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Background and Objective: Pancreatic Ductal Adenocarcinoma (PDAC) is a form of pancreatic cancer that is one of
the primary causes of cancer-related deaths globally, with less than 10 % of the five years survival rate. The
prognosis of pancreatic cancer has remained poor in the last four decades, mainly due to the lack of early
diagnostic mechanisms. This study proposes a novel method for detecting PDAC using explainable and super-
vised machine learning from Raman spectroscopic signals.

Methods: An insightful feature set consisting of statistical, peak, and extended empirical mode decomposition
features is selected using the support vector machine recursive feature elimination method integrated with a
correlation bias reduction. Explicable features successfully identified mutations in Kirsten rat sarcoma viral
oncogene homolog (KRAS) and tumor suppressor protein53 (TP53) in the fingerprint region for the first time in
the literature. PDAC and normal pancreas are classified using K-nearest neighbor, linear discriminant analysis,
and support vector machine classifiers.

Results: This study achieved a classification accuracy of 98.5% using a nonlinear support vector machine. Our
proposed method reduced test time by 28.5 % and saved 85.6 % memory utilization, which reduces complexity
significantly and is more accurate than the state-of-the-art method. The generalization of the proposed method is
assessed by fifteen-fold cross-validation, and its performance is evaluated using accuracy, specificity, sensitivity,
and receiver operating characteristic curves.

Conclusions: In this study, we proposed a method to detect and define the fingerprint region for PDAC using
explainable machine learning. This simple, accurate, and efficient method for PDAC detection in mice could be
generalized to examine human pancreatic cancer and provide a basis for precise chemotherapy for early cancer
treatment.

1. Introduction

Pancreatic Ductal Adenocarcinoma (PDAC), the fourteenth most
common malignancy, is one of the prominent causes of death world-
wide. According to the GLOBOCAN survey, pancreatic cancer is the
seventh most typical cause of cancer-related deaths worldwide and the
fourth in the United States [1,2]. The one-year survival rate of patients
with PDAC is 24 %, and the five-year survival rate is < 10 % [3,4]. Only
10-20 % of PDAC can be removed with surgery; however, partial
removal can lead to local recurrence of pancreatic cancer [5]. The causes
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of PDAC are due to different types of mutations at the gene level; KRAS is
mutated in 80.56 % of PDAC cases. It belongs to the Ras gene family of
the oncogene class, which provides instructions for making the K-Ras
protein part of the RAS/MAPK pathways [6]. It is activated upon
receiving signals from the outside of the cell. It can switch on down-
stream pathways to initiate cell growth, division, and self-destruction
(apoptosis). Different proteins are involved in activating and signaling
pathways that keep Ras inactive to prevent persistent activation. How-
ever, these proteins become inactive due to mutations, which keep Ras
activated, leading to malignant transformation. KRAS mutants are
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divided into three categories based on codon and G12 mutation at codon
12, with subtype G12V being one of them [7], representing 25.0 % of
nearly all PDAC [8].

Similarly, TP53 is central in adjusting the safe microenvironment but
is frequently mutated in PDAC [9]. This tumor suppressor gene is
recruited when the DNA is damaged [10]. Any damage to the p53 pro-
tein makes it unable to bind the DNA; hence, no decision can be made to
repair the DNA or destroy the cell [11]. Dysfunctional TP53 causes the
accumulation of damaged DNA in cells [12]. These damaged cells are
more likely to grow out of control, forming tumors [13]. TP53 alter-
ations are present in nearly half of all human cancers, making them the
most common source of cancer [9]. Moreover, the Suppressor of
Mothers against Decapentaplegic (SMAD4) is another tumor suppressor
protein that prevents cells from developing and dividing rapidly [14]. It
is deactivated in 50-60 % of PDAC cases due to homozygous omission or
mutation [15]. Alterations in the SMAD4 gene appear in the late phases
when the carcinoma is histologically identifiable [16].

Early detection of PDAC is the best way to cure this disease; hence, a
suitable device for early detection is essential. Histopathology is an
invasive cancer evaluation method and is currently used for the diag-
nosis of PDAC. However, it is challenging to evaluate PDAC with
intraoperative histopathology because of impurities in the blood and
digestive tract cells [17,18]. Similarly, different non-invasive imaging
technologies used for detection include computed tomography (CT)
[19], magnetic resonance imaging (MRI) [20], positron emission to-
mography (PET) [21], and endoscopic ultrasound (EUS) [22]. However,
these imaging techniques are expensive, bulky, time-consuming, and
have portability and availability challenges, and some of these methods
have radiation exposure issues if repetition is required. In addition, the
detection accuracy of PDAC is usually compromised because it is a
retroperitoneal organ, and the operator’s expertise is also needed in
some cases [23].

