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A B S T R A C T   

Currently, plenty of image data is generated that complicate storage and image transmission. Great efforts have 
been attempted on how to increase compression ratio (CR) without loss of critical diagnostic information. In this 
study, we designed two optimized JPEGXT (JPEGXT_OPT) and JPEG (JPEG_OPT) approaches by amplifying 
discrete cosine transform coefficients and using the entire anatomical region as ROI (region of interest). We 
found that ROI percentages have a great impact CR: smaller ROI percentages (10–30 %) could obtain a larger CR. 
Under the near-lossless compression, JPEGXT_OPT could have CRs up to 4.0 under small ROI percentages 
(10–30 %), while only ~ 1.2 for large ROI percentages (90–100 %). JPEG_OPT could obtain a much higher CR: 
up to over 20.0 for both CT and MRI images under small ROI percentages (10 %-30 %), and over 10.0 in CT and 
5.0 in MRI under large ROI percentages (90 %). Both of them show a compression efficiency than the DICOM- 
recommended JPEGXT and JEPG_2000. From the distortion analysis, MSSIM (Multiscale Structural Similarity) 
and PRD (percent ratio of distortion) indicate our methods have a less image distortion than DICOM- 
recommended JPEGXT (PDR > 20 %) and JPEG_2000: approximately 3.0 % PRD were seen under JPEG_OPT, 
while<0.15 % PRD were observed under JPEGXT_OPT. MSSIM > 0.98 was found in JPEG_OPT, which the 
reconstructed images have almost no changes in luminance, contrast, and structure, and this was confirmed by 
low PRD (about 3.0 %). Overall, our two methods could provide a high compression ratio of medical images 
without significant loss of important diagnostic information in reconstructed images.   

1. Introduction 

To date, medical imaging has significant uses in both clinics and 
research, and many medical techniques are becoming digital formats 
[1–4]. The large amount of image data generated by imaging tech
niques, notably computed tomography (CT) and magnetic resonance 
images (MRI), presents challenges in data storage, image processing, 
and image transmission [5–9]. In particular, the Picture Archiving and 
Communication Systems (PACS), the most common archiving and 
communication system used in clinics, requires higher speed and 
broader bandwidth for the transmission of vast amounts of medical 
image data [2,10]. Thus, decreasing the size of image data will save 
storage space, image transfer time, and medical cost [11–14]. 

Compression techniques that reduce the size of image data could 
help to solve the problems of image transmission and storage [15]. 
Lossless algorithms could compress and reconstruct medical images 
without losing any information of the original image, but their current 
compression ratio is limited to 2.0 to 3.0 depending on the images and 
the methods used [16]. To further improve the compression ratio, a 
more practical method for lossless approaches is to remove data of un
important areas outside regions of interest (ROI) in medical images [17]. 
Image segmentation is the key step to extracting ROI from the whole 
image, and ROI boundaries can be determined by an automatic or semi- 
automatic process [7]. However, complicated ROI (especially ROI 
related to diseased areas) must be specified interactively by specialists or 
technicians who are skilled in profiling the critical diagnostic 
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information from the whole images [18]. 
Lossy techniques obtain much higher compression ratios (over 10.0, 

saving about 90 % of storage) than lossless compression [16]. To date, 
many algorithms have been developed for image compression, and one 
of the most frequently utilized is JPEG [19], and the most common 
standards include baseline JPEG [2,20], JPEG-2000 [2], JPEG-LS 
[2,12], and JPEGXT [2,21], and so on. Until now, lossy approaches 
are not well accepted in the medical imaging field, because of concerns 
about losing critical changes in medical images [19,22]. However, if the 
image distortion could be controlled within a certain level, the lossy 
algorithms could allow being used in medical images [5]. Several pro
fessional societies have given guidelines or recommendations of 
compression ratio for the use of lossy algorithms in medical images 
[2,23,24]. In particular, the latest DICOM (Digital Imaging and Com
munications in Medicine) protocols have provided the guidelines to 
support the use of JPEG-based approaches (such as JPEG, JPEG 2000, 
JPEGXT, and so on) for the compression of medical images [25]. 

In addition, more and more novel compression algorithms, as well as 
ROI-based approaches, are being developed, but most of the existing 
studies only used limited number of medical images to test the efficiency 
of the algorithms [14,16,26–29]. To our best knowledge, few studies 
have systematically reported how the area of anatomical regions occu
pied in the entire image effect the compression ratio. Even though the 
recommended compression ratio has been given by professional orga
nizations, their guidelines did not show how this value was obtained or 
whether different areas of anatomical regions would impact the rec
ommended compression ratio or not [23,24]. Meanwhile, JPEG still 
serves as one of the most widely used image compression and the most 
common digital image format, but JPEG still could not be used to 
compress medical images with>8-bit depth [2,30]. 

Therefore, this study uses the anatomical regions in medical images 
as ROI to further optimize the compression ratio of our previous 
JPEGXT_OPT algorithm and investigate the influences of ROI percent
ages occupying in whole images on compression ratio [21]. We also 
developed an optimized JPEG (JPEG_OPT) method to increase 
compression ratio and better compression quality for 16-bit depth CT 
and MRI images by amplifying DCT (discrete cosine transform) co
efficients. We also further compared their compression efficiency with 
the DICOM-recommended JPEGXT (JPEGXT_T) and JPEG_2000. 

