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Abstract—Secure aggregation, which is a core component
of federated learning, aggregates locally trained models from
distributed users at a central server, without revealing any other
information about the local users’ data. This paper follows a
recent information theoretic secure aggregation problem with
user dropouts, where the objective is to characterize the minimum
communication cost from the K users to the server during the
model aggregation. All existing secure aggregation protocols let
the users share and store coded keys to guarantee security. On
the motivation that uncoded groupwise keys are more convenient
to be shared and could be used in large range of practical
applications, this paper is the first to consider uncoded groupwise
keys, where the keys are mutually independent and each key is
shared by a group of S users. We show that if S is beyond
a threshold, a new secure aggregation protocol with uncoded
groupwise keys, referred to as GroupSecAgg, can achieve the
same optimal communication cost as the best protocol with coded
keys. The experiments on Amazon EC2 show the considerable
improvements on the key sharing and model aggregation times
compared to the state-of-the art.

I. INTRODUCTION

Federated learning (FL) is a distributed machine learning
framework, where a central server aims to solve a machine
learning problem by the help of distributed clients/users with
local data [1]–[4]. One important design criterion of FL is
to securely aggregate the users’ updated model at the server
without letting the server learn the model of each user. This
is called secure aggregation. During the secure aggregation
process, there two main challenges. First, in a real environment
some users may drop out or response slowly due to the
network connectivity or computational capability. Second,
additional communication among the users and server may be
needed to guarantee perfect security and mitigate the effect of
the user dropouts. Since a federated learning system usually
contains of a massive number of devices, the minimization
of the communication cost (i.e., number of bits transmitted
bits) is crucial. In this paper, we will apply information
theoretic tools to address this two challenges by proposing
GroupSecAgg, which is based on uncoded groupwise keys
(see later). GroupSecAgg achieves information theoretically
optimal communication cost, which is surprisingly the same
as the best protocol with coded keys.

Secure aggregation with user dropouts was originally con-
sidered in [5], and generally contains two phases: offline key
sharing and model aggregation, where the user dropouts may

happen in either phase or both phases. In the first phase, the
users generate random seeds, and secretly share their private
random seeds such that some keys are shared among the users.
The offline key sharing phase is independent of the users’
local training data, and thus can take place during off-peak
traffic times when the network is not busy. For example, all
of the secure aggregation protocols in [5]–[7] uses offline key
sharing.1 Once the keys are shared among users, during the
model aggregation phase, they mask the updated models by
keys and send masked models to the server, such that the server
recovers the aggregated models of the surviving users without
learning any information about the users’ local models.

It is worth to note that none of the above papers consider the
information theoretic security (i.e., perfect security). Recently,
the authors in [11] proposed an information theoretic formula-
tion of secure aggregation with user dropouts considered [5].
Under the assumption that the offline key sharing phase is
done, the objective is to characterize the optimal communi-
cation cost in the model aggregation phase while preserving
the information theoretic security of the users’ local model. In
particular, the authors in [11] formulated a (K,U) information
theoretic secure aggregation problem, where K represents the
number of users and U represents the minimum number of
surviving users.2 The server aims to compute the element-
wise sum of the vector inputs (i.e., updated models) of K users,
where the input vector of user k is denoted by Wk and contains
L uniform and i.i.d. symbols over a finite field Fq. Each user
k has stored a key Zk, which can be any random variable
independent of W1, . . . ,WK. The transmissions (in the model
aggregation phase) contains two rounds for the sake of security
under user dropouts. In the first round of transmission, each
user k ∈ {1, . . . ,K} sends a coded message Xk as a function
of Wk and Zk to the server. Since some users may drop during
its transmission, the server only receives the messages from
the users in U1 where |U1| ≥ U. Then the server informs the
users in the subset U1 of non-dropped users. In the second
round of transmission, after knowing the set U1, each user
k ∈ U1 transmits another coded message Y U1k as a function

1Online key sharing protocols (for example the ones proposed in [8]–[10])
which are beyond the scope of this paper, allow users to communicate some
information about the updated models and keys among each other, while in
offline protocols users can only share keys.

