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ABSTRACT
Neutron grating interferometry provides information on phase and small-angle scatter in addition to attenuation. Previously, phase grating
moiré interferometers (PGMI) with two or three phase gratings have been developed. These phase-grating systems use the moiré far-field
technique to avoid the need for high-aspect absorption gratings used in Talbot–Lau interferometers (TLI) that reduce the neutron flux reach-
ing the detector. We first demonstrate, through theory and simulations, a novel phase grating interferometer system for cold neutrons that
requires a single modulated phase grating (MPG) for phase-contrast imaging, as opposed to the two or three phase gratings in previously
employed PGMI systems. The theory shows the dual modulation of MPG with a large period and a smaller carrier pitch P, resulting in large
fringes at the detector. The theory was compared to the full Sommerfeld–Rayleigh diffraction integral simulator. Then, we proceeded to
compare the MPG system to experiments in the literature that use a two-phase-grating-based PGMI with best-case visibility of around 39%.
The simulations of the MPG system show improved visibility in comparison to that of the two-phase-grating-based PGMI. An MPG with a
modulation period of 300 μm, the pitch of 2 μm, and grating heights with a phase modulation of (π, 0), illuminated by amonochromatic beam
produces visibility of 94.2% with a comparable source-to-detector distance (SDD) as the two-phase-grating-based PGMI. Phase sensitivity,
another important performance metric of the grating interferometer, was compared to values available in the literature, viz. the conventional
TLI with the phase sensitivity of 4.5 × 103 for an SDD of 3.5 m and a beam wavelength of 0.44 nm. For a range of modulation periods, the
MPG system provides comparable or greater theoretical maximum phase sensitivity of 4.1 × 103 to 10.0 × 103 for SDDs of up to 3.5 m. This
proposed MPG system appears capable of providing high-performance PGMI that obviates the need for the alignment of two phase gratings.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106706

I. INTRODUCTION

Neutrons are a useful probing tool in measuring material
properties and imaging bulk materials due to their dual particle
and wave nature, the latter described quantum mechanically by de
Broglie wave packets showing interference phenomena.1 As neu-
tron waves pass through matter, they undergo phase-shifts due to
interactions with local, spatially dependent potentials, themost com-
mon being neutron–nucleus interactions.2,3 Small-angle neutron
scattering (SANS) of neutrons, due to nuclear or magnetic inter-
action potential variations in the sample, also locally degrades the

coherence of a well-defined neutron wave front.4,5 Neutron beams
are also attenuated by nuclear reactions and incoherent scattering.
Thus, neutron grating interferometry can image variations in phase
change (differential phase contrast image), small-angle scattering
(dark-field image), and attenuation (transmission image).1,5

Currently, there are two grating interferometry methods at
the forefront of neutron phase imaging: the Talbot–Lau inter-
ferometer (TLI)6,7 and the phase-grating moiré interferometer
(PGMI).8–11 The TLI can operate in the full field of a cold neutron
beam (contrary to typical Mach–Zehnder interferometers) and has
flexible chromatic coherence requirements (Δλ/λ). However, the
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absorption gratings reduce the neutron flux reaching the detector by
about a factor of 4 for similar source conditions.9,10 The PGMI also
operates in the full-field of a neutron beam, but since it produces
directly resolvable interference fringes in the far-field, only a source
grating is required, thus reducing the intensity by about a factor of
2. In contrast to the TLI, the PGMI has relaxed grating fabrication
requirements, had a broader wavelength acceptance, and permitted
control of the fringe period by varying the separation of the phase
modulating gratings.10

The purpose of this study is to investigate by simulation a novel
PGMI system for cold neutrons that requires only a single mod-
ulated phase grating (MPG). The phase grating has a rectangular
modulation in spatial width with a period of W and a finer “carrier”
pitch P. An advantage of using a single grating is reducing grating
misalignment issues commonly found in multiple-grating systems,
which can lead to fringe visibility or contrast loss.9–11

A non-interferometric grating system that uses only a sin-
gle attenuation grating was reported by Strobl et al.,12 which has
the advantages of its fringe visibilities being independent of the
wavelength (achromatic) and its ability to extend the range of auto-
correlation lengths probed in materials (particularly in nanometer
scale) for dark-field imaging (DFI). However, the system as demon-
strated has an SDD of 7.26 m with the grating-to-detector distances
of only 50–300 mm and fringe visibilities of 10%–70%, limiting the
phase sensitivity with its small grating-to-detector distances. Fringe
visibility also falls off with higher grating-to-detector distance. This
system’s visibilities are highly dependent on the geometric blurring
due to its pinhole source with the collimation ratio L/D (source-
to-grating distance/pinhole size). Thus, the fringe visibilities are
susceptible to dropping sharply if the source-to-grating distance is
too small or the pinhole size is too large.

TheMPG concept was originally investigated in simulations for
x ray by our group.13,14 In Ref. 14, we showed two different compo-
nents of the grating interfere to create a larger fringe pattern on the
detector, directly observable without the analyzer.

In another development, the modulated phase grating was
demonstrated in experiments by Ref. 15. The mathematical treatise
in Ref. 15 was unclear and, to the best of our understanding, appears
to consider the Fresnel kernel to operate directly on the intensity
instead of amplitude. The Fresnel kernel approximation applies to
the amplitude,8,16–18 and then the intensity may be found similar to
Ref. 8.

In this paper, we derived the theory behind a rectangular
modulated phase grating from first principles using Fresnel zone
approximation (which is also valid for far-field systems) to show that
the intensity pattern on the detector is indeed of a directly observ-
able period of magnification times large modulation period W. We
also estimate distance conditions for maximum visibility for a given
W and P.

We also developed an analytical Sommerfield–Rayleigh sim-
ulator with which we investigated the advantages of performance,
visibility, and sensitivity of the MPG system over the two-phase-
grating-based PGMI, which we will hereinafter refer to as the
“standard-dual-grating” system. Before thoroughly investigating the
performance of the MPG, we compared some results of our simu-
lation method with the experiments previously conducted with the
standard-dual-grating system and reported by Pushin et al.9

II. METHODS
A. Analytical simulations for neutron interferometry

We have constructed an efficient wave-propagation simulator
for neutron PGMI applications that can accept various designs (e.g.,
modulated phase gratings14 or standard gratings). The code, named
“N-SRDI,” was written in the C++ programming language and can
simulate systems, such as those shown in Figs. 1 and 2, using the
Sommerfeld–Rayleigh diffraction integrals (SRDI).16 These predict
the observed complex-valued field amplitude A(y) from a wave that
has diffracted from a grating or aperture and which originated from

FIG. 1. Schematic diagram of the simulated MPG system (not to scale). In our simulations, the neutron source is a point source emitting a spherical wavefront along the z-axis
(fringe patterns from a line source are later acquired with a convolution method). The source-to-MPG distance Dsg was chosen to be 0.5 or 1.0 m (depending on the pitch),
and the MPG-to-detector distance Dgd can range from 1.0 to 5.0 m. The grating has a rectangular functional form that modulates in spatial height with a slow-varying period
of W and a smaller “carrier” pitch P. The mathematical form of T(y1) is given in the theory section. The duty cycle of the grating is 50%. The different heights ( h1, h2) of the
grating along the z-axis correspond to phase shifts, for example, (π,π/4) or (π, 0), for neutrons of wavelength 0.44 nm. The grating simulated is an ideal phase grating so
no attenuation of the beam is considered, i.e., A1 = 1. The fringe period at the detector W′ is determined by the geometric magnification Dsd/Dsg from the point source.14
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FIG. 2. Schematic diagram of the simulated standard-dual-grating system (not to scale). Simulations were done to compare to fringe visibility measurements done by Pushin
et al.9 In our simulations, the neutron source is a point source emitting a spherical wavefront along the z-axis (fringe patterns from a line source are later acquired with a
convolution method). L1 = 1.2 m, and L2 = 1.79 m. The inter-grating spacing D ranges from 7 to 16 mm. The gratings have a standard binary form with no modulation in
spatial height. The periods of the gratings are PG1

= PG2
= 2.4 μm. The duty cycles of the gratings are 50%. The heights of the G1 and G2 gratings are h1 and h2, respectively.

They both correspond to a phase shift of 0.27π for neutrons of wavelength 0.44 nm. The gratings simulated are ideal phase grating so there is no attenuation of the beam for
either grating, i.e., A1 = A2 = 1. The fringe period at the detector Pd is given by the ratio LPG2

/D as given in Ref. 8.

a source wave function U(Ps). The neutron field amplitude at a
detector for a single-phase-grating system, such as the MPG (Fig. 1),
can be expressed as

A(y) =
1
jλ ∫

U(Ps)
ejkr1

r1
T1(y1) cos (θ1)dy1, (1)

and the intensity is

I(y) = ∣A(y)∣2, (2)

where U(Ps) is the neutron source wave function, T1(y1) is the
neutron transmission function though the MPG in a plane per-
pendicular to the neutron beam propagation direction along the
z-axis, k = 2π

λ is the wave number, λ is the wavelength, r1 is the
distance between the grating point y1 to the detector point y given

by r1 =
√

(Dgd)
2
+ (y − y1)2, and θ is the angle between Ð→r1 and the

normal of the MPG. The transmission function is given by

T1(y1) = A1(y1)e jϕ(y1), (3)

where A1(y1) is the amplitude transmission of the neutron beam
through the grating due to attenuation and ϕ(y1) is the phase shift
determined by the spatial heights of the MPG.