Among optical imaging techniques, Raman spectroscopy (RS) is an
evolving diagnostic tool for analyzing chemical components in many
fields. RS has distinctive advantages, including a non-ionization nature
and high specificity. RS is label-free; hence, no sample preparation is
required [24]. In many machine learning (ML)-based studies, RS is used
to detect different types of cancers, such as brain, breast, cervical, and
skin cancers, with accuracies of 96 %, 90 %, 85.7 %, and 91-92 %,
respectively [25-29]. Deep learning is one of the most popular ML
techniques because of its high prediction performance [30]. For PDAC,
Li et al. used convolutional neural networks (CNN) and RS signals and
obtained a significantly high detection accuracy of greater than 97 %
[31]. The medical domain requires reason and insight to understand
beyond standard quantitative performance evaluation [32]. Moreover,
explaining the ability of the analysis is important for clinical diagnosis.
Therefore, methods that only detect cancer, such as deep learning,
usually cannot assist in treating cancer. In addition, patients must al-
ways understand chemotherapy for their cancer treatment to reduce
inaccurate beliefs about chemotherapy, which can increase their life
expectancy [33]. In addition, deep learning requires large training
datasets, has high computational costs, and lacks generality in new data
results [34].

Relevant and explainable feature extraction is, therefore, a critical
factor for improving the classification accuracy and understanding of
data patterns. Statistical primary features, such as the mean, mode,
median, standard deviation, and variance, are the simplest features used
for data analysis [35]. With increased variability and randomness of the
data, derived statistical features such as skewness, kurtosis, shape factor,
impulse factor, crest factor, and clearance factor can help to extract
more explainable features [36,37]. Similarly, empirical mode decom-
position (EMD) is suitable for nonlinear and nonstationary signals such
as EEG, optical, and chemical [38-40]. In addition, feature selection
methods to remove redundant features can significantly improve
detection accuracy. In some studies, feature selection methods are also
embedded with classification algorithms to achieve better classification
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accuracy, such as support vector machine recursive feature elimination
(SVM-RFE), proposed by [41]. This method is less susceptible to over-
fitting and is highly efficient when the feature set is large [42].

The extracted features are fed into the classification algorithm to
separate the classes in the data. Classification algorithms, such as linear
discriminant analysis (LDA), linear support vector machine (LSVM), k-
nearest neighbor (kNN), and nonlinear support vector machine
(NLSVM), have been integrated with RS for the detection of various
types of cancers such as esophageal, breast, prostate, colon, and liver
[27,43-46]. Similarly, ML classifiers have also been integrated with RS
for diagnosing diseases such as the classification of kidney stones and
renin hypertension [47,48].

This study proposes a novel method for PDAC detection using sta-
tistical, peak, and EMD extended explicable features obtained from the
RS signals. Redundancy in features is removed by the SVM-RFE feature
selection method integrated with the correlation bias reduction (CBR)
method. To the best of our knowledge, this is the first study to define a
fingerprint region (600-1800 cm™!) using obtained features. Distinct
novel regions for normal and mutated KRAS and TP53, for a better
understanding of PDAC, are also defined in this work. Subsequently, the
classification of PDAC from the normal pancreas is performed using
LDA, kNN, LSVM, and NLSVM. The NLSVM classification algorithm
reduced 85.6 % memory utilization, 28.5 % testing time, 80.5 % training
time and has 1.1 % higher classification accuracy than the state-of-the-
art algorithm [31]. The accuracy remained above 95 % when other
simpler machine learning algorithms, such as LDA, LSVM, and kNN,
were used, compared to 98.5 % for NLSVM. Performance evaluation
parameters such as accuracy, specificity, sensitivity, and receiver oper-
ating characteristic (ROC) curves are used to evaluate the PDAC detec-
tion method [49]. The contributions of the proposed method for PDAC
detection are summarized as follows.

This study proposes a novel method for detecting PDAC, a form of
pancreatic cancer with less than a 10 % of the five years survival rate.

To the best of our knowledge, this is the first study to define a
fingerprint region that can be crucial in determining a standard pattern
for early PDAC detection in humans using explainable features that
successfully identified mutations in Kirsten rat sarcoma viral oncogene
homolog (KRAS) and tumor suppressor protein53 (TP53).

PDAC and normal pancreas are classified using multiple machine-
learning classifiers and achieved a classification accuracy of 98.5 %
using NLSVM, and reduced test time by 28.5 % and saved 85.6 %
memory utilization compared to the state-of-the-art method.

2. Materials and methods

The proposed method for detecting PDAC using RS signals involves
data acquisition, feature extraction, selection, and classification. The
data used in the proposed study are described in the Materials section.
The Methods section discusses the feature extraction, selection, and
classification techniques.

2.1. Materials

In this subsection, details about data and data acquisition are dis-
cussed. Materials include a description of the cell line, animal model,
data acquisition, and system used to process the data.

i) Cell Line:

The human CFPAC-1 cell line (ATCCR CRL 1918TM, pancreatic
ductal adenocarcinoma) was used in this study. Tumor cells were
cultured in Iscove’s Modified Dulbecco’s Medium (ATCCR 30-2005TM)
with 10 % fetal bovine serum (Neuromics, Edina, Minnesota) at 37 °C
and 5 % CO; in a humidified environment.

i) Animal Model:
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Fig. 1. Flowchart of EMD.

