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Abstract—Hyperspectral imaging (HSI) outperforms the abil-
ity of RGB and multi-spectral imaging by conveying informa-
tion through hundreds of contiguous wavelength intervals. This
emerging technology can enable real-time monitoring of spatially
resolved spectral information of materials. This paper explores
the use of HSI classification to analyze the spectral structure of
the human skin of fingers. The spectral reflectance of human
skin is believed to vary significantly between individuals, but
finding a typical signature for human skin reflectance and what
its distribution is across a population are open research questions.
The skin spectra acquired through a spectrograph from a diverse
population are proven to be interspersed, thus the system using it
would not be challenged by ethnicity. Existing related studies are
using spectrophotometers only to explore features of human skin
reflectance. Rather than use biochemistry, this research enables
the design of image-based hand-crafted features to determine its
representation. Although the lack of a biochemical component
limits identity verification to extrinsic factors, reflectance has the
potential as an identifying factor. As the first research to use
HSI to assess reflectance, we focus on determining the extent
of that potential, including its potential use in machine learning
applications for identity verification.

Index Terms—SKkin reflectance, hyperspectral biometrics.

I. INTRODUCTION

The trustworthiness of biometric technologies has been
challenged by advancing spoofing methods, e.g., fingerprint
scanners can be deceived by sophisticated 3D printing tech-
niques [1]-[3]. Such deceptive practices, referred to as presen-
tation attacks, pose a significant threat to the correct operation
of biometric systems, demanding robust liveness detection
techniques to detect malicious attempts. The 2024 Identity
Fraud Report discusses the enormous increase in digitally
forged identities in 2023 due to the increasing availability
of user-friendly generative Al tools. Enriching human iden-
tity with more discerning characteristics can overcome these
issues.

Each individual is inherently different from one another
based on certain factors including, but not limited to, his/her
genetic makeup, environment, and lifestyle. As such, the
biochemical composition of each person greatly differs. The
concentrations of these sweat components are person-specific
and can be exploited to differentiate individuals based on trace
amounts of sweat. In this paper, we focus on existing evidence
about the person-specific biochemical content of sweat, known
to contain various amino acids and other low molecular
weight compounds. These biomarkers can be detected in sweat
metabolites at wavelengths covered by imaging spectrometers.
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The content present in the sweat left behind, namely the amino
acids, has been used to determine the gender of the originator
as well as the number of people present at a crime scene. The
process involves a non-invasive analysis based on collective
responses from chosen metabolic compounds in sweat which
exhibits a great potential for biometric, cybersecurity, forensic
as well as medical applications. We review the scientific
literature on this topic.

HSI can analyze a wide spectrum of light; thus, hypercube
data will be able to provide a rich representation of the
subject’s identity and is inclined to discover hidden features
since it measures continuous spectral bands. Image analysis,
machine, and deep learning (transfer learning) algorithms will
be investigated. There is ongoing research on the idea of ac-
quiring in a contactless manner from the skin of fingertips and
processing it in the hyperspectral imaging (HSI) domain [4],
[5]. HSI technology not only can capture spatial information
that encodes extrinsic characteristics but also corresponding
spectral signatures that can encode intrinsic features unde-
tectable by traditional imaging systems [6], [7]. The spectral
reflectance of human skin is believed to vary significantly
between individuals, but finding a typical signature for human
skin reflectance and what its distribution is across a population
are open research questions. The skin spectra acquired through
a spectrograph from a diverse population are proven to be
interspersed, thus the system using it would not be challenged
by ethnicity. In darker-skinned subjects, spectra from an area
with no melanin (i.e., the palm) were found to exhibit the same
curvature as the plots of the back of the hand suggesting no
impact due to the skin tone [8]. NIST is also studying human
skin reflectance but using spectrophotometers only [9]-[13].
Although the lack of a biochemical component limits identity
verification to extrinsic factors, reflectance has potential as an
identifying factor. As the first research to use HSI to assess
reflectance, we could determine the extent of that potential,
including its potential use in machine learning applications
for identity verification [14], [15].

II. PREVIOUS USE OF BIOCHEMICALS FROM FINGER TIPS
FOR DISCRIMINATING AMONG INDIVIDUALS

Mass-spectroscopy-based methods, including bio-affinity
systems, have allowed researchers to measure up to hundreds
of metabolites in a single sweat sample, but due to the
need for reagents, these approaches are inconvenient, not
conducted in real-time, high in cost, and cause degradation
of the sample [16]. The technique separates metabolites using
liquid chromatography (i.e., chemical reagents) and detects
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them based on their unique mass-to-charge ratio and induced
fragmentation.

