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1. Introduction

Voting, in the traditional sense, refers to a set of rules for a community of individuals or groups (voters) to reach
an agreement or to make a collective decision on some choices and ranking problems. In today’s world, voting
has become a ubiquitous notion that includes any decentralized decision-making protocol or system, in which
the voters are often abstract entities (virtual) and the voting process automated, and the purpose of reaching con-
sensus is often nonsocial and nonpolitical, such as to enhance the overall security of an industrial operation or
infrastructure (Garcia-Molina [11], Lamport et al. [19]). Examples include cloud computing (Armbrust et al. [1],
Dean and Ghemawat [7]), smart power grids (Huang and Baliga [13]), and more recently trading or payment
platforms and exchanges built upon the blockchain technology (Nakamoto [21], Wood [30]).

At the core of a blockchain is the consensus protocol, which specifies a set of voting rules for the participants
(miners or validators) to agree on an ever-growing log of transactions (the longest chain) so as to form a distrib-
uted ledger. There are several existing blockchain protocols, among which the most popular are proof of work
(PoW; Nakamoto [21],) and proof of stake (PoS; King and Nadal [14], Wood [30]). In the PoW protocol, miners
compete with each other by solving a hashing puzzle. The miner who solves the puzzle first receives a reward (a
number of coins) and whose work validates a new block’s addition to the blockchain. Hence, whereas the compe-
tition is open to everyone, the chance of winning is proportional to a miner’s computing power.

In the PoS protocol, there is a bidding mechanism to select a miner to do the work of validating a new block.
Participants who choose to join the bidding are required to commit some stakes (coins they own), and the win-
ning probability is proportional to the number of stakes committed. Hence, a participant in a PoS blockchain is
actually a bidder as opposed to a miner only the winning bidder becomes the miner validating the block. (Any
participant who chooses not to join the bidding can be viewed as a bidder who commits zero stakes.) Needless to
add, bidding existed long before the PoS protocol and is widely used in many applications, such as auctions and
initial public offerings.
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Let’s explore the PoS bidding mechanism a bit more formally. Suppose a voter (or bidder) k is in possession of
i ¢ votes (or stakes) at time f, an index that counts the rounds of voting or bidding in the protocol, and N; :=
> Mk ¢ is the total number of votes over all voters. Hence, voter k’s share, a fraction of the total, is 7t ; := 1y 1 /Nj.
Following a traditional voting rule, voter k’s chance or probability of winning, which we call voting power, is
equal to 7ty ¢, voter k’s share. Yet this doesn’t have to be the case. That is, any voter’s voting power need not be
equal to the voter’s share (of the system total). Indeed, there are often good reasons for the two to be different.

Historically, the English scholar Lionel Penrose [22] famously proposed a square-root voting rule, around the
time when the United Nations was founded shortly after World War II. According to Penrose, a world assembly
such as the United Nations should designate each country a number of votes that is proportional to the square
root of its population. The obvious implication (which may or may not be what Penrose initially intended) is to
limit the voting power of nations with very large populations. In the same spirit, the quadratic voting rule has
attracted much attention in recent years (Lalley and Weyl [15]). The idea is that each voter is given a budget (in
dollars, for instance); the voter can cast multiple votes on any single or subset of choices or candidates on the bal-
lot with x votes (for any choice) costing x> dollars. Under both voting rules, the voting power is different from
the voter’s share or representation in the system: population in the first case and the budget in the second case.

Inspired by these ideas, we propose a class of polynomial voting rules, denoted Poly(a), which grant every
voter k a voting power that scales the voter’s share 7, ; by a factor N; ¢ for a > 0. When a = 0, this reduces to the
traditional voting case of power = share, which is a linear rule. When « = 1, the rule resembles the square-root or
quadratic voting rules mentioned earlier in spirit in terms of decoupling voting power from a voter’s share but,
of course, differs in both the application context and implementation schemes. As we demonstrate, the general
Poly(a) rule is a time change of the Poly(0) rule with the parameter ¢ measuring how much the traditional @ = 0
rule is slowed down, namely, the voting power is diminished over time.

There are (at least) two reasons to consider slowed-down voting schemes in blockchains.

e First, the block-generation time requires being lower bounded because of network delay (see Shi [25, section
14.3]). Specifically, there is the principle of security:

y - dishonest power
honest power

(1 —v) - honest power > y - dishonest power, or v < 1-—

)

Here, honest/dishonest power refers to the voting power of honest/dishonest bidders. The parameter y is a user-
defined security factor; for example, y = 2 means honest power is expected to be twice as much as dishonest power,
and hence, y measures how secure a distributed system is. When honest bidders broadcast their validation results,
dishonest bidders may exploit network delay to attack; equivalently, network delay reduces the honest power.
Thus, the term 1 — v plays the role of a discount factor with v proportional to network delay (the more severe net-
work delay is, the smaller the discount 1 — v is and, hence, the larger v is). Honest power is discounted also because
honest bidders follow exactly the protocol, whereas dishonest bidders do not comply with the rules. As we illus-
trate (in the remarks following Theorem 2), slowing down the voting process enhances security. This is because
decreasing voting power over time increases the block generation time, which mitigates network delay and makes
the principle of security (1) easier to hold.

e Second, PoS blockchains suffer from malicious attacks known as nothing at stake (see, e.g., Deirmentzoglou
etal. [8]). As pointed out in Bagaria et al. [2], for the PoS longest chain protocol, honest bidders focus exclusively on
the longest chain, whereas dishonest bidders can work simultaneously on all existing blocks. They show that the
PoS longest chain is less secure than its PoW counterpart, assuming both honest and dishonest parties have con-
stant voting power over time. However, as dishonest bidders have more flexibility, it is (much) more likely that
they win and get rewarded, and their advantage is only amplified over time. This makes constant voting power
highly undesirable. There are two general approaches to solving this problem: (i) adjust the amount of reward over
time and (ii) slow down the voting process; both are aimed at preventing dishonest bidders from overpowering
honest bidders as time evolves.

Here is an overview of our main findings and results. We prove that, under the Poly(a) voting rule, voter
shares form a martingale process that converges to a Dirichlet distribution as t — oo, whereas their voting powers
follow a supermartingale process that decreases to zero over time (Theorem 2), and for both limits, we also
explicitly characterize their rates of convergence. Thus, the Poly(a) voting scheme enhances security, preventing
any voter or group of voters from controlling the voting process and overpowering the system.

We further group the voters into two categories, large and small, according to the initial (time zero) votes they
own relative to the total (Ny). When N, is large, which is the case in most applications, we show a phase transi-
tion in the stability of voter shares across the two categories (Proposition 4). Notably, the same phenomenon is
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demonstrated under the traditional voting rule (a = 0); refer to Rosu and Saleh [24] and Tang [26]. Our result
establishes that this phase transition is in fact universal in the sense that it applies to all values of a(> 0).

We also study the scenario in which trading (of votes/stakes) among the voters (or bidders) is allowed, moti-
vated by PoS applications in cryptocurrency. For a = 0, the trading scenario is recently studied in Rosu and Saleh
[24]. Not only is our model more general in allowing any « > 0, our results are also richer and sharper (Theorem
3). For instance, we quantify the level of risk sensitivity (or risk aversion) that results in three cases according to
the voter’s utility being a supermartingale, a submartingale, or a martingale. Each case leads to a best strategy
for the voter, including nonparticipation (not to participate at all in the bidding) and buyout (buying as many
stakes as are available), which are not considered in Rosu and Saleh [24]. Note that a buyout is a monopoly, and
it is desirable to limit the number of stakes that any voter can acquire in a single round. This is studied in our
subsequent paper (Tang and Yao [28]) on trading PoS stakes with volume constraint. See also Tang [27] for vari-
ous problems (including transaction costs and voter’s collective behavior) related to PoS trading.

