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Electric propulsion systems are attractive for space missions because they have the advantage
of higher specific impulse and payload capability compared with chemical engines. In an
interplanetary mission, one often needs to simultaneously consider the spacecraft’s trajectory
and onboard system design, which increases the computational cost for design and optimization.
This issue is further exacerbated by various combinations of gravity-assist maneuver (fly-bys)
options (e.g., the fly-by sequence and the number of fly-bys). Large-scale coupled low-thrust
trajectory and system optimization with variable fly-by options have not been well explored. This
study will break this limit by proposing a new optimization framework considering low-thrust
trajectory optimization with discrete fly-by options. The proposed optimization framework
has two main layers: Dymos and dEGO. The Dymos layer uses NASA’s OpenMDAO/Dymos
framework for large-scale gradient-based low-thrust trajectory optimization with a given fly-by
option. The Dymos layer will output the optimized objective function (e.g., time-of-flight or
fuel burn) to the dEGO layer. The dEGO layer then uses discrete, efficient global optimization
to update the fly-by option to send it back to the Dymos layer. This paper introduces the
framework and showcases our preliminary results for low-thrust trajectory optimization with
fly-bys using Dymos. We use the Earth-Venus-Mars case as a demonstration and optimize the
fuel consumption by changing the thrust magnitude, direction, and dates for the departure,
fly-by, and arrival. The proposed optimization framework has the potential to design more
efficient spacecraft missions.

I. Introduction
As we continue to advance our understanding of the universe, a scheme to optimize large-scale spacecraft missions

efficiently is of growing importance. Cost is the most crucial factor when designing a spacecraft mission. Optimizing a
spacecraft’s trajectory with discrete fly-bys helps minimize this cost. This, in combination with the design of more
efficient electric propulsion systems, makes space missions more feasible. Therefore, increasing research interests in
spacecraft optimization have led to an increase in mission efficiency.

Impulsive trajectory optimization with chemical propulsion systems has been a mainstay of space mission design.
The goal of these optimizations is to minimize a spacecraft’s energy consumption (often quantified as velocity change;
Δ𝑉) or flight time for a mission sequence. Fly-by maneuvers or specific launch windows are used to reduce these
objective functions. Genetic algorithm (GA) is a popular approach to optimize spacecraft trajectory and has been used in
many studies [1–4]. The standard GA assumes the design variables of a solution as genes in a fixed-length chromosome.
By applying the evolutionary operations of selection, mutation, and crossover, the population of these chromosomes
converges to the global optimal solution [5]. Differential evolution is another heuristic method that aims to solve the
trajectory optimization problem like genetic algorithms. Labroquère et al. [6] utilized a differential evolution technique
and implemented four constraint-handling techniques to optimize a multi-gravity assist interplanetary mission to Jupiter.
Three of the four techniques could find feasible solutions within a respectable time. In our previous work, we considered
coupled spacecraft trajectory and system designs with high-thrust propulsion using gradient-based optimization methods
[7, 8].

With the advent of efficient solar electric propulsion systems (SEP), the problem of trajectory optimization has
migrated from a domain of finite design variables (impulses) to a more challenging land of infinite continuous design
variables. These problems require the thrust magnitude and direction to be given continuously instead of selecting
specific instantaneous velocity changes. A benefit of doing this is that there are now more possible trajectories that were
otherwise infeasible. However, the object function is littered with local minima and requires numerous continuous-thrust
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trajectories to access. There have been many efforts to solve the simplest low-thrust trajectory cases analytically, either
by fixing the direction of thrust over the whole trajectory [9–13] or by neglecting boundary conditions. Analytic
perturbation theory is another technique for solving low-thrust trajectory optimization problems. Resulting analytic (or
semi-analytic) solutions have lower computational costs than explicit numerical techniques and are suitable for moderate
accuracies [14, 15].

