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Low-Complexity Blind Parameter Estimation
in Wireless Systems with Noisy Sparse Signals
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Abstract—Baseband processing algorithms often require knowl-
edge of the noise power, signal power, or signal-to-noise ratio
(SNR). In practice, these parameters are typically unknown
and must be estimated. Furthermore, the mean-square error
(MSE) is a desirable metric to be minimized in a variety of
estimation and signal recovery algorithms. However, the MSE
cannot directly be used as it depends on the true signal that is
generally unknown to the estimator. In this paper, we propose
novel blind estimators for the average noise power, average
receive signal power, SNR, and MSE. The proposed estimators
can be computed at low complexity and solely rely on the
large-dimensional and sparse nature of the processed data. Our
estimators can be used (i) to quickly track some of the key
system parameters while avoiding additional pilot overhead, (ii) to
design low-complexity nonparametric algorithms that require such
quantities, and (iii) to accelerate more sophisticated estimation
or recovery algorithms. We conduct a theoretical analysis of the
proposed estimators for a Bernoulli complex Gaussian (BCG)
prior, and we demonstrate their efficacy via synthetic experiments.
We also provide three application examples that deviate from the
BCG prior in millimeter-wave multi-antenna and cell-free wireless
systems for which we develop nonparametric denoising algorithms
that improve channel-estimation accuracy with a performance
comparable to denoisers that assume perfect knowledge of the
system parameters.

I. INTRODUCTION

ACCURATE knowledge of system parameters, such as the
average noise power, average signal power, and/or signal-

to-noise ratio (SNR), is critical in wireless communication
systems, as many baseband processing tasks rely on these
quantities [3]. Virtually all existing wireless systems dedicate
training phases to estimate such parameters. These training
phases typically consist of sending pilots: signals that are known
to the receiver and enable estimation of the desired parameters.
As pilots do not convey information, minimizing the pilot
overhead is desirable in practice. Furthermore, parameter
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estimation in wireless systems operating at millimeter-wave
(mmWave) frequencies must be done frequently, since the
propagation conditions can change at fast rates, e.g., blockers
or interferers may appear or disappear quickly [4]. Thus, it is
even more important to reduce the pilot overhead. In addition,
such systems are expected to support several GHz of bandwidth
and basestations will consist of a large number of antenna
elements. It is therefore important to develop low-complexity
solutions that quickly and accurately track such parameters
for high-dimensional problems that must be processed at fast
rates.

From a parameter estimation perspective, it is beneficial
that many modern wireless communication systems often
deal with high-dimensional data. For example, all-digital
massive multiple-input multiple-output (MIMO) basestations
are expected to be equipped with hundreds of antennas [5] or
orthogonal frequency-division multiplexing (OFDM) systems
will support thousands of subcarriers [6]. Since many of
these high-dimensional signals arising in such systems exhibit
structure (e.g., are sparse or are taken from a discrete set),
one can design statistical methods that blindly estimate critical
parameters without requiring a dedicated training phase.

In this paper, we focus on noisy observations of signal vectors
that are sparse, i.e., only few entries carry most of the signals’
energy. Examples of sparse vectors in wireless systems include
(i) the beamspace-domain representation of all-digital mmWave
multi-antenna channel vectors [7]–[9], (ii) the delay-domain
representation of OFDM channel vectors [10], and (iii) the
antenna-domain representation of channel vectors in cell-free
MIMO wireless systems [11]. We will explain how sparsity
can be exploited to estimate parameters and denoise noisy
observations of sparse vectors. In Sections II, III, and IV, we
decouple our results from wireless communication applications
and study the general setting. In Section V, we apply our
estimators and algorithms to three distinct applications in
wireless systems.

In what follows, we will use the term “blind” for estimators
that do not use any pilots or training sequences and instead
rely only on the signal statistics; blind estimators may have
tuning parameters. We will use the term “nonparametric” for
estimators that do not need knowledge of system parameters
and do not have parameters that need to be tuned manually;
nonparametric estimators may use pilots or training sequences.

A. Prior Art in Blind and Nonparametric Estimation

Many of the existing blind noise power and SNR estimators
exploit modulation-specific structure, such as the cyclic prefix
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redundancy in OFDM [12], [13], or the periodicity of synchro-
nization sequences [14]. Expectation-maximization (EM) has
also been used for blind noise power or SNR estimation [15],
and for joint sparse signal recovery and noise power estimation
[16], [17]. However, the iterative nature of Bayesian algorithms
and EM, and their relatively high per-iteration complexity
renders such methods unsuitable for real-time estimation in
wireless systems that operate with high-dimensional data at
gigabit-per-second sampling rates. In contrast, we propose
low-complexity blind estimators whose complexity only scales
with O(D), where D is the dimension of the processed data.
Our proposed low-complexity estimators can also be used
as initialization methods that accelerate the convergence of
existing EM algorithms.

Joint noise power estimation and sparse signal recovery
was investigated in [18]; these methods require the choice of
algorithm parameters, which affect the estimation accuracy and
robustness. A parameter-free version of sparse signal recovery
that combines approximate message passing (AMP) [19],
[20] with Stein’s unbiased risk estimate (SURE) [21], [22]
was proposed in [23]. Similarly, the nonparametric equalizer
(NOPE) [24] combines AMP with SURE to perform linear
minimum mean-square error (MSE) equalization in massive
MIMO systems without knowledge of the SNR. A drawback
of such algorithms is the high per-iteration complexity, which
prevents their use in wireless systems supporting large band-
widths and high-dimensional problems (see, e.g., [25], [26]
for hardware results of sparse signal recovery). We therefore
focus on low complexity, blind, and nonparametric algorithms
for the fully-determined setting (in contrast to compressive
sensing where one has fewer measurements than unknowns),
which finds use in many practical situations. For example, all-
digital massive MIMO architectures (which can be as energy
efficient as hybrid analog-digital architectures [27]–[29]) and
cell-free wireless systems can provide measurement vectors of
the same dimension as the sparse signal. In OFDM systems,
even though pilots are typically transmitted only on a subset of
all subcarriers, interpolation and extrapolation algorithms can
be used to extract channel state information on all subcarriers
[30]; this also leads to the fully-determined setting that enables
the use of our methods.

In this low-complexity setting, the concept of estimating
tuning parameters directly from the noisy observations has
been used recently for adaptive denoising of mmWave [7]–[9]
or OFDM [10] channel vectors. Such denoising algorithms
typically require a tuning parameter: the denoising threshold.
While SURE can be used to automatically determine the
MSE-optimal denoising threshold, it still requires knowledge
of the noise power. In contrast to such results, we propose
low-complexity blind estimators, which enable the design of
nonparametric (i.e., parameter free) channel-vector denoising
algorithms that deliver comparable performance to methods
that assume perfect knowledge of the required parameters (e.g.,
the noise power).

Blind nonparametric algorithms have been proposed for
denoising of real-valued signals. The authors in [31] have
used power estimation methods based on the median absolute
deviation (MAD) of real-valued signals for wavelet denoising.

The Python wavelet toolbox PyYAWT [32] includes MAD-
based power estimation and adaptive wavelet denoising using
SURE for real-valued signals. Our methods also build upon
MAD and SURE, but are suitable for complex-valued signals.
In addition, we provide a detailed derivation and a theoretical
analysis, and extend the general concept to estimate other
quantities that frequently arise in wireless systems. While some
papers apply real-valued MAD for noise power estimation
in the complex-valued setting (see, e.g., [33] for magnetic
resonance imaging), there are non-negligible differences to
the complex case. We therefore derive the complex-valued
version, provide a theoretical accuracy analysis with a Bernoulli
complex Gaussian (BCG) prior, and show application examples
that deviate from this prior in order to highlight robustness
and usefulness of our results.

B. Contributions
A variety of applications in communication systems deal

with sparse and complex-valued signals whose observations are
contaminated with noise. For such a model, we propose novel
low-complexity blind estimators for the average noise power,
average signal power, and SNR. In addition, we propose a blind
estimator for the MSE of an estimation function that aims to
recover the sparse signal. We use this blind MSE estimate
to design a novel nonparametric channel-vector denoising
algorithm. We conduct a theoretical analysis of our estimators
for a BCG prior, and we showcase simulation results with
synthetic data in order to demonstrate the efficacy and limits of
our estimators in finite dimensions. In order to demonstrate the
efficacy of our results in situations that deviate from a BCG
prior, we provide three application examples of channel-vector
denoising in mmWave and cell-free communication systems.
We also show that our low-complexity estimators can be used to
accelerate the convergence (and, hence, reduce the complexity)
of existing estimators with a concrete example of an EM-based
algorithm.