The SRDI shown in Eq. (1) is a representation of the
Huygens–Fresnel principle since the observed complex-valued field
amplitude at the detector is a superposition of diverging spherical
waves e jkr1/r1 originating from secondary sources located at each
point y1 along the phase grating.16 In all simulations, the neutron
source wave function U(Ps) is assumed to be a point source at point

y0; however, the fringe patterns from a line source are later acquired
with a convolution method. Therefore, Eq. (1) was simplified to

A(y) =
Dgd

jλ ∫
ejk(r0+r1)

r0r21
T1(y1)dy1, (4)

where r0 is the distance between the point source at point y0 and

the point y1 on the MPG given by r0 =
√

(Dsg)
2
+ (y1 − y0)2 and

the cos θ (between r1 and the z-axis) has been replaced by Dgd/r1,
explaining the r21 term inside the SRDI shown in Eq. (4).

To verify the accuracy of the N-SRDI code, we also simulated
standard-dual-grating systems for neutron PGMI applications and
compared our results to experimental data from Pushin et al.9 Since
two separate gratings are involved for this interferometer system,
we use two SRDIs to calculate the observed complex-valued field
amplitude A(y) at the detector. Using the Sommerfeld–Rayleigh for-
mulation for diffraction, the neutron field amplitude at a detector
for a standard-dual-grating system (Fig. 2) was simplified, using the
same logic as before, to

A(y) = −
DL2
λ2 ∫ ∫

ejk(r0+r1+r2)

r0r21r
2
2

T1(y1)T2(y2)dy1dy2. (5)

In all simulations (MPG or standard-dual-grating systems), we
obtained results with a point source [that isU(Ps)was a point source
at point yo emitting spherical wave eikr0/r0] and then used a convo-
lution method on the fringe pattern of a point source to simulate the
line-source, as will be described next.

Rev. Sci. Instrum. 94, 045110 (2023); doi: 10.1063/5.0106706 94, 045110-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

B. Fringe pattern blurring due to slit width
and pixel size via convolution method
1. Slit width

In the first step of the simulation, the neutron source was
assumed to be a point source emitting a spherical wave in the direc-
tion of the z-axis toward the imaging detector. A line source, such
as that in Ref. 9, can be thought of as an array of point sources
that are mutually incoherent. As shown in Fig. 3, each point along
a line source creates a fringe pattern at the detector that is spatially
displaced with respect to the fringe pattern from the central point
source. Their superposition causes the observed composite fringe
pattern to be washed out, reducing the overall visibility of the fringe
pattern. Consequently, a line source will have lower fringe visibility
compared to a single, monochromatic point source.

Instead of repeating costly SDRI computations by taking a
series of point sources along with the extent of a line source (Fig. 3),
we modeled the fringe pattern of a line source by first simulating
the fringe-pattern due to a center-point source and then convolv-
ing it with a rectangular window function of the same size as the line
source. This has the equivalent “wash-out” effect on the fringe inten-
sity pattern at the detector from simulating an array of point sources
that make up a line source.

2. Note on simulation of source grating G0
The G0 simulations are similar to simulations of a slit. When

a source grating is used, instead of a single slit, we have several slits
adjacent to each other in the Y s-axis of Fig. 3 with center separa-
tion multiples of P0. The P0 (or source period Ps in Ref. 8) is chosen
such that each slit sends a net fringe pattern co-registered with the
fringes from the other slits, resulting in a simple scale factor of inten-
sity. Therefore, simulating a single slit vs source grating simulation is
identical in the procedure, except for a large-scale factor increasing
the intensity at the detector. The calculations of P0 and slit opening

are available in the literature.14,19 In the Discussion section, we cal-
culated the pitch P0 of G0 and open-ratio requirement for the MPG
system for an example geometry we investigated.

3. Pixel-size convolution and subsampling
Furthermore, to account for the fringe blurring due to the pixel

resolution and to have the correct number of sampled data points
given a certain pixel size, two steps are taken: (1) another convolu-
tion of the fringe pattern at the detector by a rectangular window
function that is the same size as the pixel (2) subsampling of the
fringe intensity pattern at pixel-size increments since the intensity
pattern at the detector is originally sampled at 0.1 μm. This is fol-
lowed by interpolation to reconstruct the signal at higher sampling
rates.

We simulated a case from the experimental setups from Ref. 9
to assess our convolution method that used a standard-dual-grating
system with a monochromatic beam (λ = 0.44 nm) exiting a 200 μm
slit source with the system parameters of L1 = 1.2 m, D = 12 mm,
and L2 = 1.78 m (Fig. 2). The identical phase gratings had pitch
PG1 = PG2 = 2.4 μm and a 0.27π phase shift for 0.44 nm wavelength
neutrons. Both gratings had duty cycles of 50%. The detector pixel
size resolution was reported to be ∼100 μm. In simulations, the grat-
ing function is sampled at every 2 nm and the intensity pattern at
the detector is sampled at every 0.1 μm. We used the two indepen-
dent convolutions previously mentioned on the fringe pattern to
account for blurring due to the slit width and pixel size. The fringe
pattern is subsampled at 100 μm increments and intensity values are
interpolated between the sampled values by a factor of 1000 using
MATLAB’s interp function to return to a 0.1 μm sampling rate.

We compared our convolutionmethod against two othermeth-
ods: (1) the expected closed-form visibility function of slit size given
in Ref. 9: V = Vo∣sinc(πs/Ps)∣, where Vo is the optimal fringe visi-
bility from one point source, s is the width of the slit, and Ps is the
source period. The fringe visibility for a 200 μm source using our

FIG. 3. Schematic illustration demonstrating visibility loss of an approximated line source (not to scale). The red fringe pattern on the detector is due to the central point
source, and the green fringe patterns are due to the endpoints of the approximated line source. The superposition of these fringe patterns will result in visibility loss due to
the green fringe patterns being shifted away from the red fringe pattern. With more intermediate point sources added to approximate the line source, the visibility is improved
since there are more fringe patterns that are closer in phase to the red fringe pattern. However, the visibility of this approximated line source will always be lower than that of
the fringe pattern of a single point source because of the wash-out effect many slightly shifted fringe patterns create.
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FIG. 4. Verification of convolution method visibility for a 200 μm slit source in a
monochromatic beam. The fringe visibility using the convolution method is 32.9%
closely matched the expected 32.7% visibility, theoretically calculated with Eq. (10)
given in Ref. 9: V = Vo∣sinc(πs/Ps)∣, where Vo is the optimal fringe visibility given
by one point source (39.6%), s is the slit size (200 μm), and Ps is the source
period (598 μm). Another method tested was modeling the slit as a series of
evenly spaced point sources. The visibility converged after 21 points, with 21 and
41 points each yielding the expected visibility of 32.7%.

convolution method was 32.9%, which closely matched the expected
close form 32.7% visibility (blue and orange bars in Fig. 4). (2) The
brute force method of simulating many individual point sources on
the slit, illustrated in Fig. 3, was also compared. The yellow bar in
Fig. 4 represents the visibility for 21 points evenly spaced about
the 200 μm width of the slit, yielding a 32.7% visibility. As more
intermediate point sources were uniformly added as represented by
the red bar (41 total point sources), the visibility remained at the
expected visibility value of 32.7%. Thus, we verified that a central
point source simulation followed by a convolution with a rectangu-
lar window function can adequately model the fringe pattern of a slit
source, reducing computation cost considerably by avoiding brute
force computations of several point sources.

C. Evaluation of N-SRDI simulations
for a standard-dual-grating system, comparisons
with simulations and experiments

We evaluated the N-SRDI obtained fringe visibilities V against
experimental results with standard-dual-grating systems for the neu-
tron PGMI in Ref. 9 using the same methods detailed in Sec. II B.
When the gratings were close to D = 7 or 8 mm, cos(Φ1) in Fig. 2 is
assumed to be close to 1 to avoid numerical problems. This is akin
to a Fresnel-zone approximation in this region. We also evaluated
whether the simulated fringe periods agreed with the theoretically
predicted values.8 The evaluations are shown in Results under the
corresponding heading.

1. Comparison of visibility
The simulation parameters to match experiments are detailed

in Sec. II B. The grating-to-grating separation distance D was
varied from 7 to 16 mm while keeping the L (or Dsd) and L1 (or
Dsg) fixed (Fig. 2). The L2 (or Dgd) was adjusted accordingly. Our

convolution method previously described was applied to the fringe
patterns, accounting for the 200 μm slit and 100 μm pixel used in the
experiments. Again, evaluations are compiled in Sec. III.

It is important to note that the slit size or pitch of a source grat-
ing G0 has a direct one-to-one effect on the fringe periods at the
detector without a pinhole geometric magnification when PG1 = PG2.
Thus, the source period (or the pitch of G0) is directly equal to the
fringe period as shown in Refs. 8 or 9.

This is not true for the single MPG. The pinhole factor
Refs. 14 and 19 is present for the slit-opening as tested in Sec. II D
with simulations and theory.

D. Theory of modulated phase grating (MPG)
and comparison with N-SRDI MPG simulations

The idea behind modulated phase grating was origi-
nally demonstrated by our group in simulations using the
Sommerfeld–Rayleigh simulations in Ref. 14. The modulated phase
grating has an envelope function with two grating phase heights,
with a large period W (order of 100 μm) and a small modulation
of pitch P (order of few μm) (Fig. 1). The grating has two clear
components with different phase heights. As shown in Ref. 14, these
two components interact in amplitude to produce intensity patterns
on the detector, which have periods with a magnified version of W.