Although matching latent fingerprints has been a universally
accepted and reliable identification method, researchers have
demonstrated that pictorial comparison does not exploit the
information content in a latent fingerprint to its full potential.
In 2015, Huynh et al. directed attention to the biochemical
content in a fingerprint (i.e., concentrations of specific amino
acids) using a biocatalytic assay rather than analyzing only the
physical image [17]. Their work is the first proof of a system
that can use the content of sweat left on a surface to estimate
the gender of the originator. In 2018, Mindy et al. discussed
the use of biocatalytic enzyme cascades to differentiate people
based on lactate, urea, and glutamate metabolites detected
in sweat [16]. Results confirm that the levels of all three
markers sufficiently differ among people. In 2017, Agudelo
et al. proposed the use of amino acids in skin secretions as
a multi-factor identity verification mechanism for continuous
tracking [18]. In this system, a sensor is placed at the points
of skin contact with a device to acquire sweat samples. The
user’s profile is built by continuously measuring sweat levels
at various times of the day during a monitoring period. The
biochemical input is converted into output signals that are
then statistically analyzed to verify the identity of the person
holding or wearing the device. This approach is contact-based,
and the process is slow, with no imaging utilized.

In 2021, Brunmair et al. discussed a study on finger sweat
analysis that provides evidence about both the feasibility of
sampling unstimulated sweat from fingertips and its potential
as a rich source that can enable successful metabolic bio-
monitoring in humans [19]. In this work, more than a thousand
sweat samples were collected from 40 different individuals,
and a total of 250 metabolites were identified and verified -
by using external standards. Furthermore, dynamic metabolic
responses of individuals were successfully obtained regarding
a controlled ingestion of caffeine: subjects were asked to
fast, and then take various amounts of caffeine, and the
after-ingestion sampling occurred at intervals of 15 minutes.
The authors were able to detect 35 coffee-derived metabo-
lites. Principal component analysis (PCA) applied to those
metabolites revealed that the samples clustered according to
individuals, which indicates that the molecular composition
of sweat associated with a given person dominates variance
across multiple samples. These findings suggest that metabolic
phenotyping from the sweat of fingertips in conjunction with
mathematical modeling is a promising approach to obtaining
dynamic patterns from individuals.

III. HYPERSPECTRAL TECHNOLOGY AND ITS POTENTIAL
FOR HUMAN IDENTIFICATION

One example of this application is the determination of
ownership (authentication) for cell phone access based on the
measurable amounts of specific metabolic compounds on the
surface of the skin. The proposed analysis has great potential
in forensic science as well. Conventionally, latent fingerprints
are not readily visible and imaging often requires to use
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of intrusive manners. In certain instances, latent fingerprints
cannot be acquired by existing methods. Therefore, there is
interest in the forensic community to improve understanding
of the chemical character of latent fingerprints HSI techniques
provide a possibility to efficiently extract fingerprints in a
non-intrusive manner when coupled with well-designed image
analysis algorithms [20]-[24].

There is ongoing research on the idea of acquiring in a
contactless manner from the skin of fingertips and processing
it in the HSI domain [25]-[27]. HSI technology not only
can capture spatial information that encodes extrinsic char-
acteristics but also corresponding spectral signatures that can
encode intrinsic features undetectable by traditional imaging
systems. HSI has gained a lot of interest in various fields
including agriculture and medical research. HSI technology
can capture rich spectral information, for object identification,
chemical analysis, identifying materials, and even biometric
application. A hyperspectral image is a three-dimensional
hypercube over many contiguous spectral bands, unlike tra-
ditional color images, the rich 3-D channels empower HSI to
perform superior ability in feature extraction. HSI combines
imaging with spectroscopy by generating data in hundreds
of wavelengths to encode characteristics that are undetectable
with traditional imaging systems. Adopting HSI can provide
richer spectral information which can be used for several
applications including identifying gender-related features from
biometric images.

Before analysis, HSI data needs to be calibrated to ensure
the images produced are adjusted for the color of lighting
present; the camera software may have this option, but if it
does not then the data can be calibrated after it is captured.
The lighting is calibrated using a known white balance target,
which is imaged by the camera system. This target will
reflect a known percentage of light over the spectrum, for
example, 99% across the entire working spectrum of the
camera. Additionally, the system must correct for electrical
noise present from the sensor in the absence of light (called
dark current) by taking an image with the camera in the
absence of any light and using the resultant low-level noise
readings to adjust future measures. Uneven illumination can
occur, and the type of light source chosen needs careful consid-
eration; it should not have high-intensity peaks throughout the
spectrum or across the image plane. Human skin is known to
have both piezoelectric and pyroelectric properties originating
from the presence of polar keratin, elastin, and collagen
fibers with unique orientations, which enable human skin to
precisely perceive and differentiate mechanical and thermal
stimuli. All these microstructures and receptors enable human
skin to simultaneously perceive and differentiate between
multiple spatio-temporal tactile stimuli. In a recent study, a
snapshot of a hyperspectral imaging system for skin features
morphological analyses and temporal quantitative monitoring.
A typical HSI system uses white light sources to provide
illumination and collects the skin reflection images with a
snapshot hyperspectral camera. The camera used in this work
is assembled from a fast CMOS sensor and a Fabry-Perrot
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interference filter array, giving 16 specific sensitive bands
covering a spectral range from 470 nm to 630 nm. This
disclosure is not limited to this HSI camera system; it is
relevant to all imaging systems that have the capability of
imaging wavelengths of light that excite the metabolites of
interest.