C. Notation
Lowercase and uppercase boldface letters denote column

vectors and matrices, respectively. The dth entry of the
vector a 2 CD is ad; the real and imaginary parts are
<{a} and ={a}, respectively. We use b , |a|

2 to refer
to bd = |ad|2 for d = 1, . . . , D. For a 2 CD, the vector

q-norm is defined as kakq ,
⇣PD

d=1 |ad|
q
⌘1/q

for q � 1

with kak1 , maxd=1,...,D |ad| and the `0-pseudo-norm kak0
counts the number of nonzero entries in a. The identity
matrix is I and the all-zeros vector is 0. The discrete Fourier
transform matrix is denoted by F and satisfies F

H
F = I,

where the superscript H denotes the Hermitian (conjugate
transpose) matrix. An i.i.d. circularly-symmetric complex
Gaussian random vector x 2 CD with variance Ex per complex
dimension is denoted by x ⇠ CN (0, ExI) and its probability
density function (PDF) evaluated at x is fCN (x;0, ExI).
Sample estimates are denoted by a bar, e.g., the sample
variance Ex , 1

Dkxk
2
2 of the random vector x 2 CD;

statistical quantities are denoted by plain symbols, e.g., the
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variance Ex , 1
D E

⇥
kxk

2
2

⇤
, where E[·] denotes expectation;

blind estimators are denoted by a hat, e.g., bEx. For x 2 R,
rounding towards plus and minus infinity is denoted by dxe
and bxc, respectively, and [x]+ , max{x, 0}. Convergence in
probability of a random sequence An to a random variable A
is An

prob.
����!n!1 A and almost sure convergence is An

a.s.
����!n!1 A.

II. PRACTICAL GUIDE TO LOW-COMPLEXITY BLIND
ESTIMATORS

We now introduce two system models and propose low-
complexity blind estimators for the average noise and signal
powers, SNR, and MSE. The derivation of the proposed
estimators and an analysis of the key properties are provided
in Section III.

A. System Models
We say that a complex-valued vector s 2 CD is sparse if the

number of nonzero entries is smaller than the dimension D. As
a sparsity measure, one can use, for example, the `0-pseudo-
norm ksk0. This definition of sparsity allows us to derive
theoretical results, but in practice, our algorithms also work for
approximately sparse signals in which most entries are small
compared to the noise (but not necessarily zero). We will focus
on the following two system models.

System Model 1. Let s 2 CD be a sparse signal with average
power Es , 1

D E
⇥
ksk

2
2

⇤
. We model the input-output relation

of a noisy observation of the sparse signal as

y = s+ n, (1)

where y 2 CD is the noisy observation and n 2 CD models
noise with n ⇠ CN (0, N0I). We assume that the sparse signal
vector s and noise vector n are statistically independent.

System Model 1 finds numerous applications in wireless
communication systems. Prime examples are in describing es-
timated channel vectors (i) in multi-antenna mmWave systems,
where the beamspace-domain representation of the channel
vectors are typically sparse [7]–[9], (ii) in OFDM systems,
where the delay-domain representation of the channel vectors
are typically sparse [10], or (iii) in cell-free communication
systems with centralized processing, where the antenna-domain
representation of the channel vectors are typically sparse [11].
In what follows, we assume the sparse vector s is unknown
(in contrast to pilot-based estimation), which makes parameter
estimation nontrivial in this blind scenario.

System Model 2. Let y 2 CD be a noisy observation as
in System Model 1. Fix a weakly differentiable function1 ⌘ :
C ! C that operates entry-wise on vectors. We model the
output after applying this function to the noisy observation as

⌘(y) = s+ e, (2)

where e 2 CD contains (likely non-Gaussian) residual
distortion. We emphasize that the sparse signal vector s and

1A weakly differentiable function may be nondifferentiable only in zero-
measure sets (e.g., for particular values), and has to be differentiable everywhere
else.

the residual distortion vector e are not necessarily statistically
independent.

System Model 2 is relevant in the following scenarios:
(i) Estimating a sparse signal s from a noisy observation y

by applying an entry-wise denoising or estimation function,
producing the signal estimate ŝ , ⌘(y); this scenario finds use
for channel-vector denoising [7]–[9]. (ii) Modeling nonlineari-
ties caused by hardware impairments [34], in which case the
distorted version of the noisy received signal can be expressed
as r , ⌘(y); this scenario finds use in signals sampled with
low-resolution data converters [35], [36], for example.

B. Low-Complexity Blind Nonparametric Estimators

In what follows, we make use of the sample median, which
we define as follows.

Definition 1 (Sample Median). Let z 2 RD be a real-valued
vector and z

sort
2 RD be its sorted version (entries sorted in

ascending order). Then, the sample median is defined as

m(z) , 1

2

⇣
zsort
b(D+1)/2c + zsort

d(D+1)/2e

⌘
. (3)

The sample median is robust to outliers [37], [38], which
makes it amenable to System Model 1, as the nonzero entries
of the sparse vector s can be considered to be outliers for
the purpose of separating the sparse signal from noise. We
emphasize that the sample median can be computed at a
complexity of O(D) average time using quickselect [39]
or of O(D) deterministic time using the MedianOfNinthers
algorithm [40].

We now propose a range of low-complexity blind estimators
(no pilots required) for complex-valued signals that require no
parameters.

Estimator 1 (Average Noise Power). Consider System Model 1.
We propose the following blind estimator

bN0 , m(|y|2)

log(2)
(4)

for the average noise power defined as N0 , E
⇥
knk

2
2

⇤
/D.

Estimator 1 is blind as it only requires the absolute square
entries of the noisy observation y in equation (1). The estimate
bN0 can be computed efficiently in O(D) time, since the most

complex operation is computing the median of a vector of
dimension D. Estimator 1 exploits sparsity in the signal s,
but is independent of the signal sparsity, the signal power,
or the statistical sparsity model. It is, however, important to
understand that the accuracy of this estimator depends on
all of these factors as it relies on the fact that the nonzero
entries of the sparse vector s can be treated as outliers for
the purpose of estimating the average noise power. We note
that this noise power estimator can be seen as a complex-
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valued and squared version2 of the median absolute deviation
(MAD) estimator [37], [41], where we use the assumption
that the noise in System Model 1 is zero mean. The intuition
behind this estimator (and the log(2) factor) is the fact that the
entries |nd|

2/(N0/2), d = 1, . . . , D are �2 distributed with
two degrees of freedom, which have a median of 2 log(2), and
that the median of |y|2 is not significantly “contaminated” by
the sparse signal. Estimator 1 is used in the estimators proposed
next.

Estimator 2 (Average Signal Power). Consider System Model 1.
We propose the following blind estimator

bEs ,

kyk

2
2

D
� bN0

�

+

(5)

for the average signal power defined as Es , E
⇥
ksk

2
2

⇤
/D.

Estimator 2 is blind as it only requires the sample estimate
of the receive power Ey , kyk22/D and the blind noise
estimate bN0 from Estimator 1. bEs can be computed efficiently
in O(D) time, since the most complex operation is computing
bN0. The intuition behind this estimator comes from subtracting

the estimated noise power from the total receive power, as
done previously in [13] for an OFDM-specific estimator.

Estimator 3 (Signal-to-Noise Ratio). Consider System Model 1.
We propose the following blind estimator

dSNR ,

kyk

2
2

D bN0

� 1

�

+

(6)

for the SNR defined as SNR , E
⇥
ksk

2
2

⇤
/E

⇥
knk

2
2

⇤
.

Estimator 3 is blind as it only requires the sample estimate
of the receive power Ey , kyk22/D and the blind estimate bN0

from Estimator 1. dSNR can also be computed efficiently in
O(D) time. The intuition behind this estimator comes from
dividing the estimated signal and noise powers, as done
previously in [13] for an OFDM-specific estimator.

Estimator 4 (Mean-Square Error). Consider System Model 2
with a fixed function ⌘ : C ! C. We propose the following
blind estimator

dMSE , 1

D
k⌘(y)� yk

2
2 �

bN0

+
bN0

D

DX

d=1

✓
@<{⌘(yd)}

@<{yd}
+

@={⌘(yd)}

@={yd}

◆
(7)

for the MSE defined as MSE , E
⇥
k⌘(y)� sk

2
2

⇤
/D =

E
⇥
kek

2
2

⇤
/D.