The key to our analysis relies on the study of the random process N, (the total volume of votes/stakes at time
t), which is a time-homogeneous Markov chain. We develop some asymptotic results for this Markov chain,
including large-deviation bounds (Theorem 1) and a fluid limit (Proposition 3).

In the remainder of this paper, there are two main sections. Section 2 studies the Poly(«) voting model from a
general perspective, focusing on the associated stochastic processes, such as N,, voter shares, and voting powers,
and their long-term behavior and limits, some of which are further characterized by concentration inequalities or
large-deviation bounds. Section 3 concerns two aspects of the Poly(a) voting rule that are more closely associ-
ated with the application of PoS in cryptocurrency: (a) the evolution of bidder shares over time and the phase
transition phenomenon mentioned earlier and (b) the issue of incentive and risk-sensitivity when trading is
allowed. Concluding remarks and suggestions for further research are collected in Section 4.

2. The Poly(«) Voting Model

In this section, we develop a formal model for the Poly(a) voting rule, focusing on the stochastic processes asso-
ciated with the model and their properties and limiting behavior.

First, here is a list of some of the common notation used throughout the paper:

e N, denotes the set of positive integers, and R denotes the set of real numbers.

e = denotes equal in distribution, and — denotes convergence in distribution.

e 2= 0O(b) means § is bounded from above as b — oo, a = ©(b) means { is bounded from below and above as
b — 0, and a = o(b) or b > a means § decays toward zero as b — co.

e dw(u,v) denotes the 1-Wasserstein distance between two probability distributions u and v. Refer to Villani [29,
chapter 6].

We use C,C’,C”, etc., to denote generic constants (which may change from line to line).

The voters, referred to as bidders, are the participants in the decentralized system, in which they engage in
rounds of bidding following a prespecified voting rule (the consensus protocol) so as to win more votes or stakes.
(The PoS protocol described in the introduction provides a concrete instance to motivate the model here.) Let K €
N, be the total number of bidders, which stays fixed throughout the paper, and let [K] := {1,...,K} denote the set
of all bidders.

Time is discrete, indexed by t=0,1,2,..., and corresponds to the rounds of bidding mentioned. Bidder k ini-
tially owns 71y, o stakes. Let N := 3"k, 1 o denote the total number of initial stakes owned by all K bidders. The
term “bidder share” refers to the fraction of stakes each bidder owns. So the initial bidder shares (mt o, k € [K])
are given by

n
Mo ==, kelK]. @
Similarly, ny ; denotes the number of stakes owned by bidder k at time ¢ € N,, and the corresponding share is
K
M=, ke[K], withNy:=> g 3)
Ni k=1

Here, N; is the total number of stakes at time ¢, and thus, Ny = N. (We often refer to N, as the volume of stakes or,
simply, volume.) Clearly, for each t > 0, (71 4, k € [K]) forms a probability distribution on [K].

In each period ¢, a single stake (or reward) is distributed as follows: each bidder k receives the reward with
probability

N, ¢ TCk, t
th::—/ =— 4
RN @
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and receives nothing with probability 1 — 6 ;. Clearly, 6y ; is bidder k’s reward rate as 1/6; ; is the average num-
ber of rounds for bidder k to win an additional unit of stake. To the extent the reward is coupled with the voting
mechanism outlined earlier, 6, ; can also be viewed as bidder k’s voting power at time ¢. (We use the terms
“reward rate” and “voting power” interchangeably if there is no ambiguity.) When a = 0, the voting power 0y ;
coincides with the bidder share ;. ;, which is the Pélya urn framework in Rosu and Saleh [24] and Tang [26].

Let Sy ; be the random event that bidder k receives one unit of reward in period t. Thus, the number of stakes
owned by each bidder evolves as follows:

ngy=ng1+1s,, ke[K]; ®)
or simply,
Mg -1 with probability 1— 601,
Mt = . o (6)
Ny -1 +1 with probability O, ;.
Accordingly, the total number of stakes N; evolves as follows, taking into account Sk, 1z ; = N,
N Niq with probability 1—-1/Np ,, )
"TIN+1 with probability 1/N¢ ;.

The counting process (N, t > 0) specified in (7) evolves as a time-homogeneous Markov chain on {N,N+1,...}
in contrast with the Pélya urn (with a constant reward) in which N; grows deterministically and linearly in t. As
we see in the next section, the Poly(a) voting rule slows down the distribution of rewards, so the volume of
stakes grows sublinearly. This is consistent with the volume growth in many cryptocurrencies, such as Bitcoin
and Ethereum.

Let ny = (n1¢,...,nk,+) be the vector of bidder stakes at time ¢. An alternative (and useful) characterization of
(ny, t > 0) is given as follows.

Proposition 1. Let (L;, t > 0) be a counting process with arrivals occurring at 0 =Ty < Ty <--- such that the interarrival
times are independent with Ti.1 — Ty for every k > 0, following a geometric distribution with success probability parameter
(N + k). Define the process (I;, t > 0) by

I, = lTk fOT’ T, <t < Ty,

where (It,, k > 0) is a copy of the Pélya urn process with K colors and N initial balls. Then, we have (n;, t > 0) i(lt, t>0),
where n; is the process of bidder stakes defined earlier.

Proof. It is clear from the dynamics in (7) that the two counting processes (N, t > 0) and (L;, t > 0) have the same
distribution. Given n;, the probability that the next (unit of) stake goes to bidder k is % /== nNL,’ by the craps
principle. The connection to the Pélya urn process with K colors (voters) and N initial balls (stakes) is obvious. 0

This proposition implies that the Pélya urn is embedded in the process of stakes (1;, t > 0) through a random
time change (N, t > 0). This fact is used to study the long-time behavior of bidder shares and reward rates in Sec-
tion 2.2. But we first study in the next section how the issuance of rewards is slowed down under the Poly(«)

voting rule.

2.1. The Volume (N;, t > 0)
Let F; be the filtration generated by the random events (Si , : k € [K], r < #).

Proposition 2 (Long-Time Behavior of N;). Under the Poly(«) voting rule, the following results hold:
i. The process (Ny, t > 0) is an F-submartingale, and its compensator is

A= > N{® fort=1.
k<t-1

ii. There is the convergence in probability:
Nt1+a

—1+a ast— oco. 8)

Proof.
i. It suffices to note that E(Nyq | Fi) = N; + N, “ forall t > 0.
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ii. Apply the method of moments by computing E(N§1+a)j ) for all j. For j = 1, we have, by definition,

xa
=1l+a+0(x) asx— oo.

1 1
E(N} — NHY Ny =x) = (1 +x)1+“x—a+x1+“ (1 ——) —xlte

It is clear that, with probability one N; — co as t — o0. As a result, E(NL{* — N/ ™) — 1+ a as t — oo, which yields

ENMY ~ (1+a)t ast— oo. 9)
Next, for j =2, we have

E(N2GH - NXFDIN, = %) = 2(1 + a)x™® + O(x%)  as x — .
Thus, (N2 — N2W*) = (2(1 + @) + 0(1))ENI* ~ 2(1 + a)*t by (9). Then, we get EIN*"*) ~ (1 + a)* as t — co.
We proceed by induction. Assuming that E(N{(1+a)) ~(1+a)t ast — oo, we get
BV - N = (4 1)+ @) +oDENT) ~ (4 1A+ ),
which implies that E(Nflm)(jﬂ)) ~(1+a)"'#*! as t — oo. Thus, we have
E(Nglm)j) ~1+ayt ast— oo, ji=12,...

