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A B S T R A C T   

Background and Objective: Pancreatic Ductal Adenocarcinoma (PDAC) is a form of pancreatic cancer that is one of 
the primary causes of cancer-related deaths globally, with less than 10 % of the five years survival rate. The 
prognosis of pancreatic cancer has remained poor in the last four decades, mainly due to the lack of early 
diagnostic mechanisms. This study proposes a novel method for detecting PDAC using explainable and super
vised machine learning from Raman spectroscopic signals. 
Methods: An insightful feature set consisting of statistical, peak, and extended empirical mode decomposition 
features is selected using the support vector machine recursive feature elimination method integrated with a 
correlation bias reduction. Explicable features successfully identified mutations in Kirsten rat sarcoma viral 
oncogene homolog (KRAS) and tumor suppressor protein53 (TP53) in the fingerprint region for the first time in 
the literature. PDAC and normal pancreas are classified using K-nearest neighbor, linear discriminant analysis, 
and support vector machine classifiers. 
Results: This study achieved a classification accuracy of 98.5% using a nonlinear support vector machine. Our 
proposed method reduced test time by 28.5 % and saved 85.6 % memory utilization, which reduces complexity 
significantly and is more accurate than the state-of-the-art method. The generalization of the proposed method is 
assessed by fifteen-fold cross-validation, and its performance is evaluated using accuracy, specificity, sensitivity, 
and receiver operating characteristic curves. 
Conclusions: In this study, we proposed a method to detect and define the fingerprint region for PDAC using 
explainable machine learning. This simple, accurate, and efficient method for PDAC detection in mice could be 
generalized to examine human pancreatic cancer and provide a basis for precise chemotherapy for early cancer 
treatment.   

1. Introduction 

Pancreatic Ductal Adenocarcinoma (PDAC), the fourteenth most 
common malignancy, is one of the prominent causes of death world
wide. According to the GLOBOCAN survey, pancreatic cancer is the 
seventh most typical cause of cancer-related deaths worldwide and the 
fourth in the United States [1,2]. The one-year survival rate of patients 
with PDAC is 24 %, and the five-year survival rate is < 10 % [3,4]. Only 
10–20 % of PDAC can be removed with surgery; however, partial 
removal can lead to local recurrence of pancreatic cancer [5]. The causes 

of PDAC are due to different types of mutations at the gene level; KRAS is 
mutated in 80.56 % of PDAC cases. It belongs to the Ras gene family of 
the oncogene class, which provides instructions for making the K-Ras 
protein part of the RAS/MAPK pathways [6]. It is activated upon 
receiving signals from the outside of the cell. It can switch on down
stream pathways to initiate cell growth, division, and self-destruction 
(apoptosis). Different proteins are involved in activating and signaling 
pathways that keep Ras inactive to prevent persistent activation. How
ever, these proteins become inactive due to mutations, which keep Ras 
activated, leading to malignant transformation. KRAS mutants are 
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divided into three categories based on codon and G12 mutation at codon 
12, with subtype G12V being one of them [7], representing 25.0 % of 
nearly all PDAC [8]. 

Similarly, TP53 is central in adjusting the safe microenvironment but 
is frequently mutated in PDAC [9]. This tumor suppressor gene is 
recruited when the DNA is damaged [10]. Any damage to the p53 pro
tein makes it unable to bind the DNA; hence, no decision can be made to 
repair the DNA or destroy the cell [11]. Dysfunctional TP53 causes the 
accumulation of damaged DNA in cells [12]. These damaged cells are 
more likely to grow out of control, forming tumors [13]. TP53 alter
ations are present in nearly half of all human cancers, making them the 
most common source of cancer [9]. Moreover, the Suppressor of 
Mothers against Decapentaplegic (SMAD4) is another tumor suppressor 
protein that prevents cells from developing and dividing rapidly [14]. It 
is deactivated in 50–60 % of PDAC cases due to homozygous omission or 
mutation [15]. Alterations in the SMAD4 gene appear in the late phases 
when the carcinoma is histologically identifiable [16]. 

Early detection of PDAC is the best way to cure this disease; hence, a 
suitable device for early detection is essential. Histopathology is an 
invasive cancer evaluation method and is currently used for the diag
nosis of PDAC. However, it is challenging to evaluate PDAC with 
intraoperative histopathology because of impurities in the blood and 
digestive tract cells [17,18]. Similarly, different non-invasive imaging 
technologies used for detection include computed tomography (CT) 
[19], magnetic resonance imaging (MRI) [20], positron emission to
mography (PET) [21], and endoscopic ultrasound (EUS) [22]. However, 
these imaging techniques are expensive, bulky, time-consuming, and 
have portability and availability challenges, and some of these methods 
have radiation exposure issues if repetition is required. In addition, the 
detection accuracy of PDAC is usually compromised because it is a 
retroperitoneal organ, and the operator’s expertise is also needed in 
some cases [23]. 