In what follows, we show the (a) effect of slit size on MPG sys-
tem fringe patterns, (b) the mathematical theory behind the MPG
(with details in Appendix A), and finally the (c) Z-condition for
maximum and minimum visibility.

1. Effect of slit size on MPG system
interference pattern

Consider a geometry where the center source to MPG dis-
tance is L1 = 100 cm and MPG to detector distance is L2 = 200 cm,
(L2/L1 = 2). Figure 5 shows the N-SRDI simulated intensity pattern

FIG. 5. N-SRDI simulations for point sources at the center (black, 0 μm) and ±100
μm (blue and red, respectively). The dashed vertical lines show that red and blue
patterns are separated by a total of 400 μm, which is explained by point source
separation of 200 μm multiplied by a pinhole-factor of 2 for the geometry setting.
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[Eqs. (1) and (2)] for this case with a point source at the center,
and two others shifted at +100 and −100 μm (shift perpendicular to
propagation direction). As shown, these create three beam-patterns
shifted from each other by ±200 μm. This shows that for a 200 μm
slit (with extremities at ±100 μm), one expects the patterns to shift
over a net 400 μm range (±200 μm). This can be explained by the
pinhole magnification factor of the slit, L2/L1 = 2. In general, if the
actual slit size is Ls μm, the convolution kernel to be used is Ks = Ls
(L2/L1).

This result is mathematically proved in Appendix B (after the
main theory in Appendix A, highlighted next).

2. Mathematical theory behind the MPG
In this section and Appendix A, the field equation for MPG

is derived using the Fresnel approximation of the Sommerfeld–
Rayleigh equation.

We consider a 1D detector, the y-axis as the axis along the
detector, the y1-axis as the axis of the grating, and the z-axis as the
propagation axis. First, we consider the grating function such as in
Fig. 1. This can be written as

T(y1) = [{g(y1)
∞

∑
n=−∞

δ(y1 − nP)} +
∞

∑
n=−∞

δ(y1 −
nP
2
− P/2)]

×⊗ rect(
y1
P/2
). (6)

Note that second term inside the square brackets, 1 ×∑∞n=−∞ δ(y1
− nP

2 − P/2), is to account for the fact that in between the spikes of
the comb-train ∑+∞−∞ δ(y1 − np) sampling the basic envelope func-
tion (which is given below), there is a transmission factor of 1 (and
not zero). The convolution by the small half-pitch width rect func-
tion is to take into account the small post-size (P/2) of the grating
(assuming a duty cycle of 50%).20 The equation is similar to a stan-
dard phase grating as shown in Wilde and Hesselink,17 except with
the envelope function is allowed to be more complex than a single
constant phase transmission factor of exp(iφ).

For the RECT MPG discussed in this paper, the enve-
lope function is given by g(y1) = {exp (iϕ1) rect ( y1

W/2)

+ exp (iϕ2) rect (
y1−W/2
W/2 )}⊗ {

1
W∑

∞

n=−∞ δ(y1 − nW)}, the ϕ1 and
ϕ2 being the phase heights in regions h1 and h2, each of width W/2
for the MPG of interest. The first curly bracket shows one period
of the envelope, which is repeated via the comp-convolution in the
second curly bracket.

Since P/2 is effectively the opening of the grating, the coherence
requirement should be of the order of P (not W). One of the peri-
odicities of T(y1) is W from the envelope function. But this alone
would necessitate high coherence requirement. But since the func-
tion is also multiplied by a carrier “sampling” period P, we expect
the T(y1) also creates multiple periodic frequencies in amplitude, a
combination of harmonics of 1

W and 1
P and not just 1

W . We explicitly
derive this in Appendix A.

Note, the Fresnel approximation holds where the incident and
generated Huygens’s spherical waves in Eq. (4) can be approxi-
mated as paraboloid.16 In Appendix A, the field amplitude is derived
explicitly in terms of the Fourier coefficients of the grating transmis-
sion factor T(y1) from first principles outlined in Goodman.16

The field amplitude, U(y, z), for the case of the RECT MPG in
Eq. (6) is derived in Appendix A. The key findings are represented
here. The amplitude field may be divided into (W, P)-dependent and
P-dependent parts,

U(y, z) = Aexp(iB)
1

L1 + z
[
+∞

∑
n=−∞

+∞

∑
m=−∞

gmsinc {
1
2
(
mP
W
+ n)}

× exp{−
jπλL1z
L1 + z

(
m
W
+
n
P
)
2
} exp{

j2πL1y
L1 + z

(
m
W
+
n
P
)}

+
+∞

∑
n=−∞

exp{− jπn}sinc {
n
2
} exp{−

jπλL1z
(L1 + z)

(
n
P
)
2
}

× exp{
j2πL1y
(L1 + z)

(
n
P
)}]

= A exp(iB)
1

L1 + z
[U1(y, z,W,P) +U2(y, z,P)]. (7)

These terms are reminiscent of Refs. 18 and 21 except here the fre-
quency is related to a combination of harmonics of 1

W and 1
P . More

specifically, in the first term U1, the frequencies are related to m
W +

n
P

and in the second term U2 to n
P .

The intensity as both m
W +

n
P modulation terms (Appendix A)

but since n/P will be hardly visible directly in the detector, it is
approximated by the n = 0 harmonic,

I(y, z) ≈ (
A

L1 + z
)
2
[C22(z, 0) +

+∞

∑
m=−∞

[C11(z,m, 0) + C12(z,m, 0)

+ C∗12(z,−m, 0)] exp {
j2πL1y
L1 + z

(
m
W
)}]

= (
A

L1 + z
)
2
[I0 +

+∞

∑
m=1

Im(z) cos{
2πL1y
L1 + z

(
m
W
) + θm}], (8)

FIG. 6. Intensity from Eq. (8) compared to the N-SRDI simulation, for MPG
W = 300 μm, phase heights (π, 0) with geometry Dgd (or L2) = 200 cm and Dsg
(or L1) = 100 cm. The pixel size is 100 μm, and the actual slit size is Ls = 200 μm,
with the slit convolution kernel Ks = Ls × L2/L1 = 400 μm.
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where Cij is autocorrelation terms shown in Appendix A. There-
fore, the intensity produces fringe patterns of period m

MW , where the
magnification M = L1+z

L1
. In our case of an even grating, θm = 0.

Figure 6 shows an example where theCij [in Eq. (8) above] were
evaluated for the MPG with phase heights (π, 0) and W = 300 μm
in order to calculate the intensity. The N-SRDI simulations for the
same MPG parameters and geometry settings are also plotted in
Fig. 6, showing an excellent match.

3. Conditions for maximum/minimum visibility
As shown in Appendix A, the visibility of the first harmonic will

oscillate in Z with extrema occurring at

Z =
L1WPk′

2λL1 −WPk′
=

L1
2λL1
WPk′ − 1

, (9)

where k′ is an integer. For the Z = 1–5 m of interest, we found
some peaks and troughs as reported in Table I, which was corrobo-
rated by the N-SRDI simulations. For example, for W = 120 μm and
P = 1 μm, the visibility has a local maximum at Z = 2.14 m and a local
minimum at Z = 4.5 m.

Note that the maximumZ condition (which is independent of the
envelope function Fourier parameters, gm) should be similar for all
MPG height pairs. But the envelope function or the height difference
in the RECT MPG will affect the visibility.

To confirm this, we applied the N-SRDI to simulate different
MPGs with h2 for the distance ranges of interest here (Dgd = 1–5 m
or Dsd = 2–6 m from the source) and the wavelength 0.44 nm. We
kept the maximum height of grating h1 such that it yields π-shift
and varied the h2 to provide 0, π/4, π/2, and 3π/4 phase shifts (for
λ = 0.44 nm). The results for W = 120 μm, P = 2 μm and P = 1 μm
are shown in Fig. 7. We, therefore, confirmed that the Z at max-
imum visibility is independent of the MPG-type, but the visibility
will drop as the h2 is increased. Note for the simulations, the loca-
tion of peaks was very close whether we applied the slit smoothing
or not. In Fig. 7, a pixel size of 100 μm and slit of Ls = 75 μmwith the
magnified convolution kernel Ks = Ls × L2/L1 were applied for each
point.

We observed that the peak visibility and minimum visibility
matched for the N-SRDI and the values from Eq. (9). In Table I, we
tabulate the distances and the corresponding k-values in the distance
range of interest Z from 1 to 5 m.

The fringe visibility was highest for h2 = 0 for all MPG–detector
distances. This is expected because it would provide the maximum

TABLE I. Distance for maximum or minimum visibility with simulation vs Eq. (9).

W (μm) P (μm)
Z@Vmax

(N-SRDI) (m)
Z@Vmax

[Eq. (9)] (m)
Z@Vmin

(N-SRDI) (m)
Z@Vmin

[Eq. (9)] (m)

120 2 4.5 4.5 (for k = 3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

120 1 2.14 2.14 (for k = 5) 4.5 4.5 (for k = 6)

FIG. 7. The visibility plots for N-SRDI simulations for different phase height pairs, keeping the larger height fixed at π and changing the smaller height from 0 to 3π/4. (Left
panel) W = 120 μm, P = 2 μm and (Right panel) W = 120 μm, P = 1 μm. Note maximum or minimum visibility position is independent of the phase heights. The (π, 0)
yielded the highest visibility. The maxima and minima correspond to what is predicted by Eq. (9).
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FIG. 8. Schematic of the MPG system
(not to scale) with a slit source with width
Sw , MPG with grating heights with phase
modulation of (0,π), and detector with
a phase object at an object-to-detector
distance Dod .

difference between the two components of the grating. This was also
the grating that was investigated for x rays in Ref. 15.