By the method of moments (see, e.g., Billingsley [3, section 30]), NEHQ) /t converges in distribution and, thus, in
probability to1+a. O

The proposition gives the growth rate of the volume of stakes: N; grows as ((a + 1)t as t — co. Part (i) sug-
gests that Ny ~ >, _, 1N, %, which is consistent with the limit in (8). When a = 0, N, follows the (deterministic) lin-
ear growth of the Pélya urn model (with a constant reward). For @ = 1, N, grows as V.

Even more important is the question of how N; fluctuates around its growth trajectory ((a + 1y, specifically,
how to establish large-deviation bounds on N;. This is addressed in the next theorem, along with a corollary that
confirms N,’s concentration around its growth trajectory for large t.

Theorem 1 (Large Deviations for N;). Define a function f,(-),
1
fa:A€(0,00) = (1+a)A logA—(l+a)/\+PeR.

Let A_(a) < Ai(a) be the two roots of fu(-) on (—co, 00). Under the Poly(a) voting rule, the following results hold:
i. Foreach A < A_(a) and for any € > 0,

P(N; < )\tﬁ) < exp(—(l —&)fa(A) tﬁ) as t — oo, (10)
ii. Foreach A > Ai(a) and forany € >0,
P(N; > Att) < exp(—(1 — )fu(d) t—) as t — oo, (11)

Proof. Without loss of generality, assume that Ny = 1. Note that (N}, t > 0) has increments {0, 1}, so there are ( ’i)

paths ending at Ny = k+ 1 (one has to choose k upward steps “1” out of ¢ steps). Moreover, the probability of each
path ending at N; = k + 1 is upper bounded by

1 1 t—k
(k)" (l - (k+1)“> /

because the k upward “1” steps contribute 1/k! and the remaining t — k flat “0” steps have at most probability
(1 - W%)l) . Thus,

P(N; <m+1) < Zak and P(N;>m) < Zak,

k<m k>m

= (i) @ (1 = 1>“>t_k' (12

where
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Standard analy31s shows that there are 0 < k1 < kp such that g is nondecreasing on [1, kl) and [ky, f). As we see,
~A_(a)tv7 and ky ~ A, (a) 77 as t — oo. The idea is to study the term a; with k= Attw for A >0 as  — oo. By
Stlrhng s formula,

t 1 1 Aa 1 1 1
1 ~ I 2+roex tlog t+ (A — A log A)tte + o 1+ ) |,
(Atm) V27 p(l+a g+l g4) ( ))

(Atw) \/ZT t2<1+ﬂ)exp<

1 t—/\fﬁ tl-}-ia N
1 — m = eXp — A“ + O(t”“) .

Ay~ (271)\)7%1"% exp(—fa(/\) tﬁ). (13)
Note that f/(1) = (1 +a) log A — aA~'*, which is increasing from —co to o on [0, o). The unique stationary point
of f, on [0, ) is achieved at A, such that e+ log A. = 1%, so it is clear that A, > 1. We have

fal)=(@-DA "= (1+a)r. < 0.

Thus, the function A — f,(A) has two roots: A_(a) < Ai(a) on [0,00) and f, >0 on (0,A_(a)) U (A+(a), ). As a
result, for each A < A_(a), we have

t1+alog t+(Alog A — )\)tlw)

and

Combining these estimates yields

P(N; < /\tﬁ) < CAt*%Jrﬁexp(—fa(/\) tﬁ) < exp(—(l —&)fa(A) tﬁ) ast— oo,
and for each A > A, («), we have
P(N; > Afs) < C'At%exp(—fau) t_> < exp(—(l —)f(d) t_) as t — co.

The theorem gives exponential deviation bounds for N; when it is either sufficiently small (below A_ (a)tw) or
sufficiently large (above A4 ()t73). Note that there is a gap between the two bounding curves because, for each
a>0,A_(a) < (1 +0¢)1+a < A4(a). (For instance, for ¢ =1, A_(1) ~0.56 < V2 < 2.51 ~ 1,(1).) The gap is due to the
combinatorial estimates in our proof, which may very well be improved. Refer to Appendix A for a numerical
procedure that shrinks the gap. O

As a corollary, the volume of stakes N; concentrates around ((1 + az)t)li_ﬂ for large t.

Corollary 1. Under the Poly(a) voting rule, we have, for each 6 > 0,

P<|Nt —(1+a)p™| > 5%«) = O™ ast— co. (14)
Proof. Note that Ny < Ny < f+Np, and by Theorem 1, we get Mitts < N; < Aotea with probability 1—
exp(— C/\tw) for some Ay, A, C > 0. Thus,

EN;'=O(t ) and EN¢ = O(t).
According to the proof of Proposition 2(ii), we have
E(NLE — N =1+ a+OEN;Y) and BN - N2 = 2(1 + @)ENI*® + O(END).
Therefore, EN}* = (1 + a)t + O(t%) and IE(NE(H“)) = (1+a)*2 + O(t7), which implies Var(N1+*) = O(#%). Hence,
P(IN* — (1 +a)t| > ot) = O(t77) for t — oo.

Taking A < A_(a), we have ) )
P (th — (A +a)t)™| > 5tm)

<P (Nt < At#a) + P(th —((1+a)H™| > ot N, > Atﬁ)

< exp(—C't77) + P(INI** — (1 + a)t| > C"'1),
for some C’,C” > 0 (depending on «, 6, A). Combining these estimates yields (14). O



Downloaded from informs.org by [160.39.34.79] on 11 February 2024, at 14:50 . For personal use only, all rights reserved.

Tang and Yao: Polynomial Voting Rules
Mathematics of Operations Research, Articles in Advance, pp. 1-17, © 2024 INFORMS 7

Recall that the process (N;, t > 0) is a time-homogenous Markov chain. The path properties of a general time-
homogenous Markov chain (Z;, ¢ > 0) has long been studied since the work of Lamperti [16-18]. The basic idea is
to study the recurrence or transience of (Z;, t > 0) based on

my(x) = E(Ziy1 — Zi|Zi =x) and ma(x) = E(Zes1 — Ze)*| Zs = %).

For instance, if lim sup,_, 2xm;(x) +mz(x) < 0, then (Z;, t > 0) is recurrent, and if lim inf, . 2xm1(x) +my(x) > 0,
then (Z;, t > 0) is transient. The regime corresponding to 111(x) = o(1) is called the Markov chain with asymptotic
zero drift and features active research (see, e.g., Denisov et al. [9], Menshikov et al. [20]). Specializing to the pro-
cess (Ny, t > 0), we have

my (x) = map(x) = —

Interestingly, there seem to be few results on Lamperti’s problem in which both m;(x) and my(x) decrease to zero
as x — oo except that (Ny, t > 0) is transient. Observe that (N, t > 0) is nondecreasing and

1\2 1 1\2 1
varai =0 = (1-1) L (1) (1- 1),
x* /) x* x& x*

where the upward contribution (1 — %)zxa is larger than the downward counterpart 1 (1-%) asx > co. In a

similar spirit as Lamperti [17], the asymptotic growth (8) hinges on a degenerate fluid approx1mation of the pro-
cess (N, t > 0) as stated in the following proposition.

