
Matrix Multiplication with Straggler Tolerance in
Coded Elastic Computing via Lagrange Code

Xi Zhong1, Jörg Kliewer2 and Mingyue Ji1
1Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA

Email: {xi.zhong, mingyue.ji}@utah.edu
2Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

Email: jkliewer@njit.edu

Abstract—In cloud computing systems, elastic events and
stragglers increase the uncertainty of the system, leading to
computation delays. Coded elastic computing (CEC) introduced
by Yang et al. in 2018 is a framework which mitigates the impact
of elastic events using Maximum Distance Separable (MDS)
coded storage. It proposed a CEC scheme for both matrix-
vector multiplication and general matrix-matrix multiplication
applications. However, in these applications, the proposed CEC
scheme cannot tolerate stragglers due to the limitations imposed
by MDS codes. In this paper we propose a new elastic computing
scheme using uncoded storage and Lagrange coded computing
approaches. The proposed scheme can effectively mitigate the
effects of both elasticity and stragglers. Moreover, it produces
a lower complexity and smaller recovery threshold compared to
existing coded storage based schemes.

I. INTRODUCTION

Coded distributed computing is an recently emerging
paradigm to tackle the straggler effect by computation redun-
dancy. Examples include [1]–[8] that use codes to deal with
stragglers in applications such as matrix multiplications, where
any subset of machines with cardinality larger than the recov-
ery threshold can recover the matrix multiplication. Another
important phenomenon that can degrade the performance of
the cloud systems is the elastic events, i.e., some machines can
be preempted and additional machines may be available, which
presents new challenges in allocating computation tasks to
available machines. Recently, coded elastic computing (CEC)
was proposed by Yang et al. to mitigate the impact of elastic
events [9]. In elastic computing, computations are performed
on the same set of data over many time steps. Between each
time step, once an elastic event occurs, the system knows im-
mediately about which machines leave or join, so that current
available machines can adjust their allocated computation tasks
immediately. In [9] the idea is to assign computation tasks to
available machines in a cyclic way using a Maximum Distance
Separable (MDS) coded storage scheme. This CEC scheme
can effectively mitigate the impact of elasticity and minimize
the computing load when all machines have the same storage
capacity and computation speed.

A CEC scheme can be divided into two parts: a coded
computing scheme and a computation assignment. On the one
hand, for designing a computation assignment the authors in
[10] aim to maximize the overlap of the task assignments
between computation time steps for homogeneous computing

systems where the machines have the same computation speed.
On the other hand, most coded computing schemes used
in existing CEC schemes, including [9] and [11], focus on
matrix-vector multiplication and use MDS codes. In [9] a CEC
scheme for matrix-matrix multiplication was also proposed.
This scheme cannot mitigate the effect of stragglers due to
the limitations of MDS codes.

In this paper, we focus on straggler tolerance for matrix-
matrix multiplication in CEC. We first present an application
of Lagrange coded computing proposed in [6] which can
mitigate the impact of stragglers. Compared to existing coding
techniques for matrix partitioning that can be applied to CEC,
this scheme has a better trade-off between computational com-
plexity and recovery threshold. Then, we apply this scheme to
CEC by combining it with an uncoded storage assignment.
In the case of the cyclic assignment, we obtain a homoge-
neous CEC scheme with straggler tolerance. Compared to
the CEC scheme for matrix-matrix multiplication in [9], our
CEC scheme enables new features as straggler mitigation,
an arbitrary matrix partition, a larger maximum number of
machines, and a flexible recovery threshold.

Notation Convention: [n] denotes the set {1, 2, · · · , n}.

II. PROBLEM FORMULATION

We consider a distributed network that consists of a master
and N machines [N] = {1, 2, · · · , N}. Given data matrix A ∈
Fq×v , in time step t the input matrix is Bt ∈ Fv×r and a set of
Nt available machines Nt ⊆ [N] aims to compute Ct = ABt.
A CEC scheme can be divided into four phases as follows:

1) In the storage phase prior to any computation, each
machine stores a function of A. The size of storage
normalized by the size of A is the storage ratio R.