A classic RGB image is an image represented by three
layers or bands: Red, Green, and Blue while the hyperspectral
image is represented by hundreds of bands. A hyperspectral
image is represented by a data cube of two spatial dimensions
(X' and Y) and a spectral dimension Z. Each pixel corresponds
to a spectrum of wavelengths, generally corresponding to the
visible and near-infrared domains (400 to 2500nm). NIR hy-
perspectral images have two spatial dimensions in the form of
a matrix, where each element of the matrix can be considered
to be a pixel of an image. A hyperspectral image file is known
as a hyperspectral cube, or a “hypercube”, as it is three-
dimensional. Further to the spatial dimensions of a hyperspec-
tral image is a spectral dimension. The data of such a file
contains both chemical and physical information. The terms
hyperspectral image and hypercube are used interchangeably
and denote a three-dimensional data structure containing two
spatial axes and one wavelength axis. A single scalar data
element in a hypercube is a voxel, but within the context of
a two-dimensional image from a single wavelength channel,
it is termed a pixel. The set of pixels at the same location
in all wavelength channels is a vector, traditionally called
a spectrum. The researcher must make decisions about how
much spectral resolution to use, and how much to discard. If
your camera collects 800 spectral bands, you must ask yourself
if you need all 800 or whether binning into 400 or 200, etc.
bands are sufficient [14], [28].

Standard Reference Materials (SRMs) are used to allow the
transformation of the instrument signals into reflectance or
absorbance units, permitting comparisons between different
sample spectra. SRMs are needed to calibrate and correct
raw spectra for variations in both wavelength and intensity
axes. Hyperspectral images can be unfolded to create a two-
dimensional dataset to make use of second-order analysis
procedures. Sets of spectra are removed from a hyperspectral
image one row of pixels at a time and arranged sequentially.
Standardization of images will guarantee that a uniform re-
sponse will be accomplished for all pixel areas at all frequen-
cies inside a solitary hyperspectral picture whether the raw
instrument signal will be changed.

IV. A LOOK AT THE SIGNALS AND THE CHALLENGES

Despite several benefits in various domains, hyperspectral
images are complex and their analysis is challenged by differ-
ent factors including high volume since they contain a large
amount of spatial and spectral information, data capturing
due to variations in illumination, sampling, and storage [29].
The light striking each pixel is broken down into many
different spectral bands to provide more information on what is
imaged. HSI datacubes can contain absorption, reflectance, or
fluorescence spectrum data for each image pixel. A spectral
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signature is a plot of the amount of light energy reflected
by an object throughout the range of wavelengths in the
electromagnetic spectrum. HSI data is spectrally sampled at
300 equally distributed wavelengths and extends beyond the
visible range.

For this research, we are using the Mason publicly available
database Finger Hypercubes Sanitization with Demographics
(FHSD) [30]. The finger hypercubes were collected from
the left and right index of 100 subjects along with their
demographics (age, gender, and ethnicity) across 281 channels
in an indoor environment with a white background under
proper lighting conditions using the Resonon bench-top Pika-
L hyperspectral imaging system (400-1000 nm) [31]. The
subjects are mostly students, their families, and friends who
are 18 years of age or older and free from metabolic diseases,
malfunction of the genetic disorder of metabolism, and who
are of normal weight. The data was acquired from individuals
with a wide range of ages and backgrounds. To better under-
stand the spectral variations three hypercubes were collected
at each instance for every subject. Sample RGB images are
illustrated in Fig. 1. The Resonon Pika-L instrument uses a
push-broom technique according to which all spectral data
about a specific location is recorded simultaneously, thus
potential distortions due to changes in illumination can be
excluded. However, chromatic aberration may occur.

Since hyperspectral cameras have several bands (i.e., chan-
nels) where bands contain a list of wavelengths measured in
nanometers. Examples of RGB images obtained at different
wavelengths are shown in Fig. 2. The wavelength-to-color
relationship and the conversion of the data cube to RGB
scheme were approximated by using Bruton’s tool [32], [33].

