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Abstract—Multi-antenna (MIMO) processing is a promising

solution to the problem of jammer mitigation. Existing methods

mitigate the jammer based on an estimate of its subspace

(or receive statistics) acquired through a dedicated training

phase. This strategy has two main drawbacks: (i) it reduces

the communication rate since no data can be transmitted during

the training phase and (ii) it can be evaded by smart or multi-

antenna jammers that are quiet during the training phase or

that dynamically change their subspace through time-varying

beamforming. To address these drawbacks, we propose joint
jammer mitigation and data detection (JMD), a novel paradigm

for MIMO jammer mitigation. The core idea is to estimate and

remove the jammer interference subspace jointly with detecting

the transmit data over multiple time slots. Doing so removes the

need for a dedicated rate-reducing training period while enabling

the mitigation of smart and dynamic multi-antenna jammers.

We instantiate our paradigm with SANDMAN, a simple and

practical algorithm for multi-user MIMO uplink JMD. Extensive

simulations demonstrate the efficacy of JMD, and of SANDMAN

in particular, for jammer mitigation.

I. INTRODUCTION

In a world that has become fundamentally reliant on wireless
communications, averting the threat of jamming attacks has
turned into a problem of critical importance [1]–[4]. An
attractive solution is offered by multi-antenna (MIMO) process-
ing, which enables the mitigation of jammers through spatial
filtering [5]. Traditionally, a training period is used to estimate
the jammer subspace, and the jammer’s interference is removed
by projecting subsequent receive signals onto the orthogonal
complement of that subspace [6]–[12]. This strategy has two
major disadvantages: First, estimating the jammer subspace
during a training period reduces the achievable data rate, since
no data can be transmitted in the meantime. Second, estimating
the jammer subspace during a training period is ineffective
against smart jammers that transmit only at specific instances
to evade estimation [13] or against jammers that change
their subspace dynamically through time-varying multi-antenna
transmit beamforming [14]. To overcome these limitations,
we propose a novel paradigm for jammer mitigation through
MIMO processing which we call joint jammer mitigation and
data detection (JMD).
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A. State of the art
The fundamental challenge of jammer mitigation through

spatial filtering is that it requires information about the jammer,
such as the subspace spanned by the jammer’s channel [6]–[9]
or the covariance matrix of the jammer’s interference [7], [15],
[16]. Existing results often assume that the jammer transmits
permanently (and with static signature). This would enable the
receiver to estimate the required quantities during a dedicated
training period in which the legitimate transmitters do not
transmit [6], [7] or in which they transmit predetermined
symbols that carry no information [8]–[12]. By relying on such
a static jammer assumption, the receiver can filter the jammer
in the subsequent communication period until the wireless
channel changes and the process is started anew. A smart
jammer, however, can circumvent such mitigation methods by
deliberately violating their assumptions: It can pause jamming
for the duration of the dedicated training period, so that the
receiver learns nothing meaningful [13]. Or, if the jammer
has multiple antennas, it can use beamforming to dynamically
change its subspace (as well as the interference covariance
matrix at the receiver), so that, after the training period, the
receiver’s filter will no longer match the jammer’s transmit
characteristics [14].1 To mitigate smart jammers, methods have
been suggested that attempt to fool the jammer into transmitting
during the training period by distributing and randomizing the
timing of the training period [6], [8]. However, such methods
may not work against jammers that jam only intermittently at
random time instants. Similarly, methods have been proposed
to mitigate dynamic multi-antenna jammers by recurrently
estimating their instantaneous subspace [14], but this may be
effective only against jammers that change their subspace in
a sufficiently slow manner. Furthermore, all training-period
based mitigation methods are subject to an inherent trade-off
between the time that they dedicate to the attempt of estimating
the required jammer characteristics and the time that remains
for payload data transmission.

In light of these considerations, there is a clear need for a
more principled approach to MIMO-based jammer mitigation.
We have recently proposed MAED [13], which, in hindsight,
can be viewed as a special case of JMD. MAED unifies not
only jammer mitigation and data detection, but also channel
estimation—at the cost of high computational complexity.