2) In time step t, the input is Bt and there are Nt available
machines Nt. In the communication phase, the master
selects a computation assignment that decides the com-
putation load and specifies the allocated computation
task of available machines in the later computing phase.
According to this assignment, the master sends an a
function of Bt to the available machines.

3) In the computing phase, each machine computes the al-
located computation task and then sends the computation
result to the master.

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

978-1-5386-7462-8/23/$31.00 ©2023 IEEE 136IC
C

20
23

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-5
38

6-
74

62
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C4

50
41

.2
02

3.
10

27
91

34

Authorized licensed use limited to: The University of Utah. Downloaded on February 06,2024 at 05:32:21 UTC from IEEE Xplore. Restrictions apply.

4) In the decoding phase, the master gathers the computation
results from sufficient number of machines and decodes
Ct. Define L as the recovery threshold, which is the
minimum number of machines required for successful
decoding.

In this paper we focus on one time step t, for simplicity of
notation we denote Bt as B, Ct as C, and let Nt = [Nt].

Yang et al. proposed the first CEC scheme for matrix
multiplication in [9], without straggler tolerance due to the
limitations of MDS codes. In order to illustrate these limi-
tations and to explain our motivation, we use the following
example in [9].

Example 1: ([9]) When [N] = Nt = [4] and L = 3, the
master computes C = AB as the following steps.

1) In the storage phase, the master partitions A into 3
column blocks A1, A2, A3 ∈ Fq× v

3 and selects a
MDS generator matrix X = [xT

1 ,x
T
2 ,x

T
3 ,x

T
4]

T ∈ F4×3,
where xi = (xi,1, xi,2, xi,3). Each machine n ∈ [4]
stores Ãn =

∑
j∈[3] xn,jAj and it is further partitioned

into 4 groups of columns with equal size, i.e., Ãn =
{Ãn,1, Ãn,2, Ãn,3, Ãn,4}.

2) In the communication phase, the master partitions B into
3 row blocks B1, B2, B3 ∈ F v

3×r and further partitions
each Bj into 4 groups of rows with equal size, i.e.,
Bj = {Bj,1, Bj,2, Bj,3, Bj,4}. Next, define 4 groups of
machines P1 = {1, 3, 4}, P2 = {1, 2, 4}, P3 = {1, 2, 3},
P4 = {2, 3, 4}, and define 4 matrices Hk = (Xk

T)−1

for k ∈ [4], where Xk ∈ F3×3 is a invertible matrix
composed of vectors xn for n ∈ Pk. Then, for group
k ∈ [4] and the i-th assigned machine in Pk, denoted
by Pk,i, the master encodes B̃Pk,i,k =

∑
j∈[3] Hk,i,jBj,k

and sends B̃Pk,i,k to machine Pk,i, where Hk,i,j is the
value of entry (i, j) in matrix Hk.

3) In the computing phase, for group k ∈ [4] the machine
Pk,i computes ÃPk,i,kB̃Pk,i,k and sends it to the master.

4) In the decoding phase,
∑

j∈[3] Aj,kBj,k, k ∈ [4] is ob-
tained by summing 3 computation results ÃPk,i,kB̃Pk,i,k

from machines in Pk. For example, when k = 1, the
master decodes

∑
j∈[3] Aj,1Bj,1 by computing∑

i∈[3]

ÃP1,i,1B̃P1,i,1

= Ã1,1B̃1,1 + Ã3,1B̃3,1 + Ã4,1B̃4,1

= [A1,1, A2,1, A3,1]X
T
1 H1[B

T
1,1, B

T
2,1, B

T
3,1]

T

= [A1,1, A2,1, A3,1]I[B
T
1,1, B

T
2,1, B

T
3,1]

T

= A1,1B1,1 +A2,1B2,1 +A3,1B3,1,

where I is an identity matrix. Therefore, for each group
k ∈ [4] the master repeats the decoding and recovers
AB =

∑
k∈[4]

∑
j∈[3] Aj,kBj,k.