Among optical imaging techniques, Raman spectroscopy (RS) is an 
evolving diagnostic tool for analyzing chemical components in many 
fields. RS has distinctive advantages, including a non-ionization nature 
and high specificity. RS is label-free; hence, no sample preparation is 
required [24]. In many machine learning (ML)-based studies, RS is used 
to detect different types of cancers, such as brain, breast, cervical, and 
skin cancers, with accuracies of 96 %, 90 %, 85.7 %, and 91–92 %, 
respectively [25–29]. Deep learning is one of the most popular ML 
techniques because of its high prediction performance [30]. For PDAC, 
Li et al. used convolutional neural networks (CNN) and RS signals and 
obtained a significantly high detection accuracy of greater than 97 % 
[31]. The medical domain requires reason and insight to understand 
beyond standard quantitative performance evaluation [32]. Moreover, 
explaining the ability of the analysis is important for clinical diagnosis. 
Therefore, methods that only detect cancer, such as deep learning, 
usually cannot assist in treating cancer. In addition, patients must al
ways understand chemotherapy for their cancer treatment to reduce 
inaccurate beliefs about chemotherapy, which can increase their life 
expectancy [33]. In addition, deep learning requires large training 
datasets, has high computational costs, and lacks generality in new data 
results [34]. 

Relevant and explainable feature extraction is, therefore, a critical 
factor for improving the classification accuracy and understanding of 
data patterns. Statistical primary features, such as the mean, mode, 
median, standard deviation, and variance, are the simplest features used 
for data analysis [35]. With increased variability and randomness of the 
data, derived statistical features such as skewness, kurtosis, shape factor, 
impulse factor, crest factor, and clearance factor can help to extract 
more explainable features [36,37]. Similarly, empirical mode decom
position (EMD) is suitable for nonlinear and nonstationary signals such 
as EEG, optical, and chemical [38–40]. In addition, feature selection 
methods to remove redundant features can significantly improve 
detection accuracy. In some studies, feature selection methods are also 
embedded with classification algorithms to achieve better classification 

accuracy, such as support vector machine recursive feature elimination 
(SVM-RFE), proposed by [41]. This method is less susceptible to over
fitting and is highly efficient when the feature set is large [42]. 

The extracted features are fed into the classification algorithm to 
separate the classes in the data. Classification algorithms, such as linear 
discriminant analysis (LDA), linear support vector machine (LSVM), k- 
nearest neighbor (kNN), and nonlinear support vector machine 
(NLSVM), have been integrated with RS for the detection of various 
types of cancers such as esophageal, breast, prostate, colon, and liver 
[27,43–46]. Similarly, ML classifiers have also been integrated with RS 
for diagnosing diseases such as the classification of kidney stones and 
renin hypertension [47,48]. 

This study proposes a novel method for PDAC detection using sta
tistical, peak, and EMD extended explicable features obtained from the 
RS signals. Redundancy in features is removed by the SVM-RFE feature 
selection method integrated with the correlation bias reduction (CBR) 
method. To the best of our knowledge, this is the first study to define a 
fingerprint region (600–1800 cm−1) using obtained features. Distinct 
novel regions for normal and mutated KRAS and TP53, for a better 
understanding of PDAC, are also defined in this work. Subsequently, the 
classification of PDAC from the normal pancreas is performed using 
LDA, kNN, LSVM, and NLSVM. The NLSVM classification algorithm 
reduced 85.6 % memory utilization, 28.5 % testing time, 80.5 % training 
time and has 1.1 % higher classification accuracy than the state-of-the- 
art algorithm [31]. The accuracy remained above 95 % when other 
simpler machine learning algorithms, such as LDA, LSVM, and kNN, 
were used, compared to 98.5 % for NLSVM. Performance evaluation 
parameters such as accuracy, specificity, sensitivity, and receiver oper
ating characteristic (ROC) curves are used to evaluate the PDAC detec
tion method [49]. The contributions of the proposed method for PDAC 
detection are summarized as follows. 

This study proposes a novel method for detecting PDAC, a form of 
pancreatic cancer with less than a 10 % of the five years survival rate. 

To the best of our knowledge, this is the first study to define a 
fingerprint region that can be crucial in determining a standard pattern 
for early PDAC detection in humans using explainable features that 
successfully identified mutations in Kirsten rat sarcoma viral oncogene 
homolog (KRAS) and tumor suppressor protein53 (TP53). 

PDAC and normal pancreas are classified using multiple machine- 
learning classifiers and achieved a classification accuracy of 98.5 % 
using NLSVM, and reduced test time by 28.5 % and saved 85.6 % 
memory utilization compared to the state-of-the-art method. 

2. Materials and methods 

The proposed method for detecting PDAC using RS signals involves 
data acquisition, feature extraction, selection, and classification. The 
data used in the proposed study are described in the Materials section. 
The Methods section discusses the feature extraction, selection, and 
classification techniques. 

