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Abstract—Low-resolution analog-to-digital converters (ADCs) in
massive multi-user (MU) multiple-input multiple-output (MIMO)
wireless systems can significantly reduce the power, cost, and
interconnect data rates of infrastructure basestations. Thus, recent
research on the theory and algorithm sides has extensively focused
on such architectures, but with idealistic quantization models.
However, real-world ADCs do not behave like ideal quantizers,
and are affected by fabrication mismatches. We analyze the
impact of capacitor-array mismatches in successive approximation
register (SAR) ADCs, which are widely used in wireless systems.
We use Bussgang’s decomposition to model the effects of such
mismatches, and we analyze their impact on the performance of
a single ADC. We then simulate a massive MU-MIMO system
to demonstrate that capacitor mismatches should rot be ignored,
even in basestations that use low-resolution SAR ADCs.

I. INTRODUCTION

Millimeter-wave frequencies provide access to large portions
of bandwidth and are therefore targeted for fifth-generation (5G)
and beyond-5G wireless systems [1], [2]. Combined with multi-
user (MU) massive multiple-input multiple-output (MIMO),
one cannot only achieve high-data-rate communication with
multiple user equipments (UEs) in the same frequency band,
but also combat the strong path loss at such carrier frequen-
cies by means of beamforming [3], [4]. However, the large
number of antenna elements and radio-frequency chains in
massive MU-MIMO basestation architectures combined with
large bandwidths poses significant practical implementation
challenges in terms of system costs and power consumption.

Quantized massive MU-MIMO [5]-[7] has become a popular
means to reduce the costs and power consumption in the
analog front-ends (FEs). In fact, decreasing the analog-to-digital
converter (ADC) resolution relaxes the design requirements of
the entire analog FE, thereby reducing power consumption and
silicon area for both analog FEs and digital processing. Thus,
research has mainly focused on understanding the effects of
coarse quantization and on the design of corresponding base-
band algorithms that mitigate quantization artifacts. However,
the impact of quantization non-idealities that arise in real-world
ADC:s has been routinely ignored in the literature.
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The successive approximation register (SAR) ADC [8] is the
data converter of choice for many communications applications
supporting bandwidths of tens of megahertz to low giga-
hertz [9], [10]. The popularity of SAR ADCs is due to several
reasons: First, they require low energy per conversion step.
Second, they scale well to smaller semiconductor technology
nodes. Third, they are suitable for pipelined and interleaved
architectures, which enable one to achieve even higher sampling
rates [11]-[13]. However, as all real-world data converters, SAR
ADC:s are not ideal quantizers and are affected by imperfections,
which already occur during manufacturing. Specifically, the
capacitors used for data conversion suffer from mismatches,
i.e., the capacitor values of the fabricated circuit deviate from
the specified ideal ones, which results in distortions of the
quantization function. The impact of such capacitor mismatches
on wireless communication systems is, until now, unexplored
territory.

A. Contributions

In this paper, we study the impacts of capacitor mismatches
in SAR ADCs on massive MU-MIMO wireless systems. To
this end, we first propose the effective resolution (EFR), a
new figure of merit (FoM) that better reflects the inherent
trade-off between quantization noise and clipping artifacts
than traditional metrics, such as the effective number of bit
(ENOB) [10]. We then use Bussgang’s decomposition [14] to
model most-significant-bit (MSB) capacitor mismatches, and
we analyze the impacts of quantization, clipping, and capacitor
mismatch on the EFR of a single SAR ADC. Finally, we present
simulation results for a quantized massive MU-MIMO wireless
system in order to demonstrate that capacitor mismatches in
SAR ADCs can have a significant performance impact and
should therefore not be ignored.

B. Notation

Matrices are written in bold uppercase, column vectors in
bold lowercase, and sets in calligraphic letters; the Frobenius
norm of a matrix A is ||Al|g. Expectation is denoted by E[-].
We use ¢, (+) to refer to the probability density function (PDF)
of a zero-mean Gaussian random variable X ~N(0,0%) with
variance 0% . The PDF of a standard Gaussian N(0, 1) is ¢(-),
and Q(-) = [ ¢(x)dx is the Q-function. We write u(-) for the
unit step function, () for the Dirac distribution, and rectq 4)(-)



for the rectangle function that is 1 on [a, b] and 0 elsewhere.
The derivative of a function f is denoted by f.

