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Abstract. We propose and study a new class of polynomial voting rules for a general 
decentralized decision/consensus system, and more specifically for the proof-of-stake pro
tocol. The main idea, inspired by the Penrose square-root law and the more recent qua
dratic voting rule, is to differentiate a voter’s voting power and the voter’s share (fraction 
of the total in the system). We show that, whereas voter shares form a martingale process 
that converges to a Dirichlet distribution, their voting powers follow a supermartingale 
process that decays to zero over time. This prevents any voter from controlling the voting 
process and, thus, enhances security. For both limiting results, we also provide explicit 
rates of convergence. When the initial total volume of votes (or stakes) is large, we show a 
phase transition in share stability (or the lack thereof), corresponding to the voter’s initial 
share relative to the total. We also study the scenario in which trading (of votes/stakes) 
among the voters is allowed and quantify the level of risk sensitivity (or risk aversion) in 
three categories, corresponding to the voter’s utility being a supermartingale, a submartin
gale, and a martingale. For each category, we identify the voter’s best strategy in terms of 
participation and trading.
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1. Introduction
Voting, in the traditional sense, refers to a set of rules for a community of individuals or groups (voters) to reach 
an agreement or to make a collective decision on some choices and ranking problems. In today’s world, voting 
has become a ubiquitous notion that includes any decentralized decision-making protocol or system, in which 
the voters are often abstract entities (virtual) and the voting process automated, and the purpose of reaching con
sensus is often nonsocial and nonpolitical, such as to enhance the overall security of an industrial operation or 
infrastructure (Garcia-Molina [11], Lamport et al. [19]). Examples include cloud computing (Armbrust et al. [1], 
Dean and Ghemawat [7]), smart power grids (Huang and Baliga [13]), and more recently trading or payment 
platforms and exchanges built upon the blockchain technology (Nakamoto [21], Wood [30]).

At the core of a blockchain is the consensus protocol, which specifies a set of voting rules for the participants 
(miners or validators) to agree on an ever-growing log of transactions (the longest chain) so as to form a distrib
uted ledger. There are several existing blockchain protocols, among which the most popular are proof of work 
(PoW; Nakamoto [21],) and proof of stake (PoS; King and Nadal [14], Wood [30]). In the PoW protocol, miners 
compete with each other by solving a hashing puzzle. The miner who solves the puzzle first receives a reward (a 
number of coins) and whose work validates a new block’s addition to the blockchain. Hence, whereas the compe
tition is open to everyone, the chance of winning is proportional to a miner’s computing power.

In the PoS protocol, there is a bidding mechanism to select a miner to do the work of validating a new block. 
Participants who choose to join the bidding are required to commit some stakes (coins they own), and the win
ning probability is proportional to the number of stakes committed. Hence, a participant in a PoS blockchain is 
actually a bidder as opposed to a miner only the winning bidder becomes the miner validating the block. (Any 
participant who chooses not to join the bidding can be viewed as a bidder who commits zero stakes.) Needless to 
add, bidding existed long before the PoS protocol and is widely used in many applications, such as auctions and 
initial public offerings.
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Let’s explore the PoS bidding mechanism a bit more formally. Suppose a voter (or bidder) k is in possession of 
nk, t votes (or stakes) at time t, an index that counts the rounds of voting or bidding in the protocol, and Nt :�
P

knk, t is the total number of votes over all voters. Hence, voter k’s share, a fraction of the total, is πk, t :� nk, t=Nt. 
Following a traditional voting rule, voter k’s chance or probability of winning, which we call voting power, is 
equal to πk, t, voter k’s share. Yet this doesn’t have to be the case. That is, any voter’s voting power need not be 
equal to the voter’s share (of the system total). Indeed, there are often good reasons for the two to be different.

Historically, the English scholar Lionel Penrose [22] famously proposed a square-root voting rule, around the 
time when the United Nations was founded shortly after World War II. According to Penrose, a world assembly 
such as the United Nations should designate each country a number of votes that is proportional to the square 
root of its population. The obvious implication (which may or may not be what Penrose initially intended) is to 
limit the voting power of nations with very large populations. In the same spirit, the quadratic voting rule has 
attracted much attention in recent years (Lalley and Weyl [15]). The idea is that each voter is given a budget (in 
dollars, for instance); the voter can cast multiple votes on any single or subset of choices or candidates on the bal
lot with x votes (for any choice) costing x2 dollars. Under both voting rules, the voting power is different from 
the voter’s share or representation in the system: population in the first case and the budget in the second case.

Inspired by these ideas, we propose a class of polynomial voting rules, denoted Poly(α), which grant every 
voter k a voting power that scales the voter’s share πk, t by a factor N�αt for α ≥ 0. When α � 0, this reduces to the 
traditional voting case of power � share, which is a linear rule. When α � 1, the rule resembles the square-root or 
quadratic voting rules mentioned earlier in spirit in terms of decoupling voting power from a voter’s share but, 
of course, differs in both the application context and implementation schemes. As we demonstrate, the general 
Poly(α) rule is a time change of the Poly(0) rule with the parameter α measuring how much the traditional α � 0 
rule is slowed down, namely, the voting power is diminished over time.

There are (at least) two reasons to consider slowed-down voting schemes in blockchains. 
• First, the block-generation time requires being lower bounded because of network delay (see Shi [25, section 

14.3]). Specifically, there is the principle of security:

(1� v) · honest power > γ · dishonest power, or v < 1� γ · dishonest power
honest power : (1) 

Here, honest/dishonest power refers to the voting power of honest/dishonest bidders. The parameter γ is a user- 
defined security factor; for example, γ � 2 means honest power is expected to be twice as much as dishonest power, 
and hence, γ measures how secure a distributed system is. When honest bidders broadcast their validation results, 
dishonest bidders may exploit network delay to attack; equivalently, network delay reduces the honest power. 
Thus, the term 1� v plays the role of a discount factor with v proportional to network delay (the more severe net
work delay is, the smaller the discount 1� v is and, hence, the larger v is). Honest power is discounted also because 
honest bidders follow exactly the protocol, whereas dishonest bidders do not comply with the rules. As we illus
trate (in the remarks following Theorem 2), slowing down the voting process enhances security. This is because 
decreasing voting power over time increases the block generation time, which mitigates network delay and makes 
the principle of security (1) easier to hold.
• Second, PoS blockchains suffer from malicious attacks known as nothing at stake (see, e.g., Deirmentzoglou 

et al. [8]). As pointed out in Bagaria et al. [2], for the PoS longest chain protocol, honest bidders focus exclusively on 
the longest chain, whereas dishonest bidders can work simultaneously on all existing blocks. They show that the 
PoS longest chain is less secure than its PoW counterpart, assuming both honest and dishonest parties have con
stant voting power over time. However, as dishonest bidders have more flexibility, it is (much) more likely that 
they win and get rewarded, and their advantage is only amplified over time. This makes constant voting power 
highly undesirable. There are two general approaches to solving this problem: (i) adjust the amount of reward over 
time and (ii) slow down the voting process; both are aimed at preventing dishonest bidders from overpowering 
honest bidders as time evolves.

Here is an overview of our main findings and results. We prove that, under the Poly(α) voting rule, voter 
shares form a martingale process that converges to a Dirichlet distribution as t→∞, whereas their voting powers 
follow a supermartingale process that decreases to zero over time (Theorem 2), and for both limits, we also 
explicitly characterize their rates of convergence. Thus, the Poly(α) voting scheme enhances security, preventing 
any voter or group of voters from controlling the voting process and overpowering the system.

We further group the voters into two categories, large and small, according to the initial (time zero) votes they 
own relative to the total (N0). When N0 is large, which is the case in most applications, we show a phase transi
tion in the stability of voter shares across the two categories (Proposition 4). Notably, the same phenomenon is 
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demonstrated under the traditional voting rule (α � 0); refer to Roşu and Saleh [24] and Tang [26]. Our result 
establishes that this phase transition is in fact universal in the sense that it applies to all values of α(≥ 0).

We also study the scenario in which trading (of votes/stakes) among the voters (or bidders) is allowed, moti
vated by PoS applications in cryptocurrency. For α � 0, the trading scenario is recently studied in Roşu and Saleh 
[24]. Not only is our model more general in allowing any α ≥ 0, our results are also richer and sharper (Theorem 
3). For instance, we quantify the level of risk sensitivity (or risk aversion) that results in three cases according to 
the voter’s utility being a supermartingale, a submartingale, or a martingale. Each case leads to a best strategy 
for the voter, including nonparticipation (not to participate at all in the bidding) and buyout (buying as many 
stakes as are available), which are not considered in Roşu and Saleh [24]. Note that a buyout is a monopoly, and 
it is desirable to limit the number of stakes that any voter can acquire in a single round. This is studied in our 
subsequent paper (Tang and Yao [28]) on trading PoS stakes with volume constraint. See also Tang [27] for vari
ous problems (including transaction costs and voter’s collective behavior) related to PoS trading.