Since the fringe visibility was highest for h2 = 0 for all
MPG–detector distances, henceforth in this work we used (π, 0), as
shown in the schematic diagram Fig. 8.

a. Evaluations of N-SRDI for MPG with (π, 0) case. Fringe
visibility, fringe period, and maximum phase sensitivity were eval-
uated for different modulation periods W, pitches P, slit widths Sw,
source-to-MPG distances Dsg , and MPG-to-detector distances Dgd,
as shown in Sec. III.

E. N-SRDI simulations for a modulated phase
grating (MPG) neutron interferometer illuminated
by a polychromatic beam

We investigated how a polychromatic beam may degrade
the visibility of our MPG system. The polychromatic beam
was modeled after the one at the NG6 Cold Neutron Imag-
ing Facility (NCI) at the NCNR, which is approximately given
by a Maxwell–Boltzmann distribution with a peak wavelength of
λc = 0.5 nm.9 The same MPG is used in both the monochromatic
and polychromatic simulations. Since the polychromatic beam can
be thought of as the aggregate of incoherent sources, the fringe pat-
terns of each wavelength in the spectrum can be added in intensity
according to their weight in the spectrum. The evaluation results are
in Sec. III.

F. Single-shot phase contrast recovery with MPG
Phase objects, that is, objects that introduce a pure phase shift

on the wavefront on the path of the beam, were simulated mathe-
matically, and the effect on the interference fringe at the detector
was analyzed.

The shift in the interference pattern Δy at the detector is
related to the refractive angle α imposed by an object on the wave
field, and therefore the object’s differential phase-shift dΦ/dy is as
follows:14,22

Δy = Dod tan α ≈
λDod

2π
dΦ
dy

. (10)

Estimating Δy (which itself is a function of y in general) can
therefore yield the object’s differential phase shift dΦ/dy. Note that
Δy also depends on system parameters: object-to-detector distance

Dod and the wavelength λ, which have to be corrected for a true
estimate of the object’s differential phase.

Since we have a large interference pattern period W′ (usu-
ally greater than the pixel size), and the detector sampling rate is
above the Nyquist sampling rate, we use a single-shot recovery using
Fourier transforms to demonstrate our system properties, following
the method in Ref. 23. The steps followed are shown below. Before
showing the steps, we like to remind you that the object’s differential
phase at the detector space is denoted by dΦ/dy (this is to be calcu-
lated) and the measured Δϕ is the actual phase difference calculated
via delay Δy observed at the detector.

Step 1. (a) Take fast Fourier transform (FFT) of each simulated
fringe pattern with and without an object. Isolate the first harmonic
by windowing the Fourier transforms on one side. A window-width
of total width 1/W′ is chosen symmetrically around the first har-
monic peak located at 1/W′ [i.e., the window extends ±1/(2W′

)

around 1/W′]. (b) Perform Inverse Fast Fourier transform (IFFT)
of the one-sided windowed FFTs and take the angle difference of the
two complex spatial domain signals. The difference Δϕ is related to
the spatial shift between the fringe pattern signals Δy as

Δϕ = ϕ − ϕb =
2π
W′

Δy. (11)

Note: the IFFT of the windowed FFT yields complex expo-
nentials in the spatial domain, ideally the first harmonic signals.
These have the frequency 2π/W′. The difference of phase angles Δϕ
between the blank fringe pattern phase angle ϕb and the with-object
fringe pattern phase ϕ is related to the spatial shift Δy between these
two signals as given by Eq. (11).

Implementation details: Note: The N-SRDI code outputs
detector data with a detector pixel size of 0.1 μm. We convolve
the fringe patterns by independent rectangular window functions to
compensate for the fringe blurring due to the slit width and pixel
size. Then we subsample the data at a rate equal to the pixel size
which is 100 μm.

We interpolate the subsampled pixel-size detector data up by
a factor of 1000 by using MATLAB’s interp function to resample
the function at 0.1 μm before performing the FFT and IFFT (these
are the same processing steps used for the standard-dual-grating
simulations). The FFT, IFFT, and angle differences of the fringe pat-
terns are all performed in MATLAB. Each phase angle ϕb and ϕ is
obtained modulo ±π. The resultant phase angle difference has to
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FIG. 9. (a) Interference pattern with and without a triangle phase object with a peak phase of 8π rad using the system parameters W = 50 μm, pitch = 2.0 μm, Dsd = 5 m,
Dsg = 1 m, and Dod = 2.5 m. Monochromatic beam (wavelength 0.44 nm) used Intensity values are originally sampled along the detector plane at 0.1 μm increments and are
filtered by two independent rectangular window functions for blurring effects due to slit width and pixel size. (b) shows both fringe patterns subsampled at 100 μm increments
and interpolated back to a sampling rate of 0.1 μm. The dark lines on the left and right are locations where the Δy shift of the fringe pattern was checked manually.

be unwrapped before integration. Note for some small objects, the
Δy shift can be sub-pixel. However, since we sample the fringe pat-
tern above the Nyquist rate (i.e., pixel size < W′/2), we can always
reconstruct the signals with interpolation and obtain the phase dif-
ference. The interpolation used is the default one used byMATLAB’s
interp function, which uses a symmetric special FIR filter that passes
the original samples unchanged while minimizing the sum-squared
error between the original and the ideal values.

The interpolation step is optional but adds to the robustness
of the recovery for cases where the Nyquist edge (frequency) is too
close to the first harmonic window. The subpixel interpolation yields
a higher sampling rate and moves the Nyquist edge away from the
first harmonic in Fourier domain, which makes it easier to place an
automated symmetric window in the Fourier domain to retrieve the
first harmonic.

Step 2(a). To obtain the object’s differential phase dΦ/dy at the
detector space (y) from the measured phase difference Δϕ, we mul-
tiply by (Sλ)−1. We show this by combining Eqs. (10) and (11) to
obtain

Δϕ =
λDod

W′

dΦ
dy
= Sλ

dΦ
dy

, (12)

where S = Dod/W′ is the phase sensitivity for the interferometer.
Expressed in terms of the object’s differential phase profile dΦ/dy,

dΦ
dy
= (Sλ)−1Δϕ. (13)

Thus, the measured phase difference Δϕ must be “corrected” by
1/(λS) to obtain Φ/dy.

Step 2(b). To obtain the object’s differential phase dΦ/dyob
at the object space (yob), we have to scale (de-magnify) the spa-
tial variation of the detector (y) by 1/Mobj, where Mobj = object
magnification.

Step 3. We integrate dΦ/dyob to obtain the object phase pro-
file. We use MATLAB’s cumtrapz function for the integration. The
scaled grid (object grid) is provided in MATLAB’s cumtrapz func-
tion as the grid argument. Note that we could have also magnified
the true object’s grid and compared both phase profiles in the detec-
tor space (y), but we wanted to avoid any processing with the true
object’s phase profile.

Figure 9 shows an example simulated blank and with-object
fringe pattern. A phase object is a triangular object with a maximum
phase shift of 8π rad, ramping up/down over ±800 μm spatial extent.
It is placed at an object-to-detector distance of 2.5 m. In reality,
this phase profile could be a silicon wedge sample with a maximum
height of 275.6 μm at the center and falling off to zero over ±800 μm
on either side of its peak. Figure 9(a) shows both fringe patterns just
after being convolved with two independent rectangular filters to
account for the blurring of the slit width of 50 μm and the pixel size
of 100 μm. Figure 9(b) shows the fringe patterns after being subsam-
pled at every 100 μm and then interpolating between sampled values
to return to a 0.1 μm sampling rate. In the N-SRDI code, the objects
are represented simply as mathematical phasors eiΦ(yob), which are

TABLE II. Measured fringe patterns shift from left and right windows in Fig. 9.

Fringe pattern Δy
Left window
Δy(μm)

Right window
Δy(μm)

Expected 5.5 −5.5
Measured from plot 5.0 ± 1.4 −5.1 ± 1.3
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applied to the wave field at the object-to-detector distance, where
Φ(yob) is the object phase profile.

The expected spatial shifts in the fringe pattern due to this tri-
angular phase object are given by Eq. (10). Since the object phase
consists of an up and down ramp, the spatial shift Δy is a positive
constant on the left side of the fringe pattern center (detector posi-
tion 0 μm) and a negative constant on the right side of the fringe
pattern center. As a manual check, we calculated the average Δy
in the two regions over three cycles each at the 90% normalized

intensity line in Fig. 9(b). In Table II, we compare the expected Δy
and our measurements showing that the values are very close to each
other.