II. PREREQUISITES

We start by analyzing the performance of a single, ideal
ADC, where we only model quantization and clipping. To
this end, we first summarize Bussgang’s decomposition [14],
which we use in our performance analysis. We then introduce
a meaningful FoM in order to assess the performance of such
an ideal ADC. The analysis of a SAR ADC with capacitor
mismatch is provided in Sec. III.

A. A Primer on Bussgang’s Decomposition

Bussgang’s decomposition models the output of a non-
linear input-output transfer function (TF) f applied to a zero-
mean Gaussian random variable X with variance o2 as a
superposition of a linear term scaled with Bussgang gain /3

and a statistically uncorrelated distortion D as [15]
f(X)=BX+D. )]

Here, f will eventually model the ADC’s TF. By multiplying
both sides of (1) by X and evaluating its expected value, it
can be shown that the Bussgang gain (3 is given by

(é) E[Xf(X)} (i) E[f/(X)]

@)
Ox

Here, (a) follows from the requirement of D being uncorrelated
with X and (b) from Stein’s lemma [16]. Note that (a) holds for
any zero-mean random variable X whereas (b) requires X to
be Gaussian. In order to assess the performance of a nonlinear
function (e.g., the quantizer of an ADC), we are interested in
characterizing the power of the distortion:!

E[D?*]=E[(f(X) - 8X)’] =E[f*(X)] - B?0%. (3
Note that 3 from (2) also minimizes E[D?]. From (2) and (3),
we notice that only two quantities need to be known in order

to evaluate the power of the distortion D, namely E[f’(X)]to
compute the Bussgang gain 8 and E[f?(X)].

B. Model for an Ideal ADC

We will now derive Bussgang’s decomposition for an ideal
N-bit uniform symmetric mid-rise quantizer with an input
range of [—1,1]; any value outside this range will be clipped.
This ideal ADC model will be used in Sec. II-C to introduce
the FoMs and also serve as a baseline. For x > 0, we have

2N=1 g

fro(z) = +AZ (z — kA), )
A 2N 1—1

Fholw) = o) + A ; 6 — kA), ®)

where A = 217V is a least significant bit (LSB) step width.
Note that it is sufficient to consider the case x > 0 as f is

INote that the distortion power E[D?] might include a bias term if f(X)
has nonzero mean. This bias could be removed by subtracting E[f(X)]? from
IE[DQ], but is ignored throughout the paper for the sake of simplicity.

an odd function; this also means that f’ is an even function.
Splitting equations with the sign of x is not necessary for the
analysis of an ideal ADC, but will significantly simplify our
derivations when considering mismatches in Sec. III.

Using (5), we can write (2) as follows:

+oo +oo
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Here, (a) exploits symmetries in the functions f’ and ¢, , and
(b) follows from the fact that ¢y (t) = -=d ().

We note that (6) is a partial Riemann integral of ¢,, on
the ADC range [—1,1]. When taking the limit N — oo,
corresponds to 1 — 2Q(1/0x ), which is the Bussgang gain for
an ADC with infinite resolution and clipping only [14].

With the expression for 3 in (6), we can now follow a similar
procedure to evaluate E[f?(X)]. We first write

oN-1_1 A 2
2.(z) = <+kA) rect x
f2o(2) kzz;) 5 kA, (k+1)A] (T)
A2
+(1 — 2) u(x — 1), @)
from which we obtain the following result:
oN-1_1 A 2 (k+1)$
E[f? = =
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Now that we have an expression for the Bussgang gain 3 and
]E[ (X )], we can insert these expressions into (3) to obtain
an analytical expression for the distortion power IE[DQ(X )]

C. Figures of Merit

In order to analyze the effects of non-idealities in an ADC,
it is key to utilize a meaningful FoM. A common metric used
to analyze the error introduced by a nonlinear distortion and
(possibly) noise is the mean-squared error (MSE) defined as
MSE £ E[(f(X) — X)?]. The MSE directly compares f(X)
with X, which suffers from the limitation that f(X) and X
remain to be correlated, which is prone to overestimating the
effect of the distortion caused by nonidealities.

