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Abstract—Automated Team Formation is becoming increasingly
important for a plethora of applications in open source com-
munity projects, remote working platforms, as well as online
educational systems. The latter case, in particular, poses sig-
nificant challenges that are specific to the educational domain.
Indeed, teaming students aims to accomplish far more than the
successful completion of a specific task. It needs to ensure that all
members in the team benefit from the collaborative work, while
also ensuring that the participants are not discriminated with
respect to their protected attributes, such as race and gender.
Towards achieving these goals, this work introduces FERN, a
fair team formation approach that promotes mutually beneficial
peer learning, dictated by protected group fairness as equality of
opportunity in collaborative learning. We formulate the problem
as a multi-objective discrete optimization problem. We show this
problem to be NP-hard and propose a heuristic hill-climbing
algorithm. Extensive experiments on both synthetic and real-
world datasets against well-known team formation techniques
show the effectiveness of the proposed method.

Index Terms—Team formation, Group fairness, Collaborative
learning, Hill-climbing, Crowd-sourcing, Clustering, Partitioning.

I. INTRODUCTION

XTENSIVE research has unveiled the benefits of collabo-

rative learning through participation in group educational
activities (e.g., study groups, team projects, etc.) [1], [2], [3],
[4], [5], [6], especially when the members of the teams can
learn something from their peers (peer learning) [6], [7], [5],
[4]. This stands for traditional brick-and-mortar educational
institutions, as well as online learning environments and
massive open online courses. To facilitate the creation of
such collaborative learning groups, team formation algorithms
are used to group students based on different factors and
constraints. Since students have the opportunity to benefit
through peer learning, it is important for the team formation
algorithms to ensure that the students are treated fairly with
respect to benefit from team work, irrespective of any protected
attributes, such as gender and race.

There has been considerable research in developing methods
to form teams in the educational domain, some of which
try to account for different notions of fairness. Some works
implicitly address fairness when they aim to produce balanced
teams with respect to the skills of their participants (inter-
team homogeneity) [8], [9], [10], while others also account for
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diversity in personality and gender [8]. Outside the educational
domain, recent work on fair clustering methods considers
equal representation of the protected groups across the clus-
ters [11], [12], [13].

In this work, we are motivated by the equality of edu-
cational opportunity [14], where every student should have
equal educational opportunities irrespective of race, gender,
socioeconomic class, sexuality or religion. We transfer this
ideal of equality of opportunity in the context of collaborative
learning and we strive to ensure that all students benefit
equally from peer learning, regardless any protected attributes.
Our goal is to create teams comprising students with the
necessary set of skills for performing the target task, while
maximizing the peer learning opportunities at both individual
and protected group level. We consider cases where individuals
can belong to different groups, based on a protected attribute
such as race, demographics and socioeconomic status, and we
focus on alleviating potential discrimination against the team
members. Our approach is formalized as a multi-objective
discrete optimization problem that captures the aforemen-
tioned objectives. We formally prove its NP-hardness, and
we propose FERN; a heuristic hill-climbing greedy algorithm
to tackle it. We experimentally evaluate the performance of
FERN on both synthetic datasets with different characteristics,
and real-world datasets, against well-known team formation
techniques. The results show the effectiveness of the proposed
method on creating fair and beneficial teams. To the best of
our knowledge, this is the first work in the team formation
domain that addresses group fairness in the form of equality
of opportunity in collaborative learning.

II. PROBLEM STATEMENT

Given a set S of N students and a target task with specific
skill requirements, we are interested in assigning the students
to teams such that, in addition to completing the target
task, every member in a team benefits. Following existing
conventions [6], [7], [15], [16], we consider a student to benefit
from participating in a team if there is at least one skill they
can learn from their higher ability peers. In this case, we can
create teams such that even high performing members could
benefit, as long as there is a peer who has higher ability in at
least one skill. In our setting, the number of teams and their
size are not fixed and depend on the input data and the target
task. We assume that a task requires multiple skills in order to
be completed successfully. For example, different lower level
courses could be required to complete a project in a higher
level course.
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Fig. 1: Example of the benefit of students A, B, C if we team
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B@. g given target task with k required
skills is represented by a k-dimensional skill requirements
vector, r = { m whose p-th component, r,, with
p € {1,. 1;(,5 udt 0141 eshold that the students from each
team need tdEéaVGk wldectively, in order to complete the task
with respect foAsKill/p8 Note here, that the requirements can be
different. :E% -9 7, indicates that skill p is of higher
importance or that it requires higher ability from the students
in order to complete the target task. Student ¢ is represented by
a k-dimensional vector, s = (s¢,. .., si), whose p-th element,

;,, with p € {1,...,k}, represents the student’s ability for
skill p. We con51der a team [ to complete the task successfully
when the aggregated ability of its members is greater than or
equal to the corresponding skill threshold value, for all the &
skills, i.e.:

Zs; >rp,Vp=1,...,k,
i€y
where T; is the set of students that belong to team .
Individual benefit. A student ¢ benefits from a student j
when j has higher ability in at least one skill. We formally
define this as follows:

Definition 1. A student i with skill vector s* benefits from a
student j with skill vector s7, when there is at least one skill,
pe{l,...,k}, such that 83, — 8, > ¢

We use a threshold € to distinguish among significant and
non-significant differences in the skill values of the students.
Next, we define the benefit matrix, B € RV*V with B =1
if student ¢ benefits from student j, and B;; = 0, otherwise.
Fig. 1 presents a toy example which highlights the definition
of benefit. There are three students A, B, C, and their corre-
sponding performance in three skills. If we group B with A
then, A will learn skills 1 and 2 from B, and B will learn skill
3 from A. On the contrary, if we group B with C, student
B will not benefit from C as B is performing better in every
skill.