2. Materials and methods 

2.1. CT and MRI datasets 

In this study, 4211 medical images (including 2478 CT images and 
1733 MRI images) with the dimension of 515*512 were employed to 
investigate the efficiency of ROI-based JPEGXT-OPT and JPEG_OPT for 
the compression of 16-bit depth medical images. Those CT and MRI 
images were obtained from Cancer Imaging Archive [31,32], the file 
format of the imaging dataset was *. dcm, and most of the imaging parts 
in the CT and MRI dataset were from brain, head, chest, and so on. 

2.2. Optimized JPEG-based algorithm for the high-compression of medical 
images 

In our previous study, we found that the lower 8-bit subimages 
occupied most of the storage space in the encoding files [21]. To further 
increase the compression ratio and avoid the influence of the lower 8-bit 
subimages, the original medical image (ORG, PXLORG ranges: 0–65535) 
was converted into a new 8-bit medical image (New PXL ranges: 0–255) 
by using the following equation (1): 

New PXL =
255*PXLORG

PXLORG max−PXLORG min
(1) 

PXLORG is the pixel values in the original medical image; 
PXLORG max is the maximum pixel values in the original medical 

image; 
PXLORG min is the minimum pixel values in the original medical 

image. 

2.3. ROI-based JPEGXT-OPT for the compression of CT and MRI images 

Fig. 1 illustrates the flowchart of ROI-based JPEGXT_OPT for the 
compression of CT and MRI images. First, the maximum pixel was found 
from the input 16 bit-depth images. Second, the input 16-bit depth 
image was binarized based on the anatomical regions; the boundaries of 
anatomical regions were determined by a threshold of the maximum 
pixels: if the maximum pixel is smaller than the threshold (4100 for CT 
images and 10,000 for MRI images), all the pixels with larger than H_% 
(high_percentage: CT: 20 %, MRI: 10 %, determined by the maximum 
pixels and background pixels, as shown in Fig. S1) of the maximum 
pixels were reset at 1, while the rest of the pixels were set to 0. But if the 
maximum pixel is larger than the threshold, the pixels larger than L_% 
(low percentage: CT and MRI: 3 %, determined by the maximum pixels 
and background pixels, as shown in Fig. S1) of the maximum pixels were 
set at 1, and the rest pixels were set at 0. After that, the input CT or MRI 
images were binarized, and the anatomical regions had pixel values 
equal to 1, while 0 for the background pixels. 

Third, because most of the anatomical structures concentrate in one 
region, ROI could be determined by the largest connected components in 
the binarized images. Then, two types of ROI regions were tested in this 
study: one is the cropped ROI regions (ROI_REGN) as the input (used in 
JPEG_OPT); the other is only the ROI pixel (ROI_PXLs) list as the input. 
For the first input, the ROI regions simply were cropped from the orig
inal CT and MRI images by using the minimum and maximum coordi
nate points, and the minimum coordinate points were stored into the 
compression codes to recover the ROI region into the reconstructed 
images. 

However, there were still some background pixels that were also 
cropped into the ROI regions. To remove the extra background, the pixel 
values of the ROI_PXLs list were reshaped as an 8*m ROI_PXLs IMG (m is 
the number of columns) so the reshaped image be compressed by JPEG- 
based algorithms. Then, this reshaped 8*m ROI_PXLs image is used as 
the input of JPEGXT_OPT method; its two coordinate lists were directly 
stored into the encode files to recover ROI pixels in the reconstructed 
images. 

Finally, two types of ROI inputs were loaded into JPEGXT_OPT and 
JPEG_OPT algorithms; the JPEGXT_OPT would split the input 16-bit 
depth medical image into an upper 8-bit (9th −16th bits) subimage 
and a lower 8-bit (1st −8th bits) subimage [21]. In our previous study, 
we found that the upper 8-bit subimages has a more important role in 
the improvement of medical compression than lower 8-bit subimages; N 
= 20 (N: discrete cosine transform amplifying coefficient) and NDP = 1 
(NDP: Number of Decimal Portions) in lower subimages and lossless 
compression (N = 400, and NDP = 2) in upper subimages could achieve 
a similar compression quality with JPEG-2000[21]. Thus, this study uses 
HQ (high quality, N = 100, NDP = 1: JPEGXT_OPT HQ) compression 
and LQ (N = 10, NDP = 1: JPEGXT_OPT LQ) compression in lower 8-bit 
subimages to explore the efficiency of ROI-based JPEGXT_OPT. 

For the JPEG_OPT, ROI_REGN images use HQ (N = 400, NDP = 2: 
JPEG_OPT HQ) compression and LQ (N = 10 for CT and N = 50 for MRI, 
NDP = 1: JPEG_OPT LQ) compression in the new ROI_REGN images to 
explore the efficiency of ROI-based JPEGXT_OPT. 