In order to circumvent the limitations of the MSE, we
consider the signal-to-distortion ratio (SDR) defined as

E[(BX)*] B3
E[(f(X) - BX)} E[D?
where the denominator is the error when the scaling effect of
Bussgang’s decomposition in (1) is taken into account.

Another common FoM used in the ADC literature, known
as the effective number of bits (ENOB) [10], measures the
effective resolution that the converter allows to reach when
quantization, noise, and non-linearities are all taken into

SDR £ 9)
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Fig. 1. Effective resolution (EFR) of an ideal N-bit ADC with quantization
and clipping only, dependent on the input standard deviation ox .

account. The ENOB refers to the resolution an ideal noiseless
quantizer needs to have in order to reach the same signal-
to-noise-and-distortion ratio (SNDR) as the ADC we want
to test when a full-scale sinusoid is applied at its input. Two
important assumptions the ENOB makes is that the quantization
error is independent of the input and uniformly distributed
in [-A/2,+A/2]. While the ENOB presents some practical
advantages (e.g., it can be measured with a full-scale sinusoid
at the input), it is not well-suited as a performance indicator for
communication systems for the following two reasons. First,
the ADC input signals are typically not sinusoids but rather
Gaussian-like [17]. Second, the ENOB lacks a dependency
on the input amplitude (or gain), which renders it incapable
of characterizing the inherent trade-off between quantization
artifacts and amplitude clipping.

In order to circumvent the limitations of ENOB, we can
utilize the SDR from (9) to postulate a novel FoM that is related
to resolution. Concretely, we propose the effective resolution
EFR (measured in bits) defined as follows:

prp & SDRas+10log,(2(1—2))  SDRys+3.59
- 2010g;,(2) T 6.02

with SDRgg = 10log,o(SDR). The denominator ensures that
halving the amplitude of the distortion compared to the one of
the wanted signal leads to one additional bit of resolution (this
principle is also used in the ENOB definition). The offset in the
numerator ensures that a 1-bit quantizer has an EFR of 1b. Note
that the SDR of a 1-bit quantizer does not depend on the input
amplitude (determined by ox), which makes the correction
factor meaningful when considering different input gains.

(10)

D. EFR of an Ideal ADC

In order to analyze the effect of non-idealities in ADCs,
we need an ideal reference. For this purpose, we now briefly
discuss the EFR for the N-bit ideal ADC with input range
[—1,+1], where we only consider quantization and clipping as
in Sec. II-B. In Fig. 1, we see that an /V-bit quantizer reaches an
EFR close to N only for low resolutions. For higher resolutions,
the quantization levels close to the clipping boundaries —1 and
+1 cannot be fully exploited as an increase in input power
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Fig. 2. A high-level block diagram of a SAR ADC.

would lead to more clipping artifacts. We also see that there
exists an optimum input amplitude (determined by o x in Fig. 1)
that trades off quantization errors versus clipping artifacts—this
optimum depends on the ADC’s resolution.

III. SAR ADC MISMATCH MODEL

We now briefly present the operating principle of a successive
approximation register (SAR) ADC and discuss the origin of
capacitor mismatches. We then propose a mathematical model
to analyze the impact of such mismatches. Finally, we present
numerical results for both the model and simulations.