Proposition 3 (Fluid Limit of N). Under the Poly(a) voting rule, we have

<N’i”, u> 0> i>(Xu, u>0) asn— oo in C[0,o0), (15)
Nita

where N, for noninteger s is defined by the linear interpolation of the chain (N, t > 0) and X,, = (1 + a)u)lﬁ, u >0 is the
solution to the ordinary differential equation dX, = X, “dt with X, = 0.

Proof. Fix T > 0. It suffices to prove the weak convergence (15) on [0, T]. By Proposition 2(ii), there is the conver-
gence in probability Ny,r)/ nis — Xr as n — oo. Given ¢ > 0, there is n(¢) > 0 such that, for any 1 > n(e),

P(Npm/nms < 2Xr) >1-¢.

Let K(¢) := max(2Xt, max, <) (No + [nT] )/n117) We have P(Nj,1 /nllﬁ < K(e))>1 — ¢ for each n € N,. Note that,

for each n € N,, the process N™ T, (N[ 1] /nw 0<t< T) is nondecreasing. Thus,

P(N"T €[0,T] x [0,K(¢)]) > 1 —e.

So the sequence of processes (N1, n € N+) is tight. Moreover, for each f € [0 T], N[m /nts converges in probabil-
ity to X; as n — oo. Then, for 0 < t; <---< t, the vector (N[, /n1+a s N /n1+a) converges in probability to
(X4, ...,Xy,), that is, the convergence in f1n1te dimensional distributions. The weak convergence follows readily
from the tightness and the convergence in finite-dimensional distributions (see, e.g., Billingsley [4, chapter 2]). O

Note that the fluid limit in the proposition is different from the fluid limit in the literature of stochastic net-
works, in which it usually takes the form of a functional strong law of large numbers (FSLLN) concerning a
renewal process and the associated counting process. In that setting, the convergence (to a deterministic function
of time) is stronger: the almost sure convergence and uniformly on [0, T]. Refer to Chen and Yao [6, section 6.1].
Here, the process (N}, t > 0) is nonrenewal; thus, the FSLLN limit does not apply, yet there is still the weak con-
vergence, and the limit is still a deterministic function of time (X, u > 0), explicitly characterized earlier. Another
notable point is, in the FSLLN setting, both time and space are scaled by the same scaling factor n, whereas in
(15), the time scahng remains the same, and the space scaling is by . But this is only because (N, t > 0) grows
in the order of fra (Proposition 2(ii)), whereas a renewal (counting) process grows linearly in ¢.

2.2. Bidder Shares and Voting Powers
Here, we study the evolution and long-time behavior of (i ;, k € [K]) and (O ¢, k € [K]). Recall that the Dirichlet
distribution with parameters (a1, .. .,ax), which we denote by Dir(as, . .., ax), has support on the standard simplex
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{(x1,...,xK) € Rf : ZkK:] xx = 1} and has density
'K a
f(x1r~-'x1<) = (Zk L k)H n 11
Hk 1 ) i
where I'(z) = |, 000 x*~le~*dx is the Gamma function. For K = 2, the Dirichlet distribution reduces to the beta distribution,
denoted as Beta(a1,a2). It is easily seen that, if (x1,...,xk) 4 Dir(ay, . ..,ax), then for each k € [K], xx 4 Beta(ay, Z#kaj).

Theorem 2 (Long-Time Behavior). Under the Poly(a) voting rule, we have the following limiting distributions.
i. Bidder shares: the process (Tt t, t > 0) is an Fy-martingale, and with probability one,

(14,0, T ) = (T, 00, -+, TiK 00) @S T —> 00, (16)
where (7110, - - -, TIK, o0) 4 Dir(n1,0, . . .,nxk,0). Moreover, for each k € [K],
dw (1t 1, Beta(n o, N — 1)) = O£ 77) as t — oo (17)

ii. Voting powers: the process (O, t > 0) is an Fi-supermartingale, and for a > 0, with probability one, 6y — 0 as t — oo
for each k € [K]. Moreover, for each k € [K],

(1+ ) 5t50; -5 Beta(ny o, N — 1 0) s t — co. (18)
Proof.
i. By (3) and (6), it is easily seen that, for each k € [K] and ¢ > 0,
M, t 1 Mg Np—ngp Ngp+1 ngy
E(rg, 11| F2) = N, (1 —m> +Nt 1 NP + Ni+1 N (19)

Recognizing the first term on the right side of (19), 3 = 7 ;, whereas all other terms sum up to zero, we conclude

that (my 4, t > 0) is an F;-martingale. The Convergence in (16) follows from the martingale convergence theorem
(see, e.g., Durrett [10, section 4.2]). By Proposition 1, (n;, t > 0) is a time-changed Pélya urn. So the limiting shares
(111,00, - - -, Tk, 00) have the same dlstrlbutlon as that of the Polya urn which is Dir(ny,, . .., 1k,0)-

Let (n;r, t > 0) be the Pdlya urn with nk o = Mx,0 and (nk free 711( ;) be the correspondmg shares. Set Z = Beta(nk 0,
N — 1, 0). By Goldstein and Reinert [12], we have, for each k € [K],

dw(ﬂk,t, Z)=0(t1) ast— co. (20)

Taking A < A_(a), we get

dw(le,t, Z) < P(Nt < /\tﬁ) +dw (nk’th[ZAtﬁ’ Z)
< CP(N; < M)+ Y dw((miINy =), Z)P(N; =)
sZ/\tl}r_a
_ = t _
= CP(N; < At)+ > dw(mf , n, Z)P(N; =)
sZAtﬁ

<C exp(—C/tﬁ) +C't T,
where the last inequality follows from Theorem 1 and (20). This yields the bound (17).
ii. Applying the same derivation as in (19) but to 0y ; instead, we have
i) 4 Nty s ] 11—y, + Nimyr +1 Tkt
N@ (Nt + 1)1+a N? (Nt + 1)1+a N? :

O,
The last two terms add up to m =W, +1 ~ . Thus, we have

TC
E (B 1| 7 = (1 -

1 1
E(Ok 11 7) = Ope [ 1— < Oy,
( k,t+1 | t) kt ( (Nt ) ) kt

that is, (O, t > 0) is an Fi-supermartingale for each k. Recall that N§ O ; = 7y 4, so Ok ; < N; %, which converges to
zero with probability one. By (i), N0y ; converges almost surely and, hence, in distribution to Z. By Proposition 2,
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N/((1 +a)t)%“ converges in probability to one. We then apply Slutsky’s theorem to get the convergence
in (18). O

Several remarks are in order. Part (i) of Theorem 2 shows that the bidder shares form a martingale and con-
verge to a Dirichlet distribution (independent of «). This should be expected from the fact that the underlying
bidder stakes (n;, t > 0) are a time-changed Pélya urn; refer to Proposition 1. What’s more revealing is the Was-
serstein bound in (17) between a bidder’s share and its limit. In fact, a matching lower bound can also be estab-
lished (which we leave to the interested reader). Thus, the convergence rate of the bidder shares is exactly of
order + T, (Also, refer to Proposition 4 for further discussion on the stability of the bidder shares when the initial
stakes N := Ny are large.)