We then define the individual benefit of student ¢ from their
team, as the fraction of their teammates that 7 benefits from,

ie.
Hm > Bij (1)

JET?

IndBen(i

where T is the set of students that belong to the same team as
1, excluding 7. According to this definition, in order to increase
the individual benefit of student 7, we have to increase the
number of teammates that ¢ benefits from. In other words, we
aim to create teams in which the members benefit from as
many teammates as possible.

Group benefit. We assume that the students belong to
m different groups based on a protected attribute, such as

race, demographics and socioeconomic status. The benefit of
a protected group ¢, with ¢ € {1,...,m}, is the average
individual benefit of its members, i.e.:

Z IndBen(i )

ZG(G

GBen(q

where G, is the set of students that belong to protected group
q. We define group fairness in the context of equality of
opportunity in collaborative learning and we consider a team
solution to be fair across the protected groups, if the different
protected groups have approximately the same relative group
benefit. In particular, for two protected groups ¢; and g¢o, a
team solution is fair when:

GBen(q1) ~ GBen(q2)

If the students that tend to benefit the least disproportionately
belong to one protected group, then this corresponds to an
unfair team solution.

In summary, we aim to form teams that fulfill the skill
requirements of the target task, maximize the individual benefit
and impose group fairness. This problem is a combinatorial op-
timization problem, with a large discrete configuration search
space. Next, we show that this is an NP-hard problem.

Theorem 1. The problem is NP-hard.

Proof. In order to prove that our problem is NP-hard, we will
reduce the Dual Bin Packing Problem (DBPP) [17] to a much
simpler version of our problem. We consider the case where
we have only one skill for each student and the goal is to
assign the students to teams, such that, the number of teams
which fulfill or exceed the skill requirements is maximized.
We then map the bins to teams and the items to students.
The skill s° of student i corresponds to the size oy of item 7
and the bin threshold ¢ corresponds to the skill requirement
threshold r. We want to find the maximum number of teams,
L, and a partition of the students to teams, T; U---UT, such
that Y, s" > 7,V =1,..., L. Thus, the DBPP is reduced
to our problem and if we can find a solution in polynomial
time to our problem, then we can find a solution to DBPP
as well. But we know this is a contradiction since DBPP is
NP-hard [17]. O

III. FERN: A FAIR TEAM FORMATION APPROACH

We formulate the problem of fair team formation as a
multi-objective discrete optimization problem and we present
a heuristic algorithm to solve it. We will use the name FERN
to refer to the approach and associated algorithm. FERN starts
by computing an initial solution and then refines this solution
to gradually improve the objective function.

A. Objective Function

Our goal is threefold: create teams such that 1) the collective
ability of each team is adequate to successfully complete the
target task, 2) the number of students that benefit from the
team work is maximized, and 3) impose fairness among the
protected groups. Next, we explain how we proceeded in order
to achieve each goal.



Average skill deficiency. A team completes the target task
successfully, if its collective ability reaches or exceeds the
skill requirements threshold. In order to tackle this goal, we
measure the average skill deficiency of a solution, which is
given by:

L k 2
X:&ZZ(rp—min(rp,Zs;)) , 3)
=1 p=1

€Ty

where L is the number of teams of the solution.

Average individual benefit. In order to tackle our second
goal and maximize the number of students that benefit from
collaborating with others in the same team, we measure the
average individual benefit over the whole set of students S:

1
V=15 Z[ndBen(i), 4)
=
Variance in group benefit. In order to achieve group
fairness with respect to benefit among the m protected groups,
we measure the variance in group benefit, which is given by:

m

1 N2
Z=_— GBen(q) — GB ,
m;( en(q en)

m 4)
[ 1
here GBen = — GB .
where GBen = — ; en(q)

Combined objective function. At last, we combine Eq. 3,
4, 5 in a single multi-objective function and we solve the
following minimization problem:

F=X—-1Y+4Z, (6)

where we want to minimize X, Z and maximize ). We
use parameters v and § to control the relative importance of
individual benefit and group fairness, respectively.

The group benefit is the most novel component of our multi-
objective function. The motivation behind our definition of
group benefit (Eq. 2) and the way we measure group fairness
(Eq. 5) is the following. The second term of the objective
function (average individual benefit, )V) maximizes the indi-
vidual benefit of each student and implicitly ensures that the
number of students that benefit is maximized. This means that
the group benefit of each protected group will also increase.
Then, the third term of the objective function (variance in
group benefit, Z) additionally takes care of the balance in
group benefit across the protected groups. This corresponds to
improving the least benefited group, since the second term
will penalize any decrease in the benefit. Ultimately, our
combined formulation is similar to the one of maximizing the
group benefit of the least benefited protected group. To back
up the above arguments, we present experimental results in
Subsection VI-C7.