A. Basics of SAR ADC Operation

A SAR ADC operates in two phases. In the first phase
(the tracking phase), the ADC follows the input voltage and
samples it at the end of this phase when the ADC sampling
switches open. In the second phase (the conversion phase),
the ADC performs a binary search to sequentially determine
the bits associated with the sampled voltage. The way of
implementing this binary search is charge-sharing, achieved by
capacitor-array (referred to as CDAC for capacitive digital-to-
analog converter) switching. Fig. 2 shows a high-level block
diagram of a SAR ADC. Like most modern analog circuits,
SAR ADCs are implemented differentially (as opposed to
single-ended implementation). This means that the voltage we
want to digitize is no longer the voltage on a single node, but
the voltage difference between a positive and a negative node:

Via=VI =V and Vig=V -V, (1D

m m

The input range of the ADC is [—AVier, +AVier] with AV =
‘/ref,p - ‘/ref,n~

During the tracking phase, the sampling switches (on the left
of Fig. 2) are closed and all capacitors are connected t0 Vier,p.
After the sampling switches open, the voltage is captured in the
CDAC and conversion begins: V; 4 is a sampled version of Vi, 4,
and the comparator can convert the most significant bit (MSB).
If this first conversion yields a 1, i.e, if Viq4 > 0, then we
need to subtract AVis/2 from V; 4 to continue with the binary
search. To do so, we switch the MSB capacitor of CDACp
to Vier,n (CDACp is the upper capacitive array on Fig. 2). If the
MSB was 0, then we would do the same but on CDACy (lower
capacitive array on Fig. 2) to add AVj¢/2 to V; 4. One can then
perform the next comparison, and conditionally add or subtract
AVer/4 by switching Cysp/2 to Viegn on the corresponding



CDAC (depending on the comparison result). This process
repeats until the required number of bits has been converted.
Note that the discussed switching scheme is common in high-
speed designs as it only requires one reference voltage (Vier,n
is typically connected to ground), but other possibilities exist.?

B. Mismatches in SAR ADCs

When a SAR ADC is manufactured, the capacitors in the
CDACs do not have the exact (ideal) value they have been
designed for due to process variation [18].> Even if such
mismatches are a random process, there will be no averaging
effect: once a chip has been manufactured, its mismatches are
fixed and will affect the system in a deterministic way.

It is common to model the relative variation AC/C of a
capacitor’s capacitance value due to mismatch by a Gaussian
process with standard deviation [19], [20]

Ac

OAC/C m7
where W and L are the physical dimensions of the capacitor,
and Ac is a process-dependent constant. To minimize capacitor
mismatches, unit-capacitors are typically used, where the
smallest capacitor is implemented multiple times and connected
in parallel to create larger capacitors. Hence, doubling a
capacitor’s size is equivalent to doubling its area WL, therefore
dividing its relative variations by /2.

However, during the binary search performed by a SAR
ADC, a capacitor switched from Vg, to Vier,n induces a voltage
change to V; 4 proportional to its size. The largest capacitor
Cwiss has /2 times less variation than its subsequent capacitor
Cysg/2 on the CDAC, but induces a voltage change twice as
large. Therefore, Cysg mismatch induces a voltage error V2
times larger than its subsequent capacitor. The same reasoning
holds every time the capacitor size scales down by a factor
of two in the CDAC. Due to this behavior, MSB capacitor
mismatch has the largest influence on the conversion result.

Fig. 3 shows the input-output TF f of a Sb-SAR ADC with
25% mismatch on its MSBs. Note that this is a large mismatch
value used for illustration purposes only. The positive array
CDACp has a +25% increase on its Cysp, while CDACy has
—25%. Before discussing the shape of the TF f, we make
the observation that the MSB mismatch on the CDACp and
CDACy can only influence the conversion outcome for positive
and negative input voltages respectively: this is due to the fact
that the MSB is the sign of the input.

When the mismatch is positive, the ADC over-corrects during
the first quadrant-shift of the binary-search. This leads to input
values close to zero being compressed to the closest-to-zero
output, creating a saddle-point (see the x > 0 side in Fig. 3).

(12)

2The mismatch model presented in Sec. III-C can still be used for other
switching strategies or some other types of ADCs. For example, residue
amplifier mismatches of a pipelined ADC can also be modeled as capacitor
mismatches.

3Comparator offset is another typical source of mismatch in SAR ADCs,
but its effect only shifts the entire TF by the amount of voltage mismatch
the comparator exhibits. This source of mismatch does not cause nonlinear
distortion and it is, thus, common to fix its effect with digital post-processing.
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Fig. 3. Input-output function of a 5b-SAR ADC with 25% MSB mismatch.