Part (ii) of the theorem implies that each bidder’s voting power decays to zero at rate t ™. Or, equivalently,
the reward rate is slowed down: it takes a time of order ©(t) for any bidder to be rewarded a new (unit of)
stake. This enhances security so that no bidder can manipulate or control the bidding/voting process; the level
of decentralization remains unchanged. This also means the principle of security in (1) becomes easier to hold at
large time t because (because of the network delay) vocN;* | 0 as t — co. On the other hand, if the reward is asso-
ciated with transaction validation (which it does not need to be), then the time required to validate a new block
becomes uncontrolled in the long run. A possible remedy is to dynamically tune the parameter @ over time as
detailed in Appendix B.

3. Other Results with PoS Crypto Applications

In this section, we present more results associated with the Poly(a) model that are largely motivated by the
application of PoS in cryptocurrency. There are two sections: In Section 3.1, we study the evolution of bidder
shares when N := Ny, the volume of initial stakes, is large. In Section 3.2, we study the additional feature of
allowing the bidders to trade stakes among themselves, focusing on the issue of trading incentives (or the lack
thereof). We remark that the results in both sections exhibit some type of phase transition and are independent
of the parametric value of @ and, in this sense, universal.

3.1. Evolution of Bidder Shares and Phase Transitions
As explained in the introduction, one key feature of the Poly(a) model is that the reward rate or the voting
power (if the reward goes with validation work) 0 ; of any bidder k is different from k’s share 7y ; of the total
volume of stakes at . We have seen from Theorem 2(iii) that the reward rate or voting power is decreasing over
time, which facilitates security. On the other hand, the evolution of the share 7, ; over time from its initial value
1, o in both absolute and relative terms is an important issue for any individual bidder k.

In the classical Pélya urn setting, it is shown in Rosu and Saleh [24] that, for a large bidder with initial stake
1,0 = O(N), there is stability in bidder share in the sense that

P(|7tk 0 — kol >€) >0 as N — oo.

Furthermore, similar, albeit qualitatively different, results are revealed in Tang [26] for small bidders (following

the definition in part (ii) of the following corollary). Here, we focus on the ratio 7t ;/m . Because nklmi
Beta(ny o, N — . o), the results in Tang [26] hold. The following proposition is a refined version of Tang [26, theo-
rem 2.1].

Proposition 4 (Phase Transitions of 7y ;). Let Ng = N be the total number of initial stakes. Under the Poly(a) voting
rule, we have
i. For ny o =f(N) such that f(N) — oo as N — oo (i.e., iy o > 1/N) and for each ¢ > 0 sufficiently small and each t > 1 or

t =00,
g
which converges to zero as N — oo.
ii. Forngo=0(1) (ie., mx o = O(1/N)), there is the convergence in distribution

Tt

1

1
Ttk 0/ TTk,0 4 n—V(”k,o) as N — oo, (22)
k,0

where y(ny o) is a Gamma random variable with density x™°~1e™*1,50/T (n, o). Moreover, there is C > 0 (independent of t



Downloaded from informs.org by [160.39.34.79] on 11 February 2024, at 14:50 . For personal use only, all rights reserved.

Tang and Yao: Polynomial Voting Rules

10 Mathematics of Operations Research, Articles in Advance, pp. 1-17, © 2024 INFORMS
and N) such that
Tlk, t 3,1 1
dw| —= —7/(7’1](,0) SC|INtTa+—). (23)
Tt,0 1,0 VN
Proof.

i. Conditioning on N; and using the law of total variance, we get

1— NE(N;)

Var(nk,t) = N+1

7t 0(1 — Tk 0)-

It suffices to apply Chebyshev’s inequality to get the bound (21).
ii. Note that

T 1 Tk, 1
(i ) (3 -

T 0 Tk, 0 Tk, 0
1 1
+dw | —Beta(ny o, N — ng0), —v(1x0) |-
Tk, 0 N0

A careful apphcatlon of Goldstein and Reinert [12] yields a refinement of (20): there is C > 0 such that
dw(r} ,, Z) < CN . Adapting the argument in Theorem 2 yields

1
dw Tt L, —Beta(i o, N — 1) | < C’'N3t i for some C’ > 0. (24)
Tk, 0o o

Next, we claim that

CI/
VN
which can be proved by elementary calculus. Here, we provide a sketch of proof. Set ny o = 1 for simplicity. Let

X~y(), and let X" be the sum of N — 1 independent y(1) random variables, independent of X. By beta-gamma
algebra has the same distribution as Beta(1,N — 1). Thus,

1 1
dw (— Beta(ny 0, N — 1y o), —y(nk,o)) < for some C” >0, (25)
Tk, 0 Nk, 0

’ X+X’

dw(NBeta(1,N—1),y(1)) < E

NX —X|. (26)

X+X

By normal approximation, we have X =1 + ‘/LNN (0,1) + o(N~2), where A/(0,1) is standard normal (see Rio [23]).
Injecting into (26) yields the desired bound. Finally, combining the estimates (24) and (25) gives the bound (23). O

The proposition reveals a phase transition in the stability of shares and identifies large and small bidders in
terms of the size of their stakes, according to the categories in the two parts. A large bidder k is guaranteed to
have stability in the precise sense characterized in (21): that the share ratio 7 /7y o concentrates at one and con-
verges to one in probability when N — oo for any ¢ > 1 (including t = o). For small bidders, this is reversed: the
concentration inequality in (21) becomes the anticoncentration inequality

gl

implying volatility. The Wasserstein bound (23) is new, and it indicates that the ratio 7 /7 o approaches the
limiting Gamma distribution with an N2 error for ¢ > N31*®. However, we do not know whether the N° depen-
dence in (23) is tight, so the ratio 7ty ¢ /1) o may mix at a faster rate.

Moo 4

Ttk,0

> e) >c¢ for c >0 independent of ¢, (27)

3.2. Participation and Trading

So far, we have not considered the possibility of allowing the bidders to trade stakes (among themselves). In the
classical Pélya urn model (o = 0), it is shown in Rosu and Saleh [24] that, under certain conditions (which enforce
some notion of risk neutrality), there is no incentive for any bidder to trade. Here, we extend that to the Poly(«)
model, allowing a to take any nonnegative values. Furthermore, we allow a bidder-dependent risk-sensitivity
(or risk-aversion) parameter O, and study the issue of incentive as it relates to 6.
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In the new setting of allowing trading, we need to modify the problem formulation presented at the beginning
of Section 2. First, for each k € [K], let v, ; be the number of stakes that bidder k trades at time t. Then, instead of
(5), the number of stakes 1y ; evolves as

N = g1+ 1s,, +Vi s, (28)
————

7
Kt

that is, n,’(,t denotes the number of stakes bidder k owns in between time t — 1 and ¢, excluding those traded in
period t.

Note that vy ; is up to bidder k to decide as opposed to the random event Sy ;, which is exogenous; in particular,
v+ can be negative (as well as positive or zero). We elaborate more on this as follows, but note that vy ; is con-
strained such that, after the updating in (28), ny ; remains nonnegative.

Let {P;, t > 0} be the price process of each (unit of) stake, which is a stochastic process assumed to be indepen-
dent of the randomness induced by the Poly(«) voting rule (specifically, the process {Sy ¢}). Hence, we augment
the filtration {F;},., with that of the exogenous price process {P;, t > 0} to a new filtration denoted {G;},s,. Note
that the price process P, is also assumed as exogenous in Rosu and Saleh [24]. This assumption need not be so far
off, as the crypto’s price tends to be affected by market shocks (such as macroeconomics, geopolitics, breaking
news, etc.) much more than by trading activities. So, here, we isolate the price of each stake from any bidder’s
trading impact.