1Another hard-to-mitigate threat is posed by multiple single-antenna
distributed jammers, which also cause high-rank interference [17], [18].



B. Contributions
We propose joint jammer mitigation and data detection

(JMD), a novel paradigm for jammer mitigation. The core idea
is to estimate and remove the subspace of the jammer interfer-
ence jointly with detecting the data of an entire transmission
frame (or coherence interval). JMD removes the need for a
dedicated training period and enables higher data rates. Beyond
that, considering an entire transmission period at once enables
JMD to deal with smart jammers that try to evade mitigation
(i) by jamming only at specific instances or (ii) by dynamically
changing their subspace through multi-antenna beamforming.

As in [13], we exploit the fact that a jammer cannot leave
its subspace within a coherence interval (this holds also for
multi-antenna jammers with time-varying beamforming). Going
beyond our work in [13], we show that this fact can be leveraged
to mitigate contamination of the channel estimate even when
the channel is estimated separately from jammer mitigation and
data detection. This new insight opens the door to a wide range
of efficient signal processing algorithms for jammer mitigation.
We capitalize on it by proposing SANDMAN (short for
SimultANeous Detection and MitigAtioN), an algorithm that
offers all of the jammer mitigation capabilities of the MAED
method from [13], but at reduced computational complexity.
Furthermore, SANDMAN can mitigate distributed and multi-
antenna jammers, while MAED only mitigates single-antenna
jammers. This paper also goes beyond [13] by analyzing the
rate improvements offered by the lack of a jammer estimation
phase. Extensive simulations show the efficacy of JMD, and
of SANDMAN in particular. An extended journal version with
theoretical foundations, more detailed descriptions, and further
empirical evaluation is in preparation.

II. JOINT JAMMER MITIGATION AND DATA DETECTION

A. System model
We focus on mitigating jamming attacks in the (massive)

MU-MIMO uplink, although our methods are easily translatable
to other MIMO contexts. Consider a jamming attack such that
the receive signal at the BS is given by

yk = Hsk + Jwk + nk. (1)

Here, yk 2 CB is the BS receive vector at time k, H 2 CB⇥U

is the UE channel matrix (we assume block fading with coher-
ence time K = D+U ), sk 2 SU contains the time-k transmit
symbols of U single-antenna UEs with constellation S, J 2
CB⇥I is the channel matrix of an I-antenna jammer,2 wk 2 CI

is the time-k jammer transmit vector, and nk ⇠ CN (0, N0IB)
is circularly-symmetric complex Gaussian noise with per-entry
variance N0. In this paper, we consider S to be QPSK (though
larger constellations would also work) scaled to unit symbol
power so that E

⇥
sks

H
k

⇤
= IU . The jammer is a dynamic multi-

antenna jammer, meaning that it can dynamically change its
jamming activity. Specifically, the jammer can transmit

wk = Akw̃k, (2)

2The model in (1) can also represent distributed single- or multi-antenna
jammers with a total of I antennas. We consider this case in Sec. IV-D.

where, without loss of generality, the covariance of w̃k2CI

is II for all k, and Ak 2 CI⇥I is a beamforming matrix that can
change arbitrarily over time, i.e., Ak depends on k. In particular,
Ak can sometimes be the all-zero matrix (= no jamming), some
of its rows can be zero (= the jammer uses only a subset of its
antennas), or it can be rank-deficient in some other way.

B. Joint jammer mitigation and data detection
Existing methods typically null a jammer by projecting the

receive signal onto the orthogonal complement of the jammer
subspace through Pyk, where3

P = IB�JJ
† is the orthogonal

projection onto col(J)?, which has the property that PJ = 0.
After the projection, the data can be detected using the virtual
channel matrix HP = PH, since

Pyk = PHsk +PJAkw̃k +Pnk = PHsk +Pnk (3)
, HPsk + nP,k. (4)

Note that this works regardless of which vectors w̃k and which
matrices Ak the jammer uses, since col(J) ◆ col(JAk) and
so col(J)? ✓ col(JAk)? for any Ak. The problem, however,
is how to reliably estimate J—or col(J)—when the jammer
changes Ak dynamically such that col(JAk) depends on k.