The key to our analysis relies on the study of the random process Nt (the total volume of votes/stakes at time 
t), which is a time-homogeneous Markov chain. We develop some asymptotic results for this Markov chain, 
including large-deviation bounds (Theorem 1) and a fluid limit (Proposition 3).

In the remainder of this paper, there are two main sections. Section 2 studies the Poly(α) voting model from a 
general perspective, focusing on the associated stochastic processes, such as Nt, voter shares, and voting powers, 
and their long-term behavior and limits, some of which are further characterized by concentration inequalities or 
large-deviation bounds. Section 3 concerns two aspects of the Poly(α) voting rule that are more closely associ
ated with the application of PoS in cryptocurrency: (a) the evolution of bidder shares over time and the phase 
transition phenomenon mentioned earlier and (b) the issue of incentive and risk-sensitivity when trading is 
allowed. Concluding remarks and suggestions for further research are collected in Section 4.

2. The Poly(a) Voting Model
In this section, we develop a formal model for the Poly(α) voting rule, focusing on the stochastic processes asso
ciated with the model and their properties and limiting behavior.

First, here is a list of some of the common notation used throughout the paper: 
• N+ denotes the set of positive integers, and R denotes the set of real numbers.
• �

d denotes equal in distribution, and →d denotes convergence in distribution.
• a �O(b) means a

b is bounded from above as b→∞, a �Θ(b) means a
b is bounded from below and above as 

b→∞, and a � o(b) or b≫ a means ab decays toward zero as b→∞.
• dW(µ,ν) denotes the 1-Wasserstein distance between two probability distributions µ and ν. Refer to Villani [29, 

chapter 6].
We use C, C′, C′′, etc., to denote generic constants (which may change from line to line).
The voters, referred to as bidders, are the participants in the decentralized system, in which they engage in 

rounds of bidding following a prespecified voting rule (the consensus protocol) so as to win more votes or stakes. 
(The PoS protocol described in the introduction provides a concrete instance to motivate the model here.) Let K ∈
N+ be the total number of bidders, which stays fixed throughout the paper, and let [K] :� {1, : : : , K} denote the set 
of all bidders.

Time is discrete, indexed by t � 0, 1, 2, : : : , and corresponds to the rounds of bidding mentioned. Bidder k ini
tially owns nk, 0 stakes. Let N :�

PK
k�1 nk, 0 denote the total number of initial stakes owned by all K bidders. The 

term “bidder share” refers to the fraction of stakes each bidder owns. So the initial bidder shares (πk, 0, k ∈ [K])
are given by

πk, 0 :�
nk, 0
N , k ∈ [K]: (2) 

Similarly, nk, t denotes the number of stakes owned by bidder k at time t ∈ N+, and the corresponding share is

πk, t :�
nk, t

Nt
, k ∈ [K], with Nt :�

XK

k�1
nk, t: (3) 

Here, Nt is the total number of stakes at time t, and thus, N0 �N. (We often refer to Nt as the volume of stakes or, 
simply, volume.) Clearly, for each t ≥ 0, (πk, t, k ∈ [K]) forms a probability distribution on [K].

In each period t, a single stake (or reward) is distributed as follows: each bidder k receives the reward with 
probability

θk, t :�
nk, t

N1+α
t
�
πk, t
Nαt

, (4) 
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and receives nothing with probability 1�θk, t. Clearly, θk, t is bidder k’s reward rate as 1=θk, t is the average num
ber of rounds for bidder k to win an additional unit of stake. To the extent the reward is coupled with the voting 
mechanism outlined earlier, θk, t can also be viewed as bidder k’s voting power at time t. (We use the terms 
“reward rate” and “voting power” interchangeably if there is no ambiguity.) When α � 0, the voting power θk, t 
coincides with the bidder share πk, t, which is the Pólya urn framework in Roşu and Saleh [24] and Tang [26].

Let Sk, t be the random event that bidder k receives one unit of reward in period t. Thus, the number of stakes 
owned by each bidder evolves as follows:

nk, t � nk, t�1 + 1Sk, t , k ∈ [K]; (5) 

or simply,

nk, t �
nk, t�1 with probability 1�θk, t�1,
nk, t�1 + 1 with probability θk, t�1:

(

(6) 

Accordingly, the total number of stakes Nt evolves as follows, taking into account 
PK

k�1 nk, t �Nt,

Nt �
Nt�1 with probability 1� 1=Nαt�1,
Nt�1 + 1 with probability 1=Nαt�1:

(

(7) 

The counting process (Nt, t ≥ 0) specified in (7) evolves as a time-homogeneous Markov chain on {N, N + 1, : : : }
in contrast with the Pólya urn (with a constant reward) in which Nt grows deterministically and linearly in t. As 
we see in the next section, the Poly(α) voting rule slows down the distribution of rewards, so the volume of 
stakes grows sublinearly. This is consistent with the volume growth in many cryptocurrencies, such as Bitcoin 
and Ethereum.

Let nt � (n1, t, : : : , nK, t) be the vector of bidder stakes at time t. An alternative (and useful) characterization of 
(nt, t ≥ 0) is given as follows.

Proposition 1. Let (Lt, t ≥ 0) be a counting process with arrivals occurring at 0 � T0 < T1 <⋯ such that the interarrival 
times are independent with Tk+1�Tk for every k ≥ 0, following a geometric distribution with success probability parameter 
(N + k)�α. Define the process (lt, t ≥ 0) by

lt � lTk for Tk ≤ t < Tk+1, 

where (lTk , k ≥ 0) is a copy of the Pólya urn process with K colors and N initial balls. Then, we have (nt, t ≥ 0)�d (lt, t ≥ 0), 
where nt is the process of bidder stakes defined earlier.

Proof. It is clear from the dynamics in (7) that the two counting processes (Nt, t ≥ 0) and (Lt, t ≥ 0) have the same 
distribution. Given nt, the probability that the next (unit of) stake goes to bidder k is nk, t

N1+α
t
= 1

Nαt
�

nk, t
Nt 

by the craps 
principle. The connection to the Pólya urn process with K colors (voters) and N initial balls (stakes) is obvious. w

This proposition implies that the Pólya urn is embedded in the process of stakes (nt, t ≥ 0) through a random 
time change (Nt, t ≥ 0). This fact is used to study the long-time behavior of bidder shares and reward rates in Sec
tion 2.2. But we first study in the next section how the issuance of rewards is slowed down under the Poly(α)
voting rule.

2.1. The Volume (Nt, t ≥ 0)
Let Ft be the filtration generated by the random events (Sk, r : k ∈ [K], r ≤ t).

Proposition 2 (Long-Time Behavior of Nt). Under the Poly(α) voting rule, the following results hold: 
i. The process (Nt, t ≥ 0) is an Ft-submartingale, and its compensator is

At �
X

k≤ t�1
N�αk for t ≥ 1:

ii. There is the convergence in probability:

N1+α
t
t → 1 + α as t→∞: (8) 

Proof.
i. It suffices to note that E(Nt+1 |Ft) �Nt +N�αt for all t ≥ 0.
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ii. Apply the method of moments by computing E(N(1+α)jt ) for all j. For j � 1, we have, by definition,

E(N1+α
t+1 �N1+α

t |Nt � x) � (1+ x)1+α 1
xα
+ x1+α 1� 1

xα

� �

� x1+α

� 1+ α+O(x�1) as x→∞:

It is clear that, with probability one Nt→∞ as t→∞. As a result, E(N1+α
t+1 �N1+α

t ) → 1+α as t→∞, which yields

EN1+α
t ~ (1+α)t as t→∞: (9) 

Next, for j � 2, we have

E(N2(1+α)
t+1 �N2(1+α)

t |Nt � x) � 2(1 + α)x1+α +O(xα) as x→∞:

Thus, E(N2(1+α)
t+1 �N2(1+α)

t ) � (2(1+ α) + o(1))EN1+α
t ~ 2(1+ α)2t by (9). Then, we get E(N2(1+α)

t ) ~ (1+ α)2t2 as t→∞. 
We proceed by induction. Assuming that E(Nj(1+α)

t ) ~ (1+α)jtj as t→∞, we get

E(N(1+α)(j+1)
t �N(1+α)(j+1)

t ) � ((j+ 1)(1+ α) + o(1))E(Nj(1+α)
t ) ~ (j+ 1)(1+ α)j+1tj, 

which implies that E(N(1+α)(j+1)
t ) ~ (1+α)j+1tj+1 as t→∞. Thus, we have

E(N(1+α)jt ) ~ (1+ α)jtj as t→∞, j � 1, 2, : : :

By the method of moments (see, e.g., Billingsley [3, section 30]), N(1+α)t =t converges in distribution and, thus, in 
probability to 1+α. w

The proposition gives the growth rate of the volume of stakes: Nt grows as ((α+ 1)t)
1

1+α as t→∞. Part (i) sug
gests that Nt ~

P
k≤ t�1N�αk , which is consistent with the limit in (8). When α � 0, Nt follows the (deterministic) lin

ear growth of the Pólya urn model (with a constant reward). For α � 1, Nt grows as 
ffiffi
t
√

.
Even more important is the question of how Nt fluctuates around its growth trajectory ((α+ 1)t)

1
1+α, specifically, 

how to establish large-deviation bounds on Nt. This is addressed in the next theorem, along with a corollary that 
confirms Nt’s concentration around its growth trajectory for large t.