Let by ; denote (units of) the risk-free asset that bidder k holds at time t and 7. > 0 the risk-free (interest) rate.
(Here, the risk-free asset is naturally the one that underlies the preceding price process.) As we are mainly con-
cerned with the effect of exchanging stakes to each individual, we allow bidders to trade stakes only internally
among themselves, but not risk-free assets between them. Hence, each bidder has to trade a risk-free asset with a
third party instead of trading that with another bidder.

The decision for each bidder k at f is, hence, a tuple, (v ¢, by ;). Moreover, there is a terminal time, denoted Tj € N,
(i.e., Tx > 1 is integer valued), by which time bidder k has to sell all assets, including both any risk-free asset and any
stakes owned at that time, and leave the system. T} can either be deterministic or random. In the latter case, assume
it has a finite expectation and is either adapted to {G;},5, or independent of all other randomness (in which case aug-
ment {G;} accordingly). We also allow bidder k to leave the system and liquidate prior to T at a stopping time 7 rel-
ative to {Gi};-o. Thus, bidder k also decides at which time 7, to stop and exit. To simplify the notation, we abuse 1
for i A Ty, the minimum of 7, and T;.

Let ¢ ; denote the (free) cash flow (or consumption) of bidder k at time ¢, that is,

Cot =1+ Tee)bi -1 — bk —vi /Py, V1<t <1y (C1)

with
bro=0,br: >0, 0<mny,;= n,’(,t +vr <N, VI<t<ty (C2)

and
kqp = (14 Ttree)bi, o1 + 11y Pr,,  and vg o = by o, =0. (C3)

Observe that the equation in (C1) simply defines what’s available for consumption in period ¢. It is simply an
accounting or budget constraint on the cash flow. The requirements in (C2) are all in the spirit of disallowing
shorting on both components of the decision: the free asset by ; and the traded stakes vy ;. In particular, the latter
is constrained such that vy ; > —n; , (following ny ; > 0), that is, bidder k cannot sell more than what’s in posses-
sion at £ it also ensures that no bidder can own a number of stakes beyond the current total volume (1, ; < Np).
Equation (C3) specifies how the assets are liquidated at the exit time 7,: both vy ,, and by , are set at zero and all
remaining stakes ;  liquidated (cashed out at P, per unit).

Denote bidder k’s decision (process) or strategy as 7 and (v,b) := {(vk+, b +), 1 < t < 74}. The objective of bid-
der kis

Tk
Uy := max U := max E(Z(Sf{ck,t) subject to (C1),(C2),(C3); (29)
=1

Tk (v, D) Tk, (v, D)

0x €(0,1] is a discount factor, a given parameter measuring the risk sensitivity of bidder k. Clearly, bidder k’s
objective is to maximize a utility that is just the present value of k’s total cash flow cumulated up to T;.
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We need to introduce two more processes that are related and central to understanding the dynamics of the
system in the presence of trading. The first one is {M;, t > 1}, where M, := N;P; denotes the market value of the
volume of stakes at time . The second one is {1y ;, t > 0}, for each bidder k, defined as follows:

t—1

Hk,O = nk,opo, and Hk,f = 6,t(n,’(,tPt — Zé;(vk,jpj, t> 1,' (30)
j=1

1y 1., follows (28). Note that the two terms that define I ; are the discounted present values, respectively, of k’s
pretrading stakes (1; ;) and of the return from k’s trading (cumulated up to ¢ — 1).

The connection between {M,} and {I1; ;} is presented in the following lemma, which reveals that their incre-
mental gains (per time period) are proportional: each increment of Il ; is a 7 ; fraction of the corresponding
increment of M. In other words, m; ; not only represents bidder k’s share of the total volume of stakes, it also
represents k’s share of the system’s market value with or without trading.

Lemma 1. Under the Poly(a) voting rule, along with the trading specified earlier, we have

E(Hk,t+1 |gt) - Hk,t = 5jt<+1nk,tE(Mt+1 |gt) - 5]t<nk,tMt- (31)

Proof. First, by (28) and (6), along with 7ty = 1, ;/N;, we have

4 - n % —C
E(t} 441 | F1) = i (1 Ny ) = N+ Ny ) = 14 E(Np | ). (32)
t
Next, from (30), we have
I 1 — Tl = 51t<+1n1’<, 1P — 52”;’(, Py — S Py, t>1 (33)

Furthermore, as the price process (P;, t > 0) is independent of F;, we have

E(”}'c,t+1pt+1 |Gr) = E(E(”),@Hl | F+)Pt411Gr)
(32)
= T tE(Nt1 Pria | Gr) = T E(Meia [ G).
This, along with (33) yields the desired expression in (31) along with 1y ¢ = 1y , + Vi1, 15t = 7N, and M = NPy O

The process {IT; ;} also connects to the utility Uy in (29). To see this, summing up both sides of (C1) and (C3)
over t (along with by o = 0 in (C2)), we have

kal kal

D Sk =D Otcki =0, Pr = > 0pviiPr+ Y Op[(1+ Tiree)Ox — 1Dy, (34)
t=1

t< Ty t< Ty t=1

Observe that the first two terms on the right-hand side (RHS) are equal to I ;,, so we can rewrite the preceding
as follows (after taking expectations on both sides), emphasizing the exit time 74 and the strategy (v, b),

T—1
Uy(tx,v,b) = E[TT, ., (v)] + E (Z SL[(1 + Tiree) Ok — 1]bk,t>} (35)

t=1

hence, the RHS is separable: the first term depends on (v) only, whereas the second term, the summation, on (b)
only. Furthermore, the second term is < 0 provided (1 + rgee)0r < 1 (which is the condition (a) assumed in Theo-
rem 3) along with b being nonnegative, part of the feasibility in (C2). In this case, we have Uy < E(ITy ., (v)),
which implies U; < maxy,,, E(TT ,,(v)) with equality holding when by ; =0 forallt =1,..., 7.

We are now ready to present the main result regarding the utility maximization problem in (29). A quick word
on the parameter 7.y, that appears prominently in Theorem 3. Simply put, it is the rate (expected rate of return)
associated with each stake (e.g., a unit of some cryptocurrency); that is, it is the counterpart of 7., the rate for
the risk-free asset. We elaborate more on the two rates after proving the theorem.

In the theorem, two strategies are singled out: the buyout strategy, in which bidder k buys up all stakes avail-
able at time 1 and then participates in the bidding process until the end, and the nonparticipation strategy, in
which bidder k turns all 1y o stakes into cash and then never participates in either bidding or trading for all ¢ > 1.
Note that the nonparticipation strategy is executed at 7; = 0; as such, it complements the feasible class, which is
for 7, > 1 and presumes participation. The buyout strategy clearly belongs to the feasible class.



Downloaded from informs.org by [160.39.34.79] on 11 February 2024, at 14:50 . For personal use only, all rights reserved.

Tang and Yao: Polynomial Voting Rules
Mathematics of Operations Research, Articles in Advance, pp. 1-17, © 2024 INFORMS 13

Theorem 3 (Buyout Strategy vs. Nonparticipation). Assume the following two conditions:
(a) 6k(1 + rfree) <1 and (b) E(MHl |gt) = (1 + rcryp)Mt- (36)

Then, under the Poly(a) voting rule, the following results hold.

First, with condition (a), the maximal utility U; is achieved by setting by, = 0 forall t = 1,.. ., Ty; that is, U}, = max, E(ITy 1,).