Optimizing a low thrust trajectory while fixing the mission sequence limits the design freedom of the mission.
Existing studies have conducted coupled low-thrust trajectory and system optimization [16–19]. However, they have not
included discrete fly-by options in the optimization problems. This study will break this limit by developing a new
framework for low-thrust trajectory optimization with discrete fly-by options. The proposed optimization framework
has two main layers: Dymos and dEGO. The Dymos layer uses NASA’s OpenMDAO/Dymos framework for large-scale
gradient-based low-thrust trajectory optimization with a given fly-by option. The Dymos layer will output the optimized
objective function (e.g., time-of-flight or fuel burn) to the dEGO layer. The dEGO layer then uses discrete, efficient
global optimization to update the fly-by option to send it back to the Dymos layer. This paper introduces the framework
and showcases our preliminary results for low-thrust trajectory optimization with fly-bys using Dymos. We use the
Earth-Venus-Mars case as a demonstration and optimize the fuel consumption by changing the thrust magnitude,
direction, and dates for the departure, fly-by, and arrival.

The rest of this paper is organized as follows. In Section II, we elaborate on the trajectory optimization framework,
followed by the detailed optimization results in Section III. Finally, in Section IV, conclusions are drawn and perspectives
and future improvements are provided.

II. Method

A. Optimization framework
The proposed optimization framework consists of two main layers: dEGO and Dymos, as shown in Fig. 1. The

Dymos layer uses NASA’s OpenMDAO/Dymos framework for gradient-based low-thrust trajectory optimization with a
given fly-by option, which is the primary focus of this paper. OpenMDAO [20] is an open-source multidisciplinary
design, analysis, and optimization framework developed by NASA. OpenMDAO has been widely used for large-scale
design optimization in aerospace engineering applications. Dymos [21] is an OpenMDAO derivative for optimizing
the control of dynamic systems. Dymos has been mostly used for aircraft MDO [22–24]. This study will extend its
application for low-thrust spacecraft trajectory optimization with fly-bys.

Dymos uses the collocation method to solve user-prescribed dynamic equations. Then, it uses a gradient-based
optimization algorithm to solve optimization problems. Users can define analytical partial derivative computation in
Dymos, which enables adjoint computation of total derivatives for a large number of design variables. This feature is
particularly desirable for our problem because the low-thrust trajectory problem requires a large design freedom. Once
the optimization problem is solved, the Dymos layer will output the optimized objective function (e.g., time-of-flight or
fuel burn) to the future dEGO layer. The dEGO layer then uses discrete, efficient global optimization to update the
fly-by option to send it back to the Dymos layer. To be more specific, the dEGO layer will use the optimal objective
functions computed from the Dymos layer as the surrogate model output. The surrogate model’s input is the fly-by
options (the fly-by sequence and the number of fly-bys). Then, the dEGO layer will use the discrete, efficient global
optimization algorithm to compute the next fly-by option to explore. We will give this new fly-by option as the input for
the Dymos layer and start the next iteration. We will use the dEGO module implemented in the surrogate model toolbox
(SMT) [25].

B. Open-source Multidisciplinary Analysis Design And Optimization Tool: OpenMDAO
As mentioned above, Dymos is built based on the OpenMDAO framework. OpenMDAO [26] is an open-source

computing platform for systems analysis and multidisciplinary optimization written in Python. OpenMDAO allows users
to decompose large-scale optimization problems into small components. Each component contains basic computation,
making them easier to build and maintain. The benefit of OpenMDAO is its focus on gradient-based optimization with
analytical derivatives, allowing one to explore large design spaces with thousands of design variables. This salient
feature is achieved using the modular analysis and unified derivatives (MAUD) architecture proposed by Hwang and
Martins [27].