Estimator 4 is blind as it only requires the receive signal y,
the blind estimate bN0 from Estimator 1, and the function ⌘.
The complexity of the proposed MSE estimator depends on

2The squared median absolute deviation (MAD) estimator for real-valued
signals provided in [38] corresponds to m(|y|)2 whereas we propose to use
m(|y|2). While m(|y|)2  m(|y|2) if D is even, both estimators coincide
if D is odd. What is more, our scaling factor log(2) ⇡ 0.6931 differs con-
siderably from the widely-used scaling factor of (��1(3/4))2 ⇡ (0.6745)2

for real-valued signals [31]. We reiterate that the latter is derived for power
estimation of real-valued Gaussians using the MAD estimator, while in our
derivation we consider the case of complex-valued Gaussians.

the function ⌘. For example, equation (7) can be computed
efficiently in O(D) time for the soft-thresholding function with
a given threshold. Even if the threshold is not given, searching
for the best threshold and applying the soft-thresholding
function can be done in O(D log(D)) time using the methods
developed for the BEACHES algorithm in [7]. The MSE is a
frequently used metric to evaluate the performance of estimation
algorithms. Our blind MSE estimate, since it is independent of
s, can be used to automatically tune parameters in estimators.
The intuition behind this estimator relies on SURE, and we refer
the interested reader to [22] for an accessible derivation in the
real-valued case and to [7], [8] for a derivation in the complex-
valued case. Estimator 4 is used to obtain the nonparametric
channel-vector denoising algorithm described in Section V.

C. Low-Complexity Blind Parametric Estimators

We now propose a low-complexity blind estimator (no pilots
or training sequences required) that takes an estimate p̂ of
the activity rate as a parameter. We then propose a family of
parametric estimators for the activity rate.

Estimator 5 (Average Noise Power with Estimated SNR and
Activity Rate Corrections). Consider System Model 1, the
low-complexity blind estimates dSNR from Estimator 3, and
a parameter p̂ that is an estimate of the activity rate p. We
propose the following blind parametric estimator

bN0(p̂) ,
1

2
bN0

0

@max

8
<

:
log(2)

log
⇣

2�2p̂
1�2p̂

⌘ , 1

1 + dSNR

9
=

;

+ (1� p̂) +
p̂2

p̂+ dSNR

1

A (8)

for the average noise power N0.

Estimator 5 is blind as it only requires the blind estimates
bN0, dSNR, but is parametric as it depends on the activity rate

estimate p̂. bN0(p̂) can be computed efficiently in O(D) time,
since the most complex operations are computing bN0 and
dSNR, and eventually p̂ (but here we consider p̂ as a given
parameter and ignore the complexity associated with obtaining
it). The intuition behind this estimator will become clear after
we present Theorem 1, as it is derived from averaging a lower
and an upper bound on N0. As shown in Section IV, this
parametric estimate bN0(p̂) often yields better accuracy than
the nonparametric estimate bN0.

Since in some applications an estimate for p̂ may be
unavailable, we next propose a family of estimators that attempt
to extract the activity rate p directly from the noisy observation
vector y. Such estimators can, for example, be used to substitute
p̂ in equation (8).

Estimator 6 (Activity Rate). Consider System Model 1 and
integers 1  q < r. We propose the following family of blind
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Algorithm 1 Baseline EM (adapted from [42, Alg. 8.1] to circularly-symmetric complex Gaussians)

1: input y, Kmax, ⇠, N init
0 , and pinit // noisy signal, maximum iterations, tolerance, initial noise variance, initial activity rate

2: initialize // initialize weights (w) and variances (v) of distributions A and B as follows:

3: wa  1� pinit, va  N init
0 // initialize A as noise

4: wb  pinit, vb  va +
1

pinit

h
kyk2

2
D �N init

0

i

+
// initialize B as signal plus noise, ensuring wava + wbvb = kyk2

2/D

5: k  0, vold
a  1, vold

b  1

6: while ⇠ < |va�vold
a |

va
+ |vb�vold

b |
vb

and k < Kmax do // iterate until convergence or maximum iterations reached

7: k  k + 1, vold
a  va, vold

b  vb
8: for d = 1 to D do
9: ad  

waf
CN (yd;0,va)

wafCN (yd;0,va)+wbfCN (yd;0,vb)
// likelihood that yd comes from distribution A

10: bd  
wbf

CN (yd;0,vb)
wafCN (yd;0,va)+wbfCN (yd;0,vb)

// likelihood that yd comes from distribution B

11: end for
12: wa  

1
D

PD
d=1 ad, wb  1� wa = 1

D

PD
d=1 bd // update weights based on updated likelihoods

13: va  
1

waD

PD
d=1 ad|yd|

2, vb  1
wbD

PD
d=1 bd|yd|

2 // update variances based on updated likelihoods

14: end while
15: if va > vb then // assign the smallest variance to noise, and the largest variance to signal plus noise

16: bNEM
0  vb, bEEM

s  wa(va � vb), p̂EM
 wa

17: else
18: bNEM

0  va, bEEM
s  wb(vb � va), p̂EM

 wb

19: end if
20: K  k // save number of iterations until convergence or stopping condition met

21: return bNEM
0 , bEEM

s , and p̂EM // estimated noise variance, estimated signal variance, estimated activity rate

parametric estimators3

p̂(q, r) , 1

D

✓
kykq

kykr

◆ 1
1/q�1/r

(9)

for the activity rate4 defined as p , E[ksk0] /D.

Estimator 6 is blind as it only requires the receive vector y,
but is parametric as it requires a choice for q and r. p̂(q, r)
can be computed efficiently in O(D) time and, among others,
the following choices for q and r require low complexity:
p̂(1, 2) , 1

D

⇣
kyk1

kyk2

⌘2
, p̂(1,1) , 1

D

⇣
kyk1

kyk1

⌘
, p̂(2, 4) ,

1
D

⇣
kyk2

kyk4

⌘4
, and p̂(2,1) , 1

D

⇣
kyk2

kyk1

⌘2
. The parameters q

and r must be chosen according to simulations, as we are
unaware of a principled and reliable way to determine them.
In our simulations, the choice p̂(1,1) performed best.

D. Blind Parametric Estimator Based on Expectation-
Maximization (EM)

As a baseline, we also consider a blind EM estimator (no
pilots required) that requires initialization values and algorithm
parameters that determine the convergence criterion.

Estimator 7 (Noise Power, Signal Power, and Activity Rate).
Consider System Model 1. Algorithm 1, initialized with N init

0 <
kyk

2
2/D and pinit < 0.5, simultaneously estimates the noise

power N0, the signal power Es, and the activity rate p.

Estimator 7 is blind as it only requires the noisy observa-
tion y, but is parametric as it needs a choice for the maximum
number of iterations Kmax, the tolerance ⇠, and initialization
values for the noise power N init

0 and activity rate pinit. The total
number of EM iterations K is not fixed but depends on Kmax,
⇠, N init

0 , pinit, and on the input y itself. The complexity of
Estimator 7 is O(KD). We note that this estimator is a variant
of a classical EM algorithm for a two-component Gaussian
mixture [42], where we use the assumption that the signal
and the noise in System Model 1 are zero mean and complex
valued. The intuition behind this estimator is the fact that
each entry |yd|, d = 1, . . . , D, of vector y contains either
noise or signal-plus-noise, and those two cases have Gaussian
distribution with different variances.

We note that this baseline EM algorithm is only a minor
variation of the method in [42, Alg. 8.1]. The iterative nature of
such methods, however, results in (often significantly) higher
complexity than our estimators. With this in mind, we propose
an improved version that we call “accelerated EM,” which
simply consists of initializing the baseline EM algorithm using
our blind nonparametric noise variance estimator. As we will
see in Section IV-B, this accelerated EM variant drastically
reduces the number of iterations needed for convergence
without degrading accuracy.

3In practice, we use min{0.499, p̂(q, r)} in place of p̂(q, r), so that
log

⇣
2�2p̂(q,r)
1�2p̂(q,r)

⌘
is always well-defined, as required by equation (14) on

page 7.
4We define the activity rate as the fraction of nonzero entries of the vector

s. Values of p close to 0 indicate the vector is sparse and p = 1 indicates that
all entries are nonzero.
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TABLE I
COMPLEXITY AND ACCURACY SUMMARY. D IS THE SIGNAL DIMENSION AND KACC

⌧ KBL REFER TO THE NUMBER OF ITERATIONS IN THE
ACCELERATED EM AND BASELINE EM ALGORITHMS, RESPECTIVELY.