B. Initial Assignment Algorithms

We developed four different algorithms to compute the
initial assignment of students to teams, which are used as the
starting point for the refinement process.

1) Global Most-Benefit First (GMBF): This method creates
one team at a time; it starts with the first team and keeps on
adding students until the skill requirement threshold is reached
for each skill, or there are no students left to select. Every time,
it chooses student ¢ who has not yet been selected and has the
highest individual benefit if all the students were teamed up
in a single team, i.e., ¢ = arg max; EjeS B;; - global choice.
This algorithm optimizes the average skill deficiency (the first
term of the multi-objective function) and ensures that every
team, except for probably the last one, will reach the threshold
in order to complete the target task.

2) Local Most-Benefit First (LMBF): This method is similar
to GMBF, with the difference now, that it chooses the student
with the highest individual benefit based on the current team it
creates - local choice. The first student of each team is selected
to be the one with the global lowest individual benefit out of
those not yet selected. This algorithm accounts for the first two
terms of the multi-objective function at every local choice it
makes.

3) Local Most-Benefit Fair First (LMBFF): This method
extends the previous two and takes care of all terms of the
multi-objective function. The difference compared to the two
aforementioned algorithms is that, now the algorithm chooses
to add to the current team, that student who optimizes the
weighted summation of the average individual benefit and the
variance in group benefit. Again, the first student of each team
is selected to be the one with the global lowest individual
benefit out of those not yet selected.

4) Random: This corresponds to a random assignment
and serves as a baseline to compare against the above more
sophisticated proposed initial algorithms. It randomly assigns
equal number of students to each team. If this is not possible,
the remaining students are equally split in the first N modulo
L teams, where the number of teams L, is determined by
GMBF.

C. Refinement Algorithms

We developed two hill climbing greedy approaches to
perform the refinement process. They are best-first iterative
algorithms that start from an initial sub-optimal solution, and
attempt to find a better solution by making an incremental
change at a time to the current solution. This is done repeat-
edly, until no further improvement can be found.

The change consists of moving student = from their current
team T to team Ty; at each step, we choose the triplet
(z,Ts,T,) that gives the highest gain (optimal available
move). The gain G, 1, 7, of a move (z, Ts, Ty) is the reduction
on the objective if we move student x from their current team
T, to team Ty, ie., Gy 1.1, = Faer, — Faer,- The gain
is positive if the move improves the value of the objective
function, negative if the move deteriorates the solution, and
equal to zero if the gain does not change.

The first algorithm SAHC, is a greedy steepest-ascent hill
climbing, that searches the whole space of possible moves
and performs the best one which leads to a strictly positive
gain; if no such move exists, it terminates. The pseudo code
is presented in Algorithm 1.



Algorithm 1 Steepest Ascent Hill Climbing (SAHC)

Algorithm 2 FM-based Hill Climbing (FMHC)

Require: initial assignment 7, initial number of teams L.
I: pq < compute gains > priority queue with gain values
for all possible moves
2: while 1 do
gain, student, teamsg, teamg < pq.pop()
with the maximal gain

> move

(5]

4 if gain > 0 then

5 Perform the move and update T’
6: Update gains Vstudent; € S

7 else

8 break

9 end if

10: end while

11: Remove empty teams from L. Check for teams with only
one student and find the best other team to assign this
student to.

12: return 7', L

The second algorithm is based on the Fiduccia-Mattheyses
(FM) algorithm [18]; an iterative heuristic for hyper-graph bi-
partitioning. This FM-based hill climbing, FMHC, is different
from the steepest-ascent as it allows for uphill moves, i.e.,
moves that do not improve the value of the objective function,
and even worsen it. It may perform bad moves with the goal of
escaping from local minima. In particular, at each pass, FMHC
examines all possible moves and greedily chooses the one with
the optimal gain (it could be a negative one), until there are
no more students to move. After it makes a move, it locks the
student and does not consider them again in the same pass.
It considers again the locked students in the next pass, and
only then, it updates their gains. Next, FMHC finds the number
of subsequent moves z, from the beginning of the current
pass, that maximizes the sum of the gains of the z moves,
gaiNmq.. This translates to identifying a set of z concurrent
moves (including potential non-beneficial single moves) that
altogether will lead to a better solution. If gain,,,, is larger
than €, then it accepts the z moves, updates the assignment
of students to teams and improves the solution. If gain,,q. is
smaller than or equal to e, then the refinement terminates. The
pseudo code is presented in Algorithm 2.

For both algorithms, we implemented a max-heap priority
queue to store the gains efficiently. During the refinement,
the algorithms are allowed to empty a team and consequently,
reduce the number of teams, if this leads to a better solution.
At the end of the refinement process, we perform a post-
processing step to eliminate teams with only one student; we
assign the student to the best team, based on the value of the
objective function.