In addition, all three parts of the following hold:

i. If Ok(1+reryp) < 1, then any feasible strategy provides no greater utility for bidder k than the nonparticipation strategy;
that is, U} < ny,oPy.

il. If k(1 +reryp) 2 1, then any feasible strategy provides no greater utility for bidder k than the buyout strategy. In this
case, bidder k buys all available stakes at time 1 and participates in the bidding process until the terminal time Tj.

iii. If 6x(1 + reryp) = 1, then, bidder k is indifferent between the nonparticipation and buyout strategies with any exit time,
both of which provide no less utility than any feasible strategy. In other words, all strategies achieve the same utility (which is
ITi,0 = noPy0).

Moreover, when 6, =6 := (1 + rcryp)f1 for all k, then no bidder has any incentive to trade. Consequently, the long-term
behaviors (of Ny, my. ;, and Oy ;) characterized in Propositions 2 and 4 and Theorem 2 hold.

Proof. That U} = max,,, E(I, ) (with by ; being set to zero for all t) under condition (a) in (36) is already estab-
lished in the discussions following (35). So it suffices to prove the three parts (i)—(iii).

i. Applying the given condition (b) in (36), along with the assumed inequality 6x(1 +7eyp) < 1, to the RHS of
Equation (31) makes it < 0; that is, {1 ;} is a G;-supermartingale, implying E(IT; ,,) < ITi . Because I ¢ is inde-
pendent of v, we have

Ui = max E(TIy, <) < k0 =m,0Po, (37)

ii. With the assumed inequality 6x(1 + 7eryp) 2 1, {IT; 1} now becomes a Gi-submartingale, and hence, the inequal-
ity
E(ITy,1,) = E(TT, ) > Ty, 0 = 15,0 Po- (38)

To identify the optimal trading strategy {v} ;};<r, 1, we use backward induction (dynamic programming). To opti-
mize v 1,_1, observe

E(‘Szknilc,TkPTk - 5zk71Vk,Tk71PTk71 |G1,—1)
= 6}?(711,(,%(—1 +vi,1,-1)(1 + N DE(Pr, |G, 1) — Y
= 61?”12, Tk—lekl_l E(N1 P, |Gr,—1) + 5;?71(5ka:_1 E(N7,Pr,|G1—1) — Pr—1)Vi,1,—1
= 8¢ nf 1,1 Np L EMr, | Gra) + 60 (6N7, L EMr, |7, 1) = Pra)vi 1,

which is linear in v 1, ,. By assumed condition (b) in (36), we have
(5ka[(171 E(MTk |ng,1) —Pr, 12 (0c(1 + rcryp) — 1)PTk71 > 0.

Thus, (1/,*(, T 1 |Gr,—1) = Nr,1 — n,’(, T 1/ following the (binding) constraint in (C2). That is, bidder k’s optimal strategy
at the penultimate time Ty —1 is to buy all available stakes at that time. Going backward, we have (vj ],|g,) =
Ni,j — m ; for j > 1. Thus, the optimal trading strategy is vi ; = N1 — 1 4, vi , ==V 1, _; =0.

iti. Under the assumed equality Ox(1 + 7eryp) = 1, {Tlx ;} is a Gi-martingale; hence, the inequality in (37) now holds
as equality, that is, U} = Iy o = ny o Po.

Thus, all strategies lead to the optimal utility, including any feasible strategy (in particular, the no-trading
strategy) and the nonparticipation strategy.

The “moreover” part of the theorem is immediate. O

In what remains of this section, we make a few remarks on Theorem 3, in particular, to motivate and explain
its required conditions. First, the rate 7.y, is determined by condition (b), the second equation in (36). As such, it
should be distinct from 7., the latter being associated with a risk-free asset. For all practical purposes, we can
assume 7ept > e €ven though this is not assumed in the theorem. When this relation does hold, then condition
(a) becomes superfluous in cases (i) and (iii).
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Second, the discount factor o in the utility objective in (29), a parameter that measures bidder k’s sensitivity
toward risk, plays a key role in characterizing phase transitions in terms of 6x(1 + 7eyp). In case (i), the inequality
Ok < 1/(1 + reryp) implies bidder k is seriously risk averse, and this is reflected in k’s nonparticipation strategy. In
case (ii), the inequality holds in the opposite direction, implying bidder k is lightly risk averse or even a risk
taker. Accordingly, k’s strategy is to aggressively sweep up all the available stakes to reach monopoly and partic-
ipate (but not trade) until the terminal time. Also note, in this case, the nonparticipation strategy provides less
(no greater) utility for bidder k than the no-trading strategy and certainly no greater utility than the buyout strat-
egy. In case (iii), the inequality becomes an equality 6y =1/(1 + 7eyp), and {IIx ;} becomes a martingale. Conse-
quently, bidder k is indifferent between nonparticipation and participation and, in the latter case, indifferent to
all (feasible) strategies, including the buyout (and no-trading) strategy. Indeed, the equality ox = 1/(1 +reryp) is
both necessary and sufficient for the no-trading strategy. This equality also has the effect to force all participating
bidders to have the same risk sensitivity.

In contrast, in Rosu and Saleh [24], there is a single rate rge. or, equivalently, 7cryp = Ffree is assumed, which
seems difficult to justify because, in most applications (cryptocurrency in particular) 7.y, is significantly larger
than rge.. Moreover, there is also a single risk sensitivity for all bidders, which is set at 6 =1/(1 + rgee). Thus,
Rosu and Saleh [24] is limited to the martingale case only, reaching the same conclusion as our case (iii), that all
feasible strategies, buyout included, yield the same (expected) utility. As there is no stopping decision and super-
martingale or submartingale cases in Rosu and Saleh [24], nonparticipation does not come up at all, and neither
do notions such as risk aversion or risk seeking.

The last point we emphasize is that the two conditions in (36) play very different roles. As evident from the
proof of Theorem 3, condition (b) makes {II;} a supermartingale, submartingale, or martingale, according to
bidder k’s risk sensitivity as specified by the inequalities and equality applied to 6y (along with 7¢ee) in the three
cases. Yet, to solve the maximization problem in (29), {I ;} needs to be connected to the utility, and this is the
role played by condition (a), under which it is necessary (for optimality) to set by ; = 0 for all t > 1 and applicable
to all three cases in Theorem 3. In this sense, condition (a) alone solves half of the maximization problem, the by ;
half of the strategy. In fact, it’s more than half as the optimal v strategy is only needed in the submartingale case,
and even there, condition (a) pins down the fact that to participate (even without trading) is better than
nonparticipation.

Note that Theorem 3 can be readily extended. For instance, the rates 7.y, () and rgee(t) can vary over time. In
this case, it suffices to modify the conditions in case (i) to

t<Ty t<Ty

(1 +sup rcryp(t)> O <1 and <1 +sup rfree(t)) o <1,

the conditions in case (ii) to

t<Ty

(1 + ti<ank rcryp(t)> Or>1 and (1 + sup rfree(t)> o <1,

and the conditions in case (iii) to
or=01+ rcr_w,)f1 and  sup 7free(t) < Feryp, With 7oy being constant.
t<Ty

Then, Theorem 3 continues to hold. We can also include a processing cost « > 0 that any bidder selected by the
Poly(a) mechanism pays to receive the reward. (This corresponds to the mining cost to validate the block.) In
this case, the budget constraint (C1) is modified by adding a term —«1s,, to the right side of the equation, and
the same applies to the liquidation constraint (with t replaced by Tj). Condition (b) in (36) is modified to
EMi111Gt) = (1 + rayp)M; + K.