2The problem in [11] only considers one epoch of the learning process.
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of (Wk,Zk,U1) to the server. Due to the user dropouts in the
second round, letting U2 denote the set of surviving users in
the second round with U2 ⊆ U1 and |U2| ≥ U, the server
receives Y U1k where k ∈ U2. By receiving (Xk : k ∈ U1) and
(Y U1k : k ∈ U2), the server should recover the element-wise
sum

∑
k∈U1 Wk without getting any other information about

W1, . . . ,WK even if the server can receive (Xk : k ∈ [K]\U1),
(Y U1k : k ∈ U1 \U2) (e.g., the users are not really dropped but
too slow in the transmission). Since the identity of the dropped
users in each round is not known a priori by the users unless
they receive the list of surviving users from the server, we
should design (Xk : k ∈ {1, . . . ,K}) and (Y U1k : k ∈ U1)
for any sets U1,U2 where U2 ⊆ U1 ⊆ {1, . . . ,K} and
|U1| ≥ |U2| ≥ U, while minimizing the communication
rates by the users in two rounds. The communication rates
in these two rounds forms a capacity region. It was shown
in [11] that the minimum numbers of symbols that each user
needs to send are L over the first round, and L/U over the
second round, which can be achieved simultaneously by a
novel secure aggregation protocol. Another secure aggregation
protocol was proposed in [12] for the above problem, which
achieves the optimal communication rates in the two-round
model aggregation phase but with a less amount of needed
keys than that of [11].

In this paper, we focus on the secure aggregation problem
with uncoded groupwise keys and information theoretic secu-
rity as illustrated in Fig. 1, where the constraint of uncoded
groupwise keys means that, the keys are independent among
each other and each key is stored by a set of users. By defining
a system parameter S ∈ {1, . . . ,K}, for each V ⊆ {1, . . . ,K}
where |V| = S, there exists a key ZV shared by the users in
V , which is independent of other keys. Uncoded groupwise
keys may be preferred in practice since they can be generated
with low complexity and shared conveniently, and find a wide
range of applications besides secure aggregation in federated
learning.3 Note that all existing secure aggregation protocols
fail to satisfy this constraint when S < K, due to the coded
keys shared among users. Our objective is to characterize the
capacity region of the numbers of transmissions by the users
in two rounds of the model aggregation phase.

a) Main Contributions: In this paper, we first formulate
the new information theoretic secure aggregation problem with
uncoded groupwise keys. Then our main contributions on this
new model are as follows. When S > K − U, we propose
a new secure aggregation protocol GroupSecAgg, which
achieves exactly the same capacity region as in [11]; this
means that, when S > K−U, secure aggregation with uncoded
groupwise key sharing has no loss on the communication
efficiency. It is also interesting to see that by increasing S
above K − U + 1 yields no reduction in the transmission

3For example, the uncoded pairwise key shared among each two users are
independent of the other keys and thus can guarantee the information theoretic
secure communication between these two users, while the other users (who
may collude) are eavesdropper listening to the communication [13]. However,
the pairwise coded keys used in the protocol [12] cannot guarantee secure
communication between any two users, because the coded key shared by
these two users are correlated to other keys stored by the other users.
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(a) First round.
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(b) Second round.

Fig. 1: (K,U, S) = (4, 2, 3) information theoretic secure
aggregation problem with uncoded groupwise keys.

cost; i.e., S = K − U + 1 is sufficient and no larger value
of S provide improvements. The main technical challenge of
the proposed protocol based on linear coding is to determine
the coefficients of the keys in the two round transmissions,
satisfying the encodability, decodability, and security con-
straints. We overcome these challenges by designing new
interference alignment strategies.4 Note that, to achieve the
optimal rates region by our proposed protocol, not all the keys
ZV where V ⊆ {1, . . . ,K} and |V| = S are needed during the
transmission. The number of needed keys is either O(K) or
O(K2), where each key has (K−U+1)L/U symbols. Finally,
we implement GroupSecAgg into an Amazon EC2 cluster,
and demonstrate the reduction of the running time compared
to the original secure aggregation protocol in [5] (referred to
as SecAgg), and the best existing information theoretic secure
aggregation protocol with offline key sharing in [12] (referred
to as LightSecAgg). Experimental results show that the
proposed GroupSecAgg reduces the communication time in
the model aggregation by up to 53% compared to SecAgg,
and reduces the key sharing time up to 31.7% compared to
LightSecAgg.