Theorem 1 (Large Deviations for Nt). Define a function fα(·),

fα : λ ∈ (0,∞) ⊢→ (1+ α)λ log λ� (1+ α)λ+ 1
λα
∈ R:

Let λ�(α) < λ+(α) be the two roots of fα(·) on (�∞,∞). Under the Poly(α) voting rule, the following results hold: 
i. For each λ < λ�(α) and for any ε > 0,

P(Nt < λt 1
1+α) ≤ exp �(1� ε)fα(λ) t

1
1+α

� �
as t→∞: (10) 

ii. For each λ > λ+(α) and for any ε > 0,

P(Nt > λt 1
1+α) ≤ exp �(1� ε)fα(λ) t

1
1+α

� �
as t→∞: (11) 

Proof. Without loss of generality, assume that N0 � 1. Note that (Nt, t ≥ 0) has increments {0, 1}, so there are 
� t

k
�

paths ending at Nt � k+ 1 (one has to choose k upward steps “1” out of t steps). Moreover, the probability of each 
path ending at Nt � k+ 1 is upper bounded by

1
(k!)

α 1� 1
(k+ 1)α

� �t�k
, 

because the k upward “1” steps contribute 1=k! and the remaining t � k flat “0” steps have at most probability 
1� 1

(k+1)α
� �t�k

. Thus,

P(Nt ≤ m+ 1) ≤
X

k≤m
ak and P(Nt >m) ≤

X

k≥m
ak, 

where

ak :�
t
k

� �
1
(k!)

α 1� 1
(k+ 1)α

� �t�k
: (12) 
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Standard analysis shows that there are 0 < k1 < k2 such that ak is nondecreasing on [1, k1) and [k2, t). As we see, 
k1 ~ λ�(α) t

1
1+α and k2 ~ λ+(α) t

1
1+α as t→∞. The idea is to study the term ak with k � λt 1

1+α for λ > 0 as t→∞. By 
Stirling’s formula,

t
λt 1

1+α

 !

~ 1
ffiffiffiffiffiffiffiffiffi
2πλ
√ t�

1
2(1+α)exp λα

1+α t 1
1+αlog t+ (λ�λ log λ)t 1

1+α + o t 1
1+α

� �� �

,

λt 1
1+α

� �
! ~

ffiffiffiffiffiffiffiffiffi
2πλ
√

t
1

2(1+α)exp λ

1+α t 1
1+αlog t+ (λ log λ�λ)t 1

1+α

� �

, 

and

1� 1
λαt α1+α

� �t�λt
1

1+α

� exp �
t 1

1+α

λα
+ o t 1

1+α

� �
 !

:

Combining these estimates yields
aλ ffiffit√ ~ (2πλ)�

1+α
2 t�1

2 exp �fα(λ) t
1

1+α

� �
: (13) 

Note that f ′α(λ) � (1+ α) log λ�αλ�1�α, which is increasing from �∞ to ∞ on [0,∞). The unique stationary point 
of fα on [0,∞) is achieved at λ∗ such that λα+1

∗ log λ∗ � α
1+α, so it is clear that λ∗ > 1. We have

fα(λ∗) � (α� 1)λ�α∗ � (1+ α)λ∗ < 0:

Thus, the function λ→ fα(λ) has two roots: λ�(α) < λ+(α) on [0,∞) and fα > 0 on (0,λ�(α)) ∪ (λ+(α),∞). As a 
result, for each λ < λ�(α), we have

P(Nt < λt 1
1+α) ≤ Cλt�

1
2+

1
1+αexp �fα(λ) t

1
1+α

� �
≤ exp �(1� ε)fα(λ) t

1
1+α

� �
as t→∞, 

and for each λ > λ+(α), we have

P(Nt > λt 1
1+α) ≤ C′λt

1
2exp �fα(λ) t

1
1+α

� �
≤ exp �(1� ε)fα(λ) t

1
1+α

� �
as t→∞:

The theorem gives exponential deviation bounds for Nt when it is either sufficiently small (below λ�(α)t
1

1+α) or 
sufficiently large (above λ+(α)t

1
1+α). Note that there is a gap between the two bounding curves because, for each 

α > 0, λ�(α) < (1+ α)
1

1+α < λ+(α). (For instance, for α � 1, λ�(1) ≈ 0:56 <
ffiffiffi
2
√

< 2:51 ≈ λ+(1).) The gap is due to the 
combinatorial estimates in our proof, which may very well be improved. Refer to Appendix A for a numerical 
procedure that shrinks the gap. w

As a corollary, the volume of stakes Nt concentrates around ((1+ α)t)
1

1+α for large t.

Corollary 1. Under the Poly(α) voting rule, we have, for each δ > 0,

P |Nt� ((1+ α)t)
1

1+α | > δt 1
1+α

� �
�O(t� 1

1+α) as t→∞: (14) 

Proof. Note that N0 ≤ Nt ≤ t+N0, and by Theorem 1, we get λ1t 1
1+α ≤ Nt ≤ λ2t 1

1+α with probability 1�
exp(�Cλt 1

1+α) for some λ1,λ2, C > 0. Thus,

EN�1
t �O(t� 1

1+α) and ENαt �O(t α1+α):

According to the proof of Proposition 2(ii), we have

E(N1+α
t+1 �N1+α

t ) � 1 + α +O(EN�1
t ) and E(N2(1+α)

t+1 �N2(1+α)
t ) � 2(1 + α)EN1+α

t +O(ENαt ):

Therefore, EN1+α
t � (1+ α)t+O(t α1+α) and E(N2(1+α)

t ) � (1+ α)2t2 +O(t1+2α
1+α ), which implies Var(N1+α

t ) �O(t1+2α
1+α ). Hence,

P( |N1+α
t � (1+α)t | > δt) �O(t� 1

1+α) for t→∞:

Taking λ < λ�(α), we have
P |Nt� ((1+α)t)

1
1+α | > δt 1

1+α

� �

≤ P Nt < λt 1
1+α

� �
+P |Nt� ((1+ α)t)

1
1+α | > δt 1

1+α, Nt ≥ λt 1
1+α

� �

≤ exp(�C′t 1
1+α) +P( |N1+α

t � (1+ α)t | > C′′t), 
for some C′, C′′ > 0 (depending on α,δ,λ). Combining these estimates yields (14). w
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Recall that the process (Nt, t ≥ 0) is a time-homogenous Markov chain. The path properties of a general time- 
homogenous Markov chain (Zt, t ≥ 0) has long been studied since the work of Lamperti [16–18]. The basic idea is 
to study the recurrence or transience of (Zt, t ≥ 0) based on

m1(x) � E(Zt+1 �Zt |Zt � x) and m2(x) � E((Zt+1 �Zt)
2
|Zt � x):

For instance, if lim supx→∞ 2xm1(x) +m2(x) ≤ 0, then (Zt, t ≥ 0) is recurrent, and if lim infx→∞ 2xm1(x) +m2(x) > 0, 
then (Zt, t ≥ 0) is transient. The regime corresponding to m1(x) � o(1) is called the Markov chain with asymptotic 
zero drift and features active research (see, e.g., Denisov et al. [9], Menshikov et al. [20]). Specializing to the pro
cess (Nt, t ≥ 0), we have

m1(x) �m2(x) �
1
xα
:

Interestingly, there seem to be few results on Lamperti’s problem in which both m1(x) and m2(x) decrease to zero 
as x→∞ except that (Nt, t ≥ 0) is transient. Observe that (Nt, t ≥ 0) is nondecreasing and

Var(Nt+1 |Nt � x) � 1� 1
xα

� �2 1
xα
+ �

1
xα

� �2
1� 1

xα

� �

, 

where the upward contribution 1� 1
xα

� �2 1
xα is larger than the downward counterpart 1

x2α 1� 1
xα

� �
as x→∞. In a 

similar spirit as Lamperti [17], the asymptotic growth (8) hinges on a degenerate fluid approximation of the pro
cess (Nt, t ≥ 0) as stated in the following proposition.