Data of 6-8-week-old female immunocompetent athymic nude Nu/J
mice (Jackson Laboratories, Bar Harbor, Maine, USA) animal model is
used for this study. After the CFPAC-1 cells were developed in the media,
nearly all the cells were injected into the back of the mice by subcu-
taneous infusion. When the tumor size was around 1 cm, the mice were
euthanized, and the whole tumor and normal pancreas were extracted.
This study was approved by the Institutional Animal Care and Use
Committee of Louisiana State University (IACUC#20-046), and all
procedures followed the regulations on animal investigation.

i) Data Acquisition:

RS data acquisition system consists of a laser diode (Turnkey Raman
Lasers-785 Series, Ocean Optics Inc., Dunedin, Florida, United States),
QE Pro-spectrometer (Ocean Optics, Inc), a Raman probe (RPS785,
InPhotonics Inc., Norwood, Massachusetts, United States), and Ocean
Wave hardware to computer interface software. The RS data used in this
paper was obtained from 20 mice. 2529 RS signals were collected from a
mouse: 1305 signals from the tumor and 1224 signals from the normal
pancreas.

i) System Specifications:

All the methods for signal analyses were implemented in Python and
MATLAB programming languages using an Intel(R) Core (TM) i7-
1165G7 computer system with a 2.80 GHz processor and 16.0 GB
memory.

2.2. Methods

This subsection discusses in detail the methods used in this paper.
These methods include statistical, EMD, and peak feature extraction,
feature selection using SVM-RFE integrated with CBR, and classification
using LDA, kNN, LSVM, and NLSVM.

i) Feature Extraction
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Several distinct features from the PDAC data have been extracted.
The features that can contribute more to drawing decision boundaries
between cancer and normal RS signals are used. These features include
basic statistical features such as mean, median, mode, root mean square,
standard deviation, variance, and derived features such as shape factor,
skewness, coefficient of variation, and kurtosis. Similarly, impulse
metrics, such as impulse factor, crest factor, clearance factor, and
Shannon entropy, are also obtained as potential features for classifying
cancer tissue. Moreover, signal processing metrics, such as energy,
power, and nonlinear energy, are also obtained. In addition, EMD fea-
tures that are extracted from intrinsic functions are employed. Finally,
the peak features are also extracted. In each of the 2529 RS signals
(trials), N is the total number of discrete time samples in a single trial S, S
is the mean value of the trial, Symax is the highest peak, and S; is the ith
sample. All features are mathematically described as follows.

a) Empirical Mode Decomposition: It is based on the representation
of signals into a set of functions called intrinsic mode functions
(IMFs) through the sifting process [38] described in Fig. 1.

Subsequently, the original signal can be obtained by adding all IMFs
(E(n)) acquired during the sifting process, and the residual signal (r(n))
given in Eq. (1).

S(n) = D _Ei(n) +r(n) €]

In this work, the average signals of the PDAC and normal pancreas
are obtained by taking the means of all trials of training signals of each
class as described in Eq (2).

My Mpq

> Suln), Auln) = 31> Spuiln) @

pd =1

1

Anp(n) = M—
np

i=1

App(n) is the average RS signal for the normal pancreas, and A4(n) is
the average RS signal of PDAC. My, and M,q are the total number of trials
for normal pancreas and PDAC respectively. S;,(n) is the normal
pancreas trial and Spq(n) is the PDAC trial. EMD is applied to Ap,(n) and
Apg(n) to obtained IMFs given in Eq. (3).

I

Anp(n) = Z Eupi(n), Apa(n) =

i=1 i

Ipa

Epqi(n) 3
-

Where Eyj (n)and E,q(n) are the IMFs of Auy(n) and Apg(n) respec-
tively, I, and I,4 are the respective IMF counts, and the residual signal r
(n) is discarded. Hence, any trial signal S(n) can be approximated using
IMFs of the average signals.

Lup

Z i Enpi(n) = Syp(n) “4)

i=1

Sup (n)

1R

Lpa

Spa(n) = Apai Epai(n) = Spa(n) )
=1

Egs. (4) and 5, anp,; and apq; are extension coefficients obtained from
the IMFs of the average signals Ay, and A,g The extended coefficients in
this paper are calculated the same as[38], by using the pseudoinverse
problem, constrained with the least squared error as given in Egs. (6),
(7), and (8).

Bya,, = :g\np-, Byays = /5,;4 (6)
Enp.l (0) Enp,Z (0) EﬂFJup (0)
By=| Em) Ewal) sy (1) %

Enp.] (N - 1) Enp,Z (N - 1) Enp.l,,,, (N - 1)
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Fig. 2. Distributions of highest-ranked statistical, peak, and EMD extended features.
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Epaa(1) Eaa() ... Epar, (1) which results in By, and Bpg as non-square matrices. These obtained
Bpy = : : "d ®) coefficients any and apg, of the trial signal S of both classes given in Egs.
Epa (N = 1) Epa(N —1) Epar, (N —1)

(9) and (10) below, are further used as potential features for
classification.
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Table 1
Classification Performance of ML Classifiers with Statistical, EMD Extended
Features, and Peak Features.