As previously stated, OpenMDAO can decompose complex models into smaller disciplines or components. Each
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Fig. 1 Proposed coupled optimization framework with gravity-assist maneuver.

component is defined by its specific inputs and outputs. In a component, one must implement how to compute the
outputs based on the inputs. All OpenMDAO components for our formulation define these input-output relationships
with analytical expressions. These include components for the electric propulsion system, trajectory analysis, analytical
ephemeris, and fly-by calculations. Lastly, one needs to define how the derivatives of the outputs with respect to the
inputs will be calculated for each component. Again, this can be done with analytical expressions as was done for each
of the previously stated components. Once all the individual components are set, one can link variables (i.e., inputs and
outputs) across components to achieve a coupled model. Then, one can assign any of the variables in the coupled model
as the objective function, design variables, and constraints.

C. Fourier Approximation of States
Generating initial conditions for a low-thrust trajectory is a known challenge because the optimization problem

has a large number of design variables. This study uses a so-called Fourier Approximation of States (FFS) method to
generate initial conditions. The FFS approach is a shaped-based method for preliminary trajectory design and begins
with defining the spacecraft’s position as a function of time. Using a polar coordinate system, expressions for the radius
r and the polar angle 𝜃 are approximated as follows:

𝑟 (𝜏) = 𝑎0
2

+
𝑛𝑟∑︁
𝑛=1

𝑎𝑛 cos(𝑛𝜋𝜏) + 𝑏𝑛 sin(𝑛𝜋𝜏), (1)

𝜃 (𝜏) = 𝑐0
2

+
𝑛𝜃∑︁
𝑛=1

𝑐𝑛 cos(𝑛𝜋𝜏) + 𝑑𝑛 sin(𝑛𝜋𝜏), (2)

where 0 ≤ 𝜏 = 𝑡/𝑇 ≤ 1 is the scaled time, 𝑇 is the corresponding time of each segment, and 𝑛𝑟 and 𝑛𝜃 determine the
number of Fourier terms. Using more Fourier terms improves accuracy but costs more design variables and, thus,
computational time. Since we are constraining the escape phase as a rendezvous problem, the corresponding Fourier
series approximations for r and 𝜃 are constrained to satisfy eight boundary conditions:

𝑟𝑖 = 𝑟 (𝜏 = 0) 𝑟 𝑓 = 𝑟 (𝜏 = 1)
𝑟 ′
𝑖
= 𝑟 ′ (𝜏 = 0) 𝑟 ′

𝑓
= 𝑟 ′ (𝜏 = 1)

𝜃𝑖 = 𝜃 (𝜏 = 0) 𝜃 𝑓 = 𝜃 (𝜏 = 1)
𝜃′
𝑖
= 𝜃′ (𝜏 = 0) 𝜃′

𝑓
= 𝜃′ (𝜏 = 1)

(3)
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where the prime denotes derivative with respect to the scaled time 𝜏, and the subscripts "i" and "f" refer to the initial and
final time, respectively.

With eight boundary conditions known, eight unknown Fourier coefficients can be computed. Therefore, the number
of design variables left for the non-linear program solver (NLP) is known by: 2(𝑛𝑟 + 𝑛𝜃 − 6). The design variables must
also be initialized, which can be done with a simple spiral approximation, such as a cubic polynomial. The Fourier
series must then be mapped to the approximation. Taheri and Abdelkhalik [28] outline this process in detail, with the
general concept being to evaluate the approximated spiral at many discrete points and then curve fitting to the finite
Fourier expansions. Satisfaction of the EoM at discrete points is satisfied by minimizing the squared residual errors
through the objective function. Additional constraints and penalty terms can be added to the non-linear programming
problem as necessary.

D. Optimal dynamic control tool: Dymos
As mentioned above, Dymos is a library for the optimal control of dynamic multidisciplinary systems [21]. While

Dymos can optimize typical optimal control problems, its key feature is the ability to optimize systems in which a
trajectory is only one part of the overall optimization. To do this, Dymos relies on the ability of OpenMDAO to compute
accurate derivatives.

Solving optimal control problems using classical techniques is typically a matter of finding a continuous control that
moves a system to a desired state while extremizing some objective. To solve these problems with non-linear optimizers,
the continuous problem needs to be discretized. This process is called transcription. Dymos supports two forms of
direct transcription: collocation and explicit shooting. Collocation was chosen to avoid the numerical integration of
explicit shooting.