Proposition 3 (Fluid Limit of Nt). Under the Poly(α) voting rule, we have

Nnu

n 1
1+α

, u ≥ 0
� �

→
d
(Xu, u ≥ 0) as n→∞ in C[0,∞), (15) 

where Ns for noninteger s is defined by the linear interpolation of the chain (Nt, t ≥ 0) and Xu � ((1+ α)u)
1

1+α, u ≥ 0 is the 
solution to the ordinary differential equation dXu � X�αu dt with X0 � 0.

Proof. Fix T > 0. It suffices to prove the weak convergence (15) on [0, T]. By Proposition 2(ii), there is the conver
gence in probability N[nT]=n 1

1+α→ XT as n→∞. Given ε > 0, there is n(ε) > 0 such that, for any n > n(ε),

P N[nT]=n 1
1+α < 2XT

� �
> 1� ε:

Let K(ε) :�max(2XT, maxn≤n(ε)(N0 + [nT])=n 1
1+α). We have P(N[nT]=n 1

1+α < K(ε)) > 1� ε for each n ∈ N+. Note that, 
for each n ∈ N+, the process Nn, T :� N[nT]=n 1

1+α, 0 ≤ t ≤ T
� �

is nondecreasing. Thus,

P(Nn, T ∈ [0, T] × [0, K(ε)]) > 1� ε:

So the sequence of processes (Nn, T, n ∈ N+) is tight. Moreover, for each t ∈ [0, T], N[nt]=n 1
1+α converges in probabil

ity to Xt as n→∞. Then, for 0 ≤ t1 <⋯< tk, the vector (N[nt1]=n 1
1+α, : : : , N[ntk]=n 1

1+α) converges in probability to 
(Xt1 , : : : , Xtk), that is, the convergence in finite-dimensional distributions. The weak convergence follows readily 
from the tightness and the convergence in finite-dimensional distributions (see, e.g., Billingsley [4, chapter 2]). w

Note that the fluid limit in the proposition is different from the fluid limit in the literature of stochastic net
works, in which it usually takes the form of a functional strong law of large numbers (FSLLN) concerning a 
renewal process and the associated counting process. In that setting, the convergence (to a deterministic function 
of time) is stronger: the almost sure convergence and uniformly on [0, T]. Refer to Chen and Yao [6, section 6.1]. 
Here, the process (Nt, t ≥ 0) is nonrenewal; thus, the FSLLN limit does not apply, yet there is still the weak con
vergence, and the limit is still a deterministic function of time (Xu, u ≥ 0), explicitly characterized earlier. Another 
notable point is, in the FSLLN setting, both time and space are scaled by the same scaling factor n, whereas in 
(15), the time scaling remains the same, and the space scaling is by n 1

1+α. But this is only because (Nt, t ≥ 0) grows 
in the order of t 1

1+α (Proposition 2(ii)), whereas a renewal (counting) process grows linearly in t.

2.2. Bidder Shares and Voting Powers
Here, we study the evolution and long-time behavior of (πk, t, k ∈ [K]) and (θk, t, k ∈ [K]). Recall that the Dirichlet 
distribution with parameters (a1, : : : , aK), which we denote by Dir(a1, : : : , aK), has support on the standard simplex 
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{(x1, : : : , xK) ∈ RK
+ :
PK

k�1 xk � 1} and has density

f (x1, : : :xK) �
Γ(
PK

k�1 ak)
QK

k�1 Γ(ak)

YK

k�1
xak�1

k , 

where Γ(z) �
R∞

0 xz�1e�xdx is the Gamma function. For K � 2, the Dirichlet distribution reduces to the beta distribution, 
denoted as Beta(a1, a2). It is easily seen that, if (x1, : : : , xK)�

d Dir(a1, : : : , aK), then for each k ∈ [K], xk�
d Beta(ak,

P
j≠kaj).

Theorem 2 (Long-Time Behavior). Under the Poly(α) voting rule, we have the following limiting distributions. 
i. Bidder shares: the process (πk, t, t ≥ 0) is an Ft-martingale, and with probability one,

(π1, t, : : : ,πK, t) → (π1,∞, : : : ,πK,∞) as t→∞, (16) 

where (π1,∞, : : : ,πK,∞)�
d Dir(n1, 0, : : : , nK, 0). Moreover, for each k ∈ [K],

dW(πk, t, Beta(nk, 0, N� nk, 0)) �O(t� 1
1+α) as t→∞: (17) 

ii. Voting powers: the process (θk, t, t ≥ 0) is an Ft-supermartingale, and for α > 0, with probability one, θk, t→ 0 as t→∞
for each k ∈ [K]. Moreover, for each k ∈ [K],

(1+α)
α

1+αt α1+αθk, t→
d Beta(nk, 0, N� nk, 0) as t→∞: (18) 

Proof.
i. By (3) and (6), it is easily seen that, for each k ∈ [K] and t ≥ 0,

E(πk, t+1 |Ft) �
nk, t

Nt
1� 1

Nαt

� �

+
nk, t

Nt + 1
Nt� nk, t

N1+α
t

+
nk, t + 1
Nt + 1

nk, t

N1+α
t

: (19) 

Recognizing the first term on the right side of (19), nk, t
Nt
� πk, t, whereas all other terms sum up to zero, we conclude 

that (πk, t, t ≥ 0) is an Ft-martingale. The convergence in (16) follows from the martingale convergence theorem 
(see, e.g., Durrett [10, section 4.2]). By Proposition 1, (nt, t ≥ 0) is a time-changed Pólya urn. So the limiting shares 
(π1,∞, : : : ,πK,∞) have the same distribution as that of the Pólya urn, which is Dir(n1, 0, : : : , nK, 0).

Let (n†
t , t ≥ 0) be the Pólya urn with n†

k, 0 � nk, 0 and (π†
k, t, : : : ,π†

K, t) be the corresponding shares. Set Z�d Beta(nk, 0, 
N� nk, 0). By Goldstein and Reinert [12], we have, for each k ∈ [K],

dW(π
†
k, t, Z) �O(t�1) as t→∞: (20) 

Taking λ < λ�(α), we get

dW(πk, t, Z) ≤ P(Nt < λt 1
1+α) + dW πk, t1Nt≥λt

1
1+α

, Z
� �

≤ CP(Nt < λt 1
1+α) +

X

s≥λt
1

1+α

dW((πk, t |Nt � s), Z)P(Nt � s)

� CP(Nt < λt 1
1+α) +

X

s≥λt
1

1+α

dW(π
†
k, s�N, Z)P(Nt � s)

≤ C exp(�C′t 1
1+α) +C′′t� 1

1+α, 

where the last inequality follows from Theorem 1 and (20). This yields the bound (17).
ii. Applying the same derivation as in (19) but to θk, t instead, we have

E(θk, t+1 |Ft) �
πk, t
Nαt

1� 1
Nαt

� �

+
Ntπk, t

(Nt + 1)1+α
·
1�πk, t

Nαt
+

Ntπk, t + 1
(Nt + 1)1+α

·
πk, t
Nαt

:

The last two terms add up to πk, t
Nαt (Nt+1)α �

θk, t
(Nt+1)α. Thus, we have

E(θk, t+1 |Ft) � θk, t 1� 1
Nαt
+

1
(Nt + 1)α

� �

≤ θk, t, 

that is, (θk, t, t ≥ 0) is an Ft-supermartingale for each k. Recall that Nαt θk, t � πk, t, so θk, t ≤ N�αt , which converges to 
zero with probability one. By (i), Nαt θk, t converges almost surely and, hence, in distribution to Z. By Proposition 2, 
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Nt=((1+ α)t)
1

1+α converges in probability to one. We then apply Slutsky’s theorem to get the convergence 
in (18). w

Several remarks are in order. Part (i) of Theorem 2 shows that the bidder shares form a martingale and con
verge to a Dirichlet distribution (independent of α). This should be expected from the fact that the underlying 
bidder stakes (nt, t ≥ 0) are a time-changed Pólya urn; refer to Proposition 1. What’s more revealing is the Was
serstein bound in (17) between a bidder’s share and its limit. In fact, a matching lower bound can also be estab
lished (which we leave to the interested reader). Thus, the convergence rate of the bidder shares is exactly of 
order t� 1

1+α. (Also, refer to Proposition 4 for further discussion on the stability of the bidder shares when the initial 
stakes N :�N0 are large.)