The central idea of JMD is to consider jammer subspace
estimation, jammer mitigation, and data detection over an entire
transmission frame (or coherence interval) simultaneously:
The jammer subspace is identified with the subspace that
is not explainable in terms of UE transmit signals, which
are estimated iteratively while projecting the receive signals
onto the orthogonal complement of the current estimate of the
jammer subspace. Mathematically, this can be framed as solving

min
S̃D,P̃ kP̃YD � P̃HS̃Dk2F , (5)

where YD =[y1, . . . ,yD] is the data receive matrix over an
entire coherence interval, S̃D = [s̃1, . . . , s̃D] 2 SU⇥D is the
data matrix estimate, and P̃ = IB � J̃J̃

† is the projection onto
the orthogonal complement of the estimated jammer subspace
col(J̃), with J̃ 2 CB⇥I . The range over which we optimize P̃

is the Grassmanian manifold GB�I(CB), i.e., the set of orthog-
onal projections onto (B�I)-dimensional subspaces of CB .

In practice, however, the UE channel matrix H is a priori
unknown and has to be estimated with pilots. In the presence
of jamming, the obtained estimate can be contaminated. Thank-
fully, however, the contamination of the pilot receive signal
will be restricted to the subspace col(J). In [13], it was thus
proposed to jointly solve the problems of channel estimation,
jammer subspace estimation and mitigation, and data detection
by solving an optimization problem which depends on S̃D, P̃,

and H̃
P̃

. This approach is highly effective, but unfortunately,
even approximately solving the proposed optimization problem
is computationally demanding. For instance, the algorithm
proposed in [13] requires the inversion of a U ⇥ U matrix for
gradient calculation in every iteration.

As it turns out, and this is a key insight of our paper, it is not
necessary to estimate H jointly with the jammer subspace and

3In this paper, † denotes the pseudo-inverse, col(M) is the column space
of M, and ? denotes the orthogonal complement.



the data symbols: One can also estimate the channel separately,
leading to algorithms with significantly lower complexity.
Consider least square (LS) channel estimation with unitary
pilots ST 2 CU⇥U and receive matrix YT :

YT = HST + JW +N (6)

Ĥ = YTS
H
T = H+ JWS

H
T +NS

H
T . (7)

Note how after despreading, the jammer contamination of the
channel estimate is still restricted to col(J).4 If we therefore
simply plug this estimate Ĥ into (5) as follows

min
S̃D,P̃ kP̃YD � P̃ĤS̃Dk2F , (8)

then the “true” projection P = IB � JJ
† also removes the

jammer contamination of the channel estimate. This means
that we can leverage the concept of joint jammer subspace
estimation, jammer mitigation, and data detection, without
having to also jointly estimate H, and without having to
worry about jammer contamination of the channel estimate. In
summary, the JMD paradigm can be formulated as follows:

Joint Jammer Mitigation and Data Detection (JMD)

Given the received data matrix YD 2 CB⇥D of an
entire coherence interval and a linear channel estimate
Ĥ = f(YD) from that same coherence interval, solve

min
S̃D 2SU⇥D,

P̃2GB�I(CB)

��P̃(YD � ĤS̃D)
��2
F
. (9)

III. THE SANDMAN ALGORITHM

Solving (9) exactly is difficult, so we solve it approximately.
A key difficulty is that, due to the discreteness of S, the
problem in (9) is NP-hard even when fixing P̃ and solving
only for S̃D [19]. We thus relax the constraint set S to its
convex hull C , conv(S). To promote symbol estimates at, or
near, the corner points of C (i.e.,the constellation points S), we
add a concave regularizer �kS̃Dk2F weighted by ↵ > 0 to the
objective [20]. We colloquially refer to the resulting constraint
and regularizer as a box prior. The modified problem is thus

min
S̃D 2 CU⇥D,

P̃2GB�I(CB)

��P̃(YD � ĤS̃D)
��2
F
� ↵kS̃Dk2F . (10)

This problem is still non-convex, mainly due to the non-convex
constraint set GB�I(CB) of P̃. However, we have the following
theorem, the proof of which is omitted due to lack of space.