From this example, we can see the limitation of straggler
tolerance is derived from that 1) the encoding of B requires
the master to assign exactly L machines for each group k,
since Hk is determined by Xk using matrix invertibility; 2)
the recovery threshold is L due to XT

k Hk = I in the decoding.

This observation motivates us to present a new CEC scheme
such that for each group the master assigns D ≥ L machines
and there are at least L machines completing their computing
successfully, which results in straggler tolerance of D − L.
We decompose the problem into two sub-problems: 1) giving
a coded computing scheme with straggler tolerance, meaning
that any set of L machines can recover the computation output
C. 2) applying this scheme to CEC by combining it with a
computation assignment.

III. CODED COMPUTING SCHEME VIA LAGRANGE CODE

In this section, we present an uncoded storage coded com-
puting scheme using the Lagrange code [6], such that any set
of L machines can recover the computation output C.

A. An illustrating Example

Given two matrices A ∈ Fq×v and B ∈ Fv×r, the master
computes C = AB with N = 5 machines. First, we divide
each matrix into 3× 3 sub-matrices as follows.

A =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 , B =

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

 . (1)

In the storage phase, each machine stores the entire A. In the
communication phase, the master selects 3 distinct numbers
β = {β1, β2, β3} in F and generates 3 polynomialsV1(z)

V2(z)
V3(z)

 =

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

 ·


∏

k∈[3]\{1}
z−βk

β1−βk∏
k∈[3]\{2}

z−βk

β2−βk∏
k∈[3]\{3}

z−βk

β3−βk

 .

Let V(z) = {V1(z), V2(z), V3(z)}. We notice that for i ∈ [3]
and j ∈ [3], Vi(βj) = Bi,j holds. Then we have

V(βj) = {B1,j , B2,j , B3,j}, (2)

which is exactly the j-th column block in matrix B. The mas-
ter then selects 5 distinct numbers α = {α1, α2, α3, α4, α5} in
F, such that α∩β = ∅. For each machine j ∈ [5], the master
obtains B̃j = V(αj) = {V1(αj), V2(αj), V3(αj)} = {B̃1,j ,
B̃2,j , B̃3,j} and sends B̃j to machine j.

In the computing phase, machine j ∈ [5] computes 3
functions fi(A, B̃j), i ∈ [3] and sends the computation results
to the master, where

f1(A, B̃j) = A1,1B̃1,j +A1,2B̃2,j +A1,3B̃3,j ,

f2(A, B̃j) = A2,1B̃1,j +A2,2B̃2,j +A2,3B̃3,j ,

f3(A, B̃j) = A3,1B̃1,j +A3,2B̃2,j +A3,3B̃3,j .

In the decoding phase, we define 3 polynomials as follows.

h1(z)=f1(A,V(z)) = A1,1V1(z) +A1,2V2(z) +A1,3V3(z),

h2(z)=f2(A,V(z)) = A2,1V1(z) +A2,2V2(z) +A2,3V3(z),

h3(z)=f3(A,V(z)) = A3,1V1(z) +A3,2V2(z) +A3,3V3(z).

For each polynomial hi(z), i ∈ [3], we have two observations.
On the one hand, from (2) we have hi(βj) = fi(A,V(βj)) =
Ai,1B1,j + Ai,2B2,j + Ai,3B3,j for all j ∈ [3], which is the

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

137

Authorized licensed use limited to: The University of Utah. Downloaded on February 06,2024 at 05:32:21 UTC from IEEE Xplore. Restrictions apply.

block Ci,j , i.e., the product between the i-th row block of
A and the j-th column block of B. On the other hand, each
computation result fi(A, B̃j) from machine j ∈ [5] is also
an evaluation of the polynomial hi(z) on argument αj since
hi(αj) = fi(A,V(αj)) = fi(A, B̃j). Based on above observa-
tions, decoding a block Ci,j , i ∈ [3], j ∈ [3] means to interpo-
late the polynomial hi(z) with degree d = 2 and to evaluate
hi(βj). That is, upon receiving computation results from any
d + 1 = 3 machines denoted by L, the master obtains Ci,j

by computing hi(βj) =
∑

k∈L fi(A, B̃k) ·
∏

k′∈L\{k}
βj−αk′
αk−αk′

.
Finally, the master recovers C = AB in the following way.