2.1. Materials 

In this subsection, details about data and data acquisition are dis
cussed. Materials include a description of the cell line, animal model, 
data acquisition, and system used to process the data.  

i) Cell Line: 

The human CFPAC-1 cell line (ATCCR CRL 1918TM, pancreatic 
ductal adenocarcinoma) was used in this study. Tumor cells were 
cultured in Iscove’s Modified Dulbecco’s Medium (ATCCR 30-2005TM) 
with 10 % fetal bovine serum (Neuromics, Edina, Minnesota) at 37 ◦C 
and 5 % CO2 in a humidified environment.  

i) Animal Model: 
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Data of 6–8-week-old female immunocompetent athymic nude Nu/J 
mice (Jackson Laboratories, Bar Harbor, Maine, USA) animal model is 
used for this study. After the CFPAC-1 cells were developed in the media, 
nearly all the cells were injected into the back of the mice by subcu
taneous infusion. When the tumor size was around 1 cm, the mice were 
euthanized, and the whole tumor and normal pancreas were extracted. 
This study was approved by the Institutional Animal Care and Use 
Committee of Louisiana State University (IACUC#20–046), and all 
procedures followed the regulations on animal investigation.  

i) Data Acquisition: 

RS data acquisition system consists of a laser diode (Turnkey Raman 
Lasers-785 Series, Ocean Optics Inc., Dunedin, Florida, United States), 
QE Pro-spectrometer (Ocean Optics, Inc), a Raman probe (RPS785, 
InPhotonics Inc., Norwood, Massachusetts, United States), and Ocean 
Wave hardware to computer interface software. The RS data used in this 
paper was obtained from 20 mice. 2529 RS signals were collected from a 
mouse: 1305 signals from the tumor and 1224 signals from the normal 
pancreas.  

i) System Specifications: 

All the methods for signal analyses were implemented in Python and 
MATLAB programming languages using an Intel(R) Core (TM) i7- 
1165G7 computer system with a 2.80 GHz processor and 16.0 GB 
memory. 

2.2. Methods 

This subsection discusses in detail the methods used in this paper. 
These methods include statistical, EMD, and peak feature extraction, 
feature selection using SVM-RFE integrated with CBR, and classification 
using LDA, kNN, LSVM, and NLSVM.  

i) Feature Extraction 

Several distinct features from the PDAC data have been extracted. 
The features that can contribute more to drawing decision boundaries 
between cancer and normal RS signals are used. These features include 
basic statistical features such as mean, median, mode, root mean square, 
standard deviation, variance, and derived features such as shape factor, 
skewness, coefficient of variation, and kurtosis. Similarly, impulse 
metrics, such as impulse factor, crest factor, clearance factor, and 
Shannon entropy, are also obtained as potential features for classifying 
cancer tissue. Moreover, signal processing metrics, such as energy, 
power, and nonlinear energy, are also obtained. In addition, EMD fea
tures that are extracted from intrinsic functions are employed. Finally, 
the peak features are also extracted. In each of the 2529 RS signals 
(trials), N is the total number of discrete time samples in a single trial S, S 
is the mean value of the trial, Spmax is the highest peak, and Si is the ith 

sample. All features are mathematically described as follows.   

a) Empirical Mode Decomposition: It is based on the representation 
of signals into a set of functions called intrinsic mode functions 
(IMFs) through the sifting process [38] described in Fig. 1. 

Subsequently, the original signal can be obtained by adding all IMFs 
(E(n)) acquired during the sifting process, and the residual signal (r(n)) 
given in Eq. (1). 

S(n) =
∑I

i=1
Ei(n) + r(n) (1) 

In this work, the average signals of the PDAC and normal pancreas 
are obtained by taking the means of all trials of training signals of each 
class as described in Eq (2). 

Anp(n) =
1

Mnp

∑Mnp

i=1
Snp,i(n), Apd(n) =

1
Mpd

∑Mpd

i=1
Spd,i(n) (2) 

Anp(n) is the average RS signal for the normal pancreas, and Apd(n) is 
the average RS signal of PDAC. Mnp and Mpd are the total number of trials 
for normal pancreas and PDAC respectively. Snp(n) is the normal 
pancreas trial and Spd(n) is the PDAC trial. EMD is applied to Anp(n) and 
Apd(n) to obtained IMFs given in Eq. (3). 

Anp(n) =
∑Inp

i=1
Enp,i(n), Apd(n) =

∑Ipd

i=1
Epd,i(n) (3) 

Where Enp,i(n)and Epd,i(n) are the IMFs of Anp(n) and Apd(n) respec
tively, Inp and Ipd are the respective IMF counts, and the residual signal r 
(n) is discarded. Hence, any trial signal S(n) can be approximated using 
IMFs of the average signals. 

Snp(n) ≅
∑Inp

i=1
anp,i Enp,i(n) = Ŝnp(n) (4)  

Spd(n) ≅
∑Ipd

i=1
apd,i Epd,i(n) = Ŝpd(n) (5) 

Eqs. (4) and 5, anp,i and apd,i are extension coefficients obtained from 
the IMFs of the average signals Anp and Apd The extended coefficients in 
this paper are calculated the same as[38], by using the pseudoinverse 
problem, constrained with the least squared error as given in Eqs. (6), 
(7), and (8). 