Time Complexity Analysis. The most computationally ex-
pensive part in both the refinement algorithms is the update
of the gains in the priority queue after we make a move. In
the priority queue, we store in total N x (L — 1) moves for
the IV students and L teams. The update of all the gains costs
O(NLlog(NL)). Thus, the time complexity of SAHC for each
iteration of the while loop is O(N Llog(NL)). For FMHC,

Require: initial assignment 7', initial number of teams L.
1: pg <[] ® priority queue that stores the gain values for
all possible moves
while 1 do
PQq <— compute gains
locked + set(), Ts < T, moves < [ ]
while pg do > while there are students to move
gain, student, teams, teamg < pq.pop() > move
with the maximal gain

A i

7: locked.add(student)

8 Remove from pq all entries that correspond to
student

9: Update T as if we make the move

10: Update gains Vstudent; € (S — locked)

11: moves.append([[student, source, dest], gain])

12: end while

13: z < 0, gaingq, < —inf

14: Find z that maximizes g¢ain,.., the sum of
moves(1][1], ..., moves|z][1]

15: if gain,,q. > € then

16: Update T" with the z moves

17: else

18: break

19: end if

20: end while

21: Remove empty teams from L. Check for teams with only
one student and find the best other team to assign this
student to.

22: return 7, L

the overall time complexity of one pass is O(N2Llog(NL)),
since the inner while loop (line 5) is executed N times.

IV. RELATED WORK

Agrawal et al., [15] were the first to introduce a com-
putational approach for team formation in the educational
setting. They form teams of leaders and followers (those with
ability above and below the team average, respectively) to
maximize the total gain. They measure the gain as the number
of students that can increase their ability by interacting with
leaders. Another work by Agrawal et al., [16] is built upon
the intuition that every student can increase their benefit up to
a reference score and extends the previous work [15] which
assumes that only students below the team mean can benefit.
In such formulation, every student could potentially increase
their gain except for the best performing students of each team.
Both these works consider one-dimensional skill vectors, do
not incorporate the notion of the skill requirements and are
limited to maximize the benefit of a subset of students.

Bandyopadhyay et al., [9] propose a method based on the
Modularity Optimization technique, used in community detec-
tion to group a collection of objects. Their goal is to maximize
the intra-team diversity and minimize the inter-team diversity,
by maximizing the pairwise distance between the individuals.
Liu et al., [10] propose a method to extract features for



students’ skill proficiency by performing a cognitive analysis,
and use these features to create the students’ vectors. They
also propose the uniform k-means method for creating a fixed
number of teams K, that maximizes collaborative learning.
This approach uses a variant of k-means clustering method to
create k equal-sized clusters based on the students’ vectors
and then, randomly distribute the students of each cluster
to K teams. The goal is to create heterogeneous teams by
maximizing an objective based on dissimilarities. Methods like
these, which promote the intra-team distances, could end up
hurting both the individual-level and potentially the protected
group-level benefit (unfair solution): the high ability students
will be teamed up with lower ones, and the former will
not benefit. Our objective function is entirely different from
the aforementioned techniques, and the proposed approaches
cannot be directly applied to solve our problem.

Bahargam et al., [19] defined the Guided Team-partitioning
problem; given a set of points, they want to partition them into
teams such that the centroid of each team is as close as possible
to a specific target vector. They consider multiple target tasks
with different requirements. This work is different from ours
in that there are multiple target tasks and the team size and
number of teams are fixed. The major difference though is that
it allows for the removal of students out of the assignment
solution. This is not allowed in our problem and cannot be
applied in real-world educational settings.

Other works take into account the social network of the
members in addition to the skill values, such that the commu-
nication cost is minimized and they are interested in forming
a single team for the target task [20], [21], [22]. Andrejczuk
et al., [8] consider the problem of forming synergistic teams,
where each team is balanced in terms of ability, personality,
and gender. The final equal-sized teams are diverse (equal
representation) and of equal performance. One of the proposed
methods is a local search algorithm that is similar to our
hill-climbing method, but with significant differences: 1) their
approach is not greedy, 2) it performs different kind of moves
than ours, and 3) it allows for only a limited number of
consecutive bad moves. Finally, they optimize a different
objective function as they do not account for skill requirements
or fairness in the form of equality of opportunity (we point out
that the latter stands for all the related work), which makes this
method unsuitable to solve our problem. Machado et al., [23]
also account for fair teams, but in the notion again of forming
teams of equal performance: the best-skilled members are
equally distributed across the teams. Another difference with
our work is that, even though they too build their problem
upon members’ skills and project requirements, they do not
use numerical values; instead, they use text tags and assume
that a single member can fulfill one skill. Last, they target
multiple tasks and assign the best team to each task.

Genetic algorithms have also been proposed for solving
the team formation problem [24], [21], [22], [25]. They are
used for optimization problems and they incorporate the idea
of evolution. They model the solutions as chromosomes and
apply recombination operations (crossover and mutation) in
order to preserve only the necessary information that will lead
to a better solution [24].

Crowd-sourcing. Another related field is that of the standard
crowd-sourcing. Within that context, given a set of workers
with specific skills and cost, the goal is to form a single team
for a target task. Mishra et al., [25] study a variation of the
problem which does not include any cost on the workers’
side. They use the notion of dominance to form a ranking of
workers out of a pool of available workers, in order to choose
the best ones for the target task, that are non-dominated with
each other, i.e., they are equally preferable. Their definition of
dominance is related to our definition of benefit; in our context,
we want to minimize the dominance in order to increase
the benefit. However, we are interested in allocating all the
individuals to teams, so that the task’s skill requirements is
reached. Yadav et al., [26] study the problem of splitting the
workers into teams that satisfy some requirements, but each
team is assigned a different task. The minimization objective
is related to each worker’s cost.