C =

h1(β1) h1(β2) h1(β3)
h2(β1) h2(β2) h2(β3)
h3(β1) h3(β2) h3(β3)

 .

B. General Coded Computing Scheme

We divide matrix A into m × p sub-matrices and B into
p× n sub-matrices as follows.

A =


A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

...
...

. . .
...

Am,1 Am,2 · · · Am,p

 , B =


B1,1 B1,2 · · · B1,n

B2,1 B2,2 · · · B2,n

...
...

. . .
...

Bp,1 Bp,2 · · · Bp,n

 .

(3)
Then the computation output C contains mn blocks Ci,j , i ∈
[m], j ∈ [n], which is the product between the i-th row block
of A and the j-th column block of B.

In the storage phase, each machine stores the entire A. In the
communication phase, the master selects n distinct numbers
{βi : i ∈ [n]} in F and generates a set of p polynomials
V(z) = {Vi(z) : i ∈ [p]} each of degree n− 1, where

Vi(z) =
∑
j∈[n]

Bi,j ·
∏

k∈[n]\{j}

z − βk

βj − βk
. (4)

For i ∈ [p] and j ∈ [n], Vi(βj) = Bi,j holds. Then we have

V(βj) = {B1,j , B2,j , · · · , Bp,j}, (5)

which is exactly the j-th column block of B. The master then
selects N distinct numbers {αj : j ∈ [N]} in F such that
{αj : j ∈ [N]} ∩ {βi : i ∈ [n]} = ∅. For each machine
j ∈ [N], the master obtains B̃j = V(αj) = {Vi(αj) : i ∈
[p]} = {B̃i,j : i ∈ [p]} and sends B̃j to machine j.

In the computing phase, each machine j ∈ [N] computes m
functions fi(A, B̃j), i ∈ [m] and sends the computation results
to the master, where

fi(A, B̃j) =
∑
k∈[p]

Ai,k · B̃k,j . (6)

In the decoding phase, we define m polynomials hi(z), i ∈
[m] each of degree n− 1, where

hi(z) = fi(A,V(z)) =
∑
k∈[p]

Ai,k · Vk(z), (7)

such that for j ∈ [n] we have hi(βj) = fi(A,V(βj))
=

∑
k∈[p] Ai,k · Vk(βj) =

∑
k∈[p] Ai,k · Bk,j = Ci,j due to

(5). Meanwhile, we have hi(αj) = fi(A,V(αj)) = fi(A, B̃j)
from machine j ∈ [N]. Hence, decoding Ci,j , i ∈ [m], j ∈ [n]
means to interpolate the polynomial hi(z) in (7) by using
computation results in (6) from any n machines denoted by
L ⊆ [N], and to evaluate hi(βj). That is, the master computes

Ci,j = hi(βj) =
∑
k∈L

fi(A, B̃k) ·
∏

k′∈L\{k}

βj − αk′

αk − αk′
. (8)

Therefore, the master evaluates m polynomials hi(z), i ∈ [m]
on n arguments βj , j ∈ [n] to obtain mn blocks Ci,j . The
computation output C = AB is recovered.

IV. CEC SCHEME VIA LAGRANGE CODE

We first provide the definition of computation assignment in
CEC and then apply the coded computing scheme presented
in Section III to CEC.

Definition 1: In time step t, there are Nt available machines
Nt. Given a coded computing scheme with recovery threshold
L and straggler tolerance D − L, where L ≤ D ≤ Nt,
(D,G,µ,γ,P) is a computation assignment applying the
coded computing scheme to CEC by the following steps:

1) Define a partition vector γ = (γ1, · · · , γG), where∑
i∈[G] γi = 1. Partition the computation task of each

machine into G disjoint groups. The proportion of the
g-th group is γg .

2) Define G groups of machines P = {P1, · · · ,PG} such
that for the g-th group we have Pg ⊆ Nt and |Pg| = D.

3) In the computing phase, machines in Pg , g ∈ [G] compute
the g-th group of computation task.