4Interference alignment was originally proposed in [14] for the wireless
interference channel, which aligns the undesired packets (i.e., interference)
by each user such that their linear space dimension is reduced.
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b) Notations: Calligraphic symbols denote sets, bold
symbols denote vectors and matrices, and sans-serif symbols
denote system parameters. We use |·| to represent the cardinal-
ity of a set or the length of a vector; [a : b] := {a, a+ 1, . . . , b}
and [n] := [1 : n]; Fq represents a finite field with order q; en,i
represents the vertical n-dimensional unit vector whose entry
in the ith position is 1 and 0 elsewhere; In represents the iden-
tity matrix of dimension n×n; let

(X
y

)
= {S ⊆ X : |S| = y}

where |X | ≥ y > 0. In the rest of the paper entropies will be
in base q, where q represents the field size.

II. SYSTEM MODEL

We formulate a (K,U, S) information theoretic secure aggre-
gation problem with uncoded groupwise keys as illustrated in
Fig. 1, which contains one epoch of federated learning process
among K users and one server. For each k ∈ [K], user k
holds one input vector (i.e., updated model) Wk composed
of L uniform and i.i.d. symbols over a finite field Fq, where
L is large enough. Ideally, the server aims to compute the
element-wise sum of input vectors of all users. However, due
to the user dropouts, the server may not be able to recover
the sum of all input vectors. Hence, we let the server compute
the sum of the input vectors from the surviving users, where
the number of surviving users is at least U. In this paper, we
mainly deal with the user dropouts and thus we assume that
U ∈ [K− 1]. In addition, by the secure aggregation constraint,
the server must not retrieve any other information except the
task from the received symbols. In order to guarantee the
security, the users must share some secrets (i.e., keys) which
are independent of the input vectors. Different from the secure
aggregation problem in [11] which assumes that the keys could
be any random variables shared among users, in this paper we
consider uncoded groupwise keys, where the keys are inde-
pendent of each other and each key is shared among S users
where S ∈ [K]. For each set V ∈

(
[K]
S

)
, there exists a key ZV

shared by the users in V and independent of other keys. Thus
H
((

ZV : V ∈
(
[K]
S

)
), (W1, . . . ,WK

))
=
∑
V∈([K]S )

H(ZV) +∑
k∈[K] H(Wk). We define Zk :=

(
ZV : V ∈

(
[K]
S

)
, k ∈ V

)
,

as the keys accessible by the user k ∈ [K]. The whole secure
aggregation procedure contains the following two rounds.

First round. In the first round, each user k ∈ [K] generates
a message Xk as a function of Wk and Zk, without knowing
the identity of the dropped users. The communication rate of
the first round R1 is defined as the largest transmission load
among all users normalized by L, i.e., R1 := maxk∈[K] |Xk|/L.
User k then sends Xk to the server.

Some users may drop in the first round transmission, and
the set of surviving users after the first round is denoted as
U1, where U1 ⊆ [K] and |U1| ≥ U. Thus the server receives
Xk where k ∈ U1.

Second round. In the second round, the server first sends
the list of the surviving users (i.e., the set U1) to each user in
U1. Then each user k ∈ U1 participates in the second round
transmission by generating and sending a message Y U1k as
a function of Wk, Zk, and U1. The communication rate of

the second round R2 is defined as the largest transmission
load among all U1 and all users in U1 normalized by L, i.e.,
R2 := maxU1⊆[K]:|U1|≥U maxk∈U1 |Y

U1
k |/L.

Some users may also drop in the second round, and the set
of surviving users after the second round is denoted as U2,
where U2 ⊆ U1 and |U2| ≥ U. Thus the server receives Y U1k

where k ∈ U2.
Decoding. The server should recover

∑
k∈U1 Wk from

(Xk1 : k1 ∈ U1) and (Y U1k2
: k2 ∈ U2), i.e.,

H(
∑
k∈U1

Wk

∣∣∣(Xk1
: k1 ∈ U1), (Y U1k2

: k2 ∈ U2)) = 0, (1)

for each U1 ⊆ [K] and U2 ⊆ U1 where |U1| ≥ |U2| ≥ U.
Threat model and security constraint. We consider a threat

model where the server is honest but curious. In addition, we
also consider that the users may be not really dropped but
too slow in the transmission. Hence, the security constraint
imposes that after receiving all messages sent by the users
including the dropped users, the server cannot get any other
information about the input vectors except

∑
k∈U1 Wk, i.e.,

I(W1, . . . ,WK;X1, . . . ,XK, (Y
U1
k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk) = 0,

(2)

for each U1 ⊆ [K] where |U1| ≥ U.
Objective. A rate tuple (R1,R2) is achievable if there

exist uncoded groupwise keys
(
ZV : V ∈

(
[K]
S

))
and a secure

aggregation protocol satisfying the decodability and security
constraints (1) and (2). Our objective is to determine the
capacity region (i.e., the closure of all achievable rate tuples)
of the considered problem, denoted by R?.