Collocation-based optimal control methods are implicit techniques. The entire state and control history is proposed
at some discrete points in time. One can then calculate how accurately the proposed state and control history obey the
governing system dynamics - this is a residual called the defects. By varying the states, controls, and time the defects
can be reduced to zero, meaning the state trajectory is a solution to the ODE of the system.

In this work, Dymos will be used to simulate and optimize the trajectory of a continuous thrust spacecraft. To do
this, two explicit OpenMDAO components are defined, containing the differential equations for a two-body planar
formulation. The dynamics between the two components will be identical; the only difference will be the boundary
condition constraints. Inputs and outputs for the two Dymos components can be seen in Table 1. One component will
be used for rendezvous, i.e., both position and velocity terminal constraints are fixed. While the second component will
be used for an intercept, i.e., the terminal position is fixed, but the terminal velocity is free. The rendezvous component
will be used in the final leg of the mission to arrive at the determined destination, while the intercept component will
enable fly-bys. Specific fly-by maneuvers are calculated using the planar formulation shown by Curtis [29], which uses
the spacecraft velocity, fly-by planet velocity, and a fly-by altitude to return the heliocentric velocity components of the
spacecraft after the maneuver. Equations implemented for both Dymos components were taken from Enright et al. [30],
which use polar coordinates with canonical units for the Earth-Sun system.

¤𝑟 = 𝑣𝑟 (4)

¤𝜃 =
𝑣𝑡

𝑟
(5)

¤𝑣𝑟 =
𝑣2
𝑡

𝑟
− 1
𝑟2 + 𝐹

𝑚
sin 𝑢 (6)

¤𝑣 𝜃 = −𝑣𝑡𝑣𝑟

𝑟
+ 𝐹

𝑚
cos 𝑢 (7)

¤𝑚 = −𝐹

𝑐
(8)

where 𝑢 is the thrust steering angle.
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Table 1 The inputs and outputs for the Dymos trajectory component.

Function/Variable Description Quantity

Inputs 𝑟 Radius from center of attraction (DU) 1
𝜃 Polar angle (rad) 1
𝑣𝑟 Radial velocity component (DU / TU) 1
𝑣 𝜃 Polar velocity component (DU / TU) 1
𝐹 Thrust magnitude (DU * kg / TU2) 1
𝑚 Total mass of spacecraft (kg) 1
𝑢1 Thrust angle (rad) 1
𝐼SP Specific impulse (TU) 1

Total Inputs 8

Outputs ¤𝑟 rate of change of radius from center of attraction (DU / TU) 1
¤𝜃 rate of change of polar angle (rad / TU) 1
¤𝑣𝑟 rate of change of radial velocity (DU / TU2) 1
¤𝑣 𝜃 rate of change of polar velocity (DU / TU2) 1
¤𝑚 rate of change of spacecraft mass (kg / TU) 1

Total Outputs 5

E. Analytical Ephemeris
To obtain the position and velocity boundary constraints of the Dymos model, an OpenMDAO component was

created containing an analytical ephemeris model. An analytical model was chosen because of the computational
efficiency and the ability to utilize the analytic gradients for gradient-based optimization. The model is a combination of
Meeus [31] and Standish et al. [32] and initially computes the position and velocity of a planet in the J2000 ecliptic
frame. Tables of coefficients are provided by [32] to obtain the updated Keplerian elements for a specific planet. The
elements given in the tables are:

𝑎0, ¤𝑎 : sem-major axis [au, au/century]
𝑒0, ¤𝑒0 : eccentricity [radians, radians/century]
𝐼0, ¤𝐼0 : inclination [degrees, degrees/century]

𝐿0, ¤𝐿0 : mean longitude [degrees, degrees/century]
𝜔̄0, ¤̄𝜔 : longitude of perihelion [degrees, degrees/century]

Ω0, ¤Ω : longitude of the ascending node [degrees, degrees/century]

Table 2 The inputs and outputs for the analytical ephemeris component.