Feature Selected Classifier ~ Average Average Average
Type Features Accuracy Sensitivity Specificity
(%) + SD (%) + SD (%) + SD
Statistical All LDA 81.89 + 82.60 + 81.12 +
Features 2.09 2.08 4.04
kNN 81.33 £ 82.76 + 79.80 +
3.09 3.53 5.76
LSVM 83.35 + 81.36 + 85.21 +
2.29 3.95 2.81
NLSVM 84.10 + 85.20 + 83.06 +
2.79 4.09 3.70
Skewness, LDA 82.60 + 86.51 + 78.44 +
Non-Linear 2.42 3.80 5.38
Energy, kNN 87.19 + 84.80 + 89.42 +
Clearance 2.84 4.79 3.34
Factor, LSVM 83.19 + 84.67 + 81.62 +
Impulse 2.19 3.44 4.93
Factor, NLSVM 87.34 + 88.89 + 85.78 +
Crest 2.40 3.44 3.71
Factor,
Kurtosis
EMD All LDA 91.70 + 95.17 + 87.98 +
Extended 1.80 2.00 4.02
Features kNN 93.12 + 96.62 + 89.37 £
1.58 1.26 3.26
LSVM 92.10 + 94.71 £ 89.21 +
1.75 1.61 3.80
NLSVM 95.13 + 93.30 + 96.85 +
1.76 2.93 1.97
Statistical All LDA 93.33 £ 97.37 £ 89.30 +
and EMD 1.74 1.99 2.08
Extended kNN 85.79 + 8293 + 88.66 +
Features 2.33 3.19 3.25
LSVM 94.33 + 97.08 + 91.58 +
1.67 2.70 2.07
NLSVM 78.85 + 98.00 + 56.30 £
2.58 1.05 5.17
al, a6, LDA 92.00 + 95.94 + 87.80 +
Skewness, 2.38 1.56 4.30
a9, a2, a3, kNN 93.63 + 96.78 + 90.27 +
a8, a4, 1.66 2.27 2.13
Impulse LSVM 92.72 + 94.55 + 90.76 +
Factor, 2.48 2.32 3.64
Clearance NLSVM 95.21 + 97.31 £ 92.97 +
Factor, 1.48 1.83 1.89
Non-Linear
Energy
Peak All LDA 94.98 + 96.16 + 93.71 £
Features 1.53 2.20 2.34
kNN 96.40 + 97.16 + 95.60 +
1.39 1.43 2.21
LSVM 94.94 + 93.80 + 96.01 +
1.69 1.93 2.41
NLSVM 97.03 £ 97.62 + 96.40 +
1.08 1.34 1.82
70 LDA 94.66 + 96.55 + 92.64 +
1.60 2.22 2.39
kNN 95.45 + 96.47 + 94.35 +
1.71 1.97 3.37
LSVM 94.22 + 95.63 + 92.72 +
1.85 2.00 2.63
NLSVM 97.30 + 98.40 + 96.15 +
1.47 1.36 2.95
Statistical, All LDA 97.27 + 95.67 + 98.77 £
EMD 1.28 2.27 1.34
Extended kNN 86.63 + 84.88 + 88.38 +
Features 2.92 4.22 3.20
and Peak LSVM 97.23 £ 98.00 + 96.40 +
Features 1.53 1.19 2.68
NLSVM 68.17 + 98.77 + 34.48 +
2.60 0.64 5.30
50 LDA 96.60 + 98.90 + 93.96 +

1.35 1.24 2.66
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Table 1 (continued)

Feature Selected Classifier ~ Average Average Average
Type Features Accuracy Sensitivity Specificity
(%) + SD (%) + SD (%) + SD
kNN 96.40 + 98.78 + 93.62 +
1.48 1.14 2.56
LSVM 96.84 + 97.85 £ 95.75 £
1.13 1.37 2.35
NLSVM 98.50 + 99.00 + 97.99 +
1.11 0.97 1.95
-1
T
App = [anp.l [£07% B anp‘l,,,7 ] = <B,{,,Bnp) B,]l-[,Snp (9)
~1
T
Qg = a1 apaz P (B;,B,,d) BS,q (10)

a) Peak Features (Sp): Each data trial from wave number 600 cm !

to 3975 cm ! has been divided into 135 windows, consisting of
25 wave numbers. Peak values from every window have been
extracted, and window’s maximum peak value is obtained as a
feature as described in Eq. (11). If no prominent peaks are ob-
tained from any window, then the average value from that win-
dow is extracted as a feature.

Sy = [Sp1,Sp2, Spaee-Spu], n=1,2,3...135 an

b

Nl

Shape factor (Ssg): It is independent of the dimensions of the
signal, and it depends only on the signal’s shape, given in Eq.
(12).