2.4. Evaluation of compression efficiency 

To investigate the influence of ROI percentage on the compression 
ratio, we calculated the corresponding percentages through formula in 
each CT and MRI image (2): 

ROI Percentage =
PXLROINUM
PXLORGNUM

(2) 
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PXLROI NUM is the number of pixels in the ROI; 
PXLORG NUM is the number of pixels in the original medical images. 
In image compression, Peak-Signal-to-Noise ratio (PSNR), Mean 

Square Error ratio (MSE), and the Compression ratio (CR) are the most 
common parameters to evaluate the compression efficiency [33]. PSNR, 
MSE, and CR could be obtained from: 

MSE =

∑
m,n(IORG(m, n) − IRECOV (m, n) )

2

m*n
(2)  

PSNR = 10*log10(
R2

MSE
) (3) 

IORG(m, n) is the original medical image; 
IRECOV(m, n) is the reconstructed medical image; 
m, n is the dimension of the two input images; 
R is the maximum fluctuation in medical images (e.g. 65,535 for 16- 

bit medical images). 

CR =
Uncompressedsize
Compressedsize

(4) 

Uncompressedsize is the file sizes of the original medical image; 
Compressedsize is the encoded files of the original medical images. 

2.5. Evaluation of image distortion between original and reconstructed 
medical images 

MSSIM (Multiscale Structural Similarity) is an optimized parameter 
based on the SSIM (Structural Similarity). SSIM could extract structural 
information from the images, but only evaluate the image quality from 
the single scale [34]. However, MSSIM could provide a more accurate 
assessment of image quality, because it can analyze the spatial resolu
tions from different scales of SSIM components, such as luminance, 
contrast, and structures[34,35]. 

The percentage of distortion (PRD) is to evaluate the distortions in 
the reconstructed image relative to the original medical image; smaller 
PRDs mean fewer distortions in the reconstructed images [28]. 

PRD = 100*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

x=1
∑n

y=1[IORG(x, y) − IRECOV (x, y)]
∑m

x=1
∑n

y=1[IORG(x, y) ]
2

√
√
√
√ (5) 

IORG(x, y) is the pixel of the original medical image; 
IRECOV(x, y) is the pixels of the reconstructed medical image; 
All the codes of the algorithms were performed in Matlab 2019a 

(MathWorks Inc, Natick, Mass). 

3. Results 

3.1. Distribution of ROI percentages in the CT and MRI image datasets 

From Fig. S1, the means of ROI regions was much larger than the BG 
(background) pixels: the means of ROI pixels were around 1000 in CT 
and 2000 in MRI, while BG had only about 50 in CT and 100 in MRI 
images, which the BG means were about 20 times lower than ROI pixels 
in both CT and MRI. In this case, there were cut-off lines that could be 
found to distinguish ROI and BG. However, in this study we found 
different CT and MRI images have great changes in pixels, especially the 
maximum pixels (as shown in Fig. 2c). Thus, it is very difficult to find a 
uniform percentage for all of CT and MRI images. 

For instance, two CT images with a large maximum pixel (32767, due 
to amalgam fillings in tooth) and a small maximum pixel (1084) were 
shown in Fig. 2. For the large maximum pixel, the large maximum pixel 
value is usually from the metal implants in the patient’s tooth (Fig. 2a). 
When the H_% threshold was set at a large threshold percentage (20 %) 
of the maximum pixel, only a few areas around the maximum pixel could 
be selected; most of the anatomical regions were missing. However, if 
this threshold percentage was decreased to 3 %, then the entire 
anatomical regions (ROI) could be accurately profiled in the binarized 
CT image (Fig. 2a). On the contrary, in the CT image with small 
maximum pixels, the small threshold percentage (3 %) of the maximum 
pixels would cause over cropping of the anatomical regions (ROI), but it 
could be successfully detected if the threshold percentage was set at 20 
% of the maximum pixels (Fig. 2b). Thus, this study we used different H_ 
% and L_% for the CT and MRI images with different maximum pixels. 

From the maximum pixel curves of all the CT images (sorting based 
on the maximum pixel from the largest to the smallest), the maximum 
pixel had a rapid decrease from 32,767 to around 4100, and then the rest 
of the maximum pixel narrow at the ranges between 1000 and 4100 
(Fig. 2c). Thus, 4100 seems to be the threshold of the CT maximum 
pixels that the percentage should be set at 20 % for the maximum 
pixels<4100 and 3 % for the maximum pixel above 4100. For the MRI 
images, we found that this threshold of the maximum pixels should be 
set at around 10,000 to obtain the accurate anatomical regions (Fig. 2c). 

Fig. S1 indicated that compared to ROI pixels, BG regions had more 
stable distributions, and most of BG pixel means in both CT and MRI 
images only distribute within the small ranges (seen the distributions of 
error bars in Fig. S1c and S1d). For the maximum pixels larger than 
Th_value, smaller percentage (L_%) should be used to cover whole ROIs 
(like Fig. 2a), when maximum pixels smaller than Th_value, we have to 
increase the percentage (H_%) to avoid overcropping BG regions (like 
Fig. 2b). In addition, the cut-off lines had a similar distribution with ROI 
pixel means and well located between BG and ROI mean curves. From 
the distributions of error bars in ROI and BG mean curves, most of cut-off 
lines, especially 20 % in CT and 10 % in MRI for the maximum pixels 
smaller than Th_value, distributed under lower error bars of ROI or 

Fig. 1. The flowchart of ROI-based JPEGXT_OPT algorithm for the compression of 16-bit depth medical images.  
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above the upper error bars of BG regions, which means cut-off bound
aries could distinguish ROI and BG regions (Fig. S1c and S1d). 