4) In the decoding phase, the master decodes a partial C for
each group g ∈ [G] so that it can recover C.

In computation load vector µ = (µ1, · · · , µNt
), where∑

i∈[Nt]
µi = D, µi is the fraction of allocated computation

task of the i-th machine in Nt.
Remark 1: For homogeneous computing system, the cyclic

assignment in [9] can be noted as (D = L, G = Nt, µ = (L
Nt

,
· · · , L

Nt
), γ = (1

Nt
, · · · , 1

Nt
), P = {Pg : g ∈ [Nt]}), where

Pg = {(g − L + 1)%Nt, (g − L + 2)%Nt, · · · , g%Nt} and
we define a%Nt ≜ a+ ⌊Nt−a+1

Nt
⌋Nt.

The key of applying the proposed coded computing scheme
to CEC is to identify the computation task stated in step 1 in
Definition 1 and to specify the partition of this computation
task. In the coded computing scheme in Section III-B, the
computation task of machine j is a set of m polynomials in
(6), where each polynomial fi(A, B̃j) is the summation of p

matrix multiplications of Ai,k ∈ F
q
m× v

p and B̃k,j ∈ F
v
p×

r
n .

Partitioning this computation task into G groups is equivalent
to partitioning each polynomial fi(A, B̃j) into G groups
symmetrically. To do this, according to the partition vector
γ we divide each B̃k,j in (6) into G disjoint groups of
columns, i.e., B̃k,j = {(B̃k,j)g ∈ F

v
p×

γgr

n : g ∈ [G]}.
Hence, polynomial fi(A, B̃j) is divided into G disjoint groups
{fi,g(A, B̃j) : g ∈ [G]}, where fi,g(A, B̃j) =

∑
k∈[p] Ai,k ·

(B̃k,j)g . Then, the g-th group of computation task in machine
j is {fi,g(A, B̃j) : i ∈ [m]}, which contains the g-th groups

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

138

Authorized licensed use limited to: The University of Utah. Downloaded on February 06,2024 at 05:32:21 UTC from IEEE Xplore. Restrictions apply.

of blocks B̃k,j , k ∈ [p]. Then for each machine j, selecting its
allocated computation task is equivalent to selecting allocated
groups in B̃k,j , k ∈ [p]. Moreover, to reduce the complexity of
encoding B and communication cost, in the communication
phase the master can exactly encode and send the allocated
groups in B̃k,j , k ∈ [p] to machine j, instead of sending B̃k,j

and then making the machine to use the allocated groups.
To apply our coded computing scheme to CEC by using

Definition 1, we first use the example in Section III-A by
adding the cyclic assignment in Remark 1 for homogeneous
systems. Then we present the general homogeneous CEC
scheme1 with straggler tolerance.

A. Applying the Example in Section III-A to CEC

Let Nt = [4] and the machine 5 is preempted. Prior to any
computation, the master has partitioned A and B as shown in
(1) and each machine has already stored the entire A.

In the communication phase, consider the cyclic assignment
in Remark 1, i.e., (D = L = 3, G = 4, µ = (34 ,

3
4 ,

3
4 ,

3
4),

γ = (14 ,
1
4 ,

1
4 ,

1
4), P = {Pg : g ∈ [4]}), where P1 = {1, 3, 4},

P2 = {1, 2, 4}, P3 = {1, 2, 3}, P4 = {2, 3, 4}. Each block
Bi,j ∈ F v

3×
r
3 for i, j ∈ [3] is further partitioned into 4 groups

of columns with equal size, i.e., (Bi,j)1, (Bi,j)2, (Bi,j)3,
(Bi,j)4 ∈ F v

3×
r
12 . The master uses the set β in Section III-A

to generate Gp = 12 polynomials as follows

V1,1(z)
V2,1(z)
V3,1(z)
V1,2(z)
V2,2(z)
V3,2(z)
V1,3(z)
V2,3(z)
V3,3(z)
V1,4(z)
V2,4(z)
V3,4(z)