Srms

Ssp = 3 12)

Where S5 is the root mean square of each trial.

a) Skewness (Sskew): Asymmetry of the signal distribution is
described with the help of skewness, given in Eq. (13).

1 N <\3
3 e (Si— S
Suy = 2 215 25) 7 as

ﬁ Z?’:l (Si - §)2

b) Coefficient of variation (Scy): It is the ratio of the standard de-
viation to the sample mean and describes the data distribution
relative to the trial mean given in Eq. (14).

Scv = 14

Where Sgp is the standard deviation of a trial.

a) Kurtosis (Skyrt): Outliers can be analyzed with the help of kurtosis.
If data is prone to outliers, the value of kurtosis will increase, and
Eq. (15) below describes kurtosis.
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Skurt =

b) Impulse factor (Sir): Comparison of the peak height to the signal’s
mean level can be analyzed using the impulse factor in Eq. (16).

N max
S = P§ (16)

c) Crest factor (Scres): Noise usually appears in the peaks of the sig-
nals before it appears in the energy of the signals. Hence, signal
noise can be detected using the crest factor in Eq. (17).

Spmax
Serest = — a7

Vi Sl

d) Clearance Factor (Sieqr): This feature can give higher separability
between classes where data has higher overlap. The clearance
factor is defined mathematically with Eq. (18).

_ Sy a8

Sclmr
(L zﬁhlw",wlz)

e) Shannon Entropy(ShEn): It reflects the randomness of our data
which helps in observing the relevant information between the
trials and is defined with Eq. (19). Here p; is the probability of
each sample.

N
ShEn(S) = Zpi logp; (19)
=1

f) Nonlinear Energy (NE): It is a derived energy concept in the form
of nonlinear energy for the non-stationary signal used in this
paper, specified by Eq. (20).

N=-2

NE(S) = (8[i] - S[i+ 1]S[i — 1]) (20)

i=1

1) Feature selection

In this study, the feature selection is performed using SVM-RFE to
obtain an optimal feature set. In SVM-RFE, the search for the best feature
subset and model construction is combined by integrating feature se-
lection as part of the classifier algorithm [50]. NLSVM training data are
mapped to a higher dimensional space Rh, when it is non-linearly
separable in the input space R' given in Eq. (21).

feR'>®(f)R" 2D

This approach is based on solving the quadratic optimization prob-
lem in the feature space. The dual Lagrangian that needs to be mini-
mized is defined in Eq. (22).

n 1 n
Lo(@) =Y ai— 5 > @y @) (f;) (22)
i=1 ij=1

Where, o; and o; are the Lagrangian multipliers, y; and y; are the class
labels, K(f,,f)) = ®(f)®(f;) is the kernel function, f; f; are the features set
of both classes, and n is the number of trials. Kernels must be calculated
in the input space to obtain the required scalar product in the feature
space; hence, the mapping can be avoided. Gaussian kernel functions are
used excessively in such cases, as defined in Eq. (23) for our proposed
work.

K (fof) = e 7 @3)

In ranking of features, if a feature’s elimination produces slight
variations in the objective function given in Eq. (24), those features can
be removed. This directs us to the subsequent ranking condition for
feature k.



M. Aslam et al.

Y R ma—TT 1
gos 308
Z —kNN=0.8742 4 /
° —--LDA=0.8772 2 H
206 svm=o0ssi2 | 2 06[ Jf - -LSVM=0.8805
B (e e e NLSVM=0.9058 3 (- T NLSVM=0.9372
< S04t i
=04 o ;
2 g
Fo2 02

0
0 02 04 06 08 1 0 02 04 06 08 1

False Positive Rate False Positive Rate
(a) (b)

1 1
e
o I
= 08 AUCs i AUGs
'j-': ——kNN=0.9774 " 3 w—k NN= 09208
206 ===1DA=0.9769 3 =eeLDA =0.9845
= - «LSVM=0.9799 ! - «LSVM=0.9853
S R i i ) T NLSVM=0.981 || SRS IR SRR ... . NLSVM=0.9283
=04 I
2 !
[
=02
ol
0 02 04 06 08 1 0 02 04 06 08 1

