̇(ω̃c) < 0, which means the weight estimation error
ω̃c is UUB.

Then, for the system with mismatched perturbation, we
consider the nominal plant provided in (24). Construct the
critic network as (57) with weight updating rule (60). Define
the Lyapunov function as

Lmis = LS(b) +L(ω̃S) (78)

where ω̃S = ωS − ω̂S is the weight estimation error, LS(b) =
J∗
S
(b) and L(ω̃S) = α−1

S
tr(ω̃T

S
ω̃S). Take the first derivative

of (78) as L̇mis = L̇S(b) + L̇(ω̃S). According to Theorem 2,
we have L̇S(b) < 0 if v∗T v∗ ≤ bTMIb. Therefore, it is the
term L̇(ω̃S) needs to be considered. By setting ΦS =

κS
1=κT

SκS

and ΩS = V
2
h(b)+σA

2
ξ(b)+ΛS(b, u, v)+κ

T
S
ωS ≤ Ω̄S , we can

easily obtain L̇(ω̃S) < 0 if αS < 2 and ∣∣ω̃S ∣∣2 > Ω̄S
αS(2−αc)∣∣ΦS ∣∣2

hold. Thus, we have L̇min < 0. This provides the UUB of the
weight estimation error ω̃S .
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