Bnpanp = Ŝnp, Bpdapd = Ŝpd (6)  

Bnp =

⎡

⎢
⎢
⎣

Enp,1(0) Enp,2(0) … Enp,Inp (0)

Enp,1(1) Enp,2(1) … Enp,Inp (1)

⋮ ⋮ ⋮
Enp,1(N − 1) Enp,2(N − 1) Enp,Inp (N − 1)

⎤

⎥
⎥
⎦ (7) 

Fig. 1. Flowchart of EMD.  
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Bpd =

⎡

⎢
⎢
⎣

Epd,1(0) Epd,2(0) … Epd,Ipd (0)

Epd,1(1) Epd,2(1) … Epd,Ipd (1)

⋮ ⋮ ⋮
Epd,1(N − 1) Epd,2(N − 1) Epd,Ipd (N − 1)

⎤

⎥
⎥
⎦ (8) 

anp and apd are calculated based on the least squared error constraint, 
which results in Bnp and Bpd as non-square matrices. These obtained 
coefficients anp and apd, of the trial signal S of both classes given in Eqs. 
(9) and (10) below, are further used as potential features for 
classification. 

Fig. 2. Distributions of highest-ranked statistical, peak, and EMD extended features.  
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anp =
[

anp,1 anp,2 … anp,Inp

]T
=

(
BT

npBnp

)−1
BT

npSnp (9)  

apd =
[

apd,1 apd,2 … apd,Ipd

]T
=

(
BT

pdBpd

)−1
BT

pdSpd (10)     

a) Peak Features (Sp): Each data trial from wave number 600 cm−1 

to 3975 cm−1 has been divided into 135 windows, consisting of 
25 wave numbers. Peak values from every window have been 
extracted, and window’s maximum peak value is obtained as a 
feature as described in Eq. (11). If no prominent peaks are ob
tained from any window, then the average value from that win
dow is extracted as a feature. 

Sp =
[
Sp1, Sp2, Sp3….Spn

]
, n = 1, 2, 3…135 (11)    

b) Shape factor (SSF): It is independent of the dimensions of the 
signal, and it depends only on the signal’s shape, given in Eq. 
(12). 

SSF =
Srms

S
(12)   

Where Srms is the root mean square of each trial.   

a) Skewness (Sskew): Asymmetry of the signal distribution is 
described with the help of skewness, given in Eq. (13). 

Sskew =
1
N

∑N
i=1(Si − S)

3

[

1
N

∑N
i=1(Si − S)

2

]3/2 (13)   

b) Coefficient of variation (SCV): It is the ratio of the standard de
viation to the sample mean and describes the data distribution 
relative to the trial mean given in Eq. (14). 

SCV =
SSD

S
(14)   

Where SSD is the standard deviation of a trial.   

a) Kurtosis (Skurt): Outliers can be analyzed with the help of kurtosis. 
If data is prone to outliers, the value of kurtosis will increase, and 
Eq. (15) below describes kurtosis. 

Table 1 
Classification Performance of ML Classifiers with Statistical, EMD Extended 
Features, and Peak Features.  

Feature 
Type 

Selected 
Features 

Classifier Average 
Accuracy 
(%) ± SD 

Average 
Sensitivity 
(%) ± SD 

Average 
Specificity 
(%) ± SD 

Statistical 
Features 

All LDA 81.89 ±
2.09 

82.60 ±
2.08 

81.12 ±
4.04 

kNN 81.33 ±
3.09 

82.76 ±
3.53 

79.80 ±
5.76 

LSVM 83.35 ±
2.29 

81.36 ±
3.95 

85.21 ±
2.81 

NLSVM 84.10 ±
2.79 

85.20 ±
4.09 

83.06 ±
3.70 

Skewness, 
Non-Linear 
Energy, 
Clearance 
Factor, 
Impulse 
Factor, 
Crest 
Factor, 
Kurtosis 

LDA 82.60 ±
2.42 

86.51 ±
3.80 

78.44 ±
5.38 

kNN 87.19 ±
2.84 

84.80 ±
4.79 

89.42 ±
3.34 

LSVM 83.19 ±
2.19 

84.67 ±
3.44 

81.62 ±
4.93 

NLSVM 87.34 ± 
2.40 

88.89 ±
3.44 

85.78 ±
3.71 

EMD 
Extended 
Features 

All LDA 91.70 ±
1.80 

95.17 ±
2.00 

87.98 ±
4.02 

kNN 93.12 ±
1.58 

96.62 ±
1.26 

89.37 ±
3.26 

LSVM 92.10 ±
1.75 

94.71 ±
1.61 

89.21 ±
3.80 

NLSVM 95.13 ± 
1.76 

93.30 ±
2.93 

96.85 ±
1.97 

Statistical 
and EMD 
Extended 
Features 

All LDA 93.33 ±
1.74 

97.37 ±
1.99 

89.30 ±
2.08 

kNN 85.79 ±
2.33 

82.93 ±
3.19 

88.66 ±
3.25 

LSVM 94.33 ±
1.67 

97.08 ±
2.70 

91.58 ±
2.07 

NLSVM 78.85 ±
2.58 

98.00 ±
1.05 

56.30 ±
5.17 

a1, a6, 
Skewness, 
a9, a2, a3, 
a8, a4, 
Impulse 
Factor, 
Clearance 
Factor, 
Non-Linear 
Energy 