V. EXPERIMENTAL EVALUATION
A. Datasets

We evaluated the performance of FERN on two sets of
datasets. The first is a set of synthetically generated datasets of
different size, complexity, and solution difficulty. The second
is a set of datasets that we derived from actual students’
course registration and performance data. Details on how we
generated the synthetic and real-world datasets are provided
next.

1) Synthetic Datasets: We developed a synthetic dataset
generation method with five different parameters: (i) the num-
ber of students NN, (ii) the dimension of the skill vectors k,
(iii) the number of protected groups m, (iv) a vector of length
m specifying how the N students are distributed across the
m groups and, (v) m sets of parameters that control how the
skill vectors for students of each protected group are generated.
Next, we describe the last type of parameters, (V).

We assume that the completion of a target task requires
knowledge of specific courses and the ability of a student
to complete the task is represented by the corresponding
grades (skill values). We generate the data in such a way
that the students fall into four grade buckets reflecting their
overall average performance: A, B, C, and D. Based on our
generation model, for each protected group, we follow two
steps: first, we distribute the students to the grade buckets, and
second, we generate the skill vectors of each grade bucket.

In the first step, we want to create the grade buckets’
distributions. Our goal is to generate datasets of progressively
increased difficulty. The shape of these distributions affects
the difficulty of balancing the generated dataset with respect
to benefit. When the distribution of the students to the grade
buckets is different across the protected groups, then students
from different groups have different performance. For exam-
ple, in the case of two protected groups, most of the students
of the first group could belong to bucket A and most of the
students of the second group to bucket C. In such cases, it
is harder for the algorithm to impose group fairness. To this
end, we sample from a beta distribution and we create multiple
datasets of increasing difficulty by varying the values of « and



TABLE I: Statistics of the synthetic datasets for two protected
groups.

Group 1 Group 2
Dataset A B C D a p A B C D «a B
D1 162 57.0 257 1.1 6.0 40([162 57.0 257 1.1 6.0 4.0
D2 423 510 6.6 0.1 80 32| 74 594 322 10 7.0 55
D3 87.7 11.8 05 00 7.5 1.0|l 0.0 0.6 11.1 883 1.0 7.5

A, B,C, D are the grade buckets. The values of each bucket correspond to
average percentages (%) of the students that belong to each particular bucket.
a, (B are the parameters of the beta distribution used for each dataset. The
two protected groups are of equal size.
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Fig. 2: Synthetic data - distribution of the students to the four
grade buckets based on their average performance.

[ parameters. We chose beta distribution as it is able to model
grade distributions [27], can produce several different shapes,
and is suitable to model random percentages. By definition,
the beta distribution is defined on the interval [0, 1]; in order
to correspond the sampled values to the four grade buckets, we
discretize [0, 1] to four bins. Table I summarizes the statistics
of the generated data for two protected groups. Fig. 2 presents
the shapes of the distributions for the synthetic data when the
number of protected groups is equal to 2,3,4. The different
protected groups are of equal size. Dataset D1 is considered an
easy dataset, as the different protected groups have the same
bucket distributions, i.e., the students of different protected
groups have similar performance. Dataset D2 is of middle
difficulty, as the bucket distributions of the two groups are
slightly different from each other. Finally, dataset D3 is the
hardest one and represents an extreme case, where the two
distributions are opposite with each other. In this case, it will
be very difficult to impose group fairness, as there will be
many high-skilled (bucket A) members of one protected group
who are difficult to benefit from the lower-skilled (bucket D)
members of the other group.

In the second step of the data generation process, we
generate the students’ skill vectors of each grade bucket. Since
the skill values correspond to course grades, we map the letter
grades A— D to numeric ones. Then, we sample values from a
normal distribution and we choose the mean to be the middle
point of the corresponding numeric grade set of each grade
bucket: 3.85 for A, 3.0 for B, 2.0 for C and 1.15 for D. In
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Fig. 3: Real data - distribution of the students to the four grade
buckets based on their average performance in two courses
(k=2).

all cases, we set the variance equal to 0.1. Last, we normalize
the generated skill vectors, so that the values belong to the
interval [0, 1].

2) Real-world Datasets: We collected data from three de-
partments of a large public university: Mathematics (MATH),
Computer Science (CSCI), and Mechanical Engineering
(MENG). The data include the grades of undergraduate stu-
dents and span a period of 12 years. We selected the students
who had received an A-D grade in the k£ most frequently taken
courses from each major. We used the corresponding grades
as the skill values for each student. Next, we transformed the
letter grades to numerical values and normalized them in the
range [0,1]. We used 2, 4, and 6 courses, i.e., k = 2,4,6. In
order to be able to explore what is the effect of the different
values of k on the solution, we had to make sure that the set of
students will be the same as we change k. Thus, we selected
the students obtained when & = 6 (which is a subset of the
students when k = 2,4) and used those for the other values
of k as well. For CSCI and MENG, where we had a large
number of students, we selected the 400 most recent students,
out of those that had taken the 6 most popular courses. For
MATH and k = 6, we had 355 students.