False Positive Rate False Positive Rate
(c) d

1
AUCs 1 AUCs
— kNN =09775 ——kNN =0.9904
—--LDA=09763 —--LDA=09862
= ~LSVM=09792 — -LSVM=09846
~~~~~ NLSVM=0.983 ssees NLSVM= 09922
0
0 02 04 0.6 0.8 1 0 0.2 04 0.6 08 1
False Positive Rate False Positive Rate
(e) ®
1 1 .
§
208 sosh !
2 AUCs =5 AUCs
. ——kNN=0.9894 i~ H —— kNN =0.9332
=06 —=-LDA=09854 206} =—==LDA =09940
= — ~LSVM=09847 k= H - ~LSVM=09942
S |1 ] e NLSVM=0.9920 Z R . NLSVM =0.9329
504 04
2 P H
£ (=
o2 02
0 0
0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate
® (h)
8 =
9
5 08 AUCs
"; =——KkNN = 0.9937
206 ===LDA = 0.9936
7 = =LSVM=0.9937
;J ----- NLSVM= 0.9981
> 04
b=
T 02
0 0.2 04 0.6 0.8 1
False Positive Rate

(1

Fig. 4. AUC values of kNN, LDA, LSVM, and NLSVM classifiers represented
using different features combinations (a) AUC using statistical features (b) AUC
using selected statistical features: skewness, nonlinear energy, clearance factor,
impulse factor, crest factor, and kurtosis (¢) AUC using EMD extended features
(d) AUC using all statistical and EMD features (e) AUC using selected features of
EMD: al-a4, a6, a8, a9, and selected statistical features: skewness, impulse
factor, clearance factor, and nonlinear energy (f) AUC using all peak features
(g) AUC using selected 70 peak features (h) AUC using all 162 features (i) AUC
using selected 50 features.
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Table 2
Comparison of Proposed ML Classification Methods and State of the Art.
Classifier ~ Average Average Average Train/ Memory
Accuracy Sensitivity Specificity Test (MB)
(%) + SD (%) + SD (%) + SD Time
(sec)
CNN 97.39 97.80 96.85 24.35/ 2338
[31] + 1.44 + 0.90 + 2.52 6.63
LDA 97.27 95.67 98.77 4.77/ 335
+1.28 +2.27 +1.34 4.77
LSVM 97.23 98.00 96.40 4.91 336.2
+ 1.53 + 1.19 + 2.68 /4.91
kNN 96 0.40 = 98.78 93.62 5.60/ 335.8
1.48 + 1.14 + 2.56 5.60
NLSVM 98.50 99.00 97.99 4.74/ 337.5
+1.10 + 0.97 +1.95 4.74
. 1$ . 1< —k ok
jlk) = 3 Z fli“/}’[)’,/K(f;,ﬁ) 3 Z oy, K <f, s ) ) 24)
ij=1 ij=1

Whereas (-k) means that the k™ feature has been removed without
changing o’s, all those features that have small j’s are eliminated in each
iteration. Furthermore, highly correlated features obtained from SVM-
RFE can bring wrong estimation and inaccurate prediction, which is
solved using the CBR method proposed by [50].

i) Classification

The proposed work classified RS signals into the normal pancreas
and PDAC classes using ML algorithms. The paper employed linear and
nonlinear ML classifier algorithms such as LDA, LSVM, kNN, and
NLSVM. Fisher’s criteria in LDA determine the ratio between the
normal/tumor class variance and within-class variance [27]. kNN is a
nonlinear but superficial classifier; it does not require training, and
Euclidean distance is used as a distance metric to obtain the decision
boundaries, partitioning the features into two regions. In the case of
SVM, discussed in detail in the feature selection subsection above, the
kernel function obtains the decision boundary.

3. Results and discussion

This paper proposes a new method for detecting PDAC from RS
signals using supervised ML. In total, 162 features have been extracted
from the data. Later, redundant and irrelevant features are removed
using SVM-RFE integrated with the CBR feature selection method. In
addition, k-fold cross-validation is used in this paper; 2529 (nor-
mal=1224, PDAC = 1305) trials are split into training and cross-
validation. 10 % of the data is used for the testing, and the remaining
data is used for the 15-fold cross-validation. Each time a fold is used for
validation, the remaining folds are used for training [45].

3.1. Results

The highest-ranked 15 features out of 162 for detecting PDAC from
the normal pancreas are shown in Fig. 2. EMD features a; and az show
substantial separability between the two classes. Similarly, other fea-
tures, including skewness, impulse factor, Sps7, Spe1, and ag, have also
shown considerable separability between the two classes. The distribu-
tion of some features, such as nonlinear energy, as, Spe, and Spi4,
demonstrated less separability in Fig. 2. However, when these features
and other features are mapped to higher dimensions, a significant in-
crease in classification accuracy is observed, as shown in Table 1.
Therefore, these features can accurately classify PDAC and normal tis-
sues. The feature selection is performed using the SVM-RFE and CBR
algorithms. The features are ranked based on the feature scores achieved
using one-by-one elimination of features in each iteration. Furthermore,
the highest score is assigned to the EMD coefficient feature a;, as shown
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Table 3
Characteristics of Mutation Types in PDAC.
Characteristics KRAS [62] TP53[63] SMAD4[63]
Gene Sequence ¢.35G>T c.724T>C ¢.1.1659del1659
Mutated Protein Sequence Gl2v C242R p.0?
Wild Amino Acid Glycine Cysteine [62] Probably no protein is
Chemical Structure O CH, produced
HZN/Y - co
OH 3
NH,

Wild Amino Acid Side
Chain

Significant Peaks

Mutated Amino Acid

Mutated Amino Acid Side

H-(Aliphatic)

508, 898, 1038, 1336, 1414, 1448[59]
Valine
(CH3)2CH-(Aliphatic)

Chain
Chemical Structure (o]
H S/\Hko H
NH,

757,829,847,948,967,1064,1270, 1328,