The proposed analysis consists of qualitatively comparing
spectral images and extracting statistical information from
user-defined regions of interest (ROIs) [26], [34], [35]. The
protocol focuses on finding the ROI that can optimally char-
acterize the uniqueness of the mean spectra across individuals.
HSI has been proven to be robust in determining the conditions
of substrates under degradation due to environment (e.g.,
temperature, light, humidity). Hyperspectral images depend on
the spectral characteristics of the light source illuminating the
targeted object as well as on the instrument’s properties. On
the other side, spectral reflectance is a property of the object
itself. The value of a pixel represents a precise measurement
of the portion of light that is reflected from the corresponding
location in a certain wavelength band. Within a single image,
we can extract reflectance versus the bands (i.e., wavelength)
and display each pixel’s spectral features, as illustrated in Fig.
3.

This paper can inspire researchers in other fields, such
as biomedical, to bridge spectroscopy with Al. The profiles
created for the application under study can enable the use
of algorithms that determine the similarity between an image
spectrum (representing an unknown material) and a reference
spectrum (representing a known material). For example, the
Spectral Angle Mapper (SAM) treats the spectral profiles
as n-dimensional vectors and computes the spectral angle
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Fig. 1. Sample hyperspectral finger data
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Fig. 2. Sample Finger Data Cube in the Visible Spectrum at different wavelengths: (a) 383 nm, (b) 452 nm, (c) 565 nm, and (d) 652.
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Fig. 3. Reflectance of three different pixels: (a) Pixel (350,200), (b) Pixel (400,200), and (c) Pixel (450,200).

between them. Smaller angles represent closer matches to
the reference spectrum. The Spectral Feature Fitting (SFF)
algorithm performs a band-by-band, least-squares fit between
each reference spectrum and the pixel spectra and produces a
root mean squared (RMS) image for each reference spectrum.

This research enables the creation of a new applied science
for human identity verification that can exploit both extrinsic
and intrinsic biometric characteristics, to overcome the limi-
tations of existing technologies often based on matching be-
tween absolute positions. This research aims to define human
identity through richer signals—not only spatial features but
also associated chemical content—captured by a hyperspectral
imager without the use of reagents. The knowledge produced
through this research bridges advances in chemical sweat anal-
ysis to imaging that enables Al-powered systems without the
inconvenient use of reagents. This project inspires a holistic
perspective on identity in which intrinsic factors complement
extrinsic factors to provide a more nuanced, accurate, and fair
digital representation.

Electromagnetic radiation (EMR) is energy in the form of
electromagnetic waves. The most familiar form of EMR is
visible light. When electromagnetic radiation strikes a solid,
liquid, or gas, it undergoes one or more of the three processes
including reflection, when the EMR is turned back from
the surface of the substance, absorption, when the EMR
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is absorbed by the substance, and transmission, when the
EMR passes through the substance. A portion of the light
is reflected, a portion may be absorbed while a portion may
be transmitted. The physical characteristics of the substance
and the wavelengths of the incident light determine how
much light is absorbed, reflected, and transmitted. Substances
interact with EMR in different ways. They absorb, reflect,
or transmit various wavelengths of EMR differently. Light
entering biological tissue undergoes multiple scattering and
absorption events as it propagates across the tissue. The
penetration depth of light into biological tissues depends on
how strongly the tissue absorbs light. Spectral distortion may
occur [23], [36].

V. CONCLUSIONS

HSI has emerged in recent years as one of the most ad-
vanced fields of science with exponential rates of development.
Capturing biometric data through hyperspectral devices offer
very rich and useful characteristics for research purpose. The
purpose of this research is to explore the human fingertip
skin’s unique spectral signature in terms of reflectance in the
wavelength range of both near-infrared and visible spectra.
Extracting reflectance values in the NIR and visible range
from hyperspectral data and using the spectral curves to
find an optimal representation of human identity enables the
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design of systems that are more secure against spoofing. This
paper focuses on the new idea of analyzing skin reflectance
of fingertip skin, an emerging biometric modality, via HSI.
HSI holds great potential for exploring meticulous properties
of biometric traits by accessing chemical content, properties
that are not accessible by using traditional imaging sensing
systems. The spectral signature conveys useful information
about the structural and chemical composition of a biometric
trait being imaged.

The proposed study promotes interdisciplinary research on
advances in computer vision, biochemistry, statistics, and
artificial intelligence while discovering new and advanced
models for human skin. Miniaturization of HSI technology will
direct the systems to cost-efficient solutions that can become
an alternative to human recognition methods.
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