Figure 10 shows the Steps 1–3 recovery with the blank and
with-object fringe patterns shown in Fig. 10(b). First, we show the
measured Δϕ after Step 1 in Fig. 10(a). This approximately shows
the rectangular pattern expected from the differential phase of the
triangular object consisting of two ramps. The differential phase
is shown in Fig. 10(b) after correction by (Sλ)−1 as in Step 2. In

FIG. 10. (a) The measured phase difference Δϕ at the detector from Fig. 9(b). Obtained via the single-shot method explained in Step 1. (b) The measured phase difference
Δϕ is corrected by a (Sλ)−1 factor to obtain the object differential phase dΦ/dy at the detector space (y). (c) The grid of dΦ/dy is scaled by the inverse object magnification
factor Dso/Dsd to obtain the object differential phase dΦ/dyob in the object space (yob). (d) The object phase Φ retrieved from dΦ/dyob by integration (Step 3). For this
instance, no detector noise was added.
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FIG. 11. (a) Measured phase difference ΔΦ at the detector for object-to-detector distances of 0.5–3.5 m for the 8π rad triangle phase object. (b) The corresponding object
differential phase dΦ/dyob at the object plane. (c) Measured phase shifts ΔΦ at the detector for object-to-detector distances of 0.5–3.5 m for the 8π rad parabolic phase
object. (d) The corresponding object differential phase dΦ/dyob at the object plane. Δϕ is corrected by a (Sλ)−1 factor to obtain dΦ/dy, and the detector grids are also
corrected by the inverse object magnification factor Dod/Dsd .

Fig. 10(c), the detector grid is scaled by the object magnification to
switch to the object’s grid space (yob) instead of the detector grid
space (y). Then, Fig. 10(d) shows the integrated phase of the object
(Step 3).

Finally, Fig. 11 elaborates the Step 1 and Step 2(b) of the phase
recovery process for the triangular and parabolic phase objects for
object-to-detector distances varied from 0.5 to 3.5 m. Figures 11(a)
and 11(c) show the measured phase Δϕ (Step 1) at the detector grid.
Figures 11(b) and 11(d) show the object differential phase dΦ/dyob
[Step 2(b)] on the object grid space (yob). They both approximately

show the rectangular and linear dΦ/dyob expected for triangular and
parabolic phase profiles, respectively.

While these concepts were demonstrated in Sec. II without
adding detector noise, we added realistic Poisson noise to the
detector in Sec. III before phase recovery.

In Sec. III, we show quantitative phase recovery error analysis of
triangular, parabolic, and trapezoidal objects with object-to-detector
distances of 0.5–3.5 m and maximum object phases of 0.8π rad and
8π rad. This was done after adding realistic Poisson noise to the
detector pixels, which we explain in detail in Sec. III.
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III. RESULTS
A. Evaluation of N-SRDI simulations
for a standard-dual-grating system,
comparisons with theory and experiments

To test our simulator N-SRDI, we simulated the standard-
dual-phase grating system and compared our results to theory and
experiments. We varied the grating-to-grating distance from 7 to
16 mm in increments of 1 mm and obtained fringe periods and
fringe visibilities for the monochromatic experiments performed in
Ref. 9 with λ = 0.44 nm. The fringe periods obtained via the simula-
tions were compared to the theoretical closed-form prediction given
in Eq. (11) in Ref. 8, as shown in Fig. 12. We observed an excel-
lent agreement of the simulated fringe periods to the corresponding
theoretical values.

Figure 13 plots the N-SRDI with convolution fringe visibility
results and the experimental fringe visibility results for the
monochromatic experiments in Ref. 9. Not all but every other
grating-to-grating distance was simulated and shown below since
we varied the grating-to-grating distance in spacings of 1 mm. The
general trend was captured by the N-SRDI with convolution simu-
lations with the visibility peaking around 11–12 mm. The curve also
fell within the statistical agreement of experiments (indicated by the
error bars) except for the grating-to-grating distances D of 7, 8, and
11 mm.

B. N-SRDI simulations for a modulated
phase-grating (MPG) neutron interferometer
illuminated by a monochromatic beam

We simulated the MPG system with grating heights modu-
lation of (0, π), the same slit-source in a monochromatic beam
(λ = 0.44 nm) used for the standard-dual-grating system in Sec. III A,
different modulation periods W, and the two different pitches of 2.0
and 1 μm. The pitch of P = 2.0 μm is approximately the period of

FIG. 12. Fringe period from standard-dual-grating simulations compared to theory.
N-SRDI simulations were done with the monochromatic configuration parameters
used in Ref. 9. The theoretical fringe period is given by Eq. (11) in Ref. 8.

FIG. 13. Fringe visibility comparison of N-SRDI with convolution simulations to
experiments performed in Ref. 9 The dashed lines show the closed-form expected
visibility given in Eq. (12) in Ref. 8, which was plotted in Ref. 9.

some of the gratings currently available at the National Institute of
Standards and Technology Center for Neutron Research (NCNR).

We show an excellent performance for an equivalent geometry
as the set up in Ref. 9. This is shown in Fig. 14(a) of interfer-
ence fringe “carpet” for W = 300 μm and P = 2 μm, where the
intensity carpet is obtained by placing the detector at different dis-
tances from the MPG. The carpet shows a diverging self-image of
the modulation pattern. At the source-to-MPG distance of 1 m
and MPG-to-detector distance of 2.0 m (SDD of 3 m), we are at
a nearly equivalent SDD of 2.99 m used in the setup in Ref. 9 for
their monochromatic configuration. A fringe visibility analysis of
the whole carpet is shown in Fig. 14(b). The normalized fringe pat-
tern with the maximum visibility of 94.2% at the MPG-to-detector
distance of 2 m is shown in Figs. 14(b) and 14(c).

The example shows that the MPG system may be expected to
yield more than twice the visibility compared to the standard-dual-
grating system’s maximum visibility of ∼39% in a nearly equivalent
set-up geometry to the one used in Ref. 9. Note that at this magnifi-
cation the fringe period is about 900 μm; therefore, the slit or pixel
size effects are relatively small.

We summarize other cases in Figs. 15 and 16 with high vis-
ibility. In Fig. 16, we also point out in which cases the geometry
is more compact than the system in Ref. 9. In Figs. 15(a) and
15(b), we show the visibility and fringe period for different mod-
ulation periods, W = 50–600 μm (all with a pitch of 2.0 μm), at
varying MPG-to-detector distances. We make sure to not include
cases where the pixel size > W′/2, which would lead to insuffi-
cient sampling of the fringe pattern (Nyquist theorem) and cause
aliasing. We observed several operating points with fringe visibil-
ity V > 40% in Figs. 15(a) and 15(b) for different fringe periods.
The ability to control the fringe period is important as the fringe
period determines the autocorrelation probing lengths in dark-field
imaging (DFI),24 and it is also inversely proportional to the phase
sensitivity.14
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FIG. 14. (a) Interference fringe “carpet” generated with N-SRDI and pixel and source convolution, for the source-to-MPG distance of 1 m, W = 300 μm, and pitch P = 2.0 μm.
The pixel size is 100 μm, and the slit width Ls = 200 μm (kernel Ks = Ls × L2/L1). (b) Fringe visibility analysis of the carper shows a maximum visibility of about 94.2% at
the MPG-to-detector distance of about 2 m. (c) The normalized fringe pattern at the MPG-to-detector distance of 2 m, with maximum visibility of about 94.2%.

To visualize the information in a meaningful way, we plot
the visibility vs fringe-period in Fig. 16, with the MPG-to-detector
distance implicitly varied. The nine circles in each curve corre-
spond to the visibilities at nine different MPG-to-detector distances
(100–500 cm, with intervals of 50 cm), i.e., the SDDs range from 200
to 600 cm.We partitioned into a green and light blue zone where the

MPG provided high visibility, V > 39%, and acceptable 20%–39%,
respectively. In order to compare to the standard-dual-grating sys-
tem (in Fig. 13), the peak visibility from those experiments is shown
as the asterisk with an error bar (falling on the “good visibility”
zone). The dashed (purple) vertical line (through the asterisk case)
shows that for the same fringe period for the asterisk case (from the

FIG. 15. Measured (a) fringe visibility and (b) fringe periods from simulations with varying MPG-to-detector distances of 1.0–5.0 m. The fringe period W ′ is given by the
geometric magnification Dsd/Dsg of W. The source-to-MPG distance is 1.0 m, and the pitch is 2.0 μm. The pixel size is 100 μm, and the slit width Ls = 200 μm (kernel
Ks = Ls × L2/L1). The fringe sampling frequency is ensured to be greater than the Nyquist rate (pixel size <W ′/2).
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FIG. 16. Fringe visibility vs period for a source-to-MPG distance of 1.0 m, varying
MPG-to-detector distances from 1.0 to 5.0 m, and pitch of 2.0 μm. The pixel size is
100 μm and the slit Ls = 200 μm (kernel Ks = Ls × L2/L1). The cases with an SDD
of 2.99 m (≈3.0 m) like the monochromatic experimental configuration in Ref. 9
are shown with the red arrows.

monochromatic setup in Ref. 9 with the best-case visibility of 39%),
there is the W = 300 μm MPG design that can yield better visibil-
ity of ∼75% visibility for MPG-to-detector distance of 100 cm (SDD
of 200 cm). Other designs, such as W = 200 μm, yield 40%–65%
visibility for a fringe period 0.5 mm or lower.

FIG. 17. Fringe visibility vs period for Dsg = 0.5 m, Dgd = (1.0–5.0 m), and pitch
= 1.0 μm. The fringe sampling frequency is ensured to be greater than the Nyquist
rate (pixel size <W ′/2). The pixel size is 100 μm, and the slit Ls = 200 μm (kernel
Ks = Ls × L2/L1). The slit kernel convolution dominated at the lower fringe periods
and visibility suffered.