LDA 92.00 ±
2.38 

95.94 ±
1.56 

87.80 ±
4.30 

kNN 93.63 ±
1.66 

96.78 ±
2.27 

90.27 ±
2.13 

LSVM 92.72 ±
2.48 

94.55 ±
2.32 

90.76 ±
3.64 

NLSVM 95.21 ± 
1.48 

97.31 ±
1.83 

92.97 ±
1.89 

Peak 
Features 

All LDA 94.98 ±
1.53 

96.16 ±
2.20 

93.71 ±
2.34 

kNN 96.40 ±
1.39 

97.16 ±
1.43 

95.60 ±
2.21 

LSVM 94.94 ±
1.69 

93.80 ±
1.93 

96.01 ±
2.41 

NLSVM 97.03 ±
1.08 

97.62 ±
1.34 

96.40 ±
1.82 

70 LDA 94.66 ±
1.60 

96.55 ±
2.22 

92.64 ±
2.39 

kNN 95.45 ±
1.71 

96.47 ±
1.97 

94.35 ±
3.37 

LSVM 94.22 ±
1.85 

95.63 ±
2.00 

92.72 ±
2.63 

NLSVM 97.30 ± 
1.47 

98.40 ±
1.36 

96.15 ±
2.95 

Statistical, 
EMD 
Extended 
Features 
and Peak 
Features 

All LDA 97.27 ±
1.28 

95.67 ±
2.27 

98.77 ±
1.34 

kNN 86.63 ±
2.92 

84.88 ±
4.22 

88.38 ±
3.20 

LSVM 97.23 ±
1.53 

98.00 ±
1.19 

96.40 ±
2.68 

NLSVM 68.17 ±
2.60 

98.77 ±
0.64 

34.48 ±
5.30 

50 LDA 96.60 ±
1.35 

98.90 ±
1.24 

93.96 ±
2.66  

Table 1 (continued ) 

Feature 
Type 

Selected 
Features 

Classifier Average 
Accuracy 
(%) ± SD 

Average 
Sensitivity 
(%) ± SD 

Average 
Specificity 
(%) ± SD 

kNN 96.40 ±
1.48 

98.78 ±
1.14 

93.62 ±
2.56 

LSVM 96.84 ±
1.13 

97.85 ±
1.37 

95.75 ±
2.35 

NLSVM 98.50 ± 
1.11 

99.00 ±
0.97 

97.99 ±
1.95  
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Skurt =
1
N

∑N
i=1(Si − S)

4

[

1
N

∑N
i=1(Si − S)

2

]2 (15)    

b) Impulse factor (SIF): Comparison of the peak height to the signal’s 
mean level can be analyzed using the impulse factor in Eq. (16). 

SIF =
Spmax

S
(16)   

c) Crest factor (Screst): Noise usually appears in the peaks of the sig
nals before it appears in the energy of the signals. Hence, signal 
noise can be detected using the crest factor in Eq. (17). 

Screst =
Spmax

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1

⃒
⃒S2

i

⃒
⃒

√ (17)    

d) Clearance Factor (Sclear): This feature can give higher separability 
between classes where data has higher overlap. The clearance 
factor is defined mathematically with Eq. (18). 

Sclear =
Spmax

(

1
N

∑N
i=1

⃒
⃒

̅̅̅̅̅̅̅
|Si|

√ ⃒
⃒2

) (18)    

e) Shannon Entropy(ShEn): It reflects the randomness of our data 
which helps in observing the relevant information between the 
trials and is defined with Eq. (19). Here pi is the probability of 
each sample. 

ShEn(S) =
∑N

i=1
pi logpi (19)    

f) Nonlinear Energy (NE): It is a derived energy concept in the form 
of nonlinear energy for the non-stationary signal used in this 
paper, specified by Eq. (20). 

NE(S) =
∑N−2

i=1

(
S2[i] − S[i + 1]S[i − 1]

)
(20)    

i) Feature selection 

In this study, the feature selection is performed using SVM-RFE to 
obtain an optimal feature set. In SVM-RFE, the search for the best feature 
subset and model construction is combined by integrating feature se
lection as part of the classifier algorithm [50]. NLSVM training data are 
mapped to a higher dimensional space Rh, when it is non-linearly 
separable in the input space Rl given in Eq. (21). 

f ϵRl→Φ(f )Rh (21) 

This approach is based on solving the quadratic optimization prob
lem in the feature space. The dual Lagrangian that needs to be mini
mized is defined in Eq. (22). 

Ld(α) =
∑n

i=1
αi −

1
2

∑n

i,j=1
αiαjyiyjΦ(fi)Φ

(
fj

)
(22) 

Where, αi and αj are the Lagrangian multipliers, yi, and yj are the class 
labels, K(fi,fj) = Φ(fi)Φ(fj) is the kernel function, fi, fj are the features set 
of both classes, and n is the number of trials. Kernels must be calculated 
in the input space to obtain the required scalar product in the feature 
space; hence, the mapping can be avoided. Gaussian kernel functions are 
used excessively in such cases, as defined in Eq. (23) for our proposed 
work. 