Function/Variable Description Quantity

Inputs JD Julian Date 1
Index Planet Index 1

Total Inputs 2

Outputs 𝑟 Radius from center of attraction (DU) 1
𝜃 Polar angle (rad) 1
𝑣𝑟 Radial velocity component (DU / TU) 1
𝑣 𝜃 Polar velocity component (DU / TU) 1

Total Outputs 4
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To obtain the coordinates of one of the planets at a given Julian Ephemeris Date, 𝑇𝑒𝑝ℎ, we will

1) Compute the value of each orbital element:

𝑎 = 𝑎0 + ¤𝑎𝑇, 𝑒𝑡𝑐 (9)

where T, the number of centuries past J2000.0, is 𝑇 = (𝑇𝑒𝑝ℎ − 2451545.0)/36525.

2) Compute the argument of perihelion, 𝜔 and the mean anomaly, M:

𝜔 = 𝜔̄ −Ω (10)

𝑀 = 𝐿 − 𝜔̄ + 𝑏𝑇2 + 𝑐 cos 𝑓 𝑇 + 𝑠 sin 𝑓 𝑇 (11)

where the last three terms must be added for Jupiter through Pluto, and are provided in the tables for each
respective planet.

3) The true anomaly can be found as:

𝜃 = 𝑀 + 𝐶𝑐𝑒𝑛 (12)

where

𝐶𝑐𝑒𝑛 =

(
2𝑒 − 𝑒3

4
+ 5

96
𝑒5
)

sin(𝑀)+
(
5
4
𝑒2 − 11

24
𝑒4
)

sin(2𝑀)+
(
13
12

𝑒3 − 43
64

𝑒5
)

sin(3𝑀)+103
96

𝑒4 sin(4𝑀)+1097
960

𝑒5 sin(5𝑀)
(13)

Inputs and outputs for the analytical ephemeris model can be seen in Table 2. All of the internal computations are
not shown here because once the orbital elements (𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝜃) are known, the position and velocity of the planet
can be calculated traditionally. This position and/or velocity will be thrown into the Dymos component as boundary
conditions for the rendezvous or intercept segment.

F. Spacecraft Mission Optimization Tool: SMOT
Space mission optimization tool (SMOT) is a Python interface we are developing to combine Dymos, analytical

ephemeris, fly-by calculations, and OpenMDAO for design optimization of spacecraft trajectory with discrete fly-bys.
OpenMDAO acts as the top-level driver and is where all the various components of the mission will be defined (e.g.,
spacecraft trajectory and fly-by model). Dymos is the trajectory optimization tool, while the analytical ephemeris and
fly-by calculations are implemented as OpenMDAO components.

Before the optimization can begin, initial conditions must be generated to be thrown into the optimizer. As mentioned
above, the FFS method is our way of generating these initial conditions. The FFS method uses a polar coordinate system,
which makes the connection to our dymos component straightforward. A specific discrete trajectory must be chosen for
the FFS method to map a trajectory. The specific Earth-Venus-Mars (EVM) case used in this study was found using
a traditional genetic algorithm (GA). The goal of the GA was to find the most efficient impulsive Earth-Mars (EM)
mission with certain departure/arrival constraints. The impulsive mission solution was converted to a continuous thrust
mission using the abovementioned FFS method. With initial guesses generated, the optimization of the continuous
thrust trajectory could be run.