1336,1362,1411,1450,1473 [61]

Significant Peaks

HSCH, - (Sulphur)

644-686, 905-920, 1016-1055,1376-1389[60]
Arginine
HN=C(NH2) NH(CH2)3- (Cationic)

HoN NW\HLOH
H
NH,

857,894,930,980,1086,1176,
1317,1365,1408,1446[62]

in Fig. 3. It can be observed from the feature scores that significant
features appear in all three domains, i.e., statistical, EMD coefficients,
and peak features.

The average accuracy, sensitivity, and specificity of test data for LDA,
kNN, LSVM, and NLSVM classifiers using different combinations of
statistical, EMD extended features, and peak features are reported in
Table 1. For the statistical features, the six highest-ranked features
achieved an average accuracy of 87.34 + 2.40 % using the NLSVM
classifier. The accuracy is improved to 95.13 + 1.76 % when all EMD
extended features are used as a feature set with the NLSVM classifier.
Furthermore, when all 27 statistical and EMD extended features are
combined, LSVM produced the highest average accuracy of 94.33 +
1.67 %, whereas the average accuracy of NLSVM dropped to 78.85 +
2.58 %. However, feature selection improved the average accuracy of
NLSVM, which is 95.21 + 1.48 % using 11 selected features. For peak
features, an average accuracy of 97.30 + 1.47 % is achieved by the
NLSVM classifier for 70 selected peak features. Finally, when all the
peak features are combined with all the statistical and EMD coefficients
features, LDA attained an average accuracy of 97.27 + 1.28 %, whereas
NLSVM'’s average accuracy dropped to 68.17 + 2.60 %. However, after
applying feature selection, NLSVM achieved the overall highest average
accuracy of 98.50 £+ 1.11 % using 50 selected features. The maximum
average accuracies for kNN and LSVM are 96.40 + 1.48 % and 97.23 +
1.53 % using 50 selected features and all the features, respectively. In
addition, performance evaluation parameters, such as sensitivity and
specificity, are assessed for classifiers. Like average accuracy, NLSVM
produced the highest average sensitivity and specificity compared to
LDA, kNN, and LSVM for most feature combinations, as shown in
Table 1. NLSVM achieved the highest average sensitivity and specificity
of 99.00 + 0.97 % and 97.99 + 1.95 %, respectively, using 50 selected
features from 162 features. It can also be observed from Table 1 that the
peak features achieved the highest test accuracy among the accuracies of
all the individual features.

ROC curve is a method to measure the performance of the classifi-
cation problem at various threshold values. The ROC curve plots the true
positive rate (sensitivity) against the false positive rate (1 - specificity)
for each possible cutoff. The area under the curve (AUC) is calculated
from ROC and represents class separability [51]. Fig. 4 shows the
average ROC curves and AUC values of LDA, kNN, LSVM, and NLSVM
classifiers for feature set combinations shown in Table 1. The highest
average AUC value using 50 selected features for the kNN is 0.9937, and

for NLSVM, it is 0.9981. At the same time, LDA and LSVM achieved
0.9940 and 0.9942 respectively for all features. Table 2 summarizes the
performance of the proposed method for PDAC detection and compares
it with state-of-the-art [31]. The parameters such as accuracy, memory,
and processing time are compared. In this work, NLSVM achieved the
highest detection accuracy of 98.5 %, 1.1 % more than the
state-of-the-art. In addition, the sensitivity of the proposed technique is
also 1.2 % more. Similarly, training and testing time of the proposed
method for detecting PDAC is reduced by 80.5 % and 28.5 % [31],
respectively. Also, the training and the testing time summarized in
Table 2 remained the same for all the classifiers except CNN. Further-
more, the proposed method used 337.5 MB of memory, whereas [31]
used 2338 MB, which is also 85.6 % more memory utilization. Likewise,
the processing time and memory usage of LDA, LSVM, and kNN are
significantly less than the [31], but these methods are also less accurate.

3.2. Discussion

KRAS, TP53, and SMAD4 mutation in human cell line have been used
in the mouse model for PDAC detection in this study and tumor xeno-
graft mouse model for understanding the biology and mechanism un-
derlying PDAC. Several studies have used similar mouse models because
these murine cancer models show high degrees of molecular homology
with their human equivalents, which is very informative for preclinical
studies; however, variations exist regarding histologic development
[52-54]. In addition, murine cancer models have short reproductive
cycles, large litter sizes, low cost, and are easy to handle [55]. Each
mutation type is shown in detail in Fig. 5. In KRAS G12V, the mutation
occurs due to a single nucleotide substitution (thymine replaces guanine
in gene sequences) at glycine-encoding codon-12, in which glycine at
position 12 is replaced with valine (G12V), as shown in Fig. 5(a—c). In
our study, the cause of PDAC is also caused by a mutation in SMAD4.
Fig. 5(a) illustrates the SMAD4 signaling pathway, in which SMAD4 is
switched off, which uplifts the cell cycle. Similarly, the third type of
mutation identified in this paper is TP53, which causes PDAC. TP53 is