A converse bound from [11]. By removing the uncoded
groupwise constraint on the keys in our considered prob-
lem, we obtain the information theoretic aggregation problem
in [11]. Hence, the converse bound on the capacity region
in [11] is also a converse bound for our considered problem,
which leads to the following lemma.

Lemma 1 ( [11]). For the (K,U, S) information theoretic
secure aggregation problem with uncoded groupwise keys, any
achievable rate tuple (R1,R2) satisfies R1 ≥ 1, R2 ≥ 1/U.

Obviously, the capacity region of the (K,U, S1) information
theoretic secure aggregation problem with uncoded groupwise
keys covers that of the (K,U, S2) problem, where S1 > S2.

III. MAIN RESULTS

We first present the main result of this paper. The converse
bound for Theorem 1 is directly from Lemma 1. For the
achievability, we propose a GroupSecAgg based on linear
coding and interference alignment, whose details are described
in the extended version of this paper [15, Section IV].

Theorem 1. For the (K,U, S) information theoretic secure
aggregation problem with uncoded groupwise keys, when S >
K− U, we have

R? = {(R1,R2) : R1 ≥ 1,R2 ≥ 1/U} . (3)
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When S > K − U, GroupSecAgg achieves the same
capacity region as the optimal secure aggregation protocol
without any constraint on the keys in [11], [12]. It is also
interesting to see that increasing S above K− U+ 1 will not
reduce the communication cost.

There are totally
(
K
S

)
subsets of [K] with cardinality S. By

the problem setting, we can use at most
(
K
S

)
keys each of

which is shared by S users. However, we do not need to use
generate all these

(
K
S

)
keys in our proposed secure scheme

for Theorem 1. The number of needed keys by the proposed
secure aggregation scheme for Theorem 1 is K when U ≤
K − U + 1 and is O(K2) when U > K − U + 1, where each
key has (K − U + 1)L/U symbols. Note that if coded key
assignment is allowed, the secure aggregation scheme in [11]
needs to generate U coded keys with L/U symbols for each
group of users V ⊆ [K] where |V| ∈ [U : K], where each
user in the group stores a linear combination of these U coded
keys; for each pair of users V ⊆ [K] where |V| = 2, the secure
aggregation scheme in [12] lets each user in the pair generate
a coded key with L/U symbols and share it to the other user
in the pair. Note that for the case S ≤ K−U, a converse bound
is proposed in [15], showing that R1 = 1 is not sufficient for
the security. It is one of our on-going works to characterize
the exact capacity region for the case S ≤ K− U.

A. Outline description of GroupSecAgg

To present the proposed GroupSecAgg, we only need to
focus on the case where S = K − U + 1, because a secure
aggregation protocol for the case S = K−U+1 could also work
for the case S > K−U+1 (see the reason provided at the end
of Section II). The construction structure of GroupSecAgg
is as follows.
• Since the length of each input vector Wi where i ∈ [K]

is large enough, as explained in [11], we can consider
blocks of symbols of Wi as an element of a suitably
large field extension and consider operations such as
element wise sum as operations over the field extension.
Hence, without loss of generality, in GroupSecAgg we
can assume that q is large enough. We then divide each
input vector Wi where i ∈ [K] into U non-overlapping
and equal-length pieces, where the jth piece denoted by
Wi,j contains L/U symbols on Fq. In addition, for each
V ∈

(
[K]
S

)
and each k ∈ V ,5 we let ZV,k denote a vector

of L/U uniform i.i.d. symbols on Fq. Then, we define a
key ZV = (ZV,k : k ∈ V) and let ZV be shared by all
users in V .

• In the first round, each user k ∈ [K] sends

Xk,j = Wk,j +
∑

V∈([K]S ):k∈V

aV,jZV,k, ∀j ∈ [U], (4)

where aV,j ∈ Fq is a coefficient to be designed and
aV,jZV,k represents multiplying each element in ZV,k
by aV,j . Each Xk,j contains L/U symbols, and thus

5Recall that
(X
y

)
= {S ⊆ X : |S| = y} where |X | ≥ y > 0.