Theorem 1. When P̃ is fixed and ↵  �min((P̃Ĥ)H
P̃Ĥ), then

the objective in (10) is convex in S̃D. Vice versa, when S̃D is
fixed, then the objective in (10) is minimized with respect to P̃

by IB �UIU
H
I , where UI 2 CB⇥I consists of the I dominant

left-singular vectors of YD � ĤS̃D.
This theorem suggests to use an alternating minimization

strategy, as solving (10) for either S̃D or P̃ is straightforward
while the other quantity is fixed.

4This would also be the case for other linear channel estimates Ĥ = f(YD),
such as the LMMSE channel estimate.

1) Solving for S̃D: To solve the problem in (10) for S̃D, we
use forward-backward splitting (FBS) [21]. FBS is a method for
iteratively solving convex optimization problems of the form

min
s̃

f(s̃) + g(s̃), (11)

where f is convex and differentiable, and g is convex but
need not be differentiable, smooth, or bounded. FBS solves
the problem in (11) by iteratively computing

s̃
(t+1) = proxg

�
s̃
(t) � ⌧

(t)rf(s̃(t)); ⌧ (t)
�
, (12)

where ⌧
(t) is the stepsize at iteration t, rf is the gradient

of f , and proxg is the proximal operator of g, defined as [22]

proxg(s̃; ⌧) = argmin
x̃

⌧g(x̃) +
1

2
ks̃� x̃k22. (13)

FBS solves convex problems exactly (for a sufficient number
of iterations with suitable stepsizes ⌧ (t)), but it is also effective
for approximately solving non-convex problems [21]. To solve
the problem in (10), we define the functions f and g as

f(S̃D) =
��P̃(YD � ĤS̃D)

��2
F
, (14)

g(S̃D) = �↵
��S̃D

��2
F
+ �C(S̃D), (15)

where �C acts entrywise on S̃D as the indicator function of C,

�C(s̃) =

(
0 : s̃ 2 C
1 : s̃ /2 C.

(16)

The gradient of f in S̃D is given as

rf(S̃) = �2 ĤH
P̃(YD � ĤS̃). (17)

The proximal operator of g acts entrywise on S̃D and is given as
proxg(s̃; ⌧) = clip(s̃/(1 � ⌧↵);

p
1/2) when ↵⌧ < 1 (where

clip(z; a) clips the real and imaginary part of z 2 C to the inter-
val [�a, a]), and otherwise as argmin

x̃2{±
p

1
2±i

p
1
2}

|s̃� x̃|2.

2) Solving for P̃: According to Thm. 1, we can solve for P̃
(for fixed S̃D) by calculating the I dominant left-singular
vectors UI of YD � ĤS̃D. Instead of performing an exact but
computationally expensive singular value decomposition of this
matrix, we approximate UI with the power method from [23],
where we perform a single power iteration per dimension.

The SANDMAN algorithm alternates between descent steps
in S̃D and approximate computations of P̃ for a total number of
tmax iterations. We choose ↵ = 2.5, and the stepsizes ⌧

(t) are
selected using the Barzilai-Borwein criterion detailed in [24].
SANDMAN is summarized in Alg. 1 and has a complexity of
O(tmaxUDB), i.e., its complexity is linear in U , D, and B.