Part (ii) of the theorem implies that each bidder’s voting power decays to zero at rate t� α
1+α. Or, equivalently, 

the reward rate is slowed down: it takes a time of order Θ(t α1+α) for any bidder to be rewarded a new (unit of) 
stake. This enhances security so that no bidder can manipulate or control the bidding/voting process; the level 
of decentralization remains unchanged. This also means the principle of security in (1) becomes easier to hold at 
large time t because (because of the network delay) v∝N�αt ↓ 0 as t→∞. On the other hand, if the reward is asso
ciated with transaction validation (which it does not need to be), then the time required to validate a new block 
becomes uncontrolled in the long run. A possible remedy is to dynamically tune the parameter α over time as 
detailed in Appendix B.

3. Other Results with PoS Crypto Applications
In this section, we present more results associated with the Poly(α) model that are largely motivated by the 
application of PoS in cryptocurrency. There are two sections: In Section 3.1, we study the evolution of bidder 
shares when N :�N0, the volume of initial stakes, is large. In Section 3.2, we study the additional feature of 
allowing the bidders to trade stakes among themselves, focusing on the issue of trading incentives (or the lack 
thereof). We remark that the results in both sections exhibit some type of phase transition and are independent 
of the parametric value of α and, in this sense, universal.

3.1. Evolution of Bidder Shares and Phase Transitions
As explained in the introduction, one key feature of the Poly(α) model is that the reward rate or the voting 
power (if the reward goes with validation work) θk, t of any bidder k is different from k’s share πk, t of the total 
volume of stakes at t. We have seen from Theorem 2(iii) that the reward rate or voting power is decreasing over 
time, which facilitates security. On the other hand, the evolution of the share πk, t over time from its initial value 
πk, 0 in both absolute and relative terms is an important issue for any individual bidder k.

In the classical Pólya urn setting, it is shown in Roşu and Saleh [24] that, for a large bidder with initial stake 
nk, 0 �Θ(N), there is stability in bidder share in the sense that

P( |πk,∞�πk, 0 | > ε) → 0 as N→∞:

Furthermore, similar, albeit qualitatively different, results are revealed in Tang [26] for small bidders (following 
the definition in part (ii) of the following corollary). Here, we focus on the ratio πk, t=πk, 0. Because πk,∞�

d 

Beta(nk, 0, N� nk, 0), the results in Tang [26] hold. The following proposition is a refined version of Tang [26, theo
rem 2.1].

Proposition 4 (Phase Transitions of πk, t). Let N0 �N be the total number of initial stakes. Under the Poly(α) voting 
rule, we have 

i. For nk, 0 � f (N) such that f (N) →∞ as N→∞ (i.e., πk, 0≫ 1=N) and for each ε > 0 sufficiently small and each t ≥ 1 or 
t �∞,

P
πk, t
πk, 0
� 1

�
�
�
�

�
�
�
� > ε

� �

≤
1

ε2f (N) , (21) 

which converges to zero as N→∞.
ii. For nk, 0 �Θ(1) (i.e., πk, 0 �Θ(1=N)), there is the convergence in distribution

πk,∞=πk, 0→
d 1

nk, 0
γ(nk, 0) as N→∞, (22) 

where γ(nk, 0) is a Gamma random variable with density xnk, 0�1e�x1x>0=Γ(nk, 0). Moreover, there is C > 0 (independent of t 

Tang and Yao: Polynomial Voting Rules 
Mathematics of Operations Research, Articles in Advance, pp. 1–17, © 2024 INFORMS 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

60
.3

9.
34

.7
9]

 o
n 

11
 F

eb
ru

ar
y 

20
24

, a
t 1

4:
50

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



and N) such that

dW
πk, t
πk, 0

, 1
nk, 0
γ(nk, 0)

� �

≤ C N3t� 1
1+α +

1
ffiffiffiffi
N
√

� �

: (23) 

Proof.
i. Conditioning on Nt and using the law of total variance, we get

Var(πk, t) �
1�NE(N�1

t )

N + 1 πk, 0(1� πk, 0):

It suffices to apply Chebyshev’s inequality to get the bound (21).
ii. Note that

dW
πk, t
πk, 0

, 1
nk, 0
γ(nk, 0)

� �

≤ dW
πk, t
πk, 0

, 1
πk, 0

Beta(nk, 0, N � nk, 0)

� �

+ dW
1
πk, 0

Beta(nk, 0, N � nk, 0),
1

nk, 0
γ(nk, 0)

� �

:

A careful application of Goldstein and Reinert [12] yields a refinement of (20): there is C > 0 such that 
dW(π†

k, t, Z) ≤ CN3

t . Adapting the argument in Theorem 2 yields

dW
πk, t

πk, 0
, 1
πk, 0

Beta(nk, 0, N� nk, 0)

� �

≤ C′N3t� 1
1+α for some C′ > 0: (24) 

Next, we claim that

dW
1
πk, 0

Beta(nk, 0, N � nk, 0),
1

nk, 0
γ(nk, 0)

� �

≤
C′′
ffiffiffiffi
N
√ for some C′′ > 0, (25) 

which can be proved by elementary calculus. Here, we provide a sketch of proof. Set nk, 0 � 1 for simplicity. Let 
X ~ γ(1), and let X′ be the sum of N � 1 independent γ(1) random variables, independent of X. By beta-gamma 
algebra, X

X+X′ has the same distribution as Beta(1, N� 1). Thus,

dW(N Beta(1, N� 1),γ(1)) ≤ E NX
X+X′�X
�
�
�
�

�
�
�
�: (26) 

By normal approximation, we have X+X′
N � 1+ 1ffiffiffi

N
√ N (0, 1) + o(N�1

2), where N (0, 1) is standard normal (see Rio [23]). 
Injecting into (26) yields the desired bound. Finally, combining the estimates (24) and (25) gives the bound (23). w

The proposition reveals a phase transition in the stability of shares and identifies large and small bidders in 
terms of the size of their stakes, according to the categories in the two parts. A large bidder k is guaranteed to 
have stability in the precise sense characterized in (21): that the share ratio πk, t=πk, 0 concentrates at one and con
verges to one in probability when N→∞ for any t ≥ 1 (including t �∞). For small bidders, this is reversed: the 
concentration inequality in (21) becomes the anticoncentration inequality

P
πk,∞
πk, 0
� 1

�
�
�
�

�
�
�
� > ε

� �

> c for c > 0 independent of ε, (27) 

implying volatility. The Wasserstein bound (23) is new, and it indicates that the ratio πk, t=πk, 0 approaches the 
limiting Gamma distribution with an N�1

2 error for t ≥N7
2(1+α). However, we do not know whether the N3 depen

dence in (23) is tight, so the ratio πk, t=πk, 0 may mix at a faster rate.

3.2. Participation and Trading
So far, we have not considered the possibility of allowing the bidders to trade stakes (among themselves). In the 
classical Pólya urn model (α � 0), it is shown in Roşu and Saleh [24] that, under certain conditions (which enforce 
some notion of risk neutrality), there is no incentive for any bidder to trade. Here, we extend that to the Poly(α)
model, allowing α to take any nonnegative values. Furthermore, we allow a bidder-dependent risk-sensitivity 
(or risk-aversion) parameter δk and study the issue of incentive as it relates to δk.
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In the new setting of allowing trading, we need to modify the problem formulation presented at the beginning 
of Section 2. First, for each k ∈ [K], let νk, t be the number of stakes that bidder k trades at time t. Then, instead of 
(5), the number of stakes nk, t evolves as

nk, t � nk, t�1 + 1Sk, t
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n′k, t

+νk, t, (28) 

that is, n′k, t denotes the number of stakes bidder k owns in between time t � 1 and t, excluding those traded in 
period t.

Note that νk, t is up to bidder k to decide as opposed to the random event Sk, t, which is exogenous; in particular, 
νk, t can be negative (as well as positive or zero). We elaborate more on this as follows, but note that νk, t is con
strained such that, after the updating in (28), nk, t remains nonnegative.