After determining the threshold and corresponding percentages of 
the maximum pixels, the CT and MRI images were cropped to obtain the 
ROI regions, and then the ROI percentages were calculated for all the CT 
and MRI datasets. From the proportional distributions in Fig. 3, both CT 
and MRI had the largest proportion (over 40 %) of images with ROI 
percentages between 50 and 70 %, followed by the ROI percentages 
around 30–50 %. Overall, almost over 70 % of CT images and 90 % of 
MRI images had ROI percentages<70 % of the entire medical images, 
which means the rest of the background regions (>30 %) did not contain 
any useful information. 

3.2. ROI_PXL_SORT for nearly-lossless compression of CT and MRI 
images 

A CT image (Fig. 4) was used to show the difference between 
ROI_PXL_SORT and ROI_REGN. The binarized images indicate the entire 
anatomical ROI could be correctly profiled by using our method (Fig. 4a 
and 4b). From ROI_REGN, if ROI was directly cropped from the whole 
medical images, parts of the background regions (BG regions in Fig. 4c) 
were cropped within ROI, which would cause a decrease in compression 
ratio. However, if only using ROI pixels with their coordinates, those BG 
regions could be removed (Fig. 4d). 

ROI_REGN or ROI_PXL (without resorting) were directly compressed 

by JPEGXT_OPT LQ, the reconstructed ROI image had lower PSNR (<80 
dB) and larger MSE (>40) when compared to the ORG (original image) 
compression (>80 dB and MSE < 4) (Fig. S2). But ROI_PXL_SORT could 
achieve a similar compression quality to ORG compression with HQ 
compression (Fig. S3). 

Regarding compression ratio under different ROI percentages, under 
the same ROI percentage, the larger N value (JPEGXT_OPT HQ) would 
decrease almost half of CR in the ORG compression than the lower N 
value (JPEGXT_OPT LQ), especially in CT. For ROI_PXL_SORT, it could 
have a larger CR (>4.0) under small ROI percentages (<30 % in CT and 
MRI); higher CR could be obtained by ROI_PXL_SORT than ORG 
compression under JPEGXT_OPT HQ, but under JPEGXT_OPT LQ it 
became opposed at ROI percentages was ranging from 30 % to 100 % 
(Fig. 5). 

For the relationship between CR and ROI percentages, ROI per
centages affected the compression ratio in both ORG and ROI_PXL_
SORT; smaller ROI percentages had larger CRs, especially 
ROI_PXL_SORT could achieve CR over 4.0 under small ROI percentages 
(<30 %), which could save about 75 % of storage spaces (Fig. 5). For the 
ROI percentage ranges from 30 % to 90 %, ROI_PXL_SORT with LQ 
compression (N = 10) could still obtain large CR (around 2.0 if ROI 
percentages < 70 %). For ROI percentage > 90 %, JPEGXT_OPT HQ with 
ORG compression had a relatively larger CR (~1.4, saving about 30 % of 
storage space) than ROI_PXL_SORT (CR = 1.1, only saving about 10 % of 
storage space). Thus, within a small ROI percentage (10 %), 

Fig. 2. ROI region detection based on the thresholds of the maximum pixels. (a) ROI detection in large maximum pixel values; (b) ROI detection in small maximum 
pixel values; (c) The maximum pixel distributions in the CT and MRI images. 

Fig. 3. The proportional distributions of (a) CT and (b) MRI images under different ROI percentages.  
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Fig. 4. Reconstructed images based on ROI-based JPEGXT_OPT methods. (a) Original image; (b) Binarized image; (c) Reconstructed image from ROI_REGN methods, 
(d) Reconstructed image from ROI_PXL_SORT method. BG: background (not anatomical regions). 

Fig. 5. CR distributions under different ROI percentages between ORG compression and ROI_PXL_SORT by using JPEGXT_OPT. (a) JPEGXT_OPT LQ; (b) JPEGX
T_OPT HQ. 
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ROI_PXL_SORT with LQ compression could be employed, while for a 
large ROI percentage (90–100 %) the whole medical images could be 
compressed by JPEGXT_OPT HQ (Fig. 5). 

Compared to the DICOM-recommended algorithms: JPEGXT_T 
(PSNR < 60 and MSE > 1200) and JPEG_2000 (PSNR < 80 and MSE >
20), JPEGXT_OPT had a larger PSNR (about 90 dB) and smaller MSE 
(<4.0) in the compression of the original images (ORG) (Fig. 6). 
Compared to ORG compression, ROI_PXL-SORT could help to improve 
the compression efficiency not only in JPEG_OPT but also in the DICOM- 
recommended methods (JPEGXT_T and JPEG_2000); but JPEGXT_OPT 
still show the best compression efficiency (PSNR > 105.0 dB and MSE <
0.2), followed by JPEG_2000 (PSNR < 100.0 dB and MSE > 0.4), when 
JPEGXT_T had the lowest PSNR (<80 dB) and largest MSE (>20.0) 
(Fig. 6). 