Xk = (Xk,1, . . . ,Xk,U) contains L symbols, which
leads to R1 = 1. We let aV := [aV,1, . . . , aV,U]

T. By
security, Wk should be perfectly protected by the keys
in Xk = (Xk,1, . . . ,Xk,U). So by denoting the sets
V ∈

(
[K]
S

)
where k ∈ V by Sk(1), . . . ,Sk

((
K−1
S−1
))

, we
aim to have that the coefficients matrix (whose dimension
is U×

(
K−1
S−1
)
)[

aSk(1), . . . ,aSk((K−1
S−1))

]
has rank equal to U, ∀k ∈ [K].

(5)

If the constraints in (5) are satisfied, with the fact that
the keys are independent of the input vectors, the server
cannot get any information about W1, . . . ,WK even if the
server receives all X1, . . . ,XK.
Since the set of surviving users after the first round is
U1, the server receives Xk where k ∈ U1, and thus can
recover

∑
k∈U1 Xk,j , which is equal to

∑
k∈U1

Wk,j +
∑

V∈([K]S ):V∩U1 6=∅

(
aV,j

∑
k1∈V∩U1

ZV,k1

)
(6)

=
∑
k∈U1

Wk,j +
∑
V∈([K]S )

(
aV,j

∑
k1∈V∩U1

ZV,k1

)
, ∀j ∈ [U],

(7)

where (7) follows since S = K − U + 1 >
K − |U1|. Hence, the server still needs to recover∑
V∈([K]S )

(
aV,j

∑
k1∈V∩U1 ZV,k1

)
for each j ∈ [U] in the

next round. We can treat

ZU1V :=
∑

k1∈V∩U1

ZV,k1 , ∀V ∈
(
[K]

S

)
, (8)

as one coded key, which can be encoded by all users in
V∩U1 and contains L/U uniform and i.i.d. symbols. Thus
by the construction of the first round transmission, we
only need to transmit linear combinations of coded
keys in the second round, such that the server can
recover

∑
V∈([K]S )

aV,jZ
U1
V for each j ∈ [U].

• In the second round, we denote the sets in
(
[K]
S

)
by

S(1), . . . ,S
((

K
S

))
, and for each k ∈ [K] denote the sets

in
(
[K]\{k}

S

)
by Sk(1), . . . ,Sk

((
K−1
S

))
. Thus the server

should recover

F = [F1; . . . ;FU] (9)

=
[
aS(1), . . . ,aS((KS))

] [
ZU1S(1); . . . ;Z

U1
S((KS))

]
, (10)

where each Fj , j ∈ [U], contains L/U symbols.
Note that each user k ∈ U1 cannot encode ZU1V where
V ∈

(
[K]\{k}

S

)
. If the U-dimensional vectors aV where

V ∈
(
[K]
S

)
satisfy the constraints that[

aSk(1)
, . . . ,aSk((K−1

S ))

]
has rank U− 1, (11)
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for each k ∈ [K], then the matrix[
aSk(1)

, . . . ,aSk((K−1
S ))

]
contains exactly one linearly

independent left null space vector. To achieve (11), we
will propose some interference alignment techniques
to align the U-dimensional vectors of the

(
K−1
S

)
unknown keys to a linear space spanned by U − 1
linearly independent vectors.
Thus we can let each user k ∈ U1 transmit Y U1k =
skF, where sk represents the left null space vector of[
aSk(1)

, . . . ,aSk((K−1
S ))

]
. By construction, in Y U1k the

coefficients of the coded keys which cannot be encoded
by user k are 0. Note that Y U1k contains L/U symbols,
which leads to R2 = 1/U.
For the decodability, from any set of surviving users
after the second round U2 ⊆ U1 where |U2| ≥ U,
we should recover F1, . . . ,FU from the second round
transmission; i.e., we aim to have

any U vectors in {sk : k ∈ U1} are linearly independent.
(12)

Thus from (7) and (12), the server can recover F1, . . . ,FU

and then recover
∑

k∈U1 Wk,j for all j ∈ [U]; thus it can
recover

∑
k∈U1 Wk.