=



(B1,1)1 (B1,2)1 (B1,3)1
(B2,1)1 (B2,2)1 (B2,3)1
(B3,1)1 (B3,2)1 (B3,3)1
(B1,1)2 (B1,2)2 (B1,3)2
(B2,1)2 (B2,2)2 (B2,3)2
(B3,1)2 (B3,2)2 (B3,3)2
(B1,1)3 (B1,2)3 (B1,3)3
(B2,1)3 (B2,2)3 (B2,3)3
(B3,1)3 (B3,2)3 (B3,3)3
(B1,1)4 (B1,2)4 (B1,3)4
(B2,1)4 (B2,2)4 (B2,3)4
(B3,1)4 (B3,2)4 (B3,3)4



·


∏

k∈[3]\{1}
z−βk

β1−βk∏
k∈[3]\{2}

z−βk

β2−βk∏
k∈[3]\{3}

z−βk

β3−βk

.

(9)
Let Vg(z) = {V1,g(z), V2,g(z), V3,g(z)} denote polynomials
containing the g-th group of all blocks Bi,j . For i ∈ [3], j ∈ [3]
and g ∈ [4], we have Vi,g(βj) = (Bi,j)g . Then we have

Vg(βj) = {(B1,j)g, (B2,j)g, (B3,j)g}, (10)

which is the g-th group of the j-th column block in B. Due
to Nt = [4] the master selects numbers α1, α2, α3, α4 ∈ α
in Section III-A. According to the computation assignment,
for group g ∈ [4] and assigned machine j ∈ Pg , the
master computes and sends B̃g,j = Vg(αj) = {V1,g(αj),
V2,g(αj), V3,g(αj)} = {B̃g,j,1, B̃g,j,2, B̃g,j,3} to machine j.
For example, machine 1 is assigned to groups 1, 2 and 3 since
1 ∈ P1 ∩P2 ∩P3. Then machine 1 receives B̃1,1 for group 1,
receives B̃2,1 for group 2, and receives B̃3,1 for group 3.

1Our scheme also can be extended to CEC in heterogeneous computing
systems, by adding the computation assignment obtained by the Algorithm 1
in [11]. While in this paper we focus on the homogeneous systems.

Compared to the previous example in Section III-A, where
each machine j ∈ [5] receives B̃j = {B̃k,j : k ∈ [3]}, in this
example machine j ∈ Pg receives B̃g,j = {B̃g,j,k : k ∈ [3]}
= {(B̃k,j)g : k ∈ [3]}, i.e., the collection of the g-th groups
of matrices in B̃j . Actually, B̃j in the previous example can
be partitioned into 4 groups B̃j = {B̃1,j , B̃2,j , B̃3,j , B̃4,j},
and in this example each machine only receives its assigned
groups according to the computation assignment. the cyclic
assignment is shown in Figure 1, where the j-th column
corresponds to B̃j and the g-th row corresponds to the g-th
group of all B̃j in the previous example. The yellow sub-blocks
are the data received by the machines in this example. From

Fig. 1. Cyclic assignment added to the example in Section III-A.

Fig. 1, we can see that each available machine j ∈ [4] receives
a fraction 3

4 of B̃j . This shows that both encoding complexity
and communication cost for each machine are reduced by
factor 3

4 .
In the computing phase, for group g ∈ [4] the assigned

machine j ∈ Pg computes the following 3 functions:

f1,g(A, B̃g,j) = A1,1B̃g,j,1 +A1,2B̃g,j,2 +A1,3B̃g,j,3,

f2,g(A, B̃g,j) = A2,1B̃g,j,1 +A2,2B̃g,j,2 +A2,3B̃g,j,3, (11)

f3,g(A, B̃g,j) = A3,1B̃g,j,1 +A3,2B̃g,j,2 +A3,3B̃g,j,3,

and sends the computation results to the master. Compared
to the previous example, the computation complexity of each
available machine j is also reduced by factor 3