Complexity Accuracy
Power estimation Denoising Synthetic data Realistic channels

Baseline EM O(KBLD) O(KBLD +D log(D)) (XXX) (XX)
Accelerated EM O(KACCD) O(KACCD +D log(D)) (XXX) (XX)
Nonparametric O(D) O(D log(D)) (XX) (XXX)
Parametric O(D) O(D log(D)) (X) (XXX)

E. Summary of Proposed Power Estimation and Denoising
Algorithms

Table I summarizes the complexity and accuracy of the
different estimators. “Baseline EM” refers to Estimator 7,
“accelerated EM” to Estimator 7 initialized using Estimator 1,
“nonparametric” to Estimator 1, and “parametric” to Estimator 5.
The complexity for blind noise power estimation is mentioned
below the definition of each of these algorithms. The
complexity for denoising is the complexity of estimating the
noise power plus the complexity of the BEACHES algorithm
from [8]. Since BEACHES already sorts the magnitudes of the
noisy signal, the nonparametric and parametric estimators that
use the median require no additional complexity for estimating
the noise power. Anticipating the results shown in Section IV
and Section V, we illustrate (qualitatively) the accuracy of the
estimators with synthetic data that perfectly matches the BCG
prior, and with practical examples that deviate from this prior.

III. THEORY

We first show that the sample median approaches the
median for D ! 1 and introduce our statistical model for
sparse vectors. We then derive and analyze Estimators 1 to 7.
The observations made in this section are valid in the large-
dimension limit and for the noisy BCG model to be introduced
in Definition 4. We use simulations to demonstrate the accuracy
of our estimators for finite (and small) dimensions D with the
noisy BCG model in Section IV. To demonstrate the efficacy
of our methods in practical scenarios with signals that deviate
from the BCG model, we evaluate our denoising algorithms
in three distinct scenarios in Section V.

A. Convergence of the Sample Median for D !1

We will use the following definition of the median.

Definition 2 (Median). Let X be an absolutely continuous
random variable (RV) with cumulative distribution function
(CDF) FX(x). Then, the median mX of X is defined as

FX(mX) =
1

2
. (10)

While, analogously to the central limit theorem, the sample
median is approximately Gaussian if D is large (see, e.g., [43]),
we will only use the following result.

Lemma 1 (Lem. C.1 from [43]). Let X be a RV whose PDF
is differentiable in some neighborhood of the median mX and

vector x contain i.i.d. samples of X . Then, for any c > 0 the
sample median m(x) satisfies

lim
D!1

Pr[|m(x)�mX | � c] = 0. (11)

This result implies that in the large-dimension limit (D !
1), the sample median m(x) converges in probability to the
median mX . Hence, by observing a sufficiently large number of
samples, which is possible in modern multi-antenna mmWave
or OFDM systems, we can accurately estimate the median mX .

B. Statistical Model for Complex-Valued Sparse Vectors

To derive and analyze the blind estimators proposed in
Section II, we need a statistical model for the sparse signal s.
This model should (i) have as few parameters as possible while
being able to model a large class of complex-valued sparse
vectors typically arising in communication systems and (ii)
facilitate a theoretical analysis. In what follows, we consider
BCG random vectors [20], [44], which allow control over
the signal sparsity and the signal power. We reiterate that
the BCG model is instrumental only for our analysis. The
provided simulation results in Section V will show that the
proposed estimators exhibit robustness to model mismatch, e.g.,
for signals that are not necessarily i.i.d. Gaussian or circularly
symmetric.

Definition 3 (BCG Random Vector). A sparse vector s 2 CD

is BCG if each entry is nonzero with probability p 2 (0, 1],
and the nonzero entries are i.i.d. circularly-symmetric complex
Gaussian with variance Es/p. The PDF of each entry sd,
d = 1, . . . , D, is therefore given by

fS(sd) , (1� p)�(sd) + p
1

⇡Es/p
e�

|sd|2
Es/p , (12)

where �(·) is the Dirac delta distribution.

With this model, the activity rate is p = E[ksk0] /D
(meaning the expected number of nonzero entries is E[ksk0] =
pD), and the average power of the sparse signal vector s is
Es =

1
D E

⇥
ksk

2
2

⇤
.

In System Model 1, we assumed that the noise vector
n is i.i.d. circularly-symmetric complex Gaussian with vari-
ance N0 per complex entry. Hence, the PDF of each entry nd,
d = 1, . . . , D, is given by fCN (nd; 0, N0) , 1

⇡N0
e�|nd|2/N0 .

Consequently, if s is a BCG random vector, then the PDF of
the noisy observation vector y = s+ n is as follows.
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Definition 4 (Noisy BCG Random Vector). The PDF of
the entries yd, d = 1, . . . , D, of a BCG random vector per
Definition 3 observed as in System Model 1 is given by

fY (yd) ,(1� p)
1

⇡N0
e�

|yd|2
N0

+ p
1

⇡(N0 + Es/p)
e�

|yd|2
N0+Es/p . (13)

For this signal and observation model, we are now able to
derive and analyze Estimators 1 to 7. We will make frequent
use of the entry-wise square of vector y that we will call
z , |y|

2. We also define a random variable (RV) Z with the
same distribution as any of the i.i.d entries of z, and let mZ

be the median of Z.

C. Analysis of Estimator 1

We start with the blind noise power estimator defined in
Estimator 1. We have the following key result. The proof is
given in Appendix A.

Theorem 1. Let y be a noisy BCG random vector with PDF
as in Definition 4 and with activity rate satisfying

p  pmax with pmax , e2 � 2

2e2 � 2
⇡ 0.421. (14)

Let a lower bound LB and an upper bound UB be defined as
follows:

LB , mZ

min
n
log

⇣
2�2p
1�2p

⌘
, log(2)(1 + SNR)

o (15)

UB , mZ

log(2)

✓
(1� p) +

p2

p+ SNR

◆
. (16)

Then, the average noise power N0 satisfies5

LB  N0  UB  lim
D!1

bN0. (17)

Theorem 1 has the following key implications: (i) In the large-
dimension limit, the proposed blind estimate bN0 bounds the
average noise power N0 from above, i.e., we have developed
a pessimistic estimator. (ii) If SNR ! 0 or p ! 0, then
LB = UB = mZ/ log(2) in equation (17), and therefore
N0 = mZ/ log(2). Thus, either for p ! 0 or SNR ! 0, the
proposed estimate is exact, i.e., bN0

prob.
����!D!1 mZ/ log(2) = N0.

We summarize this important insight in the following remark.

Remark 1. In the large-dimension limit (D ! 1), the
proposed blind nonparametric estimate bN0 is pessimistic (i.e.,
overestimates the average noise power N0), and becomes exact
at low SNR or low activity rate p (i.e., for sparse vectors).

Next, we present bounds on the relative error of Estimator 1.
These bounds depend on the activity rate p and the SNR. The
proof is given in Appendix B.

5Here we simplify the notation: limD!1 bN0 converges in probability to
mZ/ log(2), and strictly speaking this latter expression is the upper bound.

Corollary 1. For p  pmax as in equation (14), the relative
error " , | bN0�N0|/N0 of Estimator 1 in the large-dimension
limit is bounded as follows:

1

1/SNR+1/p+1
 lim

D!1
"  min

⇢
log

✓
1�p

1�2p

◆
, SNR

�
. (18)

An upper bound for the relative error " can be obtained if (i)
an upper bound on the SNR is known, or (ii) an upper bound on
p is known, since log

⇣
1�p
1�2p

⌘
is nondecreasing for p 2 (0, 0.5).

In addition, we confirm the second implication discussed below
Theorem 1: Corollary 1 implies that if p! 0 (irrespective of
the SNR) or SNR! 0 (irrespective of the sparsity), then the
proposed estimator becomes exact, i.e., " = 0 and therefore
bN0

prob.
����!D!1 N0.

D. Analysis of Estimator 2

For the blind estimate bEs of the average signal power Es,
we use the following lemma, which is derived from the fact
that the entries of the vector z , |y|

2 are i.i.d. with expected
value of E[zd] = E

⇥
kyk

2
2

⇤
/D = Es +N0, d = 1, . . . , D.

Lemma 2. Let y be a noisy BCG random vector with PDF
as in Definition 4. Then, according to the strong law of large
numbers we have

1

D
kyk

2
2 �N0

a.s.
����!D!1 Es. (19)

To obtain Estimator 2 in equation (5) on page 4, we construct
a blind estimator of Es by taking the left side of equation (19)
and replacing the average noise power N0 with the blind
estimate bN0 from Estimator 1. To avoid negative values of Es

that have no physical meaning, we assign a value of zero to
our estimate if kyk22/D � bN0 is negative. Since the estimate
bN0 overestimates the true average noise power N0, the blind

estimate bEs in equation (5) on page 4 tends to underestimate
the signal power. From Theorem 1 it follows that for p! 0
or SNR! 0, the blind signal power estimate bEs is exact.