In ORG compression, JPEGXT_OPT had the lowest compression ratio 
(only around 2.5 for CT and 2.0 for MRI), which was much lower than 
the DICOM-recommended methods: JPEGXT_T and JPEG_2000 (CR >

5.0). Although ROI_PXL_SORT could greatly improve PSNR and MSE for 
the DICOM-recommended methods, their compression ratio had also a 
big decrease (drop to around 2.0). JPEGXT_OPT almost had no change in 
the CR of the entire image datasets between ORG and ROI_PXL_SORT, 
but ROI_PXL_SORT method could help to greatly increase CR under 
small ROI percentage or HQ compression (Fig. 5). 

3.3. JPEG-OPT approach for high compression-ratio of medical images 

In the JPEGXT_OPT with ROI_REGN, it had relatively low compres
sion quality (PSNR < 80 and MSE > 40) in both CT and MRI images, 
when compared to the JPEGXT_OPT with ORG and ROI_PXL (Fig. S2). 
However, if ROI regions are added with additional 8-pixel-width edges 
(Fig. 7), both PSNR and MSE could be improved, although CR even had 
slight decreases in both CT and MRI (Fig. S4). 

In our previous study, we found the lower 8-bit encoding files 
occupied over 90 % of the storage space [21]. To further increase the 
compression ratio and avoid the impact of lower 8-bit encoding files, 
this study further developed a JPEG_OPT algorithm based on 

JPEGXT_OPT. In this approach, 16-bit depth medical images were con
verted into 8-bit depth images, and then the new 8-bit depth images 
were compressed by JPEG_OPT. Similar to JPEGXT_OPT, the compres
sion quality could be adjusted by changing N and NDP values. 

From ROI_REGN_EDG-based compression, the best compression 
quality was found in JPEGXT_OPT LQ, but JPEG_OPT could still achieve 
efficient compression quality (PSNR > 80 and MSE < 50). Compared to 
DICOM-recommended methods: JPEGXT_T (PSNR = 60, MSE > 2000) 
and JPEG_2000 (PSNR = 78, MSE < 50.0), JPEG_OPT with HQ 
compression showed better PSNR and MSE. For JPEG_OPT LQ, although 
its PSNR was similar to JPEG_2000 and MSE was a little larger than 
JPEG_2000, it had a much larger compression ratio (CR up to 13.0 in CT 
and 7.0 in MRI) than JPEG_2000 (about 2.0 lower) (Fig. 8). 

Regarding CR distributions under different ROI percentages, Fig. 9 
indicates that JPEG_OPT LQ with ROI_REGN-EDG had over 10.0 of CRs 
(saving over 90 % of storage spaces) under the whole range of ROI 
percentages (10 %-100 %) in CT images, which was higher than 
JPEGXT_T and JPEG_2000. For MRI images, JPEG_OPT_LQ had larger 
CRs (CR > 7.0, saving about over 85 % of storage space) than JPEG_2000 
for ROI percentages < 70 %, and CR became smaller than JPEG_2000 for 
the rest of ROI percentages (Fig. 9). Although larger CR was found in 
JPEGXT_T than in JPEG_OPT_LQ, it had much larger PSNR and MSE than 
JPEG_OPT and JPEG_2000. 

For the JPEG_OPT_HQ and JPEGXT_OPT, we could see that JPE
G_OPT_HQ had larger CRs than JPEGXT_OPT under the small ROI per
centages (<60 % for CT and < 80 % for MRI). Since they had better 
compression quality (large PSNR and low MSE), those two methods still 
could achieve over 3.0 CR efficiency. However, compared to the ROI- 
based method, a much lower compression ratio (decreasing about 5.0) 
could be found in ORG compression, especially under smaller ROI per
centages (Fig. S6). 

3.4. Evaluate the distortion of reconstructed images by JPEGXT_OPT and 
JPEG_OPT approaches 

From the MSSIM evaluation, JPEGXT_OPT with both HQ and LQ 

Fig. 6. Evaluation of the ORG and ROI_PXL_SORT compression of CT and MRI images by using JPEGXT_OPT LQ, and the DICOM-recommended methods: JPEGXT_T, 
and JPEG_2000. (a) PSNR, MSE, and CR in CT; (b) PSNR, MSE, and CR in MRI. 
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could achieve the highest values (close to 1.0) under both ORG and ROI- 
based compression, when JPEG_OPT with ROI_REGN_EDG could have 
over 0.98 MSSIM values. Both of them had a larger MSSIM value than 
the DICOM-recommended JPEG_2000. JPEGXT_T had the lowest MSSIM 
values (<0.95) (Fig. 10). 

Regarding the PRD evaluation, JPEGXT_OPT still had the lowest 
image distortions than the other three methods; in particular, 

ROI_PXL_SORT method could help to decrease the distortions at least 
three times lower (only 0.05 % in HQ and 0.15 % in LQ) than ORG (only 
0.15 % in HQ and 1.3 % in LQ). In JPEG_OPT, both the ORG and 
ROI_REGN_EDG methods had about 2 % to 3 % distortion rates in CT and 
MRI images, while JPEG_2000 had a similar distortion rate to JPEG_OPT 
LQ (Fig. 11). However, JPEGXT_T approach had much larger distortions 
(over 20 %) than the other three approaches. 