Let {Pt, t ≥ 0} be the price process of each (unit of) stake, which is a stochastic process assumed to be indepen
dent of the randomness induced by the Poly(α) voting rule (specifically, the process {Sk, t}). Hence, we augment 
the filtration {Ft}t≥0 with that of the exogenous price process {Pt, t ≥ 0} to a new filtration denoted {Gt}t≥0. Note 
that the price process Pt is also assumed as exogenous in Roşu and Saleh [24]. This assumption need not be so far 
off, as the crypto’s price tends to be affected by market shocks (such as macroeconomics, geopolitics, breaking 
news, etc.) much more than by trading activities. So, here, we isolate the price of each stake from any bidder’s 
trading impact.

Let bk, t denote (units of) the risk-free asset that bidder k holds at time t and rfree > 0 the risk-free (interest) rate. 
(Here, the risk-free asset is naturally the one that underlies the preceding price process.) As we are mainly con
cerned with the effect of exchanging stakes to each individual, we allow bidders to trade stakes only internally 
among themselves, but not risk-free assets between them. Hence, each bidder has to trade a risk-free asset with a 
third party instead of trading that with another bidder.

The decision for each bidder k at t is, hence, a tuple, (νk, t, bk, t). Moreover, there is a terminal time, denoted Tk ∈ N+
(i.e., Tk ≥ 1 is integer valued), by which time bidder k has to sell all assets, including both any risk-free asset and any 
stakes owned at that time, and leave the system. Tk can either be deterministic or random. In the latter case, assume 
it has a finite expectation and is either adapted to {Gt}t≥0 or independent of all other randomness (in which case aug
ment {Gt} accordingly). We also allow bidder k to leave the system and liquidate prior to Tk at a stopping time τk rel
ative to {Gt}t≥0. Thus, bidder k also decides at which time τk to stop and exit. To simplify the notation, we abuse τk 
for τk ∧ Tk, the minimum of τk and Tk.

Let ck, t denote the (free) cash flow (or consumption) of bidder k at time t, that is,

ck, t � (1+ rfree)bk, t�1� bk, t� νk, tPt, ∀1 ≤ t < τk; (C1) 

with

bk, 0 � 0, bk, t ≥ 0, 0 ≤ nk, t � n′k, t + νk, t ≤ Nt, ∀1 ≤ t < τk; (C2) 

and
ck,τk � (1+ rfree)bk,τk�1 + n′k,τk

Pτk , and νk,τk � bk,τk � 0: (C3) 

Observe that the equation in (C1) simply defines what’s available for consumption in period t. It is simply an 
accounting or budget constraint on the cash flow. The requirements in (C2) are all in the spirit of disallowing 
shorting on both components of the decision: the free asset bk, t and the traded stakes νk, t. In particular, the latter 
is constrained such that νk, t ≥�n′k, t (following nk, t ≥ 0), that is, bidder k cannot sell more than what’s in posses
sion at t; it also ensures that no bidder can own a number of stakes beyond the current total volume (nk, t ≤ Nt). 
Equation (C3) specifies how the assets are liquidated at the exit time τk: both νk,τk and bk,τk are set at zero and all 
remaining stakes n′k,τk 

liquidated (cashed out at Pτk per unit).
Denote bidder k’s decision (process) or strategy as τk and (ν, b) :� {(νk, t, bk, t), 1 ≤ t ≤ τk}. The objective of bid

der k is

U∗k :� max
τk, (ν,b)

Uk :� max
τk, (ν,b)

E
Xτk

t�1
δt

kck, t

 !

, subject to (C1), (C2), (C3); (29) 

δk ∈ (0, 1] is a discount factor, a given parameter measuring the risk sensitivity of bidder k. Clearly, bidder k’s 
objective is to maximize a utility that is just the present value of k’s total cash flow cumulated up to Tk.
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We need to introduce two more processes that are related and central to understanding the dynamics of the 
system in the presence of trading. The first one is {Mt, t ≥ 1}, where Mt :�NtPt denotes the market value of the 
volume of stakes at time t. The second one is {Πk, t, t ≥ 0}, for each bidder k, defined as follows:

Πk, 0 :� nk, 0P0, and Πk, t :� δt
kn′k, tPt�

Xt�1

j�1
δj

kνk, jPj, t ≥ 1; (30) 

n′k, t+1 follows (28). Note that the two terms that define Πk, t are the discounted present values, respectively, of k’s 
pretrading stakes (n′k, t) and of the return from k’s trading (cumulated up to t � 1).

The connection between {Mt} and {Πk, t} is presented in the following lemma, which reveals that their incre
mental gains (per time period) are proportional: each increment of Πk, t is a πk, t fraction of the corresponding 
increment of Mt. In other words, πk, t not only represents bidder k’s share of the total volume of stakes, it also 
represents k’s share of the system’s market value with or without trading.

Lemma 1. Under the Poly(α) voting rule, along with the trading specified earlier, we have

E(Πk, t+1 |Gt)�Πk, t � δ
t+1
k πk, tE(Mt+1 |Gt)� δ

t
kπk, tMt: (31) 

Proof. First, by (28) and (6), along with πk, t � nk, t=Nt, we have

E(n′k, t+1 |Ft) � nk, t(1+N�(1+α)t ) �
nk, t

Nt
(Nt +N�αt ) � πk, tE(Nt+1 |Ft): (32) 

Next, from (30), we have

Πk, t+1 �Πk, t � δ
t+1
k n′k, t+1Pt+1 � δ

t
kn′k, tPt � δ

t
kνk, tPt, t ≥ 1: (33) 

Furthermore, as the price process (Pt, t ≥ 0) is independent of Ft, we have

E(n′k, t+1Pt+1 |Gt) � E(E(n′k, t+1 |Ft)Pt+1 |Gt)

�
(32)
πk, tE(Nt+1Pt+1 |Gt) � πk, tE(Mt+1 |Gt):

This, along with (33) yields the desired expression in (31) along with nk, t � n′k, t + νk, t, nk, t � πk, tNt, and Mt �NtPt. w

The process {Πk, t} also connects to the utility Uk in (29). To see this, summing up both sides of (C1) and (C3) 
over t (along with bk, 0 � 0 in (C2)), we have

X

t≤τk

δt
kck, t �

X

t≤τk

δt
kck, t � δ

τk
k n′τk

Pτk �
Xτk�1

t�1
δt

kνk, tPt +
Xτk�1

t�1
δt

k[(1+ rfree)δk� 1]bk, t: (34) 

Observe that the first two terms on the right-hand side (RHS) are equal to Πk,τk , so we can rewrite the preceding 
as follows (after taking expectations on both sides), emphasizing the exit time τk and the strategy (ν, b),

Uk(τk,ν, b) � E[Πk,τk(ν)] +E
Xτk�1

t�1
δt

k[(1+ rfree)δk� 1]bk, t

 !

; (35) 

hence, the RHS is separable: the first term depends on (ν) only, whereas the second term, the summation, on (b) 
only. Furthermore, the second term is ≤ 0 provided (1+ rfree)δk ≤ 1 (which is the condition (a) assumed in Theo
rem 3) along with b being nonnegative, part of the feasibility in (C2). In this case, we have Uk ≤ E(Πk,τk(ν)), 
which implies U∗k ≤ maxτk,ν E(Πk,τk(ν)) with equality holding when bk, t � 0 for all t � 1, : : : ,τk.

We are now ready to present the main result regarding the utility maximization problem in (29). A quick word 
on the parameter rcryp that appears prominently in Theorem 3. Simply put, it is the rate (expected rate of return) 
associated with each stake (e.g., a unit of some cryptocurrency); that is, it is the counterpart of rfree, the rate for 
the risk-free asset. We elaborate more on the two rates after proving the theorem.

In the theorem, two strategies are singled out: the buyout strategy, in which bidder k buys up all stakes avail
able at time 1 and then participates in the bidding process until the end, and the nonparticipation strategy, in 
which bidder k turns all nk, 0 stakes into cash and then never participates in either bidding or trading for all t ≥ 1. 
Note that the nonparticipation strategy is executed at τk � 0; as such, it complements the feasible class, which is 
for τk ≥ 1 and presumes participation. The buyout strategy clearly belongs to the feasible class.
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Theorem 3 (Buyout Strategy vs. Nonparticipation). Assume the following two conditions:

(a) δk(1 + rfree) ≤ 1 and (b) E(Mt+1 |Gt) � (1 + rcryp)Mt: (36) 

Then, under the Poly(α) voting rule, the following results hold.
First, with condition (a), the maximal utility U∗k is achieved by setting bk, t � 0 for all t � 1, : : : , Tk; that is, U∗k �maxν E(Πk, Tk).
In addition, all three parts of the following hold: 
i. If δk(1+ rcryp) ≤ 1, then any feasible strategy provides no greater utility for bidder k than the nonparticipation strategy; 

that is, U∗k ≤ nk, 0P0.
ii. If δk(1+ rcryp) ≥ 1, then any feasible strategy provides no greater utility for bidder k than the buyout strategy. In this 

case, bidder k buys all available stakes at time 1 and participates in the bidding process until the terminal time Tk.
iii. If δk(1+ rcryp) � 1, then, bidder k is indifferent between the nonparticipation and buyout strategies with any exit time, 

both of which provide no less utility than any feasible strategy. In other words, all strategies achieve the same utility (which is 
Πk, 0 � n0Pk, 0).