IV. EVALUATION

A. Simulation setup

We evaluate SANDMAN through simulations. We simulate
a MU-MIMO system with B = 32 BS antennas and U = 16
single-antenna UEs at a carrier frequency of 2 GHz using the
3GPP 38.901 urban macrocellular (UMa) channel model [25].
The channel vectors are generated with QuaDRiGa [26]. The



Algorithm 1 SANDMAN

1: function SANDMAN(YD,YT ,ST , I, tmax)
2: Ĥ = YTS

H
T // LS channel estimate

3: S̃
(0) = 0U⇥D

4: for t = 0 to tmax � 1 do

5: Ẽ
(t) = [YT ,YD]� Ĥ[ST , S̃

(t)]
6: J̃

(t) = APPROXSVD(Ẽ(t)
, I) // cf. [23]

7: P̃
(t) = IB � J̃

(t)(J̃(t))†

8: rf(S̃(t)) = �2 ĤH
P̃

(t)(YD � ĤS̃
(t))

9: S̃
(t+1) = proxg

�
S̃
(t) � ⌧

(t)rf(S̃(t)); ⌧ (t)
�

10: end for

11: output: S̃
(tmax)

12: end function

BS antennas are arranged as a uniform linear array (ULA) and
spaced at half wavelength. The UEs are uniformly distributed at
distances between 10m and 250m in a 120� angular sector in
front of the BS, and with a minimum angular separation of 1�
between any two UEs. All antennas are omnidirectional. We
assume ±3 dB per-UE power control. Furthermore, we assume
a coherence time of K = 100 channel uses. The specific
jammer model varies between the different experiments. In
general, we consider J � 1 jammers placed randomly in the
same area as the UEs, with a minimum angular separation
of 1� between any two jammers as well as between any
jammer and any UE. Every jammer is equipped with I/J � 1
antennas arranged as a ULA with half-wavelength spacing that
is frontally facing in the direction of the BS.

We consider QPSK transmission. The pilots are selected as
rows of a U ⇥U Hadamard matrix (normalized to unit symbol
energy). We define the average signal-to-noise ratio (SNR) as

SNR , ES[kHSk2
F ]

EN[kNk2
F ]

. (18)

Furthermore, we characterize the strength of the jammer
interference relative to the strength of the average UE via

⇢ , kJWk2
F

1
U ES[kHSk2

F ]
, (19)

where we deterministically scale JW to a pre-specified ⇢. As
performance metrics, we consider uncoded bit error rate (BER)
and a metric that we call the modulation error ratio (MER)
between the data symbols SD and their estimate ŜD,

MER , E
⇥
kŜD � SDkF

⇤�
E
⇥
kSDkF

⇤
. (20)

We use the MER as a surrogate for error vector magnitude
(EVM), which the 3GPP 5G NR technical specification requires
to be below 17.5% [27, Tbl. 6.5.2.2-1] for QPSK transmission.

B. Higher data rates against simple jammers

The first advantage of joint jammer mitigation and data
detection is increased achievable rates, because no channel
uses need to be reserved for estimating the jammer’s subspace.

Jammer Model: The rate advantage afforded by the absence
of a jammer estimation phase is shown on the following model:
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Fig. 1. Trade-off between the relative achievable rate r and the smallest SNR
for which the different receivers satisfy the criterion MER  17.5% when
mitigating a single-antenna barrage jammer 1 .

1 Strong single-antenna barrage jammer: In this model, a
single jammer with a single antenna transmits i.i.d. circularly-
symmetric complex Gaussian noise over the entire coherence
interval, with a relative receive strength that exceeds the receive
strength of the average UE by ⇢ = 30 dB.

Baselines: The following receivers are used as baselines:
G-POS-BOX: This receiver serves as a performance upper

bound. It works analogous to SANDMAN but is furnished with
ground-truth knowledge of the jammer channel J, and fixes
P̃

(t) in line 7 of Alg. 1 to the optimal projector P = IB�JJ
†.