In addition, for the security constraint, by construction we
have H

(
Y U1k : k ∈ U1

)
= L, which follows since each

Y U1k where k ∈ U1 is in the linear space spanned by
F1, . . . ,FU, where each Fj , j ∈ [U], contains L/U sym-
bols. Intuitively, from (Xk : k ∈ [K]), the server cannot
get any information about W1, . . . ,WK. In addition with
(Y U1k : k ∈ U1) whose entropy is L, the server can at most
get L symbols information about W1, . . . ,WK, which are
exactly the symbols in

∑
k∈U1 Wk. Hence, the protocol

is secure. The rigorous proof on the security constraint
in (2) can be found in [15, Appendix A].

We conclude that the achieved rates are (R1,R2) =
(1, 1/U), coinciding with Theorem 1.

For what said above, it is apparent that the key challenge
in GroupSecAgg is to design the U-dimensional vectors
aV where V ∈

(
[K]
S

)
, such that the constraints in (5), (11),

and (12) are satisfied. As showed above, if such constraints
are satisfied, GroupSecAgg is valid.

Next, we use an example to illustrate the main idea of the
proposed protocol.

Example 1 ((K,U, S)) = (4, 3, 2)). Consider the (K,U, S) =
(4, 3, 2) information theoretic secure aggregation problem with
uncoded groupwise keys. For each V ∈

(
[4]
2

)
, we generate a

key ZV = (ZV,k : k ∈ V) shared by users in V , where each
ZV,k contains L/3 uniform and i.i.d. symbols over Fq. We
also divide each input vector Wk where k ∈ [4] into three
pieces, Wk = (Wk,1,Wk,2,Wk,3), where each piece contains
L/3 uniform and i.i.d. symbols over Fq.

In the first round, each user k ∈ [4] transmits Xk,j =
Wk,j+

∑
V∈([4]2 ):k∈V

aV,jZV,k, ∀j ∈ [3]. Now we select the 3-

dimensional vectors a{1,2}, a{1,3}, a{1,4}, a{2,3}, a{2,4}, and
a{3,4} as follows,

a{1,2} = [1, 0, 0]T, a{1,3} = [0, 1, 0]T,a{1,4} = [0, 0, 1]T,

a{2,3} = a{1,2} − a{1,3} = [1,−1, 0]T,
a{2,4} = a{1,2} − a{1,4} = [1, 0,−1]T,
a{3,4} = a{1,3} − a{1,4} = [0, 1,−1]T. (13)

We next show that by the above choice the constraints
in (5), (11), and (12) are satisfied.

For user 1, the matrix [a{1,2},a{1,3},a{1,4}] = I3 has
rank 3, where we recall that I3 represents the identity ma-
trix with dimension 3 × 3. Hence, the constraint in (5)
is satisfied for user 1. Thus W1 is perfectly protected by
(Z{1,2},1, ,Z{1,3},1,Z{1,4},1) from X1. For user 2, the matrix
[a{1,2},a{2,3},a{2,4}] has rank 3. Hence, the constraint in (5)
is satisfied for user 2. Thus W2 is perfectly protected by
(Z{1,2},2, ,Z{2,3},2,Z{2,4},2) from X2. Similarly, the con-
straints in (5) are also satisfied for users 3, 4.

In the second round, we consider the case U1 = [4], where
the server should recover W1 + · · ·+W4. Defining the coded
keys as in (8), the server needs to further recover [F1;F2;F3],
which is equal to [a{1,2},a{1,3},a{1,4},a{2,3},a{2,4},a{3,4}][
Z

[4]
{1,2};Z

[4]
{1,3};Z

[4]
{1,4};Z

[4]
{2,3};Z

[4]
{2,4};Z

[4]
{3,4}

]
. For user 1

who cannot encode Z
[4]
{2,3},Z

[4]
{2,4},Z

[4]
{3,4}, it can be seen that

the sub-matrix [a{2,3},a{2,4},a{3,4}] has rank 2, equal to
the rank of [a{2,3},a{2,4}], since a{2,3} − a{2,4} = −a{3,4}
(i.e., we align the three vectors a{2,3},a{2,4},a{3,4} into the
linear space spanned by a{2,3} and a{2,4}); thus the constraint
in (11) is satisfied for user 1. Hence, the left null space of
[a{2,3},a{2,4},a{3,4}] contains exactly one linearly indepen-
dent 3-dimensional vector, which could be [1, 1, 1]. Thus we
let user 1 compute Y

[4]
1 = [1, 1, 1][F1;F2;F3] = F1+F2+F3.