The available data did not include any protected attributes.
In order to assign the students to protected groups, we used the
entry registration status and the number of credits transferred
to simulate the socioeconomic status of the students. Our moti-
vation came from the following findings. High school students
can take Advanced Placement (AP) courses and transfer the
credits earned to their undergraduate program. Minorities and
low-income students are underrepresented in AP classes, and
only a low percentage of them actually take and pass the
AP exams every year [28], [29]. Regarding students coming
from other institutions, we did not have information about the
institution they transferred from. However, reports statistically
show that almost half of these students come from 2-year
colleges [30], which are considered a major access point to
4-year institutions for minority and low-income students [31].
Finally, our analysis led to three protected groups: high school
students with less than 15 credits transferred (HS), high school
students with more than 15 credits transferred (HSAP), and
those coming from other institutions/colleges (NAS). Table II
presents the statistics of the datasets for two courses (k = 2).
Fig 3 presents the distribution of the students to the four grade
buckets based on their average performance in two courses.



TABLE II: Statistics of the real-world datasets.

HS NAS HSAP
Dataset N|N; A B C DNy, A B C D|Ns A B C D
MATH 355[102 30 42 22 8|113 57 32 18 6140 57 46 34 3
CSCI 400| 57 20 25 12 0|128 51 50 27 0215 96 79 38 2
MENG 400| 61 19 36 5 1|119 43 63 12 1220 87 110 23 0

N is the total number of students and N1, No, N3 the number of students
that belong to groups HS, NAS, and HSAP, respectively. A, B, C, D are
the grade buckets.

B. Baseline Algorithms

We found that none of the available team formation algo-
rithms that we listed in Section IV can be applied directly
to solve our problem. This is because none of them accounts
for the equality of opportunity in collaborative learning, as we
do. As a result, they optimize an entirely different objective
function. To this end, we implemented the following baseline
approaches to compare against our proposed method FERN.

Random. This method is described in Subsection I1I-B4 and
corresponds to a random assignment of the students to teams.

Uniform k-means (Umeans) [10]. This method (de-
scribed in Section IV) creates heterogeneous equally-sized
teams by maximizing a dissimilarity-based objective. We cre-
ate [N/L] clusters, where L is the number of teams generated
by GMBF. This approach does not account for group fairness.

Genetic algorithm (GA). This approach is moti-
vated by the genetic algorithms proposed for the team for-
mation problem and described in Section IV, and it is adapted
to directly optimize our multi-objective function, Eq. 6. We
model the chromosome/solution as a vector of size N, i.e.,
the number of genes is N. We set the following parameters:
mutation probability = 0.1, population size = 200, number of
generations = 300, uniform crossover and swap mutation. For
the number of teams L, we use the one that FERN identifies.

GMBF. This algorithm is described in Subsection III-B1
and is one of the algorithms that we experimented with to
get an initial assignment. We do not use refinement process
afterwards; this corresponds to a method like FERN without
the refinement. This is an algorithm that optimizes the average
skill deficiency (first term of the objective) and ensures that
every team will reach the threshold, except potentially for the
last one.

C. Experimental Setting

We try the following values for the importance parameters
~ and ¢: {0,0.2,0.5,1,2,3} The gain threshold that we use
as the convergence criterion for FMHC is set to ¢ = 1074, We
also tried smaller values of €, i.e., ¢ = 1072 and ¢ = 1075,
but the gains in performance were negligible, whereas the
running time was significantly increased, as the algorithm
performed significantly more work until convergence. We
run experiments for different number of students, i.e., N =
50, 100, 200, 400 for the synthetic datasets D1, D2, and D3.

Unless otherwise stated, we use the following set of param-
eter values: number of dimensions for the skill vectors k = 2,
skill requirements threshold vector r = 2, v = § = 1 which
corresponds to equal importance among the three terms of the
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Fig. 4: Final value of the objective function starting from
all four different initial assignments for both refinement al-
gorithms SAHC and FMHC, in all three synthetic datasets. The
smallest value the better.

objective function, € = 0 for the benefit threshold, number of
protected groups m = 2 for D1, D2, D3 and m = 3 for MATH,
CSCI, MENG. For Umeans and GA, we run each experiment
10 times and we report the average performance. Finally, for
each synthetic dataset, we run 50 experiments with different
sampled data for the beta and normal distributions, generated
by different 50 fixed for each particular dataset seeds, and we
report the mean and standard error values.

VI. RESULTS
A. FERN'’s Optimization Algorithms

In order to explore how the different initial assignments,
as well as the different refinement algorithms affect the
final solution, we run experiments for both the refinement
algorithms, starting from all four different initial algorithms
presented in Subsection III-B. We evaluate the performance
of the algorithms based on the final value of the objective
function. The results are presented in Fig. 4.

Regarding the different initial assignment algorithms,
Random performs the worst and should not be used; among
the rest, there is little variation in performance. Regarding the
different refinement algorithms, FMHC which allows for uphill
moves, is more robust to the initial assignment and performs
better than SAHC which gets easily trapped to local minima.
Moreover, we see that as the number of students increases,
we get better solutions. This is because, the more students we
have, the higher flexibility we get to arrange them into teams



of high benefit. Another observation is that D3 is the most
difficult one, and D1 the easiest one, verifying our assumptions
on how to generate datasets of increasing difficulty. For the
subsequent experiments, we use the GMBF initial algorithm
and FMHC refinement and this combination refers to FERN.