E. Analysis of Estimator 3

The blind SNR estimator is obtained by simply taking the
ratio of bEs in equation (5) on page 4 and bN0 in equation (4)
on page 3. For D !1, the blind signal power estimate
underestimates the average signal power and the noise power
estimate overestimates the average noise power, which means
that the blind SNR estimate in equation (6) on page 4
underestimates the SNR. From Theorem 1 it follows that for
D ! 1 with either p ! 0 or SNR ! 0 the blind SNR
estimate is exact.

F. Analysis of Estimator 4

In order to analyze Estimator 4, we first assume that the
average noise power N0 is known. For this scenario, we can
borrow the following two theorems from [8].
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Theorem 2 (Thm. 1 of [8]). Consider System Model 2. Then,
Stein’s unbiased risk estimate given by

SURE , 1

D
k⌘(y)� yk

2
2 �N0

+
N0

D

DX

d=1

✓
@<{⌘(yd)}

@<{yd}
+

@={⌘(yd)}

@={yd}

◆
(20)

is an unbiased estimate of the MSE so that E[SURE] = MSE.

Theorem 3 (Thm. 3 of [8]). If ⌘ is pseudo-Lipschitz, then
SURE in equation (20) converges to the MSE in the large-
dimension limit, i.e., we have limD!1 SURE = MSE.

Theorem 3 implies that if N0 were known perfectly, then
one could perfectly estimate the MSE in the large-dimension
limit without knowledge of the sparse signal vector s. For
smaller values of the dimension D, Theorem 2 only ensures
equality in expectation (while the estimator remains MSE-
optimal). Equality in expectation means that some realizations
will underestimate and some realizations will overestimate the
true MSE6.

Estimator 4 is a blind version of SURE, in which we have
replaced the true average noise power N0 by its estimate bN0.
Consequently, for D ! 1 and either p ! 0 or SNR ! 0,
we have that: (i) Remark 1 states bN0 will be exact, from
which it follows that dMSE = SURE, (ii) Theorem 3 ensures
SURE = MSE, and therefore (iii) Estimator 4 will be exact
( dMSE = MSE) in this scenario. For higher values of p or SNR,
we know that bN0 tends to overestimate N0, but since this
estimated quantity appears twice in equation (7) on page 4
with different signs, we cannot derive a simple rule that states
whether Estimator 4 tends to underestimate or overestimate
the MSE.

G. Analysis of Estimator 5
Estimator 5 is derived as the mean of the lower and upper

bounds in equation (17) on the preceding page, utilizing
the SNR estimate from Estimator 3 and an activity rate
estimate p̂ of the user’s choice. Estimator 5 often improves the
performance (achieves lower bias) compared to Estimator 1,
especially at high SNR. In contrast to Estimator 1, we no
longer know if the noise power from Estimator 5 is being
overestimated or underestimated. As this estimator takes p̂ as
a parameter, it is especially useful in applications where p is
known a priori or bounded (e.g., in OFDM systems the number
of nonzero delay taps of the channel’s impulse response should
not exceed the cyclic prefix length).

H. Analysis of Estimator 6
To estimate the activity rate, we can use the equivalence

of vector norms [45] that states kxkq  L1/q�1/r
kxkr holds

6We have to keep in mind that we use the estimated MSE to determine
parameters in the estimation function ⌘ that minimize the MSE for each given
realization of y. Therefore, offsets that depend on the realization of the noisy
observation y can be treated as a constant and thus be ignored, even if these
offsets cause the MSE to take on negative values. In other words, we are not
interested in the true value of the MSE, but rather in the shape of the MSE
function with respect to the parameters in ⌘.

for any vector x 2 CL if 1  q < r. In particular, it holds
for a vector s

nz
2 CL of length L , ksk0 that contains only

the nonzero entries of the sparse vector s. For such vector,
we have that ksnz

kq  L1/q�1/r
ks

nz
kr. Since the entries of s

that are zero do not contribute to these norms, we note that
ks

nz
kq = kskq and ksnz

kr = kskr, and therefore

kskq  ksk
1/q�1/r
0 kskr, 1  q < r. (21)

Using equation (21), we can obtain a lower bound for the
activity rate7:

1

D

✓
kskq

kskr

◆ 1
1/q�1/r


ksk0

D
⇡ p. (22)

The inequality in equation (22) holds with equality if the
nonzero entries of the signal are constant-modulus, i.e., if
|snz

d | = |snz
d0 |, 8 d, d0 2 {1, . . . , L}. We obtain the blind

estimator p̂(q, r) from the left side of equation (22), by
replacing s with its noisy version y. With this substitution
the inequality is not preserved (except if N0 = 0), but we
use that definition of p̂(q, r) as a rough activity rate estimate
instead of picking an arbitrary value.

I. Analysis of Estimator 7
Estimator 7 is a specialized variant of a classical EM

algorithm for a two-component Gaussian mixture [42], adapted
to complex-valued and zero-mean variables. We consider signal
and noise power estimation from a noisy BCG signal as in
Definition 4. To understand it as a Gaussian source-separation
problem, we consider that each entry of y is a realization of
either (i) just noise with distribution CN (0, N0), or (ii) signal
plus noise with distribution CN (0, N0 + Es/p). Just-noise
realizations occur with probability 1�p, while signal-plus-noise
realizations occur with probability p. Using EM, we estimate
the variances of the circularly-symmetric complex Gaussians
N0 and (N0+Es/p), and mixture weights 1�p and p. We use
our previous knowledge to set the mean of the two distributions
to zero, unlike classical EM algorithms that also estimate the
means. We make the following observations: (i) This model
allows any signal sparsity, as opposed to Estimator 1 which
assumes a maximum activity rate pmax. (ii) In the low SNR
regime, EM may not be able to separate the noise and signal
components as N0 + Es/p ⇡ N0. (iii) The accuracy and the
complexity of the algorithm will depend on the maximum
number of iterations Kmax, the tolerance ⇠, the variance and
weight initializations, and the noisy realization y.

To avoid EM converging to pathological solutions with
arbitrary initialization, we initialize the algorithm with the
following two minimum assumptions: (i) The signal is sparse,
or equivalently pinit

2 (0, 0.5), and (ii) the power of the entries
of y that contain only noise is smaller than the power of the
entries of y that contain signal plus noise, or equivalently
N init

0  kyk
2
2/D. This translates to initializing the Gaussian

mixture variances v and weights w with va  kyk22/D,
wb 2 (0, 0.5), wa = 1�wb, and vb = va+(kyk22/D�va)/wb.
We verify that for this initialization, the average power of the
mixture is wava + wbvb = kyk22/D, as expected.

7The activity rate is p , E[ksk0] /D = limD!1 ksk0/D. When D is
finite, we have ksk0/D ⇡ p.
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IV. SYNTHETIC RESULTS

We now characterize the accuracy of the estimators proposed
in Section II. We use the sparse signal model in Definition 4.
Without loss of generality, we fix the noise power to N0 = 1,
while varying the signal power Es, the activity rate p, and the
dimension D of the vectors. For different sets of parameters,
we perform Monte–Carlo simulations with 10,000 trials. In
the plots, the thicker line with markers shows the average
performance of an estimator, while the shaded area shows the
region closer than one standard deviation away from the mean
performance, a measure of the precision of the estimator.

A. Evaluation of the Noise Power, Signal Power, SNR, and
Activity Rate Estimators

Figure 1 shows the effect of the SNR on the performance
of the proposed blind nonparametric estimator bN0 from
equation (4) on page 3 and the proposed blind parametric
estimate bN0(p̂) from equation (8) on page 4, for which we
only include results using p̂(q, r) with q = 1 and r =1 for
the activity rate estimate, as these parameters showed the best
performance in our simulations, outperforming other values
of p and q, and a fixed-value of p̂ = 0.25 which is the center
of the simulated range p 2 (0, 0.5). We also simulate the
baseline EM estimate bNEM

0 described in Estimator 7, initialized
with N init

0 = 0.4kyk22/D and pinit = p̂(1,1), a maximum of
Kmax = 30 iterations and early stopping if the total parameter
change is below ⇠ = 0.1%. As a baseline, we plot the genie-
aided estimator N0 , 1

Dknk
2
2 that has separate knowledge of

n and the reference parameter N0.
Figure 2 shows the effect of the SNR on the performance of

the proposed signal power and SNR estimators for an activity
rate of p = 0.1 and a dimension of D = 64. In this case,
dSNREM , bEEM

s / bNEM
0 , the genie-aided estimators that have

separate knowledge of s and n are Es , 1
Dksk

2
2 and SNR ,

Es/N0, and the reference parameters are Es and SNR ,
Es/N0.