It also extends the range of the ADC. When the mismatch
is negative, the ADC under-corrects the first quadrant-shift.
Outputs close to zero are then unreachable as shown on the
x < 0 side in Fig. 3. Inputs close to the limits of the ADC
range will also be clipped as the under-correction makes them
larger than they should after the first shift. Overall, digital
outputs close to zero are unreachable and the ADC’s range is
reduced. We also see in Fig. 3 that mismatches can lead to a
fixed shift of the TF—to the right in the case illustrated here.

C. Model for SAR ADC with MSB-Mismatch

As explained in Sec. III-B, MSB mismatch has the strongest
impact on the final conversion result. To disentangle the effect
of the MSB mismatch from the effect of quantization itself,
we will model the ADC TF as a piecewise linear function
that includes the effect of clipping and the displacement from
the ideal TF due to MSB-only mismatch. We will denote m4
the TF shift induced by mismatch of the MSB on the positive
CDAC and my the one on the negative CDAC

_ 1 ACuss,+ _ 1 ACusp,—

= and mg = ,
2 Cuysp,+ 72 Cuss,—

my (13)
where the 1/2 factor comes from the first quadrant shift
amplitude of AVi/2. For > 0, the transfer function f

for both possible signs of m; are

fmi>o0(x) = (x—my)recty, 14m,)(2)+u(z—1-m;)

14
Jmi<o(z) = (x—m1)recty 1 ym, (z)+u(z—1-my), (14

where the resulting functions are shown in Fig. 4 for a 25%
capacitor mismatch, i.e., for |m4|= 0.125.

On the z < 0 side, we can write the same equations by
replacing m; by mq and mapping f(x) to —f(—xz). However,
there is no need to write this explicitly as we can simply re-
assemble the different component together at the end of the
calculation as done for (6) and (8). Now that we have the
mismatched TF f, we take its derivative:

frlnl zo(f) = TeClim, , 14m,] (x)

15
frln1<0(ff) = recto,14m,] () — mi1é(z). (1s)
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Fig. 4. Transfer functions depending on the sign for MSB mismatch modeling.

After integration, we can calculate the Bussgang gain

Q(ZE) — Q(HE)

ox ox

+Q(%) - Q(l—;%)?
Q(

my > 0,mg >0

3

) - Qi)

ox

fQ(M) _

- Qi) — mig(0)
+Q(22) - Q).
L- Qi) - Qi)

+ o
—m29(0),

To compute the SDR, we also need E[f?(X)]. We have

31120(:5) = (a:—ml)z 1eCt{m, 14m,) (z)+u(z—1—my)

1 <0(@) = (=m1)? rectg 1. m,) (@) +u(z—1—m)
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mq <O,m2 < 0.

a7

and can calculate E[f?(X)] by integrating only the z > 0
side and add together the separate m; and mg component to
obtain the final result. Let us consider the following example
with both mismatches being negative and F(x,m) = f2 (x)
to put the emphasis on the m dependency:

0
B[00 ma < 0] = [ Frco(—tma)ny (0)

— 00

+oo
+ / Fm<0(t7 m1)¢dx (t) dt
0

“+o0
= / (Fm<0(t, m2) + Frn<0(ta ml))(bax (t) dt.
0

Hence, we only integrate for positive values of x:

E[f2,50(X)] = (6 +m3) (Q <Z:> - Q<1+m1

|
(2o () o2

and

]E[f,2m<0(Xﬂ =

ox +mi

QT )1 - o -

+ oy ((m1—1)¢(1+m1)— 2m1q5(0)>. (20)
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With those last results, we obtain an expression for E[ 2(x )]
by adding the m; and mg component as shown in (18).
Finally, the distortion power E[D?]is obtained by inserting (20)
together with the Bussgang gain from (16) into (3).