For user 2, who cannot encode Z
[4]
{1,3},Z

[4]
{1,4},Z

[4]
{3,4}, it can

be seen that the sub-matrix [a{1,3},a{1,4},a{3,4}] has rank
2, equal to the rank of [a{1,3},a{1,4}], since a{3,4} =
a{1,3} − a{1,4}; thus the constraint in (11) is satisfied for
user 2. Hence, the left null space of [a{1,3},a{1,4},a{3,4}]
contains exactly one linearly independent 3-dimensional vec-
tor, which could be [1, 0, 0]. Thus we let user 2 compute
Y

[4]
2 = [1, 0, 0][F1;F2;F3] = F1. Similarly, the constraints

in (11) are satisfied for users 3, 4; thus we let user 3 compute
Y

[4]
3 = [0, 1, 0][F1;F2;F3] = F2, and let user 4 compute

Y
[4]
4 = [0, 0, 1][F1;F2;F3] = F3. It can be seen that any

3 of Y
[4]
1 ,Y

[4]
2 ,Y

[4]
3 ,Y

[4]
4 are linearly independent; thus the

constraint in (12) is satisfied. Hence, for any U2 ∈
(
[4]
3

)
, the

server can recover F1,F2,F3 from the second round. Thus
from the two round transmissions, the server can recover
W1+ · · ·+W4. Since the constraints in (5), (11), and (12) are
satisfied, the proposed protocol is secure for the case U1 = [4].
Similarly, for the other value of U1, by taking the same vectors
in (13), the proposed protocol is also secure. In conclusion,
the achieved rates of GroupSecAgg are (R1,R2) = (1, 1/3),
coinciding with Theorem 1. �
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(a) GroupSecAgg v.s. LightSecAgg: U = (K+ 1)/2

6 8 10 12 14 16 18 20
Number of Users (=K)

50

100

150

200

250

300

350

M
od

el
 A

gg
re

ga
tio

n 
Ti

m
e 

(m
s)

GroupSecAgg 100KB
SecAgg 100KB
GroupSecAgg 200KB
SecAgg 200KB
GroupSecAgg 300KB
SecAgg 300KB
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Fig. 2: The key sharing time and the model aggregation time of
GroupSecAgg versus LightSecAgg and SecAgg, respectively.

IV. EXPERIMENTAL RESULTS

We implement our proposed secure aggregation scheme
(which is referred to as GroupSecAgg for the sake of
simplicity) in Python2.7 by using the MPI4py library over
the Amazon EC2 cloud, which is then compared to the
original secure aggregation scheme in [5] (referred to as
SecAgg), and the best existing information theoretic secure
aggregation scheme with offline key sharing in [12] (referred
to as LightSecAgg). We compare the key sharing times
of GroupSecAgg and LightSecAgg, since the commu-
nication costs in the model aggregation phase of these two
schemes are the same. Since SecAgg provides computational
security instead of information theoretic security, the total size
of needed keys is much smaller in SecAgg. Thus we compare
the model aggregation times of GroupSecAgg and SecAgg.

Amazon EC2 Setup. The Amazon EC2 t2.large and
t2.xlarge instances are selected, where we take one spe-
cific t2.xlarge instance as the server and all the other
instances are users. The Amazon EC2 T2 instances have a
3.0 GHz Intel Scalable Processor, and all instances which we
use in this experiment have the same capacity of computation,
memory and network resources. The transmission speed is up
to 100MB/s between the server and users. By setting the field
size q as 7, we generate the input vectors uniformly i.i.d. over
F7, and consider the three sizes of each input vector (100KB,
200KB, 300KB) as suggested in [5]. In the offline key sharing
phase, we consider that each two users have a private link to
communicate as in [12]; thus between each two users, we use
the MPI.send command.

GroupSecAgg v.s. LightSecAgg. We first compare
our GroupSecAgg with LightSecAgg, by considering the
case where U = (K + 1)/2 illustrated in Fig. 2a. Compared
to LightSecAgg, GroupSecAgg reduces the key sharing
time by at least 16.5% and at most 31.7% in Fig. 2a.
GroupSecAgg v.s. SecAgg. We then compare our

GroupSecAgg with SecAgg, by considering the case where
U = (K+ 1)/2 illustrated in Fig. 2b. Compared to SecAgg,
GroupSecAgg reduces the model aggregation time by at
least 48% and at most 53% in Fig. 2b.
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