B. Comparison Against Other Approaches

We compare the performance of FERN against that of
competing approaches described in Subsection V-B, on the
different datasets. The goal of this experiment is to evaluate
how the different methods performed with respect to our
threefold goal. In order to evaluate the performance with
respect to the average skill deficiency, we report the percentage
of teams that fulfilled the skill requirements. To evaluate
the individual benefit of the final solutions, we report the
average individual benefit (Eq. 4) percentage, which measures
the percentage of teammates that a student benefits from on
average. Last, in order to evaluate the group fairness, we report
the variance in group benefit (Eq. 5). For D1, D2 and D3, we
report the results for NV = 100. Table III presents the results.

We can see that our method FERN is the best performing
with respect to individual benefit in all datasets, as well as
with respect to group fairness except for D1 in which Umeans
and GA perform better. Regarding group fairness, we observe
that Umeans is worse even than Random, except for D1 and
MATH. This means that Umeans not only does not account
for group fairness, but it additionally hurts it. Furthermore,
D3 is the most challenging with respect to group fairness, and
D2 is the second most challenging. Regarding the performance
with respect to individual benefit, for the most difficult dataset
D3, we see that on average, in FERN’s solution, every student
benefits from 87% of their teammates, compared to only
56% in the case of Umeans. GA is better than Umeans
in both individual and group benefit. However, Umeans is
among the best performing with respect to skill deficiency,
as the teams it forms are compact and concentrate adequate
collective ability for the skill requirements. Last but not least,
by comparing the performance between FERN and GMBF, we
see that the refinement further improves the solution with
respect to benefit. Overall, we see that FERN outperforms
every other method with respect to benefit and this does not
come with a significant cost for the skill requirements goal.

C. Sensitivity Analysis

In this Section, we use FERN and we explore how the
problem and the solution change as we scale the values of
the problem’s features. We mainly focus on the synthetic
data, because we are interested in testing datasets of varying
difficulty with respect to benefit.

1) Distribution of the Students across the Different Pro-
tected Groups: With this set of experiments, our goal is to
determine the impact of the relative sizes of the protected
groups to the difficulty of the problem. We keep everything
else fixed, except for the distribution of the students to the
two protected groups. We test the following percentages: 50-
50, 30-70 and 10-90. We present the results for D3 in Fig. 5
and we report the value of the objective function.

TABLE III: Comparison of the baselines with our method
FERN on the different datasets.

Dataset Method Teams met skills y Z
Random 73.68 59.23 0.03
Umeans 95.21 56.41 0.00
D1 GA 72.05 70.00 0.00
GMBF 98.21 86.01 0.01
FERN 80.43 93.00 0.01
Random 77.98 58.85 164.48
Umeans 99.82 55.65 228.22
D2 GA 75.05 68.79 35.74
GMBF 98.61 86.36 2.05
FERN 83.71 93.77 1.47
Random 75.85 58.33 645.47
Umeans 96.20 56.45 898.41
D3 GA 78.75 65.51 229.13
GMBF 98.74 80.62 43.48
FERN 85.09 87.33 20.61
Random 75.00 61.17 30.80
Umeans 82.01 83.83 0.73
MATH GA 65.79 69.11 1.67
GMBF 100.00 96.22 2.23
FERN 96.43 9941 0.02
Random 76.70 59.92 4.16
Umeans 99.10 58.43 12.38
CSCI GA 65.79 69.11 1.67
GMBF 100.00 97.64 0.01
FERN 99.03 99.82 0.00
Random 76.92 64.13 0.63
Umeans 98.50 64.78 2.55
MENG GA 68.21 75.98 0.87
GMBF 100.00 98.18 0.95
FERN 100.00 99.75 0.00

The third column (teams met skills) is the percentage of teams that fulfill
the skill requirements. The fourth column ()) is the average percentage of
teammates that a student benefits from. The last column (Z) is the variance
in group benefit (the values for group benefit correspond to percentages %).
We used v = § = 1 and k = 2. The best performance is marked in bold.

We observe that there is not significant difference in the
quality of the final solution for the different sizes of the two
protected groups. We only show the results for D3 as the trends
are similar for D1 and D2. The only exception is for D3 and
N = 50, where there is a slight variation among the different
splits. A possible explanation is that 50 students is a relatively
small input size for the algorithm to find stable solutions and
is sensitive to the underlying characteristics of the data. In
conclusion, the relative sizes of the protected groups do not
seem to significantly affect the difficulty of the problem. To
this end, for the remaining experiments, we use equally sized
protected groups.

2) Effect of the Number of Protected Groups on the Group
Benefit: In this section, we study how the group benefit varies
as we increase the number of protected groups. Fig. 6 shows
the results on D1, D2 and D3 for 2, 3, and, 4 protected groups,
when we account for the group benefit (6 = 1) and when we
completely ignore it (0 = 0). If we look at the results by
column, we observe the following. First, as the number of



groups increases, the group fairness gets more difficult to fix
(with the exception of D3 for N = 50,100 when § = O,
most likely because of the extremity of the grade distribution
for the 2 groups; see Fig. 2). Second, as expected, the final
solutions become unfair when we do not explicitly account for
the group fairness (second column). This stands especially for
D2 and D3, in which cases the students of each group have
different grade performance and as such, it is more challenging
to balance the benefit across the protected groups.