As mentioned, there are two separate Dymos components: a rendevous segment and an intercept segment. All
boundary conditions for a specific segment are known because the departure date, time of flights, and arrival date are
design variables, which can then be turned into position and velocity vectors with the analytical ephemeris model.
SMOT will use both of these segments to complete a spacecraft trajectory. For example, the mission used in this study
is an interplanetary mission to Mars from Earth with a planetary fly-by around Venus. To formulate this mission, SMOT
will first call the intercept component with initial conditions (position and velocity) fixed to Earth at a departure date (𝑡𝑑)
and the final position fixed to Venus at a given time of flight (𝑡1). The solution of that segment will give us the correct
position, with a certain 𝑣∞, to model a fly-by as an instantaneous boost. Next, SMOT will call the rendezvous segment
with the initial position fixed to Venus at (𝑡1) and the initial velocity chosen by the output of the fly-by component, with
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Fig. 2 SMOT framework with the Dymos segment, illustrated using the extended design structure matrix
(XDSM) diagram [33].

the terminal position and velocity fixed to Mars at the arrival date (𝑡𝑎). The rendezvous segment’s solution signals the
simulation’s completion for a specific optimization iteration. This process will continue until the optimizer converges to
a solution.

A basic overview of the coupled model can be seen in Fig. 2. The diagonal blocks are the components, and the
off-diagonal blocks denote the data transfer between components. A component receives the inputs from the vertical
direction and outputs data in the horizontal direction. The gray blocks in Fig. 2 denote the data transfer between the
four components. To be more specific, the analytical ephemeris uses each planet’s arrival/departure dates as inputs and
outputs the necessary boundary conditions for each trajectory component. The trajectory component then uses the
control parameters (e.g., control angle and thrust magnitude) to meet these boundary conditions. There is no feedback
from the trajectory components to the analytical ephemeris model; the components are one-way coupled.

In the future, we plan to add an upper-level discrete EGO module to choose the discrete fly-by sequences rather than
having a predetermined mission selected. SMOT will then call the corresponding Dymos components to execute the
sequence given by the dEGO. The solution to each sequence will be similar to what was described above, each ending
with a rendezvous segment with n fly-by and intercept components.

III. Results and Discussion
Before the problem was put together, each component was tested individually for accuracy. Every component

mentioned above was created using the OpenMDAO framework, and implemented analytic gradients. When dealing
with user-defined analytic gradients, testing against a numerical method is necessary. OpenMDAO has an easy way
to do this test with the check-partials function. This function takes the output equations defined in a component and
numerically computes the input-output gradients. Next, the function will compute the same input-output gradients using
the user-defined analytic gradients and compare the relative difference between the two. The complex step was chosen
for numerical computation due to its improved accuracy over the finite difference. This method tested each component,
totaling over 250 unique analytic gradients. Through testing, the largest relative difference between a single gradient
was 10−14, which confirmed the correct implementation of all analytic gradients.

Most component output equations did not need to be tested because they were not new formulations. However,
the analytical ephemeris model combined two different models, and there was no guarantee that it was accurate. A
loop was created to call the model every day from March 2022 through March 2023 to test the analytical ephemeris
model. This was done for each planet in the solar system. For comparison, MATLAB’s numerical planet-Ephemeris
function was also run in the same loop. MATLAB was assumed to produce the correct ephemeris of a planet, so a
percent difference was then calculated for each position and velocity term between the two models. Table 3 shows the
results of this comparison and presents the average percent difference of the analytical model for three different planets,
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Table 4 Optimization formulation for the trajectory optimization with fly-bys.

Function/Variable Description Quantity

Minimize 𝑚𝑖 Initial spacecraft mass (kg) 1

w.r.t JD𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Earth departure date (day) 1
JD 𝑓 𝑙𝑦−𝑏𝑦 Venus fly-by date (day) 1
JD 𝑓 𝑖𝑛𝑎𝑙 Mars arrival date (day) 1

r𝑝 Fly-by altitude (km) 1
u1 Steering angle (rad) 42
F Thrust magnitude (DU * kg / TU2) 42

Total Design Variables 88

Subject to Δ𝑟 Radial position boundary constraints 6
Δ𝜃 Polar position boundary constraints 6
Δ𝑣𝑟 Radial velocity boundary constraints 4
Δ𝑣 𝜃 Polar velocity boundary constraints 4

𝑚 𝑓 ≥ 625 Forced final mass (kg) 1
Total Constraints 21

as well as the execution time for a single run of a specific model.