Moreover, when δk � δ :� (1+ rcryp)
�1 for all k, then no bidder has any incentive to trade. Consequently, the long-term 

behaviors (of Nt, πk, t, and θk, t) characterized in Propositions 2 and 4 and Theorem 2 hold.

Proof. That U∗k �maxτk,ν E(Πk,τk) (with bk, t being set to zero for all t) under condition (a) in (36) is already estab
lished in the discussions following (35). So it suffices to prove the three parts (i)–(iii). 

i. Applying the given condition (b) in (36), along with the assumed inequality δk(1+ rcryp) ≤ 1, to the RHS of 
Equation (31) makes it ≤ 0; that is, {Πk, t} is a Gt-supermartingale, implying E(Πk,τk) ≤ Πk, 0. Because Πk, 0 is inde
pendent of ν, we have

U∗k �max
τk,ν

E(Πk,τk) ≤ Πk, 0 � nk, 0P0, (37) 

ii. With the assumed inequality δk(1+ rcryp) ≥ 1, {Πk, t} now becomes a Gt-submartingale, and hence, the inequal
ity

E(Πk, Tk) ≥ E(Πk,τk) ≥Πk, 0 � nk, 0P0: (38) 

To identify the optimal trading strategy {ν∗k, j}j≤Tk�1, we use backward induction (dynamic programming). To opti
mize νk, Tk�1, observe

E(δTk
k n′k, Tk

PTk � δ
Tk�1
k νk, Tk�1PTk�1 |GTk�1)

� δTk
k (n

′
k, Tk�1 + νk, Tk�1)(1+N�α�1

Tk�1 )E(PTk |GTk�1)� δ
Tk�1
k νk, Tk�1PTk�1

� δTk
k n′k, Tk�1N�1

Tk�1E(NTk PTk |GTk�1) + δ
Tk�1
k (δkN�1

Tk�1E(NTk PTk |GTk�1)�PTk�1)νk, Tk�1

� δTk
k n′k, Tk�1N�1

Tk�1E(MTk |GTk�1) + δ
Tk�1
k (δkN�1

Tk�1E(MTk |GTk�1)�PTk�1)νk, Tk�1, 

which is linear in νk, Tk�1 . By assumed condition (b) in (36), we have

δkN�1
Tk�1E(MTk |GTk�1)�PTk�1 ≥ (δk(1+ rcryp)� 1)PTk�1 ≥ 0:

Thus, (ν∗k, Tk�1 |GTk�1) �NTk�1� n′k, Tk�1, following the (binding) constraint in (C2). That is, bidder k’s optimal strategy 
at the penultimate time Tk� 1 is to buy all available stakes at that time. Going backward, we have (ν∗k, j |Gj) �

Nk, j � n′k, j for j ≥ 1. Thus, the optimal trading strategy is ν∗k, 1 �N1� n′k, 1, ν∗k, 2 �⋯� ν∗k, Tk�1 � 0.
iii. Under the assumed equality δk(1+ rcryp) � 1, {Πk, t} is a Gt-martingale; hence, the inequality in (37) now holds 

as equality, that is, U∗k �Πk, 0 � nk, 0P0.
Thus, all strategies lead to the optimal utility, including any feasible strategy (in particular, the no-trading 

strategy) and the nonparticipation strategy.
The “moreover” part of the theorem is immediate. w

In what remains of this section, we make a few remarks on Theorem 3, in particular, to motivate and explain 
its required conditions. First, the rate rcryp is determined by condition (b), the second equation in (36). As such, it 
should be distinct from rfree, the latter being associated with a risk-free asset. For all practical purposes, we can 
assume rcrpt ≥ rfree even though this is not assumed in the theorem. When this relation does hold, then condition 
(a) becomes superfluous in cases (i) and (iii).
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Second, the discount factor δk in the utility objective in (29), a parameter that measures bidder k’s sensitivity 
toward risk, plays a key role in characterizing phase transitions in terms of δk(1+ rcryp). In case (i), the inequality 
δk ≤ 1=(1+ rcryp) implies bidder k is seriously risk averse, and this is reflected in k’s nonparticipation strategy. In 
case (ii), the inequality holds in the opposite direction, implying bidder k is lightly risk averse or even a risk 
taker. Accordingly, k’s strategy is to aggressively sweep up all the available stakes to reach monopoly and partic
ipate (but not trade) until the terminal time. Also note, in this case, the nonparticipation strategy provides less 
(no greater) utility for bidder k than the no-trading strategy and certainly no greater utility than the buyout strat
egy. In case (iii), the inequality becomes an equality δk � 1=(1+ rcryp), and {Πk, t} becomes a martingale. Conse
quently, bidder k is indifferent between nonparticipation and participation and, in the latter case, indifferent to 
all (feasible) strategies, including the buyout (and no-trading) strategy. Indeed, the equality δk � 1=(1+ rcryp) is 
both necessary and sufficient for the no-trading strategy. This equality also has the effect to force all participating 
bidders to have the same risk sensitivity.

In contrast, in Roşu and Saleh [24], there is a single rate rfree or, equivalently, rcryp � rfree is assumed, which 
seems difficult to justify because, in most applications (cryptocurrency in particular) rcryp is significantly larger 
than rfree. Moreover, there is also a single risk sensitivity for all bidders, which is set at δ � 1=(1+ rfree). Thus, 
Roşu and Saleh [24] is limited to the martingale case only, reaching the same conclusion as our case (iii), that all 
feasible strategies, buyout included, yield the same (expected) utility. As there is no stopping decision and super
martingale or submartingale cases in Roşu and Saleh [24], nonparticipation does not come up at all, and neither 
do notions such as risk aversion or risk seeking.

The last point we emphasize is that the two conditions in (36) play very different roles. As evident from the 
proof of Theorem 3, condition (b) makes {Πk, t} a supermartingale, submartingale, or martingale, according to 
bidder k’s risk sensitivity as specified by the inequalities and equality applied to δk (along with rfree) in the three 
cases. Yet, to solve the maximization problem in (29), {Πk, t} needs to be connected to the utility, and this is the 
role played by condition (a), under which it is necessary (for optimality) to set bk, t � 0 for all t ≥ 1 and applicable 
to all three cases in Theorem 3. In this sense, condition (a) alone solves half of the maximization problem, the bk, t 
half of the strategy. In fact, it’s more than half as the optimal ν strategy is only needed in the submartingale case, 
and even there, condition (a) pins down the fact that to participate (even without trading) is better than 
nonparticipation.

Note that Theorem 3 can be readily extended. For instance, the rates rcryp(t) and rfree(t) can vary over time. In 
this case, it suffices to modify the conditions in case (i) to

1+ sup
t<Tk

rcryp(t)

 !

δk ≤ 1 and 1+ sup
t<Tk

rfree(t)

 !

δk ≤ 1, 

the conditions in case (ii) to

1+ inf
t<Tk

rcryp(t)
� �

δk ≥ 1 and 1+ sup
t<Tk

rfree(t)

 !

δk ≤ 1, 

and the conditions in case (iii) to
δk � (1+ rcryp)

�1 and sup
t<Tk

rfree(t) ≤ rcryp, with rcryp being constant:

Then, Theorem 3 continues to hold. We can also include a processing cost κ > 0 that any bidder selected by the 
Poly(α) mechanism pays to receive the reward. (This corresponds to the mining cost to validate the block.) In 
this case, the budget constraint (C1) is modified by adding a term �κ1Sk, t to the right side of the equation, and 
the same applies to the liquidation constraint (with t replaced by Tk). Condition (b) in (36) is modified to 
E(Mt+1 |Gt) � (1+ rcryp)Mt + κ.

4. Conclusions
We propose in this study a new Poly(α) voting rule that is more general than the traditional voting rule (which 
is linear, corresponding to α � 0). More importantly, the Poly(α) voting rule distinguishes voting power from 
voter share and, hence, decouples the two.