POS-BOX: This receiver uses a protocol in which, at the
beginning of every coherence interval, the UEs do not transmit
for L channel uses (at cost of a reduced D = K � U � L).
The receive matrix YJ 2CB⇥L from this period is used to
estimate the jammer subspace as the strongest I left singular
vectors of YJ . The jammer is then mitigated by projecting
subsequent receive signals onto the orthogonal complement
of the estimated subspace, and by performing LS channel
estimation and FBS-based data detection with a box prior
(analogous to SANDMAN) in that projected space.

All algorithms run for tmax = 30 iterations.

Results: Fig. 1 depicts the results. To assess the rate advan-
tage afforded by the absence of a jammer estimation phase,
we consider the tradeoff between the SNR threshold for which
a receiver satisfies the criterion MER  17.5% and the ratio

r =
K � U � L

K � U
(21)

that is the number of samples K�U�L available per coherence
interval for data transmission, normalized by the maximum
number of samples K � U available when using orthogonal
pilots and no jammer estimation phase. Clearly, r translates
directly to achievable data rate (in bits/s). Both SANDMAN
and G-POS-BOX do not have a jammer estimation phase
(L = 0) and hence have r = 1. In contrast, the performance
of POS-BOX improves as L is increased to obtain a better
estimate of the jammer subspace, at the expense of r. The
results show that SANDMAN, which utilizes the receive data of
the entire coherence interval to estimate the jammer subspace,
achieves virtually the same performance as G-POS-BOX, with
the required SNR differing only by about 0.1 dB. POS-BOX, in
contrast, can use only a subset of the receive samples to estimate



the jammer subspace, and so performs much worse even when
sacrificing a large part of the coherence time for jammer
estimation. To approach the performance of SANDMAN up
to 0.5 dB, G-POS-BOX has to accept a 20% rate reduction. G-
POS-BOX does not even outperform SANDMAN when using
virtually the entire coherence interval for jammer estimation (at
the expense of a vanishing rate r). This shows that SANDMAN
can leverage the same receive data twice—for jammer esti-
mation and for data detection—without impairing performance.

C. Mitigating smart single-antenna jammers
In this experiment, we analyze SANDMAN’s ability to

mitigate smart jammers that would suspending jamming during
a potential training phase, and that target only specific parts
(such as the pilot phase or the data phase) of the transmission.

Jammer Model: Besides a strong barrage jammer ( 1 ), we
consider the following types of smart (time-variant) jammers:

2 Strong single-antenna data jammer: A single-antenna
jammer that does not jam the pilot phase but transmits i.i.d.
complex Gaussian noise during the data phase with ⇢ = 30 dB.

3 Strong single-antenna pilot jammer: A single-antenna
jammer that does not jam the data phase but transmits i.i.d.
complex Gaussian noise during the pilot phase with ⇢ = 30 dB.

Baselines: Besides G-POS-BOX (cf. Sec. IV-B), the follow-
ing baselines are considered:5

LMMSE: This receiver does not mitigate the jammer and so
provides a lower bound on performance. It performs LS channel
estimation and (jammer-oblivious) LMMSE data detection.

MAED 2.0: This is an extension of MAED [13] for single-
and multi-antenna jammers. In contrast to SANDMAN, it uses
joint channel estimation and data detection (JED), which leads
to better performance at increased computational cost [28].6

G-POS-JED: A performance upper bound for MAED 2.0. It
works analogous to MAED 2.0 (using JED) but uses ground-
truth knowledge of J for the optimal projector P = IB � JJ

†.
All iterative algorithms run for tmax = 30 iterations.

Results: Fig. 2 depicts the results. As expected, the non-
mitigating LMMSE receiver always has by far the worst
performance, though it does not suffer equally under all
jammers. G-POS-BOX and the G-POS-JED use ground-truth
knowledge to null the jammer perfectly in all cases, so that
their performance does not depend on the jammer transmit
signal. Consequently, their BER curves are identical for all
types of single-antenna jammers ( 1 - 3 ), with G-POS-JED
slightly outperforming G-POS-BOX due to the advantage of
JED over separate channel estimation and data detection. The
results show that SANDMAN and MAED 2.0 both achieve
virtually the same performance as their respective performance
upper bounds (which rely on ground-truth jammer knowledge)
for all simulated jammer types. This implies that SANDMAN
and MAED 2.0 are able to estimate the jammer subspace
essentially perfectly, regardless of when the jammer is active.