From Figures 1 and 2, we observe the following facts about
the blind nonparametric estimators: (i) For sparse vectors (p =
0.1), our estimators have a precision comparable to that of the
genie-aided estimators even for a small sample size of D = 64.
(ii) The precision of all considered estimators decreases as D
increases. (iii) As predicted by our theory, the average noise
power is overestimated while the signal power and SNR are
underestimated. (iv) At low SNR, the median-based estimators
for these three quantities become exact. We also observe that
the proposed blind parametric estimate bN0(p̂) with p̂ = p̂(1,1)
is more accurate than the blind nonparametric estimate bN0 at
high SNR. However, bN0(p̂) has fewer theoretical guarantees
and is not an upper bound on N0.

Figure 3 shows the accuracy of the blind, parametric activity
rate Estimator 6. We see that at low and high SNR, p̂(1, 2)
tends to overestimate p while p̂(2,1) tends to underestimate
it. Overall, p̂(1,1) results in the best performance when
combined with Estimator 5. Admittedly, this is only a rough
estimator and we include it as an example of what could be
plugged into Estimator 5 or Estimator 7. Nonetheless, we

emphasize that side information about the signal’s sparsity
should be utilized whenever available.

In comparison with EM (cf. Figures 1 and 2), our methods
provide a less-accurate estimate at higher SNR, but require
significantly lower complexity. The complexity of the baseline
EM algorithm (in terms of the number of operations such as
real-valued additions, real-valued multiplications, and exponen-
tials) is more than K(16D+12)+ 3D operations—with early
stopping, the average number of iterations observed in our
simulations ranges from K = 8 to K = 28 depending on the
SNR. In contrast, our proposed median-based noise estimator
has an average complexity of no more than 7.7D+9 operations
if the median is computed using quickselect [39], and avoids
the evaluation of operations such as exponentials and divisions.
Hence, our proposed blind estimator is more than 17⇥ less
complex than the baseline EM algorithm, which renders our
method suitable (i) for low-complexity parameter estimation
and (ii) as a potential initializer for EM-based estimators.

B. Accelerated Convergence of EM Using Median-Based
Initialization

Figure 4 shows the effect of initialization on the EM
algorithm. To study the rate of convergence, we disable
early stopping by setting ⇠ = 0 so that the number of
iterations is always K = Kmax, and plot the relative error
"EM , | bNEM

0 � N0|/N0 as we vary Kmax. We compare the
convergence of (i) the accelerated EM algorithm (diamond
markers) which is initialized with the blind nonparametric
estimate bN0, and (ii) the baseline EM algorithm (circular
markers) initialized with a fixed initialization of SNR = 5,
which corresponds to setting the noise power to 1/6 of the
received power kyk22/D. We simulated various values of p
and SNR, and picked four examples that are representative.
At low SNR or high sparsity (low p), the accelerated EM
algorithm converges already in the first iteration. In contrast,
the baseline EM algorithm converges in more than 16 iterations
in some cases. The only case we observe the baseline to
outperform the accelerated EM algorithm is in Figure 4(d), in
which (i) the baseline has advantage since 1

6kyk
2
2/D coincides

exactly with the true value of N0, and (ii) the SNR is high
and the sparsity is low, making it the worst case for the bN0

estimate used by the accelerated EM. We also examine the
effect of initializing the activity rate with (i) a fixed value
of 0.25, versus (ii) the blind parametric estimate p̂(1,1),
and we observe no significant difference, especially for the
preferred accelerated EM algorithm; however, as p̂(1,1)
showed superior performance than a fixed value when used
in the parametric noise power estimator bN0(p̂), we prefer
p̂(q, r) when no side information about the signal’s sparsity is
available.

C. Evaluation of the MSE Estimator
To evaluate the performance of the MSE estimator, we

consider System Model 2 with ⌘ being the soft-thresholding
function defined as

⌘(x; ⌧) ,
⇢ x

|x| max{|x|� ⌧, 0} x 6= 0

0 x = 0,
(23)
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Fig. 1. Effect of varying the SNR on the proposed low-complexity blind noise power estimators, for different values of the activity rate p and the dimension
D. Blind estimators are more accurate for smaller values of p, and the precision of all estimators is higher for larger values of D.
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Fig. 2. Effect of varying the SNR on the proposed low-complexity blind signal power and SNR estimators, for a signal of dimension D = 64 with 10%
nonzero entries.
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Fig. 3. Average accuracy of the blind parametric activity rate estimator p̂(q, r) for different combinations of q and r with vectors of length D = 64. For
SNR = 0.5, the results for p̂(1, 2) are not visible as the values exceed 0.5. While the overall accuracy of this family of estimators appears to be low, the
estimate obtained by p̂(1,1) combined with Estimator 5, for example, shows superior performance compared to using the mean activity rate in the considered
interval (i.e., 0.25).
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Fig. 4. Relative error "EM , | bNEM
0 �N0|/N0 of the baseline and accelerated EM noise power estimators vs. the number of iterations K, for different values

of SNR and activity rate p. Initializing with the low-complexity estimator bN0 accelerates convergence.
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Fig. 5. Examples of the estimated MSE versus ⌧ given one realization of y at (a) low SNR and (b) high SNR.

where the denoising threshold is a real number ⌧ � 0.
Figure 5 shows two realizations of the estimated MSE as

a function of the tuning parameter ⌧ . The only reference in
this case is the genie-aided estimator MSE , 1

Dk⌘(y; ⌧)� sk
2
2.

We picked two examples that are representative of what we
have observed through multiple experiments with different
system parameters to illustrate the following observations:
(i) If the MSE function has a pronounced minimum as in
Figure 5(b), then the value of ⌧ that minimizes the blind
estimate tends to be very close to the value that minimizes
the genie-aided MSE function. (ii) If the MSE function has
a less pronounced minimum as in Figure 5(a), then the value
of ⌧ that minimizes the blind estimate may be far from the
value that minimizes the genie-aided MSE function. In spite
of that, because the MSE function is flat near the minimum,
the genie-aided MSE function evaluated at these two values of
⌧ returns values that are similar. In other words, (i) and (ii)
summarize our observations that our algorithm finds a near-
optimal (sub-optimal) denoising threshold ⌧ when the MSE of
the denoised channel is (not) sensitive to ⌧ . Note that here we
have only picked two representative realizations; in Section V,
we validate our estimator with quantitative results by showing
the denoising performance averaged over many realizations.

V. APPLICATIONS TO NONPARAMETRIC CHANNEL-VECTOR
DENOISING

We show three applications in wireless systems, in which
the quality of channel estimates is essential for data detection.
Concretely, we show that our algorithms can be applied to
adaptively denoise pilot-based channel estimates, resulting in
a reduced (improved) bit-error-rate (BER).

A. Infinite-Resolution Massive Multiuser MIMO System
We start with an application of Estimator 4 for beamspace

channel estimation. As in [7], we simulate an uplink massive
multiuser (MU) MIMO system in which U = 8 single-antenna
user equipments (UEs) transmit channel-estimation pilots and

data to a basestation (BS) equipped with a uniform linear
array of D = 128 antenna elements. The UEs are randomly
placed with a uniform distribution in a 120° circular sector
around the BS, with a minimum distance of 10m and maximum
distance of 110m from the BS. A minimum angular separation
of 4° between UEs is enforced. We assume UE-side perfect
power control (UEs adjust their transmit power so that the
received power at the BS is equal for all UEs), and we ignore
quantization at transmitter and receiver sides, assuming infinite-
resolution signals.

We simulate a noiseless channel matrix H 2 CD⇥U

using line-of-sight (LoS) realizations from the mmMAGIC
QuaDRiGa model [46] with a carrier frequency of fc = 60GHz.
Each complex-valued entry Hd,u of the channel matrix contains
the attenuation and phase between the uth UE and the dth
BS antenna. For the channel estimation step, the UEs transmit
orthogonal pilots. The maximum likelihood (ML) estimate of
the channel matrix is obtained by right-multiplying the (noisy)
received pilot sequence with the inverse of the orthogonal pilot
matrix, resulting in

H
ML = H+N

CE, (24)

where H 2 CD⇥U is the antenna-domain channel matrix,
N

CE
2 CD⇥U is complex Gaussian channel estimation noise

with power NCE
0 per complex entry, and H

ML
2 CD⇥U is

the ML channel estimate, which is a noisy observation of H.
The beamspace representation of the ML estimate is obtained
by taking a spatial Fourier transform across the antenna array
resulting in

eHML = eH+ eNCE. (25)

Here, beamspace-domain quantities are designated by a tilde.
Then, eH = FH is the beamspace channel matrix, eNCE =
FN

CE has the same distribution as NCE as the discrete Fourier
transform matrix F is unitary, and eHML is the beamspace ML
channel estimate, which is a noisy observation of eH. Column
indices of eH correspond to UEs, while row indices correspond
to different angles-of-arrival to the BS. Since electromagnetic
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Fig. 6. Uncoded BER (a) and MSE (b) of mmWave channel estimation methods, including the nonparametric (NP) BEACHES variant which estimates the
noise power and denoising parameter directly from the receive vector.

waves at high carrier frequencies experience strong attenuation,
typical mmWave channels consist only of a small number of
dominant propagation paths arriving at the BS. Thus, each
column of eH (which is the beamspace channel vector of one
UE) will be approximately sparse, with many entries being
close to zero.