If one is looking for high visibility V > 39% with a compact
setup geometry, we point out the operating points marked with
yellow stars in Fig. 16 where the SDD ≤ 300 cm.

We, therefore, show several operating points of the MPG sys-
tem with higher visibility than the highest reported visibility of

FIG. 18. (a)–(c) Fringe visibility for slit
sizes Sw (or Ls) of 50, 110, and 200 μm,
respectively. The source-to-MPG dis-
tance is 1.0 m, and the pitch is 2.0 μm.
The MPG-to-detector distances range
from 1.0 to 5.0 m. The pixel size is
100 μm. The slit convolution kernel is
calculated as Ks = Sw × L2/L1).
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FIG. 19. (a) Maximum phase sensitivity for different MPG-to-detector distances. (b) Phase sensitivity vs fringe period for the MPG-to-detector distance of 5 m. The pixel size
is 100 μm and the slit width is 200 μm. Fringe sampling frequency is ensured to be greater than the Nyquist rate (pixel size <W ′/2).

39% from the standard-dual-grating system in Ref. 9, with simi-
lar, smaller or larger fringe periods and the same or more compact
geometry.

We investigated a lower pitch for the lower fringe period region
in the dashed square in Fig. 16. Lowering pitch also enabled the Dsg
to be smaller (0.5 m) and the coherence requirement to hold. The
smaller fringe period zone is shown in Fig. 17 for the P = 1 μm cases.
Wemake sure not to include cases where the pixel size >W′/2, which
would lead to insufficient sampling of the fringe pattern (Nyquist
theorem). Unfortunately, the slit kernel convolution effect domi-
nated at these lower fringe periods and the visibility was poor for
Ls = 200 μm with convolution kernel varying as Ks = Ls × L2/L1.

We also investigated if the visibility for the smaller W cases
(50, 70, and 120 μm) where the fringe period is smaller, could be
improved by using narrower slit widths Sw (albeit knowing that the
flux reaching the detector would be reduced proportionately and
typically a G0 grating would be required instead of a slit). We kept
the Sw (or Ls) = 200 μm as a reference. As expected in general, we
see in Figs. 18(a)–18(c), using a narrower slit width Sw improved the
visibility for the W = 50, 70, and 120 μm for these fringe patterns
with smaller periods.

Finally, we calculated the maximum phase sensitivities of
our MPG system. The maximum phase sensitivity is given by
Smax = Dgd/W′ (where the object is closest to the MPG, i.e.,
Dod =Dgd). This is analyzed for different MPG-to-detector distances
as shown in Fig. 19(a) for different grating modulation periods with
source-to-MPG distance kept at 100 cm. There is also an increase in
phase sensitivity with lower W′ (lower fringe period) as shown in
Fig. 19(b) for a grating-to-detector distance of 5.0 m. Phase sensi-
tivity information is sparse for the standard-dual-grating system but
available in the literature for the conventional neutron Talbot–Lau
interferometer (TLI). For MPG modulation periods W between

50 and 120 μm, we note that the theoretical maximum phase
sensitivities are between 4.1 × 103 to 10.0 × 103 (0.41–1 × 104)
when using SDDs up to 3.5 m (MPG-to-detector distance up to
2.5 m). These sensitivities are comparable or greater than that of the

FIG. 20. Fringe visibility degradation due to polychromatic beam for our MPG
system. We consider the configuration that produced the best visibility of 94.2%
using a monochromatic beam of λ = 0.44 nm (blue trace). The polychro-
matic beam described by a Maxwell–Boltzmann spectrum with peak wavelength
λc = 0.5 nm produces a fringe pattern with visibility of 68.9% (orange trace). The
system parameters include a grating with modulation period W of 300 μm, pitch of
2 μm, source-to-MPG distance of 1 m, and MPG-to-detector distance of 2.0 m.
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conventional neutron TLI of 4.5 × 103 with a SDD of 3.5 m and a
beam wavelength of 0.44 nm.7,25

C. N-SRDI simulations for a modulated
phase grating (MPG) neutron interferometer
illuminated by a polychromatic beam

We used a polychromatic beam for the setup which pro-
duced the best visibility of 94.2% in the monochromatic sim-
ulations (λ = 0.44 nm) to see how the fringe visibility would
degrade. The polychromatic beam is approximately described by
Maxwell–Boltzmann spectrum with a peak wavelength λc = 0.5 nm.
The MPG used in both monochromatic and polychromatic simula-
tions were the same and had fixed phases of (0,π) at λ = 0.44 nm.

The system parameters include a grating with modulation period
W of 300 μm, pitch of 2 μm, source-to-MPG distance of 1 m, and
MPG-to-detector distance of 2.0 m. The pixel size is 100 μm, and
the slit width is 200 μm. While we note that the visibility dropped
from 94.2% to 68.9% (as calculated from intensities shown in
Fig. 20), this polychromatic visibility is still significantly higher than
the standard-dual-grating system with a best-case monochromatic
visibility of around 39% in Ref. 9.

D. Single-shot phase contrast recovery with MPG
Figure 21 shows examples of linear, trapezoid, and quadratic

phase objects recovered using the single-shot method described in
Sec. II F. The recovery is shown for the noiseless case and with

FIG. 21. Example phase recovery for
a ramp, trapezoid, and a quadratic
shaped object for noiseless and a
typical with-noise case. Monochromatic
beam(wavelength 0.44 nm) used.
The acquisition parameters are MPG
W = 50 μm, MPG pitch = 2.0 μm,
Dsd = 3 m, and Dsg = 1 m. The object
distance to detector Dod = 1.7 m.
The pixel size is 50 μm, and
the slit size 37.5 μm (slit kernel
Ks = 37.5 μm × L2/L1 = 75 μm). A G0
with a 37.5 μm opening and 50% duty
cycle may be used instead of a single
slit. Realistic Poisson noise was added
to the detector simulation. 16 noisy lines
were added before phase recovery.
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TABLE III. MPG phase recovery errors for triangular, trapezoid, and paraboloid phase objects.

Triangular Trapezoid Paraboloid
RMSE (±std) RMSE (±std) RMSE (±std)

MPG Slit Pixel Over 100 seeds Over 100 seeds Over 100 seeds

W P Sizea Size No With No With No With
(μm) (μm) Ls (μm) (μm) Noise Noise Noise Noise Noise Noise

50 2 37.5 50 1.44 2.22 ± 0.86 1.88 2.48 ± 0.91 2.55 2.91 ± 0.93
120 2 45 50 1.64 3.04 ± 1.20 2.82 3.84 ± 1.70 2.80 3.74 ± 1.86
120 2 45 100 1.68 4.08 ± 1.74 2.89 4.89 ± 2.30 2.66 4.69 ± 2.37
aThe convolution kernel used is Ks = 2Ls due to the pinhole magnification, L2/L1 .

realistic Poisson noise. The noise addition step is explained as fol-
lows: First, Poisson statistics with a realistic flux level to our detector
intensity was added. To determine a realistic flux, we have taken the
average intensity for experiments shown in Ref. 9, shown to be about
10 000. Taking into account the scintillation gain camera settings,
the actual neutron counts are about a factor of ten smaller for the
case shown in Ref. 9. This makes the neutron counts realistically
1000. We add the noise to each pixel after pixel and slit convolu-
tions and then perform the subsampling and interpolation. Instead
of phase stepping acquisitions, we take several single shot acquisi-
tions and add them. In Refs. 8 and 9, phase steps and three frames
were taken for each step. For our case, about 16 lines of noisy acqui-
sitions were added together—this would be similar to eight steps at
two frames. We compared a typical noisy recovery with the noise-
less case. The parameters of the MPG system used are W = 50 or
120 μm, pitch = 2.0 μm,Dsg = 1m, andDsd = 3m. The pixel size is 50
or 100 μm, and the slit width is 37.5 or 45 μm (convolution kernel of
Ls × L2/L1). A 50% duty cycle G0 grating may be used instead of a
single slit (see Sec. IV). The main detriments to the recovery were
at the transitions due to the phase-sensitivity effects. For each phase
object, the noisy recovery process described above was repeated 100
individual times (100 different seeds) and the root-mean-square-
error (RMSE) and the standard deviation are reported. For system
parameters of W = 120 μm, pixel size 50 or 100 μm, and a slit width
of 45 μm, the average RMSE error was higher as expected from the
smaller phase sensitivity (larger fringe period 360 μm atW = 120 μm
as opposed to 150 μm for W = 50 μm).

Table III shows the phase recovery RMSE over 100 noise
realizations.