located on chromosome 17, a phosphoprotein comprising 393 amino
acids [56]. When there is damage to the DNA of the cells, the TP53 gene
expresses and produces more TP53 tumor suppressor protein.

The major functions of increased TP53 expression and gene regula-
tion are (i) cell cycle arrest, (ii) DNA repair, and (iii) apoptosis (cell
death) [57]. Cancer caused by TP53 is either a mutation in the TP53
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Fig. 5. KRAS, TP53, and SMAD4 (a). RAS and SMAD4 signaling pathways for cell proliferation include active RAS, which sends the signal for cell division to the
nucleus. (b) In KRAS, gene mutation at codon 35 from guanine to thymine. (c) Amino acid glycine at position 12 is replaced with valine amino acid. (d) TP53
mutation and cell proliferation: the mutation in the DNA binding region caused a mutation in TP53, which resulted in the development of 93.75 % dysfunctional and
6.25 % functional TP53 protein. (e) In TP53, gene mutation at codon 724 replaces thymine with cytosine. (f) Amino acid cysteine at position 242 is replaced with
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gene or a protein that regulates TP53 [58]. In this paper, mutated TP53
has ¢.724T>C gene sequence and p.C242R protein sequence, as shown
in Fig. 5(d-f).

This paper defines the fingerprint regions for PDAC detection using
peak features that are biologically relevant to the chemical composition
of normal pancreas and PDAC, as shown in Fig. 6. The Wild TP53 is
composed of cysteine amino acids that contain sulphur, and it has a
Raman shift from 605 to 660 cm %, as shown in Fig. 6. The Peak feature
Sp3 represents the high concentration of sulphur in wild-type TP53.
Other bonds in cysteine are represented by the features Sj17 and Sp1g, as
shown in Fig. 6. Sulphur is replaced with a cationic side chain in mutated
TP53, which has a 1075 to 1100 cm~! Raman shift. The Spoo feature
represents a mutated side chain, as shown in Fig. 6.

Similarly, in wild-type KRAS, the concentration of the amino acid
glycine with an H-aliphatic side chain is high. This group has a 1336
cm ™! Raman shift, represented by the S;,30 feature. In mutated KRAS, the

glycine amino acid is replaced with valine, which has (CH3) CH-
aliphatic side chain. Mutated KRAS is represented by feature Sp33,
which has a 1365-1451 cm~! Raman shift. Moreover, due to these
mutations and SMAD4, uncontrolled cell proliferation occurred, result-
ing in increased lipid-protein and amide I lipids, which can also be
observed from 1400 to 1800 cm ™! in Fig. 6. This is a prominent sign of
PDAC. Hence, changes in the gene sequence in each mutation type

3.3. Limitation and future work

The current study was limited to murine cancer models. We are
interested in using this method to detect other cancers because the
proposed method is simple, accurate, and efficient for PDAC detection in
mice and could be extrapolated to evaluate human pancreatic cancer
and other cancer types. The explainable features extracted from PDAC
can be helpful for other Raman spectrum cancer studies. Therefore, the
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Fig. 6. Biological relevance of average peak features with TP53 and KRAS mutation types result in different amino acid attachment at a particular position in the
protein molecule formation process. Table 3 summarizes the mutation types used in the development of PDAC in mice and the changes due to the mutations in the
corresponding protein sequences, side groups, chemical structure, and Raman shift in significant peaks.

findings will be evaluated further in conjunction with studies on human
pancreatic cancer and other cancer types in the near future.

4. Conclusion

Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease, with
a less than 10 % survival rate worldwide. It is a progressively more
common cause of tumor death and can be cured if detected earlier. This
study proposes a novel method for PDAC detection using distinctive
explainable features acquired from Raman spectroscopic signals. Our
study is the first to define fingerprint regions for PDAC in the literature.
This work also reports unique mutation regions in the fingerprint region
of PDAC for wild-type and mutated proteins, such as KRAS, TP53, and
SMAD4. This study also shows the relationship between the obtained
features and Raman shifts in the fingerprint regions. This novel rele-
vance can significantly enhance the accuracy of chemotherapy for early
stage PDAC. The dimensions of the feature set are reduced with SVM-
RFE integrated with the CBR feature selection method. Subsequently,
supervised machine-learning algorithms are used to classify the test
samples into cancer and normal classes. The best average classification
accuracy of 98.5 % is achieved by NLSVM, which is 1.1 % higher than
the state-of-the-art classification accuracy. The method used in this
study reduces the test time by 28.5 % and saves 85.6 % memory utili-
zation compared to the existing method. The current study was limited
to murine cancer models. The findings will be evaluated further in
conjunction with human pancreatic cancer studies in the near future.
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