Applying the Poly(α) voting rule to the PoS protocol, in which the voters are the bidders (competing for 
rewards or validation of new blocks), we show this decoupling enhances security, a key objective of the PoS pro
tocol. Specifically, we prove that, whereras bidder shares form a martingale process that converges to a Dirichlet 
distribution, each bidder’s voting power is a supermartingale that decreases to zero over time. For both limiting 
results, we explicitly characterize their rate of convergence as well. Furthermore, we show a phase transition in 
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the stability of bidder shares in terms of each bidder’s initial share relative to the total in the system. We also 
study the issue of a bidder’s risk sensitivity when trading is allowed and provide conditions under which a bid
der has no incentive to participate in the bidding process or, if participating, forgoes trading.

In the introduction, we mention two general approaches to enhance security in the PoS protocol—adjust the 
amount of reward over time and slow down the voting process—and the current study focuses on the latter, 
keeping the reward constant. It is possible to pursue a combination of both approaches, that is, adjusting the size 
of reward dynamically over time in the same manner as adjusting α (for the latter, refer to Appendix B). In 
another direction, it is also possible to study the trading problem in Section 3.2 under a suitable market impact 
model, in which the price process Pt is impacted by trading activities; for instance, a mean-field PoS model with 
linear impact (and transaction costs).
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Appendix A. Improvement on l6(a)
Theorem 1 proves large-deviation bounds on Nt. However, it does not cover the whole range. It remains open to prove 
such bounds in the range (λ�(α),λ+(α)), and once proved, the result also implies the almost sure convergence of Nt=t 1

1+α 

as t→∞.
Here, we provide a way to (slightly) improve the values of λ6(α) in Theorem 1. To simplify the presentation, we con

sider α � 1 (quadratic voting rule) with λ�(1) ≈ 0:56 and λ+(1) ≈ 2:51. The idea relies on a multiscale analysis by splitting 
the interval [0, t] into [0, t=2] and [t=2, t], and the goal is to upper bound P(Nt � λ

ffiffi
t
√
) for λ > 0. In the sequel, we neglect 

the polynomial factors and only focus on the exponential terms. Note that

P(Nt � λ
ffiffi
t
√
) �

X

k≤λ
ffiffi
t
√

t=2
k

� �
t=2
λ
ffiffi
t
√
� k

� �
1

(λ
ffiffi
t
√
)!

1� 1
k

� �t=2�k
1� 1
λ
ffiffi
t
√

� �t=2+k�λ
ffiffi
t
√

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(a′′)

:

Next, we split the range of k ≤ λ
ffiffi
t
√

into S1 :� {k ≤ a
ffiffi
t
√
} ∪ {k ≥ (λ� a)

ffiffi
t
√
}, and S2 :� {a

ffiffi
t
√
< k < (λ� a)

ffiffi
t
√
} with a < λ2. For k ∈ S1, 

we simply bound the term (a) by 1� 1
λ
ffiffi
t
√

� �t=2�λ
ffiffi
t
√

, whereas for k ∈ S2, we bound the term (a′′) by 1� 1
(λ�a)

ffiffi
t
√

� �t=2�(λ�a)
ffiffi
t
√

1� 1
λ
ffiffi
t
√

� �t=2�a
ffiffi
t
√

. Consequently,

P(Nt � λ
ffiffi
t
√
) ≤

X

k∈S1

t=2
k

� �
t=2
λ
ffiffi
t
√
� k

� � !
1

(λ
ffiffi
t
√
)!

1� 1
λ
ffiffi
t
√

� �t=2�λ
ffiffi
t
√

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(b′′)

+
X

k∈S2

t=2
k

� �
t=2
λ
ffiffi
t
√
� k

� � !
1

(λ
ffiffi
t
√
)!

1� 1
(λ� a)

ffiffi
t
√

� �t=2�(λ�a)
ffiffi
t
√

1� 1
λ
ffiffi
t
√

� �t=2�a
ffiffi
t
√

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(c′′)

:

Using Stirling’s formula, we get exponential bounds for the terms (b′′) and (c′′):

(b′′) ~ exp �λ log 2+ 2λ� a log a� (λ� a)log(λ� a)�λ log λ� 1
λ

� �
ffiffi
t
√

� �

,

(c′′) ~ exp 2λ� 2λ log λ� 1
2λ�

1
2(λ� a)

� �
ffiffi
t
√

� �

: (A.1) 

By equating the two coefficients before 
ffiffi
t
√

in (A.1), we have

�λ log 2+ 2λ� a log a� (λ� a)log(λ� a)�λ log λ� 1
λ
)� 2λ� 2λ log λ� 1

2λ�
1

2(λ� a)
:

By letting a � θλ with θ < 1
2, the preceding equation yields

λ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2(1�θ)(log 2+θ log θ+ (1�θ)log(1�θ))

s

: (A.2) 
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The coefficient before 
ffiffi
t
√

is

f (λ) � 2λ log λ� 2λ+ 1
2λ+

1
2(1�θ)λ , (A.3) 

where θ is specified by (A.2). By injecting Expression (A.2) into (A.3), f is a function of θ. It is easy to see that f (θ) has 
only one root on (0, 1=2), which is approximately 0.1575, and λ�(1) is improved numerically to from 0.56 to 0.60. Similarly, 
the value of λ+(1) is improved numerically from 2.51 to 2.44.

We can continue this procedure, for instance, to split [0, t] into [0, t=3], [t=3, 2t=3], and [2t=3, t] and so on to get better 
and better numerical values of λ�(1) and λ+(1). However, it is not clear whether this approach eventually gets all the 
way to the threshold 

ffiffiffi
2
√
≈ 1:41. We conjecture that the exponential deviation holds right off the threshold (1+ α)

1
1+α, which 

is supported by the numerical experiments; refer to Figure A.1.

Appendix B. Control of Voting Powers
As proved in Theorem 2, the reward rate θk, t decays at rate Θ(t� α

1+α). If the reward is associated with the validation of a 
new block, then the duration between two consecutive validations (called block time) increase (and are uncontrolled) 
over time. For instance, set α � 1 (quadratic voting rule) and T � 107 seconds (≈ 4 months). Then, the duration required 
to see the next block at time T is approximately

10 seconds × (107=10)
1
2 � 104 seconds ≈ 3 hours, 

which is even much longer than the 10-minute block time of Bitcoin. (The block time is 10 seconds in Ethereum; see, e.g., 
Buterin [5].)

One possible (and practical) solution is to dynamically tune the parameter α over time. Specifically, let κ denote a 
threshold for the expected number of rounds of bidding/voting between two validated blocks. Then, 
• Set α � α0 > 0 and apply the Poly(α0) scheme up to round κ1+α�1

0 .
• Set α � α1 < α0, and apply the Poly(α1) scheme up to round κ1+α�1

1 : : : and so on.
Here, κ,α0,α1, : : : are user-defined hyperparameters. To illustrate, by setting κ � 50 rounds (≈ 10 minutes in Ethereum) 

and αk � (1+ k)�1 for k ≥ 0, 
- Apply the Poly(1) scheme up to round 502 ≈ 7 hours.
- Apply the Poly(1=2) scheme up to round 503 ≈ 2 weeks.
- Apply the Poly(1=3) scheme up to round 504 ≈ 2 years.
- Apply the Poly(1=4) scheme up to round 505 ≈ 100 years : : : and so on.
Similarly, by setting κ � 5 rounds (≈ 1 minute in Ethereum), 
- Apply the Poly(1) scheme up to round 52 ≈ 4 minutes.
- Apply the Poly(1=2) scheme up to round 53 ≈ 20 minutes ⋯
- Apply the Poly(1=10) scheme up to round 511 ≈ 15 years : : : and so on.
It is also possible to tune the parameter α at random time points adaptive to the reward rate. That is, 
• Set α � α0 > 0 and apply the Poly(α0) scheme up to round k0, where k0 is the first time by which no new block is validated 

in κ rounds.
• Set α � α1 < α0 and apply the Poly(α0) scheme up to round k1, where k1 is the first time by which no new block is validated 

in κ rounds since then : : : and so on.

Figure A.1. (Color online) Volume of stakes Nt with N0 � 5 and α � 1 (quadratic voting). 

Notes. (a) Histogram of N8000 on MC simulation of 20,000 samples. (b) x-axis: t ∈ {1,000, 1,500, : : : , 8,000}; y-axis: �lnP(Nt >
ffiffiffiffiffiffiffiffiffi
2:2 t
√

)=
ffiffi
t
√

(left) and 
�lnP(Nt <

ffiffiffiffiffiffiffiffiffi
1:8 t
√

)=
ffiffi
t
√

(right) on MC simulation of 20,000 samples.
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Note that, in either case, the process of stakes is a time-changed Pólya urn, so the results in Section 3 continue to hold 
(except that the convergence rate depends on the choice of {αk}).
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