By writing each column of equation (25) on the preceding
page as an independent equation, we can express the channel
estimation problem in the form of System Model 1, that is,
each beamspace channel vector (that contains only few nonzero
entries) corresponds to a sparse signal s. The sparsity property
implies that we can perform denoising to improve the ML
channel estimate. After channel estimation, all UEs transmit
data simultaneously using uncoded 16-QAM symbols and the
BS performs data detection using the estimated channel vectors
and linear minimum MSE equalization.

Figure 6 shows simulation results for 10,000 Monte–Carlo
trials. For different channel estimation methods, we compute
the MSE of the channel estimates and the resulting BER. We
simulate beamspace channel estimation (BEACHES) as in
[7], which denoises the columns of eHML in equation (25) on
the previous page by applying the soft-thresholding function
in equation (23) on page 9; the thresholding parameter ⌧ is
adaptively selected for each noisy observation by minimizing
SURE using an O(D log(D)) algorithm that assumes perfect
knowledge of the average noise power NCE

0 . We compare this
to NP BEACHES, a new nonparametric BEACHES variant
which also applies soft-thresholding to the columns of eHML,
but uses the (nonparametric) threshold ⌧ that minimizes dMSE
as in Estimator 4; since dMSE is a nonparametric version of
SURE, NP BEACHES does not require knowledge of NCE

0 .
In addition, we include a variant that we call EM BEACHES,
which uses a version of dMSE in which bN0 in equation (7) on
page 4 is replaced by bNEM

0 from Estimator 7; for bNEM
0 , we

use N init
0 = 0.4kyk22/D and pinit = p̂(1,1), a maximum of

Kmax = 30 iterations and early stopping if the total parameter
change is below ⇠ = 0.1%. The three versions of BEACHES as
described above, after denoising the beamspace channel vectors,
use the inverse Fourier transform to obtain an antenna-domain

channel estimate to be used for data detection. As a reference,
we show the performance of perfect channel state information
(CSI) that uses the ground truth (noiseless) channel matrix H,
and ML estimation that simply takes the noisy observation H

ML

in equation (24) on the preceding page as the estimate.
From Figure 6, we observe that NP BEACHES achieves

virtually the same performance as the original BEACHES
algorithm (which requires knowledge of NCE

0 ), except at
high SNR where Estimator 1 tends to overestimate NCE

0 . We
reiterate that NP BEACHES requires no parameters and exhibits
the same low complexity of O(D log(D)) as the original
BEACHES algorithm, because the latter already sorts the
entries of |y|

2, which we can reuse to compute the median
in Estimator 1. We observe that EM BEACHES achieves
higher (worse) MSE at low SNR and does not outperform
NP BEACHES at higher SNR.

In summary, denoising methods can significantly improve
the ML channel estimate. All three BEACHES variants
achieve similar BER performance. However, BEACHES needs
knowledge of the noise power and EM BEACHES exhibits
higher complexity than our nonparametric estimate, which
renders NP BEACHES the preferable denoising method in this
application scenario.

B. Low-Resolution Massive Multiuser MIMO System
Next, we consider the same uplink massive MU-MIMO

system as Section V-A, but in this case each radio-frequency
(RF) chain at the BS is equipped with a pair of 1-bit
analog-to-digital converters (ADCs) to quantize the in-phase
and quadrature baseband signals. Each RF chain applies a
quantization function Q(x) , sign (<{x}) + j sign (={x}) to
the baseband signal, where j2 = �1. For simplicity, we assume
that the pilot matrix is an identity, i.e., each UE has a dedicated
time slot to transmit one pilot while all other UEs are silent.
The receive pilots then correspond to the 1-bit version of the
ML channel estimate, which we call 1-bit ML8

H
1-bit ML = Q

�
H+N

CE� . (26)

8
H

1-bit ML is simply the 1-bit version of HML, not to be confused with the
maximum likelihood channel estimate given a one-bit observation.
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Fig. 7. Uncoded BER (a) and MSE (b) of channel estimation methods in a mmWave system with 1-bit quantization.

Here, quantization happens in the antenna domain and yet,
when the quantized noisy channel is converted to beamspace,
the sparse structure that is present in infinite-resolution
beamspace channel vectors is also present in the coarsely
quantized beamspace channel vectors. Thus,

eH1-bit ML = FQ
�
H+N

CE� (27)

has sparse columns that can be denoised. For more details
on the validity of this statement, see [9] where eH1-bit ML was
decomposed in a linear combination of eH plus a residual.

Figure 7 shows simulation results for 10,000 Monte–Carlo
trials. For different channel estimation methods, we compute
the MSE and BER. All UEs simultaneously transmit uncoded
QPSK symbol and the BS is using the estimated channels and
performs the 1-bit Bussgang linear minimum MSE equalizer
from [47].

We simulate 1-BEACHES as in [9]. This denoising algorithm
decomposes equation (27) as eH1-bit ML = eH + eQ, where eQ
represents the equivalent noise-plus-quantization error with
average power Q0 = 2+Es�4Es/

p
⇡(Es +N0) per entry [9].

The 1-BEACHES algorithm denoises the columns of eH1-bit ML

with the threshold ⌧ that minimizes SURE, assuming perfect
knowledge of Q0. We also use the nonparametric algorithms
NP BEACHES and EM BEACHES (described in Section V-A)
to denoise the columns of eH1-bit ML. After denoising the
beamspace channel vectors, these three BEACHES variants
use the inverse Fourier transform to obtain an antenna-domain
channel estimate. We compare these estimators with H

1-bit ML

from equation (26) on the preceding page, and with the perfect
CSI estimate that uses the ground truth H as the channel
estimate.

Since NP BEACHES uses the median-based noise estimate
(which in this case estimates the effective “noise” floor that
includes quantization errors), it is robust to outliers and is
able to achieve MSE and BER performance very close to
1-BEACHES that has perfect knowledge of the noise-plus-
quantization power. The EM estimator, however, strongly relies
on the distribution of the noise and signal being Gaussian.
Here, the signal is a realistic channel vector which is not
Gaussian; more importantly, eQ contains the effect of noise but

also quantization error, which means the equivalent noise also
deviates from a Gaussian distribution. We attribute the higher
(worse) BER of EM BEACHES to these two factors. We note
that 1-BEACHES is designed specifically for 1-bit quantization
and that the expression for Q0 (which requires knowledge
of the noise power and the signal power) would be different
if the ADCs use a different number of bits. In contrast, our
nonparametric denoiser is agnostic to the quantizer’s resolution
and automatically determines the power of the noise plus
quantization, as long as the signal is approximately sparse and
the noise is approximately Gaussian.

C. Cell-Free Communication System
We simulate an uplink cell-free communication system with

U = 16 single-antenna UEs and D = 256 single-antenna
BSs. The UEs and BSs are randomly placed with a uniform
distribution in a square of side length 1 km. The UEs transmit
orthogonal pilots followed by QPSK data. All of the UEs
transmit simultaneously and the received signal at all the BSs
is processed at a central processing unit (CPU) that performs
channel estimation and linear minimum MSE detection.

We simulate a cell-free channel matrix H using the model
proposed by [48], with parameters as in [2] but without power
control and with a transmit power of 12.5mW per UE. As
in equation (24) on page 12, the ML estimate of the channel
matrix is obtained by right-multiplying the pilot sequence
received at the CPU with the inverse of the orthogonal pilot
matrix (we used a Hadamard pilot matrix), resulting in

H
ML = H+N

CE. (28)

The columns of H (or channel vectors) contain the attenuations
and phases between one UE and all BSs. For each UE, the BSs
that have LoS or are closer to this UE will receive significantly
higher power than the other BSs that are not nearby. This
means that in the cell-free system, the channel vectors are
approximately sparse [11] and the ML estimate can be denoised.
Although the thermal noise variance at different basestations
may differ, we assume i.i.d. noise in this paper.