Analytical ephemeris MATLAB numerical
Execution Time (s) 0.0025 0.1562

Average Percent Difference (Earth) 0.6% NA
Average Percent Difference (Mars) 0.1% NA

Average Percent Difference (Jupiter) 0.35% NA
Table 3 Analytical Ephemeris Comparison

It can be seen from the table that the analytical ephemeris model matches closely with MATLAB’s numerical
model and gives us confidence in the accuracy of the formulation. In addition, the analytical model is two orders
of magnitude faster than the numerical model, which will help reduce computational costs. This, coupled with the
analytical derivatives of the ephemeris model, will greatly increase the efficiency of the gradient-based optimization.

Once each component was tested, putting together the formulation was straightforward. As described in the method
section, a pre-defined EVM case was used. With only two legs needed in the trajectory, one intercept, fly-by, and
rendevous component were defined. The analytical ephemeris model for each component also connected all necessary
boundary conditions. All connections and creation of components were done automatically through the creation of
external functions. The reason for doing this automatically comes in the future when the dEGO layer will choose the
trajectory sequence and create the runscript itself rather than using a pre-defined sequence.

Table 4 shows the optimization formulation. The optimization goal was to reach Mars with the lowest fuel burn
possible, subject to the boundary conditions given by the analytical ephemeris model for the intercept and rendezvous
segments. In addition, the final fuel mass had to be more than some reserve amount chosen to be 50kg for this study.
The dry mass and 𝐼SP of the spacecraft were chosen to be 575kg and 3500s, respectively, which was a combination
of the DAWN [34] and DART [35] spacecrafts. The optimizations were run using the Sparse Nonlinear OPTimizer
(SNOPT) package [36] and converged in less than ten minutes on a Dell workstation.

Figure 3 shows the final 𝑥 − 𝑦 trajectory plot of the transfer in canonical units when the departure and initial dates are
fixed. These dates were initially fixed to help the optimization converge faster. The goal here was to test the capability
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Fig. 3 𝑥 − 𝑦 trajectory plot of the optimized transfer plotted in the polar canonical Sun ecliptic frame with fixed
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the trajectory with fixed departure/arrival dates. Time is plotted in the Earth-Sun canonical time units.
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Fig. 5 XY trajectory plot of the optimized transfer plotted in the polar canonical Sun ecliptic frame with
variable departure/arrival dates.

of the Dymos layer. The implicit collocation solution by Dymos (yellow dots) and the numerical propagation simulation
(blue curves) agree at every point, showing the agreement of the collocation method to the equations of motion. All
boundary conditions are also met, meaning the rendezvous was completed. The spacecraft leaves Earth on June 6𝑡ℎ,
2004 and arrives at Venus on November 20𝑡ℎ, 2004. Fly-bys are modeled as instantaneous impulsive maneuvers, so
the spacecraft leaves Venus on the same day it arrives while rendezvousing with Mars on May 5𝑡ℎ, 2005. Before the
fly-by, the spacecraft’s radial and polar velocities were 12.84 and 40.47 km/s, respectively, while after the maneuver,
they became 10.27 and 44.55 km/s.

Figure 4 shows how the control (steering angle), thrust magnitude, cost (spacecraft mass), and radial distance change
over the final trajectory. Discontinuities in the control angle and thrust plots are not a worry because this is when the
fly-by is executed. The steering angle and thrust magnitude are changed throughout the optimization to reduce the initial
spacecraft mass, subject to a final mass constraint. The optimization iterations are not shown here, but the cost does
decline as the optimization iterations increase, with a final fuel burn value of about 750kg. The optimality and feasibility
are also very small, meaning a local minimum has been found. One might notice that the thrust magnitudes shown
in Fig. 4 are much higher than what normal electric propulsion systems can produce. For example, the NEXT-C ion
thruster equipped to the DART spacecraft had a max thrust of about .24 N [35]. Excessive thrusts arise because of the
fixed departure and arrival dates. The initial flight times between each leg are too small and thus require the continuous
thrust propulsion system to exhibit unreasonable thrust magnitudes for current designs. This result is expected because
a direct conversion from an impulsive to a continuous trajectory seems far-fetched. The remaining control variables are
reasonable, but an infeasible propulsion system is a major problem. In an effort to reduce these thrust magnitudes, the
departure and arrival dates were added as design variables, and the optimization results are shown in the following.