Fig. 7. Improvement of ROI_REGN-based compression of CT and MRI medical images by adding 8-pixels edges. (a) ORG CT image; (b) ROI_REGN image; (c) 
ROI_REGN image with 8-pixels edges (ROI_REGN_EDG); (d) Reconstructed CT image by JPEGXT_OPT LQ. 

Fig. 8. Evaluation of ROI_REGN_EDG-based compression of CT and MRI images by using JPEG_OPT HQ and JPEG_OPTLQ, JPEGXT_OPT LQ, and the DICOM- 
recommended methods: JPEGXT_T and JPEG_2000. (a) PSNR; (b) MSE; (c) CR. LQ compression of JPEG_OPT: CT: N = 10, NDP = 1; MRI: N = 50, NDP = 1. 
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A CT image was used to investigate the prediction error images and 
their corresponding histogram of pixel errors. From the JPEGXT_OPT 
with ROI_PXL_SORT, we could see that over 98.9 % of pixels had no pixel 
error (equal to 0) in both HQ and LQ compression. For the JPEG_OPT, 
over 56 % of the pixels had no pixel errors under ROI_REGN-EDG 
compression; in the HQ compression, most of the pixel errors were 
locating the ranges<9, but this ranges increased to over 35 under LQ 
compression (Fig. 12). 

From the prediction error images, almost the entire error images 
looked kind of dark for the ROI_PXL_SORT, except for some locally 
bright dots, which means there were almost no compression errors were 
found from the reconstructed images. Similar results were also found in 
JPEG_2000 and JPEGXT_T with ROI_PXL_SORT (Fig. S7). 

For the JPEG_OPT approach, there were plenty of bright dots (like 
white noise) distributing in the entire error images, especially under HQ 
error image that those pixel errors evenly distribute in the whole 

Fig. 9. CR distributions under different ROI percentages by using the ROI_REGN_EDG method under JPEG_OPT, JPEGXT_OPT, and compared to the DICOM- 
recommended methods: JPEGXT_T, and JPEG_2000. (a) CT; (b) MRI. 

Fig. 10. MSSIM of CT and MRI compression under different JPEG-based approaches. (a) ORG; (b) ROI_PXL-SORT (JPEGXT_OPT) and ROI_REGN_EDG (JPEG_OPT, 
JPEGXT_T and JPEG_2000). 

Fig. 11. PDR of CT and MRI compression under different JPEG-based approaches. (a) ORG; (b) ROI_PXL-SORT (JPEGXT_OPT) and ROI_REGN_EDG (JPEG_OPT, 
JPEGXT_T and JPEG_2000). 
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anatomical regions. In the error image of JPEG_OPT LQ and JPEG_2000, 
however, the pixel errors were distributed towards the areas with 
complicated anatomical structures (Fig. 12). JPEGXT_T with ROI_REG
N_EDG had much larger pixel error ranges (up to 80) than the other three 
methods (JPEGXT_OPT, JPEG_OPT, and JPEG_2000), which cause its 

larger PRD values (22.15 %). 
Although JPEG_OPT had a relatively larger PRD (over 3.21 % under 

LQ) than that of HQ (PRD = 0.83 %), no visible distortion was found in 
reconstructed images (Fig. 13b). Compared to JPEG_OPT, the DICOM- 
recommended JPEGXT_T had much larger distortion rates (>20 %), 

Fig. 12. Prediction error images and their corresponding histogram of the CT image compressed by ROI-based JPEGXT_OPT and JPEG_OPT approaches. (a) 
JPEGXT_OPT with high and low-quality ROI_PXL_SORT; (b) JPEG_OPT with high and low-quality ROI_REGN_EDG. 

Fig. 13. The distortion evaluation of the reconstructed CT images compressed by JPEG_OPT and JPEGXT_T approaches. (a) ORG CT image; (b) Reconstructed CT 
image with 3.21% PRD, compressed by JPEG_OPT with ROI_REGN_EDG; (c) Reconstructed CT images with 22.16% PRD, compressed by JPEGXT_T 
with ROI_REGN_EDG. 
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and its reconstructed CT images could have about 22.16 % distortions, 
block boundary artifacts could be observed (Fig. 13c). 

4. Discussion 

Currently, JPEG-based compression is still widely used in lossy or 
lossless compression methods for medical applications [2,19]. Our 
previous JPEGXT_OPT algorithm could achieve lossy or nearly lossless 
compression of the 16-bit-depth medical images by the control of N and 
NDP values [21]. In this study, we used more numbers of CT and MRI 
images to further investigate the influences of ROI percentage on the 
compression ratio. The results indicate that when compressing entire 
images, JPEGXT_OPT indeed could achieve higher compression quality 
(PSNR>=90, MSE < 4.2) than the DICOM-recommended JPEGXT_T 
(PSNR<=60, MSE > 1000) and JPEG_2000 (PSNR<=80, MSE > 25) 
methods (Fig. S2). Regarding the compression quality, larger N and NDP 
values decrease the compression ratio; JPEGXT_T and JPEG_2000 have 
higher CRs than the JPEGXT_OPT approach. 