4 since it uses
a fraction 3

4 of B̃j to multiply with its storage.
In the decoding phase, for group g ∈ [4] we perform the

following processes. Define 3 polynomials

h1,g(z)=f1,g(A,Vg(z))=A1,1V1,g(z)+A1,2V2,g(z)+A1,3V3,g(z),

h2,g(z)=f2,g(A,Vg(z))=A2,1V1,g(z)+A2,2V2,g(z)+A2,3V3,g(z),

h3,g(z)=f3,g(A,Vg(z))=A3,1V1,g(z)+A3,2V2,g(z)+A3,3V3,g(z),

such that for i ∈ [3] and j ∈ [3], we have hi,g(βj) =
fi,g(A,Vg(βj)) = Ai,1V1,g(βj) +Ai,2V2,g(βj)+ Ai,3V3,g(βj)
= Ai,1(B1,j)g + Ai,2(B2,j)g + Ai,3(B3,j)g = (Ai,1B1,j)g +
(Ai,2B2,j)g+(Ai,3B3,j)g =

(
Ai,1B1,j+Ai,2B2,j+Ai,3B3,j

)
g

= (Ci,j)g due to (10), where (·)g is the g-th group of columns
in matrix (·). Also, we have hi,g(αj) = fi,g(A,Vg(αj)) =
fi,g(A, B̃j,g) for machine j ∈ Pg . Hence, decoding (Ci,j)g ,
i ∈ [3], j ∈ [3] means to interpolate the polynomial hi,g(z)
by using computation results {fi,g(A, B̃g,k) : k ∈ Pg}, and
to evaluate hi,g(βj). Therefore, the master decodes the g-th
groups of all blocks Ci,j . After repeating the above decoding

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

139

Authorized licensed use limited to: The University of Utah. Downloaded on February 06,2024 at 05:32:21 UTC from IEEE Xplore. Restrictions apply.

process for all groups g ∈ [4], the master is able to decode
C = AB.

B. General Homogeneous Straggler Tolerant CEC Scheme

Let us consider the general homogeneous CEC scheme with
arbitrary partitioning parameters. The master has divided A
into m×p sub-matrices and divided B into p×n sub-matrices
as shown in (3). Each machine has stored the entire A.

In the communication phase, consider the cyclic assignment
with straggler tolerance S, where 0 ≤ S ≤ Nt−n, i.e., (D =
n + S, G = Nt, µ = (D

Nt
, · · · , D

Nt
), γ = (1

Nt
, · · · , 1

Nt
),

P = {Pg : g ∈ [Nt]}), where Pg = {(g−D+1)%Nt, (g−D+
2)%Nt, · · · , g%Nt} and we define a%Nt ≜ a+⌊Nt−a+1

Nt
⌋Nt.

In this assignment, each machine is assigned to D groups.
According to γ, the master partitions each block Bi,j ∈ F

v
p×

r
n

into Nt groups, i.e., Bi,j = {(Bi,j)g ∈ F
v
p×

r
nNt : g ∈ [Nt]}.

From this notation, the computation output C is composed
of mnNt blocks (Ci,j)g ∈ F

q
m× r

nNt , i ∈ [m], j ∈ [n] and
g ∈ [Nt]. The master selects n distinct numbers {βi : i ∈ [n]}
in F and for group g ∈ [Nt] it generates a set of p polynomials
Vg(z) = {Vi,g(z) : i ∈ [p]} each of degree n− 1, where

Vi,g(z) =
∑
j∈[n]

(Bi,j)g ·
∏

k∈[n]\{j}

z − βk

βj − βk
, (12)

such that for i ∈ [p] and j ∈ [n], Vi,g(βj) = (Bi,j)g holds.
Then we have

Vg(βj) = {(B1,j)g, (B2,j)g, · · · , (Bp,j)g}, (13)

which is exactly the g-th group of the j-th column block in
B. Next, the master selects Nt distinct numbers {αj : j ∈
[Nt]} in F such that {αj : j ∈ [Nt]} ∩ {βi : i ∈ [n]} =
∅. According to the computation assignment, for group g ∈
[Nt] and assigned machine j ∈ Pg , the master computes and
sends B̃g,j = Vg(αj) = {V1,g(αj), V2,g(αj), · · · , Vp,g(αj)}
= {B̃g,j,1, B̃g,j,2, · · · , B̃g,j,p} to machine j.