IV. DISCUSSION
Our wave-propagation simulator for neutron PGMI appli-

cations can accept various designs (e.g., modulated phase grat-
ings and standard-dual-grating). These analytical simulations use
Sommerfeld–Rayleigh diffraction integrals (SRDI) to calculate the
intensity of the diffracted neutron wave at the detector plane. We
derived the theory behind the MPG and compared intensity and
minima/maxima conditions with the SRDI. Fringe pattern blurring
at the detector due to the spatial coherence loss of a slit source and
pixel size resolution was accounted for by convolving the fringe pat-
tern with independent appropriate rectangular window functions.
Fringe patterns are also subsampled according to the pixel size of the

detector and interpolated to increase the sample rate of their signal.
Simulations of the standard-dual-grating system with a monochro-
matic configuration produced visibility results in good agreement
with experimental data from Ref. 9 and fringe periods, which also
agreed well with the theory given in Ref. 8. Note also that experi-
ments include gratings with imperfect square profiles of gratings, a
slight misalignment between gratings, coherence loss from air scat-
tering over long distances, and mechanical vibrations.10,11 While
our analytical SRDI simulations and fringe processing techniques
do not account for these sources of noise, the fringe visibilities of
our simulations still matched well to experimental values. The SRDI
and fringe pattern processing techniques were used to investigate
our MPG system, which demonstrated it to be a promising type
of PGMI system by producing higher visibilities (50%–94.2%) than
the standard-dual-grating system for a range of possible modulation
period W parameters (Fig. 16). At the lower end of the modula-
tion periods, a narrower slit can aid in yielding higher visibilities
(Fig. 18). The margin of improvement the MPG system displays is
high for most cases and appreciable from what is currently reported
in the literature for the standard-dual-grating system. For example,
W = 300 μm and pitch = 2 μm produce visibility of near 94.2% with
a comparable SDD as the standard-dual-grating system operating in
a monochromatic configuration. When that same MPG configura-
tion was illuminated by a polychromatic beam, the visibility dropped
to 68.9%, which is still higher than the best visibility case in Pushin
et al.,9 and it demonstrates that ourMPG system is potentially robust
to polychromatic neutron sources. Operating in the smallerW range
also improves the phase sensitivity, yielding as much as 10.0 × 103

for SDDs up to 3.5 m.
Our mathematical treatise of intensity and the equation for

maximum visibility was borne out with N-SRDI simulations, as
shown in Fig. 6 and Table I.

For a small fringe period, a smaller slit size is important due
to the pinhole magnification amplifying the effects of slit blurring.
For a smaller slit, a G0 grating will be useful. Therefore, one aspect
to consider is the design of the G0 for the MPG system as shown
in Ref. 14. If P0 = actual G0 pitch, the projected pitch at the detec-
tor will have the pinhole magnification P0′ = Dgd/Dsg × P0 (or in
other notation L2/L1 × P0). This should equate the fringe period
W′
=M ×W = Dsd/Dsg ×W for coherence.14 So, Dgd/Dsg × P0 = Dsd

/Dsg × W. Thus, P0 can be calculated from geometry for a given
W as P0 = Dsd/Dgd × W. For clarity, it is emphasized that the

Rev. Sci. Instrum. 94, 045110 (2023); doi: 10.1063/5.0106706 94, 045110-17

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

magnification M = Dsd/Dsg is a different factor than the pinhole
magnification effect, which is L2/L1 (that is Dgd/Dsg).

For a sample calculation, we consider the phase recovery exam-
ple in Fig. 21. For this case, W = 50 μm, P = 2 μm, slit size = 37.5 μm
for Dsg = 1 m, Dsd = 3 m (or Dgd = 2 m). The required P0 = Dsd/Dgd
×W = 3/2 × 50 μm = 75 μm. The derivation can also be shown step
by step. For W = 50 μm, the fringe period at the detector is W′ =M
×W = Dsd/Dsg ×W = 3 × 50 μm = 150 μm. The projected P0′ has
to be therefore 150 μm. Therefore, P0 = 75 μm. This makes the duty
cycle Ls/P0 = 37.5/75 or 50%.

The performance improvement with MPG from the dual phase
grating system comes with the added benefit of the MPG system
being a single-phase-grating system that does not require precise
alignment of two gratings.

A potential advantage of the MPG system compared to TLI (for
x rays or neutron interferometry) is that the fluence absorbing ana-
lyzer grating between the object and detector that is necessary for
the TLI is not necessary for MPG. The advantage is potentially more
than just one less grating element and less alignment. For the same
fluence at the detector for both systems (and for similar object posi-
tions relative to the source), the dose to the object will be less for the
MPG system than for the TLI, where the analyzer absorbs half the x
rays or neutrons. This is particularly important when imaging bio-
samples in x ray or neutrons. The caveat is that source brilliance,
exposure time, and source grating G0 have to be considered to get
the same fluence at the detector. If the duty-cycle or open-ratios are
the same, say 50% for both systems, then exposure time may be kept
similar for similar fluence-level at the detector. However, for exam-
ple, if the G0 has a 50% open ratio for the TLI and 40% for the MPG
system, then the exposure time has to be increased by about 25% to
obtain the same fluence at the detector.

The gratings can be manufactured using existing manufac-
turing techniques according to the lead manufacturer Microworks,
GmbH.

For x-ray imaging (energies around 25 keV) we have obtained
fromMicroworks GmbH rectangular MPGs withW = 120 μm, pitch
P = 1 μm, as well as triangular MPGs with W = 120 μm and P = 1.8
μm. We have conducted successful experiments with both and are
preparing a manuscript for submission of those results.26

For neutrons, Si is the material of choice with deep UV gray
tone lithography being one option to modulate etch depth in the
siliconwith locally different heights of the resist serving as etch stops.

Other modulation shapes such as triangular or sinusoidal MPG
is possible.14 We observed in the simulation that the fringe pattern
may have ringing and harmonics for the RECT modulated grat-
ing at some geometries. The quality of fringes may be better for an
ideal sinusoidal modulation in the sense that there are fewer har-
monics for sinusoidal MPG due to the smoother fall off. However,
the RECT modulated grating is easier to manufacture and maintain
quality control and is of lower cost. For these reasons, in this work,
we limited our investigation to RECT MPG.

The 1D N-SRDI simulations were performed using the LSU
LONI QB3 cluster. A single compute node was utilized, which
has two Intel Xeon Platinum 8260 Processors each with 24 cores
(2.4 GHz). OpenMP, an application program interface (API) for
thread-based parallelism, is utilized to generate multiple threads that
run in parallel in order to speed up calculation times when run-
ning simulations. On average, a single simulation can take about 30

core-hours to complete. We expect more complicated/2D geo-
metries to be amenable to an MPI (Message Passing Interface)
implementation for parallel computing since it would allow the use
of multiple compute nodes.

V. CONCLUSIONS
We have proposed a novel phase-grating moiré interferome-

ter system for cold neutrons that only requires a single modulated
phase grating (MPG) for phase-contrast imaging, as opposed to the
two or three phase gratings in previously employed PGMI systems.
The MPG system promises to deliver significantly better fringe vis-
ibility relative to previous experiments in the literature that use a
two-phase-grating-based PGMI. When operating in the smaller W
range and using SDDs of up to 3.5 m, the MPG system could pro-
vide comparable or greater theoretical maximum phase sensitivity
when compared to the conventional Talbot–Lau interferometer. The
single MPG reduces the precise alignment requirements needed for
multi-grating systems. Like other PGMI systems, the MPG system
does not require the high-aspect-ratio absorption gratings used in
Talbot–Lau interferometers, which are challenging to manufacture
and reduce the neutron flux reaching the detector.
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APPENDIX A: DERIVATION OF INTENSITY AND
VISIBILITY FOR A MODULATED PHASE GRATING
1. Field amplitude derivation

See Fig. 1 for a general set up of the system. The Fresnel con-
dition is derived by Patorski et al.21 for a standard periodic grating
with period d in terms of the discrete Fourier coefficients. Since our
grating has W and P components, we expect to have complicated
periodic frequencies, with harmonic combinations of m

W +
n
P . Hence,

we derived the Fresnel conditions from first principles.28 First, we
derive the amplitude of the field under Fresnel condition for MPG
grating T(y) [see Eq. (6), reproduced here for convenience],

T(y1) = [{g(y1)
∞

∑
n=−∞

δ(y1 − nP)} +
∞

∑
n=−∞

δ(y1 −
nP
2
− P/2)]

× ⊗rect(
y1
P/2
),

where g(y1) = {exp (iϕ1)rect( y1
W/2) + exp (iϕ2)rect(

y1−W/2
W/2 )}

⊗ { 1
W∑

∞

−∞
δ(y1 − nW)}, the ϕ1 and ϕ2 being the phase heights in

regions h1 and h2, each of width W/2 for the MPG of interest. The
first curly bracket shows one period of the envelope that is repeated
via the comp-convolution in the second curly bracket.

Here, the field in the Fresnel region is derived in Goodman
[Eqs. (4)–(10) in Ref. 16],

U(x, y, z) =
exp (ikz)

iλz
exp(

ik(x2 + y2)
2z

)

× FT (U(x′, y′, z) exp(
ik(x2 + y2)

2z
))∣

f x= x
λz , f y=

y
λz

,

(A1)

where U(x′, y′, z) = exp (ikr0)
r0

T(y′) ≈ exp (ikL1)
L1

exp( ik(x
′2
+y′2)

2L1
)T(y′),

making a parabolic approximation of incident spherical wave from
point source, as done in Patorski.21

Substituting U(x′, y′, z), the FT-term in Eq. (A1) becomes

FT (U(x′, y′, z) exp(
ik(x2 + y2)

2z
))∣

= FT(T(y′))⊗ FT
⎛
⎜
⎝
exp
⎛
⎜
⎝

ik(x′2 + y′2)

2
(
1
L1
+
1
z
)
⎞
⎟
⎠

⎞
⎟
⎠
. (A2)

The FT(T(y′)) of the particular MPG T(y′) [Eq. (6)] is given by

FT(T(y′)) =
P
2
sinc(

P f y
2
)[{F(g(y))⊗

1
P

∞

∑
n=−∞

δ( f y −
n
P
)}

+ {
1
P
exp(

− j2πP f y
2

)
∞

∑
n=−∞

δ( f y −
n
P
)}].