K
(
fi, fj

)
= e−γfi− f 2

j (23) 

In ranking of features, if a feature’s elimination produces slight 
variations in the objective function given in Eq. (24), those features can 
be removed. This directs us to the subsequent ranking condition for 
feature k. 

Fig. 3. Feature scores assigned to statistical, EMD extended features, and peak features by the SVM-RFE incorporated with CBR feature selection method.  
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j(k) =
1
2

∑n

i,j=1
αiαjyiyjK

(
fi, fj

)
−

1
2

∑n

i,j=1
αiαjyiyjK

(
f −k
i , f −k

j

)
(24) 

Whereas (-k) means that the kth feature has been removed without 
changing α′s, all those features that have small j’s are eliminated in each 
iteration. Furthermore, highly correlated features obtained from SVM- 
RFE can bring wrong estimation and inaccurate prediction, which is 
solved using the CBR method proposed by [50].  

i) Classification 

The proposed work classified RS signals into the normal pancreas 
and PDAC classes using ML algorithms. The paper employed linear and 
nonlinear ML classifier algorithms such as LDA, LSVM, kNN, and 
NLSVM. Fisher’s criteria in LDA determine the ratio between the 
normal/tumor class variance and within-class variance [27]. kNN is a 
nonlinear but superficial classifier; it does not require training, and 
Euclidean distance is used as a distance metric to obtain the decision 
boundaries, partitioning the features into two regions. In the case of 
SVM, discussed in detail in the feature selection subsection above, the 
kernel function obtains the decision boundary. 

3. Results and discussion 

This paper proposes a new method for detecting PDAC from RS 
signals using supervised ML. In total, 162 features have been extracted 
from the data. Later, redundant and irrelevant features are removed 
using SVM-RFE integrated with the CBR feature selection method. In 
addition, k-fold cross-validation is used in this paper; 2529 (nor
mal=1224, PDAC = 1305) trials are split into training and cross- 
validation. 10 % of the data is used for the testing, and the remaining 
data is used for the 15-fold cross-validation. Each time a fold is used for 
validation, the remaining folds are used for training [45]. 

3.1. Results 

The highest-ranked 15 features out of 162 for detecting PDAC from 
the normal pancreas are shown in Fig. 2. EMD features a1 and a2 show 
substantial separability between the two classes. Similarly, other fea
tures, including skewness, impulse factor, Sp57, Sp61, and a9, have also 
shown considerable separability between the two classes. The distribu
tion of some features, such as nonlinear energy, a3, Sp6, and Sp14, 
demonstrated less separability in Fig. 2. However, when these features 
and other features are mapped to higher dimensions, a significant in
crease in classification accuracy is observed, as shown in Table 1. 
Therefore, these features can accurately classify PDAC and normal tis
sues. The feature selection is performed using the SVM-RFE and CBR 
algorithms. The features are ranked based on the feature scores achieved 
using one-by-one elimination of features in each iteration. Furthermore, 
the highest score is assigned to the EMD coefficient feature a1, as shown 

Fig. 4. AUC values of kNN, LDA, LSVM, and NLSVM classifiers represented 
using different features combinations (a) AUC using statistical features (b) AUC 
using selected statistical features: skewness, nonlinear energy, clearance factor, 
impulse factor, crest factor, and kurtosis (c) AUC using EMD extended features 
(d) AUC using all statistical and EMD features (e) AUC using selected features of 
EMD: a1-a4, a6, a8, a9, and selected statistical features: skewness, impulse 
factor, clearance factor, and nonlinear energy (f) AUC using all peak features 
(g) AUC using selected 70 peak features (h) AUC using all 162 features (i) AUC 
using selected 50 features. 

Table 2 
Comparison of Proposed ML Classification Methods and State of the Art.  

Classifier Average 
Accuracy 
(%) ± SD 

Average 
Sensitivity 
(%) ± SD 

Average 
Specificity 
(%) ± SD 

Train/ 
Test 
Time 
(sec) 

Memory 
(MB) 

CNN  
[31] 

97.39 
± 1.44 

97.80 
± 0.90 

96.85 
± 2.52 

24.35/ 
6.63 

2338 

LDA 97.27 
± 1.28 

95.67 
± 2.27 

98.77 
± 1.34 

4.77/ 
4.77 

335 

LSVM 97.23 
± 1.53 

98.00 
± 1.19 

96.40 
± 2.68 

4.91 
/4.91 

336.2 

kNN 96 0.40 ±
1.48 

98.78 
± 1.14 

93.62 
± 2.56 

5.60/ 
5.60 

335.8 

NLSVM 98.50 
± 1.10 

99.00 
± 0.97 

97.99 
± 1.95 

4.74/ 
4.74 

337.5  
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in Fig. 3. It can be observed from the feature scores that significant 
features appear in all three domains, i.e., statistical, EMD coefficients, 
and peak features. 