D. EFR of a Mismatched SAR ADC

With our model from Sec. III-C, we can directly compute the
EFR for a given mismatch on the MSB for any input gain ox.
Fig. 5(a) shows the EFR we can reach without quantization or
clipping, and for a fixed mismatch on both MSB capacitors
of |my 2| = 0.125 as described in Sec. III-C. Note that the
mismatch value corresponds to the size of an LSB for a 4-
bit data converter. In general, it is making sense to compare
a mismatch value to the size of an LSB step width from
the quantizer we consider. This consideration is typical for
analog designers while implementing a SAR ADC: one aims
at limiting variations to a fraction of an LSB, as it avoids
missing output codes and ensures monotonicity in the TF of
the data converter [18].

Fig. 5(b) shows the maximum achievable EFR as a function
of |m|. We also show at which input gain ox this peak EFR is
achieved. We first observe that the optimal gain oy is increasing
with |m|. This is due to the trade-off between the non-linearity
around zero and clipping artifacts: stronger mismatch makes it
desirable to allow for larger clipping artifacts to avoid the jump
(or saddle point) around zero. Examining Fig. 5(b) closely also
reveals that the slope of peak EFR is of —1 bit/octave. This
corroborates that comparing |m| with the size of an LSB step
is a meaningful procedure: halving the MSB mismatch leads to
one additional bit of resolution, which is equivalent to halving
the size of the LSB step width.

A 4-bit mid-rise SAR ADC following the model discussed
in Sec. II-B with random mismatch on all its CDAC-capacitors
has been simulated. The standard deviation o;,, of the random
mismatch affecting the MSB is defined as in (13). As explained
in Sec. III-A, the standard deviation of capacitor variations
is divided by /2 every time the capacitance value is halved
along the CDAC. Results are shown in Fig. 5(c), where we plot
the 10%-quantile of the achieved EFR over CDAC-capacitors
mismatch realizations. As mismatches are fixed once a chip
is fabricated, one needs to consider a worst-case metric that
will determine the production yield. We use the 10%-quantile
which leads to 90% of fabricated ADCs exhibiting an EFR
greater or equal than what is shown in Fig. 5(c).

With the 10%-quantile measure, we notice that capacitor
mismatch starts to significantly impact the EFR when o, is
of the order of a tenth of an LSB (A = 0.125 in our 4-bit
case). Similar results were obtained for all other resolutions in
the simulated range (2b to 6b). As for the case of the MSB-
mismatch-only model, we notice that the gain ox leading to
the highest EFR increases with ¢,,, but, due to quantization,
with a bounded maximum EFR. The maximum value reached
at low mismatch standard deviations o, corresponds to what
was shown theoretically in Sec. II-D (cf. Fig. 1). In summary,
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our simulation results confirm the intuition gained from the
proposed mismatch model, and show the impact of using a
worst-case measure like the 10%-quantile.

IV. IMPACT OF SAR ADC MISMATCH ON QUANTIZED
MASSIVE MU-MIMO SYSTEMS

As shown in Sec. III, capacitor mismatches can have a
considerable impact on the effective resolution of a single
SAR ADC. We now show that the same holds true for a
quantized massive MU-MIMO wireless system, meaning that
SAR ADC mismatches should not be ignored. To this end, we
first introduce the system model and, then, show simulation
results for the case of 4-bit ADCs with mismatches.

A. System Model

We consider a mmWave massive MU-MIMO uplink scenario
in which U 16 single-antenna user equipments (UEs)
transmit data to a B = 64 antenna basestation (BS) with
a uniform linear array. We assume that the UEs utilize power
control to stay within £3dB from the average power E;.
We use a QuaDRiGa mmMagic channel model [21] with 1°
minimum angular separation between the UEs. We assume that
the BS has perfect channel state information and uses a linear
minimum mean-square error (LMMSE) detector. We consider
the following discrete-time frequency-flat system model:

y = f(z)