The P and 1
P scaling terms cancel. Note the grating is assumed to be

constant lines along the x-direction, which just introduces an overall
δ( f x) and leaves the function to convolute intact in the x-direction.

Then, carrying out the convolution in Eq. (A2) and plugging
in fy = y

λz and fx = x
λz and simplifying, we obtain the amplitude in

Eq. (A1) as

U(y, z) = Aexp(iB)
1

L1 + z
[
+∞

∑
n=−∞

+∞

∑
m=−∞

gm sinc {
1
2
(
mP
W
+ n)}

× exp{−
jπλL1z
L1 + z

(
m
W
+
n
P
)
2
} exp{

j2πL1y
L1 + z

(
m
W
+
n
P
)}

+
+∞

∑
n=−∞

exp{− jπn}sinc{
n
2
} exp{−

jπλL1z
(L1 + z)

(
n
P
)
2
}

× exp{
j2πL1y
(L1 + z)

(
n
P
)}], (A3)

= A exp(iB)
1

L1 + z
[U1(y, z,W,P) +U2(y, z,P)]. (A4)

Here, U1(y, z,W,P) is the first dual sum (depends on W and P)
and U2(y, z,P) is the second single sum. Also, we lumped some
real (and z-independent) and exponential phasor terms in Aexp(iB)
as they will result in z-independent scaling term A2 in inten-
sity I(y, z) = U(y, z)U∗(y, z) = ∣U(y, z)∣2. Note that the gm are the
Fourier coefficients of the envelope function, with period W,

g(y) =
∞

∑
m=−∞

gm exp(
j2πmy
W
) or,F(g(y)) =

∞

∑
m=−∞

gm δ( f y −
m
W
),

where gm is found by Fourier transform integral of g(y). Equa-
tion (A3) is reminiscent of Patorski21 or Guigay,18 except with a
double summation due to the dual-harmonics. We are interested in
I(y, z) = ∣U(y, z)∣2, which is what we observe in detector.

2. Field intensity and visibility
From Eq. (A4), we can write

I(y, z) = (
A

L1 + z
)
2
[U1U∗1 +U2U∗1 +U1U∗2 +U2U∗2 ].

Writing each of U1 and U2 in terms of z- and y-dependent
terms,

U1(y, z) =
+∞

∑
n=−∞

+∞

∑
m=−∞

b1(m,n, z) exp{
j2πL1y
L1 + z

(
m
W
+
n
P
)},

U2(y, z) =
+∞

∑
n=−∞

b2(m,n, z) exp{
j2πL1y
(L1 + z)

(
n
P
)},
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where

b1(m,n, z) = gmsinc{
1
2
(
mP
W
+ n)} exp{−

jπλL1z
L1 + z

(
m
W
+
n
P
)
2
}

and

b2(m,n, z) = exp{− jπn}sinc{
n
2
} exp{−

jπλL1z
(L1 + z)

(
n
P
)
2
}.

We can show

U1U∗1 =
+∞

∑
n=−∞

+∞

∑
m=−∞

C11(m,n, z) exp{
j2πL1y
L1 + z

(
m
W
+
n
P
)}, (A5)

where C11(m,n, z) = b1(m,n, z)⊗ b∗1 (−m,−n, z), which is the auto-
correlation of the b1(m,n, z). Note immediately that this component
of the intensity (and, in fact, for the others) has exp{ j2πL1y

L1+z
( nP )},

which is a modulation of the harmonics of P and cannot really be
detected by the practical detector of 50–100 μm without an analyzer
grating as is typically used in Talbot-Lau Interferometers.

Similarly, U1U∗2 , U2U∗1 , and U2U∗2 can be written in equivalent
forms to get

I(y, z) = (
A

L1 + z
)
2 +∞

∑
n=−∞

+∞

∑
m=−∞

[C11(z,m,n) + C12(z,m,n)

+ C∗12(z,−m,−n)] exp{
j2πL1y
L1 + z

(
m
W
+
n
P
)}

+ C22(z,n) exp{
j2πL1y
L1 + z

(
n
P
)},

whereC12(z,m,n) is the cross-correlation of b1(m,n, z) and b2(n, z)
and C22(z,n) is the auto-correlation of b2(n, z).

It is noted again that since this is the final intensity at the detec-
tor, the P-harmonics, i.e., ( nP ) will be blurred by pixel size. This is
the reason why for a Talbot-Lau system with standard phase grating
with pitch P (of the order of 1–4 μm), a second grating is needed
(the G2, absorption grating) to observe the fringes with a practical
detector of pixel size 50–100 μm.

Therefore, we can consider only n = 0 and the intensity can be
shown to be

I(y, z) ≈ (
A

L1 + z
)
2
[C22(z, 0) +

+∞

∑
m=−∞

[C11(z,m, 0) + C12(z,m, 0)

+ C∗12(z,−m, 0)] exp{
j2πL1y
L1 + z

(
m
W
)}]

= (
A

L1 + z
)
2
[I0 +

+∞

∑
m=1

Im(z) cos{
2πL1y
L1 + z

(
m
W
) + θm}]. (A6)

Therefore, the intensity produces fringe patterns of period m
MW where

magnification M = L1+z
L1

. In our case of an even grating, θm = 0.
The Im = κ(m) = 2 ∣ C11(z,m, 0) + C12(z,m, 0) + C∗12(z,−m, 0) ∣.
The average is contributed by I0 = C22(0) + κ(0).

The auto-correlations and cross-correlations are given by (for
n = 0, i.e., not considering standalone n/P harmonic modulations, as
explained earlier)

C11(z,m, 0) =∑
m′
∑
n′
b1(m −m′,−n′)b∗1 (−m

′,−n′)

=∑
m′
∑
n′
gm−m′g

∗

−m′ sinc{
π
2
(
(m −m′)P

W
− n′)}

× sinc{
π
2
(
(−m′)P
2W

− n′)}

× exp{
jπL1z
L1 + z

(
2mn′

WP
+
2mm′ −m2

W2 )},

and

C12(z,m, 0) = gm∑
n′
sinc{

π
2
(
mP
W
− n′)}sinc{

πn′

2
} exp{− jπn′}

× exp{
jπλL1z
L1 + z

(
2mn′

WP
−

m2

W2 )}.

The visibility is guided by the first harmonic component that is 1
MW

that is for m = 1.
In other words, visibility is given by

Visibility =
A1

A0
=

2∣C11(z, 1, 0) + C12(z, 1, 0) + C∗12(z,−1, 0)∣
C22(z, 0)+∣C11(z, 0, 0)+C12(z, 0, 0)+C∗12(z, 0, 0)∣

.

The visibility will maximize and minimize according to the expo-
nentials in C11(z, 1, 0) and C12(z, 1, 0). This is difficult to pin
down, in general; however, setting m = 1 in the equations for
C11(z,m, 0) and C12(z,m, 0) ignoring 1

W2 in comparison to 1
WP

terms, we can see both terms have exp{ jπλL1z
L1+z
( 2n′
WP)}.

This may lead to a condition, 2πλL1z
L1+z
( 1
WP ) = πk

′,

z =
L1WPk′

2λL1 −WPk′
, (A7)

where k′ is an integer.
We also observe that the location of Z is independent of the

grating envelope function (though the visibility is).

APPENDIX B: SOURCE SHIFT DERIVATION

Here, the effect of applying a shift to a parabolic wavefront
source will be shown to follow pinhole-type magnification under
the Fresnel approximation. First, the diffracted field amplitude as
derived by Goodman (ignoring constant multipliers),16

U(x, y, z)∝∬
∞

−∞

U(x′, y′, 0) exp [
jk
2z
(x′2 + y′2)]

× exp [
− jk
z
(xx′ + yy′)]dx′dy′. (B1)

For a source located on the optical axis, the field at the grating under
parabolic wavefront illumination is

U(x′, y′, 0) = T(y′)
e jkL1

L1
exp[

jk
2L1
(x′2 + y′2)],
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where T(y’) is the grating transmission function. Shifting the source
by y0 yields

U(x′, y′, 0) = T(y′)
e jkL1

L1
exp [

jk
2L1
(x′2 + (y′ − y0)

2
)].

Plugging this into (B1) and extracting the constants yields

U(x, y, z)∝
∞

∬
−∞

T(y′) exp [
jk
2L1
(x′2 + (y′ − y0)

2
)]

× exp [
jk
2z
(x′2 + y′2)] exp [

− jk
z
(xx′ + yy′)]dx′dy′.

Expanding and combining the exponentials yields

U(x, y, z)∝ exp [−
jky20
2L1
]

∞

∬
−∞

T(y′) exp [
jk
2L1
(x′2 + y′2) +

jk
2z

× (x′2 + y′2) −
jky′y0
L1

−
jk
z
(xx′ + yy′)]dx′dy′,

which can then be arranged to

U(x, y, z)∝ exp [−
jky20
2L1
]

∞

∬
−∞

T(y′) exp [
jk
2L1
(x′2 + y′2)

+
jk
2z
(x′2 + y′2) −

jk
z
(xx′ + y′ (y +

y0z
L1
)]dx′dy′.

It is immediately evident that (besides multiplicative factors), the
field for a grating illuminated by a source shifted by y0 will result
in a field that is equivalent but shifted (in the opposite direction)
by y0z

L1
. This is corroborated by Fig. 5. It should be noted that Fig. 5

is generated using a true spherical wave (point source) for illumi-
nation, and the corroboration further validates the parabolic wave
approximation used in Appendix A.
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