The average accuracy, sensitivity, and specificity of test data for LDA, 
kNN, LSVM, and NLSVM classifiers using different combinations of 
statistical, EMD extended features, and peak features are reported in 
Table 1. For the statistical features, the six highest-ranked features 
achieved an average accuracy of 87.34 ± 2.40 % using the NLSVM 
classifier. The accuracy is improved to 95.13 ± 1.76 % when all EMD 
extended features are used as a feature set with the NLSVM classifier. 
Furthermore, when all 27 statistical and EMD extended features are 
combined, LSVM produced the highest average accuracy of 94.33 ±

1.67 %, whereas the average accuracy of NLSVM dropped to 78.85 ±
2.58 %. However, feature selection improved the average accuracy of 
NLSVM, which is 95.21 ± 1.48 % using 11 selected features. For peak 
features, an average accuracy of 97.30 ± 1.47 % is achieved by the 
NLSVM classifier for 70 selected peak features. Finally, when all the 
peak features are combined with all the statistical and EMD coefficients 
features, LDA attained an average accuracy of 97.27 ± 1.28 %, whereas 
NLSVM’s average accuracy dropped to 68.17 ± 2.60 %. However, after 
applying feature selection, NLSVM achieved the overall highest average 
accuracy of 98.50 ± 1.11 % using 50 selected features. The maximum 
average accuracies for kNN and LSVM are 96.40 ± 1.48 % and 97.23 ±
1.53 % using 50 selected features and all the features, respectively. In 
addition, performance evaluation parameters, such as sensitivity and 
specificity, are assessed for classifiers. Like average accuracy, NLSVM 
produced the highest average sensitivity and specificity compared to 
LDA, kNN, and LSVM for most feature combinations, as shown in 
Table 1. NLSVM achieved the highest average sensitivity and specificity 
of 99.00 ± 0.97 % and 97.99 ± 1.95 %, respectively, using 50 selected 
features from 162 features. It can also be observed from Table 1 that the 
peak features achieved the highest test accuracy among the accuracies of 
all the individual features. 

ROC curve is a method to measure the performance of the classifi
cation problem at various threshold values. The ROC curve plots the true 
positive rate (sensitivity) against the false positive rate (1 - specificity) 
for each possible cutoff. The area under the curve (AUC) is calculated 
from ROC and represents class separability [51]. Fig. 4 shows the 
average ROC curves and AUC values of LDA, kNN, LSVM, and NLSVM 
classifiers for feature set combinations shown in Table 1. The highest 
average AUC value using 50 selected features for the kNN is 0.9937, and 

for NLSVM, it is 0.9981. At the same time, LDA and LSVM achieved 
0.9940 and 0.9942 respectively for all features. Table 2 summarizes the 
performance of the proposed method for PDAC detection and compares 
it with state-of-the-art [31]. The parameters such as accuracy, memory, 
and processing time are compared. In this work, NLSVM achieved the 
highest detection accuracy of 98.5 %, 1.1 % more than the 
state-of-the-art. In addition, the sensitivity of the proposed technique is 
also 1.2 % more. Similarly, training and testing time of the proposed 
method for detecting PDAC is reduced by 80.5 % and 28.5 % [31], 
respectively. Also, the training and the testing time summarized in 
Table 2 remained the same for all the classifiers except CNN. Further
more, the proposed method used 337.5 MB of memory, whereas [31] 
used 2338 MB, which is also 85.6 % more memory utilization. Likewise, 
the processing time and memory usage of LDA, LSVM, and kNN are 
significantly less than the [31], but these methods are also less accurate. 

3.2. Discussion 

KRAS, TP53, and SMAD4 mutation in human cell line have been used 
in the mouse model for PDAC detection in this study and tumor xeno
graft mouse model for understanding the biology and mechanism un
derlying PDAC. Several studies have used similar mouse models because 
these murine cancer models show high degrees of molecular homology 
with their human equivalents, which is very informative for preclinical 
studies; however, variations exist regarding histologic development 
[52–54]. In addition, murine cancer models have short reproductive 
cycles, large litter sizes, low cost, and are easy to handle [55]. Each 
mutation type is shown in detail in Fig. 5. In KRAS G12V, the mutation 
occurs due to a single nucleotide substitution (thymine replaces guanine 
in gene sequences) at glycine-encoding codon-12, in which glycine at 
position 12 is replaced with valine (G12V), as shown in Fig. 5(a–c). In 
our study, the cause of PDAC is also caused by a mutation in SMAD4. 
Fig. 5(a) illustrates the SMAD4 signaling pathway, in which SMAD4 is 
switched off, which uplifts the cell cycle. Similarly, the third type of 
mutation identified in this paper is TP53, which causes PDAC. TP53 is 
located on chromosome 17, a phosphoprotein comprising 393 amino 
acids [56]. When there is damage to the DNA of the cells, the TP53 gene 
expresses and produces more TP53 tumor suppressor protein. 

The major functions of increased TP53 expression and gene regula
tion are (i) cell cycle arrest, (ii) DNA repair, and (iii) apoptosis (cell 
death) [57]. Cancer caused by TP53 is either a mutation in the TP53 

Table 3 
Characteristics of Mutation Types in PDAC.  