5Training-period based mitigation methods are incapable of mitigating smart
jammers, see [13], which is why our comparison omits POS-BOX.

6A full description of MAED 2.0 will be provided in an extended journal
version of this paper which is in preparation.

D. Mitigating distributed jammers and multi-antenna jammers
Jammer Model: We consider both distributed and multi-

antenna jammers. The difference is that distributed jammers
cannot form beams while multi-antenna jammers can use dy-
namic beamforming to change their subspace but are colocated.

4 Distributed barrage jammers: We consider four dis-
tributed single-antenna jammers that transmit (independent of
each other) i.i.d. Gaussian noise with ⇢ = 30 dB (each jammer
transmits at 24 dB more receive power than the average UE).

5 Jump-varying beamforming jammer: We consider a single
four-antenna jammer that, at every instant k, transmits only on
a random subset of between one and three of its antennas. This
is achieved by selecting only a random subset of the rows of its
beamforming matrix Ak (see (2)) to be nonzero (nonzero rows
have i.i.d. Gaussian entries), and by switching to a completely
new matrix Ak at random instances k1, . . . , kM ,M = 5. The
jamming vectors w̃k have distribution {w̃k}

i.i.d.⇠ CN (0, II).
6 Continuously-varying beamforming jammer: This (single)

jammer also has four antennas. Only the leftmost column
ak,1 of its beamforming matrix Ak (see (2)) is nonzero.
For randomly selected instances k1, . . . , kM ,M = 5, with
km < km+1, the vector ak,1 is fixed to randomly and
independently drawn vectors {a(m)}Mm=1. For km < k < km+1,
ak,1 interpolates smoothly between a

(m) and a
(m+1). The

jamming vectors w̃k have distribution {w̃k}
i.i.d.⇠ CN (0, II).

Baselines: We consider the same baselines as in Sec. IV-C.
All iterative algorithms run for tmax = 50 iterations.

Results: Fig. 3 depicts the results. The LMMSE receiver
has again by far the worst performance with double-digit BER
percentages. Because they have to null four dimensions, G-POS-
JED and G-POS-BOX perform slightly worse than in Sec. IV-C
(where they only have to project away one dimension), but
they again null all jammers perfectly. In case of the distributed
barrage jammers ( 4 ), SANDMAN and MAED 2.0 perform
again very close to their respective performance bounds,
meaning that they mitigate the jammers almost perfectly.
SANDMAN and MAED 2.0 are also able to successfully
mitigate the dynamic multi-antenna jammers ( 5 , 6 ): They
achieve BERs significantly below 1% at high SNR, even if
the BER eventually levels off a bit above 0.1%. But the
jammers 5 and 6 are incredibly difficult to mitigate, since the
jamming subspace is changed repeatedly, with some subspaces
potentially being used only for extremely brief amounts of time.

V. CONCLUSIONS

We have proposed joint jammer mitigation and data detection
(JMD), a novel paradigm for mitigating jammers in MIMO
systems that does not use a dedicated jammer training period.
As a result, JMD is able to mitigate smart jammers regardless
of (i) when they are active and (ii) how they vary their
multi-antenna transmit beamforming. We then have proposed
SANDMAN, an efficient JMD-type algorithm for jammer
mitigation in the MU-MIMO uplink. Simulation results for
a variety of different jammers types have demonstrated the
utility of the JMD paradigm, and of SANDMAN in particular.
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Fig. 2. Uncoded bit error-rate (BER) vs. SNR performance of different receivers when mitigating different kinds of smart single-antenna jammers.
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Fig. 3. Uncoded bit error-rate (BER) vs. SNR performance of different receivers when mitigating distributed jammers or dynamic multi-antenna jammers.
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