Figure 5 shows the final 𝑥 − 𝑦 trajectory plot of the transfer in canonical units when the departure and initial dates
are variable. Again, the implicit collocation solution and numerical propagation simulation agree at every point, and all
boundary conditions are met. It can be seen from Fig. 5 that the overall structure of the trajectory is very similar to that
of Fig. 3. The main difference is that the trajectory in Fig. 5 is elongated. Letting the dates be design variables allows
the optimization to push up the Earth departure date and push back the Mars arrival dates while keeping the Venus
fly-by date about the same. Doing this stretches out both legs of the trajectory. Now, the spacecraft leaves Earth on
March 20𝑡ℎ, 2004, and arrives at Venus on October 14𝑡ℎ, 2004. The fly-by is still modeled as instantaneous impulsive
maneuvers, so the spacecraft leaves Venus on the same day it arrives while rendezvousing with Mars on July 4𝑡ℎ, 2005.
Before the fly-by, the spacecraft’s radial and polar velocities were 4.773 and 36.44 km/s, respectively, while after the
maneuver, they became −0.5856 and 40.08 km/s.

By stretching out both legs, the electric propulsion system uses much smaller thrust magnitudes, as shown in Fig.
6. Now, the thrust magnitudes are much more reasonable, always staying under about .5N. The discontinuities in the
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Fig. 6 Plots showing how the steering angle, thrust magnitude, spacecraft mass, and radial distance change over
the trajectory with variable departure/arrival dates. Time is plotted in the Earth-Sun canonical time units.

control angle still show up, but again, this is when the fly-by is being executed. The elongated trajectory not only solved
the infeasible thrust magnitudes but also vastly improved the cost function. Now, instead of the mission using 750kg of
fuel, it only uses about 160kg. This is nearly a 80% fuel burn reduction, showing the importance of having these dates
as design variables. The mission duration is increased from 11 months to 16 months by doing this, but the fuel burn
reduction is well worth the wait.

IV. Summary
This paper presents a low-thrust trajectory optimization framework that can consider gravity-assist maneuver options.

The optimization framework shown above is the Dymos layer, the first step in the proposed framework. The Dymos layer
combines Dymos, analytical ephemeris, fly-by calculations, and OpenMDAO to optimize a polar trajectory with discrete
fly-bys. Initial conditions are derived from a Fourier approximation, which decomposes a discrete impulsive trajectory
into a continuous thrust mission. The goal of the optimization was to reach Mars with the lowest fuel burn possible.

Initially, the departure and arrival dates of the selected EVM mission were fixed to help the optimizer converge and
demonstrate the feasibility of the Dymos layer. An optimized solution was found, but thrust magnitudes were infeasible
regarding current electric propulsion system designs. To alleviate this issue, the departure and arrival dates of the
mission were used as design variables, along with the control angles and thrust magnitudes. Doing this reduced the fuel
burn by around 80% and solved the infeasible thrust magnitudes. With a fully feasible solution, we can confirm the
feasibility of this Dymos layer. It is possible to optimize a continuous thrust trajectory with discrete fly-bys using this
method.

In the future, we will further improve the shown framework by adding an upper-level discrete EGO module to choose
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the discrete fly-by sequences rather than selecting a predetermined mission. SMOT will then call the corresponding
Dymos components to execute the sequence given by the dEGO. The solution to each sequence will be similar to what
was described above, each ending with a rendezvous segment with n fly-by and intercept components. This new feature
will allow us to use discrete design variables (e.g., departure dates, fly-bys, and deep space maneuvers) and have a better
chance of finding the global optimal solution.
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