Characteristics KRAS [62] TP53[63] SMAD4[63] 

Gene Sequence c.35G>T c.724T>C c.1_1659del1659 
Mutated Protein Sequence G12V C242R p.0? 
Wild Amino Acid Glycine Cysteine [62] Probably no protein is 

produced Chemical Structure 

Wild Amino Acid Side 
Chain 

H-(Aliphatic) HSCH2 – (Sulphur) 

Significant Peaks 508, 898, 1038, 1336, 1414, 1448[59] 644–686, 905–920, 1016–1055,1376–1389[60] 
Mutated Amino Acid Valine Arginine 
Mutated Amino Acid Side 

Chain 
(CH3)2CH–(Aliphatic) HN––C(NH2) NH(CH2)3– (Cationic) 

Chemical Structure 

Significant Peaks 757,829,847,948,967,1064,1270, 1328, 
1336,1362,1411,1450,1473 [61] 

857,894,930,980,1086,1176, 
1317,1365,1408,1446[62]  
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gene or a protein that regulates TP53 [58]. In this paper, mutated TP53 
has c.724T>C gene sequence and p.C242R protein sequence, as shown 
in Fig. 5(d–f). 

This paper defines the fingerprint regions for PDAC detection using 
peak features that are biologically relevant to the chemical composition 
of normal pancreas and PDAC, as shown in Fig. 6. The Wild TP53 is 
composed of cysteine amino acids that contain sulphur, and it has a 
Raman shift from 605 to 660 cm−1, as shown in Fig. 6. The Peak feature 
Sp3 represents the high concentration of sulphur in wild-type TP53. 
Other bonds in cysteine are represented by the features Sp17 and Sp18, as 
shown in Fig. 6. Sulphur is replaced with a cationic side chain in mutated 
TP53, which has a 1075 to 1100 cm−1 Raman shift. The Sp20 feature 
represents a mutated side chain, as shown in Fig. 6. 

Similarly, in wild-type KRAS, the concentration of the amino acid 
glycine with an H-aliphatic side chain is high. This group has a 1336 
cm−1 Raman shift, represented by the Sp30 feature. In mutated KRAS, the 

glycine amino acid is replaced with valine, which has (CH3) CH- 
aliphatic side chain. Mutated KRAS is represented by feature Sp33, 
which has a 1365–1451 cm−1 Raman shift. Moreover, due to these 
mutations and SMAD4, uncontrolled cell proliferation occurred, result
ing in increased lipid-protein and amide I lipids, which can also be 
observed from 1400 to 1800 cm−1 in Fig. 6. This is a prominent sign of 
PDAC. Hence, changes in the gene sequence in each mutation type 

3.3. Limitation and future work 

The current study was limited to murine cancer models. We are 
interested in using this method to detect other cancers because the 
proposed method is simple, accurate, and efficient for PDAC detection in 
mice and could be extrapolated to evaluate human pancreatic cancer 
and other cancer types. The explainable features extracted from PDAC 
can be helpful for other Raman spectrum cancer studies. Therefore, the 

Fig. 5. KRAS, TP53, and SMAD4 (a). RAS and SMAD4 signaling pathways for cell proliferation include active RAS, which sends the signal for cell division to the 
nucleus. (b) In KRAS, gene mutation at codon 35 from guanine to thymine. (c) Amino acid glycine at position 12 is replaced with valine amino acid. (d) TP53 
mutation and cell proliferation: the mutation in the DNA binding region caused a mutation in TP53, which resulted in the development of 93.75 % dysfunctional and 
6.25 % functional TP53 protein. (e) In TP53, gene mutation at codon 724 replaces thymine with cytosine. (f) Amino acid cysteine at position 242 is replaced with 
arginine amino acid. 
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findings will be evaluated further in conjunction with studies on human 
pancreatic cancer and other cancer types in the near future. 

4. Conclusion 

Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease, with 
a less than 10 % survival rate worldwide. It is a progressively more 
common cause of tumor death and can be cured if detected earlier. This 
study proposes a novel method for PDAC detection using distinctive 
explainable features acquired from Raman spectroscopic signals. Our 
study is the first to define fingerprint regions for PDAC in the literature. 
This work also reports unique mutation regions in the fingerprint region 
of PDAC for wild-type and mutated proteins, such as KRAS, TP53, and 
SMAD4. This study also shows the relationship between the obtained 
features and Raman shifts in the fingerprint regions. This novel rele
vance can significantly enhance the accuracy of chemotherapy for early 
stage PDAC. The dimensions of the feature set are reduced with SVM- 
RFE integrated with the CBR feature selection method. Subsequently, 
supervised machine-learning algorithms are used to classify the test 
samples into cancer and normal classes. The best average classification 
accuracy of 98.5 % is achieved by NLSVM, which is 1.1 % higher than 
the state-of-the-art classification accuracy. The method used in this 
study reduces the test time by 28.5 % and saves 85.6 % memory utili
zation compared to the existing method. The current study was limited 
to murine cancer models. The findings will be evaluated further in 
conjunction with human pancreatic cancer studies in the near future. 
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