3) Effect of the Dimensionality of the Skill Vectors: We
experiment with different number of dimensions for the skill
vectors, k = 2,4, 6, and we evaluate the solution based on the
final value of the objective function. The remaining parameters
are set to the default values. We present the results for D3 in
Fig. 7. We can see that the problem gets easier as we increase
the number of dimensions. This happens because, for higher
values of k, the degrees of freedom for the skill values is
higher. As a result, it gets easier to maximize the benefit by
arranging the students properly and the algorithm is able to
find a very good and fair solution. The same results stand for
the other datasets as well.

4) Effect of the Skill Requirements Threshold: We explore
how the skill requirements vector r affects the difficulty of
the problem and the number of teams. We run experiments
for r = 2,3,4 on D3 and we set the remaining parameters to
the default values. In Fig. 8a, we plot the final value of the
objective function with respect to r. The higher the threshold,
the more difficult the problem gets, as more students are
needed in each team to fulfill the skill requirements and thus,
it is harder to maximize the individual benefit. In Fig. 8b, we
plot the number of teams the algorithm generates with respect
to r. As we increase r, the number of teams decreases because
the average number of students per team increases. The trends
are exactly the same for all the datasets.

5) Effect of each Benefit Term on the Final Solution: How
does each term of the multi-objective function affect the final
solution? We answer this question by removing each term and
we evaluate with the total final objective value. Fig. 9 presents
the results. We see that when we exclude the individual benefit
(y = 0,6 = 1), the final objective value is equal to zero
(optimal solution). However, this is not the case when we
exclude the group benefit term (y = 1, = 0). This indicates
that the individual benefit term is the hardest to optimize.
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6) Trade-off between Individual Benefit and Group Fair-
ness: Next, we study the relationship between the individual
benefit and the group fairness terms, as we increase the
relative importance of each one. In particular, while keeping
the importance of the group term fixed (9 = 1), we explore
how it is affected as we increase -, i.e., as we increase the
weight of the individual benefit. Looking at it the other way,
this experiment also shows how the group fairness impacts
the individual benefit. Fig. 10 presents the results on the most
difficult dataset, D3.

Note that we aim to maximize the individual benefit and
minimize the variance in group benefit. We can see that when
we aim to optimize the individual benefit, we end up hurting
the group fairness. In particular, for v > 1 (Fig. 10a), the
variance in group benefit deteriorates and at the same time
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the average individual benefit does not improve significantly.
However, this is not the case when we increase the importance
of the group term (Fig. 10b). We observe that as we increase
0, the variance in group benefit improves and the average
individual benefit is almost constant. This means that we
should use higher value for § than that of ~ for the most
challenging datasets D2 and D3 in order to further decrease
the variance in group benefit. For the remaining datasets, a
value of § > 1 does not further improve the group fairness.

7) Group Benefit of the Final Solution: In this subsection,
we support our choice for the definition of group benefit
(Eq. 2) and the way we measure group fairness (Eq. 5) by
showing how the group benefit changes as we change the
relative importance of ) and Z in Eq. 6. We compare the
solution given by FERN against the one given by a group
fairness unaware method, i.e., the solution by Umeans, on
D3 and N = 400. Table IV presents the results.

According to the Umeans results, we can see that q; is
the least benefited protected group, as its members benefit
from only 26.64% of their teammates, compared to 86.23%
of their teammates for members of g5. In the first case where
we ignore the individual benefit (v = 0), FERN increases
the group benefit of the least benefited protected group ¢,
and decreases the group benefit of g» in order to perfectly
balance the group benefit and impose group fairness. In the
other two cases (y = 1), the group benefit of both ¢; and ¢
increases, and GBen(q;) in particular, increases from 26.64%
to about 98%. Now, the difference is that when we ignore

TABLE 1V: Effect of the individual benefit and the group
fairness terms to the group benefit for two protected groups
on D3.

Umeans FERN
GBen(q1) GBen(q2) Z || GBen(q1) GBen(q2) Z
7v=0,6=1 26.64 86.23 887.80 77.01 77.06 0.00
vy=1,6=0 26.64 86.23 887.80 98.69 91.95 11.35
y=1,=1 26.64 86.23 887.80 98.16 92.50 8.01

The Umeans results correspond to a group fairness unaware solution.
GBen(q1) and GBen(qz) is the group benefit of protected group g1 and
q2, respectively. Z is the variance in GBen. The values for GBen represent
percentages (%).

the group fairness (5 = 0), the gap between GBen(q;) and
GBen(q9) is larger than the gap when § = 1. The findings
are similar for the other datasets as well. The second term of
the objective maximizes both the individual benefit and the
group benefit of each protected group. Then, the third term
additionally balances the difference in group benefit.

VII. CONCLUSION

In this work we study the fair team formation problem
where we maximize the benefit coming from peer learning.
Given a set of students and a target task with specific skill
requirements, we aim at assigning the students to teams
of flexible size such that: 1) the collective ability of each
team is adequate to successfully complete the target task, 2)
the number of students that benefit from the team work is
maximized and, 3) the different protected groups are treated
fairly with respect to benefit. To the best of our knowledge, this
is the first work that introduces fairness as equal opportunity
in collaborative learning for both the individual and protected
group level. We formulate the problem as a multi-objective
function and we propose FERN; a hill-climbing heuristic.
Experimental results in both synthetic and real-world data
show the effectiveness of the proposed method.
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