Here, y € AP is the BS receive matrix with output code
alphabet A after the ADCs transfer function f, which includes
quantization, mismatch, and clipping applied element-wise
to the ideal receive vector z € CB, H € CB*VU is the
effective channel matrix including power control, s € SUY
contains the transmitted 16-QAM data symbols, and n € CZ
models thermal noise and is assumed to contain i.i.d. circularly-
symmetric complex Gaussian entries with variance Ny. We
define the average receive signal-to-noise ratio (SNR) as

2
[ B,
BN,

Note that the SAR ADC TF f in (21) is applied entry-wise
to the real and imaginary part of the ideal input vector z,

with z = Hs + n. 21

SNR & (22)

which means that for B BS antennas, we model an array of
2B SAR ADCs. As discussed in Sec. III-D, we define o;,,, as
the standard deviation of the Gaussian distribution modeling
the effect of the MSB mismatch as defined in (13).

B. Simulation Results

We now show simulation results for the case of 4-bit SAR-
ADC:s. Different values for o,, have been simulated, with
values being different fractions of an LSB-step A = 0.125.
We use the uncoded bit error rate (BER) as our performance
metric. It is important to note that we report the 10% worst-
case uncoded BER, the same way as in Fig. 5(c), because
mismatch does not have any averaging property once a chip is
fabricated. Since a lower uncoded BER is better than a higher
one, this 10% worst case corresponds to the 90%-quantile.

In Fig. 6(a), we see the 90%-quantile BER when mismatch
is present on all CDAC capacitors in all SAR ADCs. We see
a significant influence of SAR ADC mismatch: A standard
deviation o, of A/2 still leads to an uncoded BER floor of
about 1%, which may be unacceptable for real-world wireless
communication systems.

In Fig. 6(b), we observe similar behavior from the same
simulation setup but where we only consider mismatches in the
MSB capacitors. When comparing Fig. 6(a) to Fig. 6(b), we
see that considering only MSB mismatch well-approximates a
model with mismatches in all CDAC capacitors; this confirms
the fact that only modeling the MSB mismatch, as in Sec. III-C,
is a sensible approximation. We also notice that, for larger
mismatches, the BER difference between the MSB-mismatch-
only and the all-capacitor-mismatch models increases. Such
large mismatches, however, would anyway be avoided in
practical systems and are therefore less relevant.

In Fig. 6(c), we show the cumulative distribution function
(CDF) of the uncoded BER at an SNR of 15dB. Throughout
this work, we chose to use o, and a 10% worst-case BER
performance as our performance metric. Once a target BER
specification has been set, all of the fabricated ADCs that
are not meeting the specifications have to be discarded. The
production yield of an ADC design is therefore defined by the
proportion of designs not meeting the target specifications, no
matter how good the rest of the designs happen to be.
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Fig. 6. Massive MU-MIMO simulation with 4b SAR ADC showing the 90%-quantile of the achieved uncoded BER.

V. CONCLUSIONS

We have analyzed the impact of capacitor mismatches
caused by semiconductor process variations in widely-used
successive approximation register (SAR) analog-to-digital
converters (ADCs). We have developed an analytical model
based on Bussgang’s decomposition for the most-significant
bit (MSB) mismatch of a SAR ADC, and we have analyzed
the effects of quantization, clipping, and mismatches on a
single ADC with a new figure of merit: the effective resolution
(EFR). Our EFR results for a single SAR ADC reveal trade-offs
between quantization errors, mismatch distortion, and clipping
artifacts that all depend on the ADC’s input gain. Finally, we
have demonstrated the impact of SAR ADC mismatch on the
bit error rate (BER) performance of a quantized massive MU-
MIMO communication system. Our simulation results reveal
that SAR ADC mismatches should not be ignored as they
significantly affect the BER, even for low-resolution ADCs.

In practice, ADC designers typically must adhere to stringent
specifications in order to limit the impact of process variations
on ADC performance. Such strict constraints, however, are
against the goal of utilizing simple, low-cost, and energy-
efficient analog front-end designs in massive MU-MIMO
systems with potentially hundreds of ADCs. Our work reveals
that one can take capacitor mismatch into account when
designing systems with SAR ADC arrays, which has the
potential of extracting relaxed specifications—this paves the
way for more efficient ADC array architectures.
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