In the existing studies, most of the new compression algorithms were 
only tested with a limited amount of images [14,16,26–29], and few 
studies have systematically presented whether the percentages of ROI 
occupied in the entire medical images would impact the compression 
ratio of the compression algorithms. Here, we used 4211 CT and MRI 
images with different ROI percentages to explore how ROI percentages 
would have an effect on the compression ratio. From the analysis of CT 
and MRI datasets, 70 % of CT images and 90 % of MRI images were 
images with ROI percentages of<70 %, and most of the anatomical re
gions were ranging from 30 to 70 % ROI percentages. This means plenty 
of pixels are considered to be background containing useless informa
tion on the anatomical structures. 

We found that the ROI percentage has an impact on the compression 
ratio; it is easier to obtain a higher compression ratio under smaller ROI 
percentages. For JPEGXT_OPT method, ROI_PXL_SORT method had 
much higher CR than the ORG compression for most ROI percentages 
(10 % to 90 %). CR could reach over 2.0 (saving over 50 % of space) for 
the entire datasets and up to 4.0 for ROI percentage<30 %, which is 
similar or higher than the DICOM-recommended lossless methods [36], 
and its performance (PSNR and MSE) was much better than the DICOM- 
recommended JPEGXT_T and JPEG_2000. For lossy JPEG_OPT methods, 
the 16-bit depth medical image was converted into an 8-bit depth image, 
and then can be compressed by the DICOM-recommended JPEG algo
rithm; by optimization of Ns and NDPs, JPEG_OPT with ROI_REGN_EDG 
achieved a higher compression efficiency (larger PNSR and smaller 
MSE) than DICOM-recommended JPEGXT_T and JPEG_2000. Similar to 
JPEGXT_OPT, JPEG_OPT could obtain a higher compression ratio under 
smaller ROI percentages (CR > 13.0 for CT and CR > 5.0 for MRI under 
ROI percentage < 70 %). 

In our previous study, the lower 8-bit encoding files account for over 
90 % of the entire encoding files [21]. Thus, it is very challenging to 
further increase the compression ratio with JPEGXT_OPT method, even 
using the ROI method (CR < 5.0). To date, JPEG is still one of the most 
mainstream approaches for image compression, but it only limits to 
compress images with 8-bit depth [2,30]. In this study, the JPEG_OPT 
approach was developed to avoid the impact of lower 8-bit encoding 
files in JPEGXT_OPT and compress the medical images with over 8-bit 
depths. Regarding the compression efficiency, JPEG_OPT, especially 
JPEG_OPT HQ, shows a larger PSNR and smaller MSE than the DICOM- 
recommended JPEGXT_T and JEPG_2000. There was almost no differ
ence between JPEG_OPT LQ and JPEG_2000, but the CR of JPEG_OPT 
was larger than JPEG_2000 for both CT and MRI images. 

However, lossless compression could ensure no loss of diagnostic 
information and data fidelity during the image compression and 
reconstruction, but its current CR is only limited from 2.0 to 3.0 
(depending on the images and the methods) [16]. Compared to lossless 
compression, lossy compression could provide a much higher 
compression ratio (>10.0) [16]. If using the diagnostic quality of 

compressed images could be ensured, very little image distortion would 
be allowed within a certain level [5,37,38]. 

The topic of using lossy compression in medical images has been long 
discussed by government organizations, professional societies, etc. [2]. 
More recently, several professional organizations have given guidelines 
for using lossy compression in medical images; for instance, the Royal 
College of Radiologists provided the recommendation of the lossy 
compression ratio at 5.0 for CT, 10.0 for ultrasound, 20.0 for 
mammography or Canadian Association of Radiologists recommends 
that the maximum lossy compression ratios of JPEG are no>15.0 for CT 
and 24.0 for MRI [2,23,24]. However, there is still a lack of legal stan
dards for radiological images, and no specific standards or guidelines are 
provided to evaluate how many image distortions for lossy algorithms 
could be allowed to guarantee diagnostic quality [37–39]. 

In this study, including PSNR, MSE, and CR, more evaluation pa
rameters (MSSIM and PRD) are employed to evaluate the distortions 
because of using lossy JPEG_OPT. From the distortion analysis, our two 
methods also showed a lower distortion than the DICOM-recommended 
JPEGXT_T and JPEG_2000. JPEGXT_OPT had a very low PRD (<0.02 %) 
and high MSSIM (>0.9999). For JPEG_OPT, it also exhibits outstanding 
MSSIM (>0.98) which means there were almost no changes in lumi
nance, contrast, and structure between the original and reconstructed 
CT and MRI images. only about 3 % PDR was found in JPEG_OPT LQ 
(similar to JPEG_2000), and no distortion was observed from the 
reconstructed images (CT image in Fig. 13). 

Compared to MSSIM, PRD seems to be more sensitive to the distor
tion of reconstructed images. For the DICOM-recommended JPEGXT_T, 
its MSSIM was ranging from 0.93 to 0.95 that is closed to JPEG_2000, 
but the PDR (over 20 %) of the DICOM-recommended JPEGXT_T was 
much larger than our two methods and JPEG_2000 (around 3 %); from 
the reconstructed CT image (Fig. 13), block boundary artifacts were 
clearly observed under JEPGXT_T with PDR = 22.16 %. 