4. Conclusions

We propose in this study a new Poly(a) voting rule that is more general than the traditional voting rule (which
is linear, corresponding to a = 0). More importantly, the Poly(a) voting rule distinguishes voting power from
voter share and, hence, decouples the two.

Applying the Poly(a) voting rule to the PoS protocol, in which the voters are the bidders (competing for
rewards or validation of new blocks), we show this decoupling enhances security, a key objective of the PoS pro-
tocol. Specifically, we prove that, whereras bidder shares form a martingale process that converges to a Dirichlet
distribution, each bidder’s voting power is a supermartingale that decreases to zero over time. For both limiting
results, we explicitly characterize their rate of convergence as well. Furthermore, we show a phase transition in
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the stability of bidder shares in terms of each bidder’s initial share relative to the total in the system. We also
study the issue of a bidder’s risk sensitivity when trading is allowed and provide conditions under which a bid-
der has no incentive to participate in the bidding process or, if participating, forgoes trading.

In the introduction, we mention two general approaches to enhance security in the PoS protocol—adjust the
amount of reward over time and slow down the voting process—and the current study focuses on the latter,
keeping the reward constant. It is possible to pursue a combination of both approaches, that is, adjusting the size
of reward dynamically over time in the same manner as adjusting a (for the latter, refer to Appendix B). In
another direction, it is also possible to study the trading problem in Section 3.2 under a suitable market impact
model, in which the price process P, is impacted by trading activities; for instance, a mean-field PoS model with
linear impact (and transaction costs).
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Appendix A. Improvement on A. (@)

Theorem 1 proves large-deviation bounds on N;. However, it does not cover the whole range. It remains open to prove
such bounds in the range (A_(a),A+(a)), and once proved, the result also implies the almost sure convergence of N;/ fria
as t — oo,

Here, we provide a way to (slightly) improve the values of A-(a) in Theorem 1. To simplify the presentation, we con-
sider a« =1 (quadratic voting rule) with A_(1) ~0.56 and A.(1) ~ 2.51. The idea relies on a multiscale analysis by splitting
the interval [0,t] into [0,t/2] and [t/2,t], and the goal is to upper bound P(N; = AVE) for A >0. In the sequel, we neglect
the polynomial factors and only focus on the exponential terms. Note that

w3 (F) s o) o)™

k<AVE
(a”)

Next, we split the range of k < Mt into Sy :={k<aVt} U{k> (A —a)Vi}, and S, := {aVi <k < (A —a)Vi} with a < % For ke Sy,

t/2—AVE t/2—(A—a)Vt
we simply bound the term (a) by (1 —%\ﬁ) , whereas for k€ S,, we bound the term (a”) by (l —ﬁ)
t/27a\/f (A=ayvt
(1 — %\5) . Consequently,
t)2 t)2 ) 1 ( 1 )”“W
P(N; = AVh < 1-—
(=D (;( k ) (A«/E—k )(M)! AVE
")
£/2 £/2 t/2—(A—a)VE t/2—avt
e I
Z\ k MEt—k] | (AVh)! (A —a)Vt AVE
()
Using Stirling’s formula, we get exponential bounds for the terms (b") and (c”):
(b//)~exp<(7)\ log 2+2A —aloga— (A —a)log(A —a)— A log)\f%>\/z),
() ~exp( (24 =21 10 PRI Vi (A1)
P 84T 20— V) '

By equating the two coefficients before vt in (A.1), we have

1 1 1
—)\log2+2A—aloga—()\—a)log(/\—a)—/\log/\—x)—Z/\—Z/Xlog/\—ﬁ—m.

By letting a = OA with 0 < %, the preceding equation yields

0
A= \/ 2(1— 0)(log 2+ 0 log 0 + (1 — O)log(1 — 0))’ (A2)
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Figure A.1. (Color online) Volume of stakes N; with Ny = 5 and a = 1 (quadratic voting).
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Notes. (a) Histogram of Ngnoo on MC simulation of 20,000 samples. (b) x-axis: t € {1,000, 1,500, ...,8,000}; y-axis: —InP(N; > v2.2t)/ Vi (left) and
—InP(N; < V1.8¢)/V (right) on MC simulation of 20,000 samples.

The coefficient before V¥ is

f(A)=2Alog A — 2)\+1 !

2 20— (A-3)

where 6 is specified by (A.2). By injecting Expression (A.2) into (A.3), f is a function of 6. It is easy to see that f(0) has
only one root on (0,1/2), which is approximately 0.1575, and A_(1) is improved numerically to from 0.56 to 0.60. Similarly,
the value of A.(1) is improved numerically from 2.51 to 2.44.

We can continue this procedure, for instance, to split [0,] into [0,t/3], [/3,2t/3], and [2t/3,f] and so on to get better
and better numerical values of A_(1) and A.(1). However, it is not clear whether this approach eventually gets all the
way to the threshold V2 ~ 1.41. We conjecture that the exponential deviation holds right off the threshold (1 + a)lﬂx which
is supported by the numerical experiments; refer to Figure A.1.

Appendix B. Control of Voting Powers

As proved in Theorem 2, the reward rate 0y ; decays at rate @(t ™). If the reward is associated with the validation of a
new block, then the duration between two consecutive validations (called block time) increase (and are uncontrolled)
over time. For instance, set a = 1 (quadratic voting rule) and T = 107 seconds (x4 months). Then, the duration required
to see the next block at time T is approximately

10 seconds x (107/ 10)% =10* seconds ~ 3 hours,

which is even much longer than the 10-minute block time of Bitcoin. (The block time is 10seconds in Ethereum; see, e.g.,
Buterin [5].)

One possible (and practical) solution is to dynamically tune the parameter a over time. Specifically, let x denote a
threshold for the expected number of rounds of bidding/voting between two validated blocks. Then,

e Seta =ap > 0 and apply the Poly(ag) scheme up to round '+

e Seta =a; <ap, and apply the Poly(a;) scheme up to round x*%' . and so on.

Here, x,a9,a1,... are user-defined hyperparameters. To illustrate, by setting « = 50 rounds (= 10 minutes in Ethereum)
and ax = (1+k) " for k>0,

- Apply the Poly(1) scheme up to round 50* ~ 7 hours.

- Apply the Poly(1/2) scheme up to round 50° ~ 2 weeks.

- Apply the Poly(1/3) scheme up to round 50* ~ 2 years.

- Apply the Poly(1/4) scheme up to round 50° ~ 100 years ... and so on.

Similarly, by setting x = 5 rounds (= 1 minute in Ethereum),

- Apply the Poly(1) scheme up to round 5° ~ 4 minutes.

- Apply the Poly(1/2) scheme up to round 5° ~ 20 minutes ---

- Apply the Poly(1/10) scheme up to round 5'"' ~ 15 years ... and so on.

It is also possible to tune the parameter a at random time points adaptive to the reward rate. That is,

e Seta = ap >0 and apply the Poly(ap) scheme up to round ko, where k is the first time by which no new block is validated
in x rounds.

e Seta = a; < apand apply the Poly(ag) scheme up to round k;, where k; is the first time by which no new block is validated
in k rounds since then ... and so on.
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Note that, in either case, the process of stakes is a time-changed Pdlya urn, so the results in Section 3 continue to hold
(except that the convergence rate depends on the choice of {ay}).
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