Figure 8 shows the results of 10,000 Monte–Carlo trials. On
the left, we plot the CDF of the MSE of the channel estimates,
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Fig. 8. Cumulative distribution function (CDF) of the (a) mean-square error (MSE) and (b) root-mean-squared-symbol error (RMSSE) of channel estimation
methods in a cell-free wireless system.

and on the right, the CDF of the root-mean-squared-symbol-
error (RMSSE). The RMSSE is a measure of how far the
expected QPSK symbol is from the received data symbol after
equalization with the channel estimates, and can be seen as
equivalent to the error-vector-magnitude (EVM) for one UE.

In Figure 8, we observe a clear MSE improvement of the
three denoising algorithms over the ML estimate: For a given
value x, there are more realizations of channel estimates whose
MSE is smaller than x for denoised channels than for ML. The
fact that denoising improves the channel estimates is reflected
in the RMSSE, since equalization is more effective and the
obtained symbols are closer to the expected constellation points.
We consider the RMSSE requirement of 17.5% for QPSK
from [49, Table 6.5.2.2-1]. The probability that a UE meets
the requirement grows from 0.43 with ML channel estimation,
to 0.59 with NP BEACHES or EM BEACHES denoising, an
increase of 0.16. BEACHES with perfect knowledge of the
noise power has a slight additional advantage, with a probability
of meeting the requirement of 0.66.

VI. CONCLUSIONS

We have proposed blind estimators for the average noise
power, signal power, SNR, and MSE. Our estimators can
be calculated at low complexity and only require the noisy
observation vector, avoiding the need for additional pilot signals
entirely. We have analyzed our estimators for a Bernoulli
complex Gaussian sparsity model and evaluated their accuracy
via simulations. Using three channel-vector denoising tasks in
(i) a multi-antenna mmWave system, (ii) a 1-bit quantized multi-
antenna mmWave system, and (iii) a cell-free system, we have
demonstrated that our blind estimators can be used to develop
a novel nonparametric denoiser that achieves comparable
performance and the same complexity as BEACHES in [7],
[8] which requires knowledge of average noise power. We
believe that the proposed blind estimators find potential use in
a large number of other wireless communication applications
that contain sparse complex-valued signals.

There are many avenues for future work. For signals that
are less sparse (i.e., p > 0.421), one may want to replace the
median by a higher quantile and the scaling factor log(2) needs

to be adjusted accordingly—a derivation of such estimators
would follow immediately from our results in Section III-C.
Huber M-estimators [50] combine the idea of mean and
median, and they may also prove useful for blind noise power
estimation in the presence of sparse signals. In the case of non-
Gaussian, non-circularly-symmetric, or non-i.i.d sparse signals,
new estimators can be tailored to exploit specific statistical
properties (e.g., structured sparsity). Extending the statistical
model, e.g., to signals with correlation or structured sparsity,
can lead to improved estimators and is left for future work. In
the case of colored noise (e.g., stemming from interference or
large variations in radio-frequency circuitry), noise whitening
techniques could be considered.

APPENDIX A
PROOF OF THEOREM 1

A. Prerequisites
In what follows, we will need the distribution of z , |y|

2,
where we assume y is distributed according to Definition 4.
Given a circularly-symmetric complex Gaussian RV A with
variance Ea, the RV B = |A|

2 is exponentially distributed
with CDF FB(b) , 1� e�

b
Ea , b � 0. Then, the CDF of each

entry of the absolute-square noisy observation is as follows.

Definition 5 (Noisy BCG Power RV). Let y be as in
Definition 4 and let z , |y|

2. Then, for zd � 0, the CDF
of each entry of z is given by

FZ(zd) , (1� p)
⇣
1� e�

zd
N0

⌘
+ p

⇣
1� e�

zd
N0+Es/p

⌘
. (29)

B. Upper Bounds on the Median
We start with the following two upper bounds on the

median mZ of a noisy BCG power RV Z with CDF given in
equation (29).

Lemma 3. For a noisy BCG power RV in Definition 5 with
p < 0.5, the median is bounded from above by

mZ  N0 log

✓
2� 2p

1� 2p

◆
. (30)
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Proof. We start from the definition of the median in equa-
tion (10) on page 6 for the RV Z with CDF as in equation (29)
on the preceding page:

(1� p)
⇣
1� e�

mZ
N0

⌘
+ p

⇣
1� e�

mZ
N0+Es/p

⌘
=

1

2
. (31)

Since the second term is nonnegative, we can omit it to obtain
the following inequality:

(1� p)
⇣
1� e�

mZ
N0

⌘


1

2
. (32)

Note that this bound will be useful for vectors s that are sparse,
i.e., where p is small. We can simplify equation (32) as

1� e�
mZ
N0 

1

2(1� p)
(33)

log

✓
1� 2p

2� 2p

◆
 �

mZ

N0
, (34)

which leads to the upper bound on the median mZ . In order to
take the logarithm in equation (34), we require p 2 (0, 0.5). ⌅
Lemma 4. For a noisy BCG power RV Z in Definition 5 with
p  1/2�e�2

1�e�2 ⇡ 0.421, the median is bounded from above by

mZ  log(2)(N0 + Es). (35)

Proof. We start from the definition of the median as in
equation (31). Let us define the function g(r) , e�1/r with
r > 0. We can now rewrite equation (31) as follows:

1

2
= (1� p)g

✓
N0

mZ

◆
+ pg

✓
N0 + Es/p

mZ

◆
. (36)

The function g(r) is concave for r � 1/2. Therefore, to ensure
concavity of g(r) in equation (36), we need

N0

mZ
�

1

2
and

N0 + Es/p

mZ
�

1

2
. (37)

The two conditions in equation (37) are guaranteed as long
as 2N0 � mZ . Because CDFs are nondecreasing functions,
requiring 2N0 � mZ is equivalent to requiring FZ(2N0) �
FZ(mZ) = 1/2, which we can simplify as

(1� p)
⇣
1� e�

2N0
N0

⌘
+ p

⇣
1� e�

2N0
N0+Es/p

⌘

| {z }
FZ(2N0)

�
1

2|{z}
FZ(mZ)

(38)

1

2
� e�2

� p
⇣
e�

2
1+Es/(pN0) � e�2

⌘
. (39)

Finally, to ensure equation (39) holds for all values of Es and
N0, we require

1

2
� e�2

� p
�
1� e�2

�
, (40)

which implies that the condition p  pmax in equation (14)
on page 7 ensures concavity of g(r). Then, assuming p 
pmax, we can now use Jensen’s inequality on the expression in
equation (36) to get
1

2
g

✓
(1�p)

N0

mZ
+ p

N0 + Es/p

mZ

◆
=g

✓
N0 + Es

mZ

◆
. (41)

We can now simplify this expression to

mZ  log(2)(N0 + Es), (42)

which is the inequality in Lemma 4. ⌅

C. Lower Bound on the Median

We now establish the following lower bound on the median.

Lemma 5. For a noisy BCG power RV Z in Definition 5 with
p 2 (0, 1], the median is bounded from below by

log(2)N0

(1� p) + p2

p+SNR

 mZ . (43)

Proof. We start from the definition of the median as in
equation (31). Since the exponential CDF FB(b) , 1� e�

b
Ea

for Ea � 0 is concave in b, Jensen’s inequality leads to

1� e�(1�p)
mZ
N0

�p
mZ

N0+Es/p �
1

2
. (44)

We can simplify this expression to obtain the following bound

1

2
� e�(1�p)

mZ
N0

�p
mZ

N0+Es/p (45)

log(1/2) � �(1� p)
mZ

N0
� p

mZ

N0 + Es/p
, (46)

which leads to the inequality in Lemma 5 we wanted to prove.
⌅

D. Combining the Results

For all values of p 2 (0, 1] and SNR � 0, we have that

mZ

log(2)

✓
(1� p) +

p2

p+ SNR

◆


mZ

log(2)
, (47)

and we defined bN0 such that bN0
prob.
����!D!1 mZ/log(2) according

to Lemma 1.
Finally, we can combine equation (47) with Lemma 3,

Lemma 4 and Lemma 5 to obtain equation (17) on page 7.

APPENDIX B
PROOF OF COROLLARY 1

Proof. Let the relative error of Estimator 1 be " ,
| bN0 �N0|/N0. Using the inequalities from Theorem 1 and
the quantities LB and UB defined there, we can bound " as
follows:

lim
D!1

bN0 � UB

UB
 lim

D!1
" 

lim
D!1

bN0 � LB

LB
, (48)

By using bN0
prob.
����!D!1 mZ/log(2) and replacing LB from

equation (15) on page 7 and UB from equation (16) on
page 7 into equation (48), after some simplifications, we obtain
equation (18) on page 7. ⌅
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