Overall, by adjusting the amplification of DCT coefficients, JPE
G_OPT could obtain high-quality compression of medical images 
without significant loss of important diagnostic; our method can obtain 
a higher compression efficiency than DICOM-recommended JPEG 2000 
and JPEGXT_T without significant distortions: over 10.0 for the whole 
ROI percentages and up to 37.0 for the small ROI percentage (around 20 
%). For the distortion analysis, MSSIM can be in combination with PRD 
for the distortion evaluation, in which MSSIM could be used to evaluated 
structural distortion from multiple scales, while PRD could give a 
quantitative evaluation of the distortion. 

In addition, more and more new nearly-lossless or lossy compression 
methods (including both JPEG-based and other methods) have been 
reported for the application of medical imaging recently [40]. For 
instance, Vempati Krishna and his co-worker reported ROI-based binary- 
plane coding for MRI, and it could achieve PSNR over 43.0 and SSIM >
0.97 [29]; M. M. S. Rani and P. Chitra represented a hybrid method 
based on Haar wavelet transform and particle swarm optimization 
technique that had around 43.0 in PSNR, 3.24 in MSE, 5.2 in CR, about 
0.96 in MSSIM [41]. Meanwhile, some of the researchers also attempted 
to develop ROI-based hybrid approaches that could achieve better 
compression performances. For example, Lakshminarayana M., and 
Mrinal S. developed the combination of both lossless (JPEG-2000 +

Huffman + Run length) for ROI regions and lossy (Compressive Sensing) 
methods for non-ROI regions and their new framework achieved about 
8.60 MSE, 41.5 in PSNR 5.5 in CR for ROI regions, but its MSE increased 
over 208.8 (PSNR dropped to 34.9) in full image [42]. However, the 
above new approaches still have relative lower compression efficiency 
than our two approaches. More importantly, most of them only used the 
limited numbers of medical images to test their compression efficiency. 

Finally, deep learning is emerging as a new technique for medical 
image compression. Although some groups reported the new deep 
learning approach could achieve about 15 % higher compression ratio 
than conventional methods[43], they may still have the problems of 
higher MSE, lower PSNR, and loss of granular details [44,45]. From our 
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results, both of our two methods could achieve nearly-lossless and lossy 
image compressions. In particular, the lossy compression JPEG-OPT 
could obtain relatively high PSNR and low MSE, and have almost no 
distinct image distortion (about 3.21 % PRD). 

However, there are still some limitations in this study. First, the 
Th_value is playing a key role in the CT and MRI binarization, and this 
study uses maximum pixels with two different percentages to determine 
the thresholds between the ROI and BG. Although this method works 
efficiently for CT and MRI images used in this study, more imaging data 
or a more efficient method needs to be explored to obtain a better ROI 
and BG segmentation. Secondly, although our study used more numbers 
of CT and MRI images to test our algorithms than most of the existing 
studies[5,16,26,46], more image data with different imaging conditions 
and more imaging modalities are required to further test our ap
proaches. Finally, even though our methods have been compared with 
two DICOM-recommended standard JPEG-based approaches, JPEG_XT 
and JPEG_2000, and both could achieve better compression efficiency, 
more methods (like DICOM RLE Image Compression and deep learning- 
based algorithms), rather than JPEG-based methods, need to be further 
tested. 

5. Conclusions 

In this study, by using the anatomical regions as ROI, we tested its 
compression efficiency for JPEGXT_OPT and JPEG_OPT, and investi
gated the influences of different ROI percentages on the compression 
ratio. We found that JPEGXT_OPT with ROI_PXL_SORT could perform 
nearly-lossless compression of medical images; ROI percentages have an 
effect on the compression ratio: JPEGXT_OPT could obtain a higher 
compression ratio (up to 4.5) under smaller ROI percentages (10 to 30 
%), while only around 1.2 under the entire medical images (90–100 %). 
To further increase CR, JPEG_OPT was developed for the lossy 
compression of medical images. The compression ratio could greatly be 
improved: CR > 20.0 for both CT and MRI images under small ROI 
percentages (10 %- 30 %), and CR was still>10.0 for CT and 5.0 for MRI 
under large ROI percentages (>90 %), which is higher than JPEG_2000. 

From the distortion analysis, ROI-based JPEGXT_OPT had a very low 
PRD (<0.02 %) and high MSSIM (>0.9999). Although there was about 
3.0 % distortion (PRD = 3.0 %) found in JPEG_OPT compression, no 
obvious distortion was observed from the reconstructed image; MSSIM 
(>0.98) further indicated there were almost no changes in luminance, 
contrast, and structure between the original and reconstructed image. 
Both of our methods exhibited better compression quality and lower 
distortion than the DICOM-recommended JPEGXT_T and JPEG_2000, 
especially block boundary effects found in JPEGXT_T. Therefore, by 
adjusting the amplification of DCT coefficients, our methods could 
achieve nearly-lossless-to-lossy compression of medical images, and 
JPEG_OPT could perform high-quality lossy compression of medical 
images without significant loss of important diagnostic information. 
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