In the computing phase, for g ∈ [Nt] the assigned machine
j ∈ Pg computes m functions fi,g(A, B̃g,j), i ∈ [m] and sends
the computation results to the master, where

fi(A, B̃g,j) =
∑
k∈[p]

Ai,k · B̃g,j,k. (14)

In the decoding phase, in order to decode mn blocks
{(Ci,j)g : i ∈ [m], j ∈ [n]} for group g ∈ [Nt], we define m
polynomials hi,g(z), i ∈ [m], where

hi,g(z) = fi,g(A,Vg(z)) =
∑
k∈[p]

Ai,k · Vk,g(z), (15)

such that for j ∈ [n] we have hi,g(βj) = fi,g(A,Vg(βj)) =∑
k∈[p] Ai,k ·Vk,g(βj) =

∑
k∈[p] Ai,k ·(Bk,j)g =

∑
k∈[p](Ai,k ·

Bk,j)g =
(∑

k∈[p] Ai,k ·Bk,j

)
g
= (Ci,j)g due to (13), where

(·)g is the g-th group of columns in matrix (·). Also, we
have hi,g(αj) = fi,g(A,Vg(αj)) = fi(A, B̃g,j) for machine
j ∈ Pg . Hence, decoding (Ci,j)g , i ∈ [m], j ∈ [n] means
to interpolate the polynomial hi,g(z) by using computation
results {fi,g(A, B̃g,k) : k ∈ Lg}, and to evaluate hi,g(βj),

where Lg ⊆ Pg is the set of n machines in Pg . That is, the
master computes

(Ci,j)g = hi,g(βj) =
∑
k∈Lg

fi(A, B̃g,k) ·
∏

k′∈Lg\{k}

βj − αk′

αk − αk′
.

(16)

For all groups g ∈ [Nt] the master performs above decoding
and obtains mnNt blocks (Ci,j)g for i ∈ [m], j ∈ [n], and
g ∈ [Nt]. Finally, it recovers C = AB.

V. DISCUSSION

A. Discussion of Homogeneous CEC Schemes

Compared to the existing homogeneous CEC scheme in
[9] for matrix multiplication, our scheme presented in Section
IV-B has the following advantages.

1) Straggler tolerance: As we already discussed in Section
II, the CEC scheme in [9] is not robust for stragglers. In
contrast, in our CEC scheme for each group we perform
encoding using polynomials such that the master can assign
D ≥ L machines by evaluating D arguments, where L = n.
For decoding the master uses Lagrange polynomial interpola-
tion that requires computation results from any L machines.
Therefore, the scheme has straggler tolerance of D − L.

2) Maximum number of machines and recovery threshold:
We prefer to larger maximum number of machines Nmax and
smaller recovery threshold L so that the distributed system can
use more machines and require fewer successful machines. In
the CEC scheme in [9], Nmax and L are determined by the
size of MDS generator matrix X ∈ FNmax×L, which limits not
only the size of Nmax but also the flexibility of the parameters
Nmax and L. In contrast, in our CEC scheme Nmax can be
large and flexible, where Nmax = |F| −L, and |F| is the size
of finite field F. Note that Nmax machines correspond to a
set of Nmax numbers {αj ∈ F : j ∈ [Nmax]} that has no
intersection with {βi ∈ F : i ∈ [L]} in (12).

3) Partitioning and recovery threshold: Since the CEC
scheme in [9] has the unique partitioning parameter L, it only
can partition two matrices into column and row blocks respec-
tively. In contrast, in our CEC scheme multiple partitioning
parameters m,n, p divide matrices into smaller blocks flexibly,
while keeping a lower recovery threshold n.

4) Applications to function computation: In some machine
learning applications the objective is to compute a non-linear
function s(·) based on a matrix multiplication, i.e., s(AB).
When s(·) is a polynomial function, our CEC scheme also
can compute s(AB). Specifically, in the computing phase
the machines compute s

(
fi(A, B̃g,j)

)
similar to (14). In the

decoding phase, similar to (16) the master evaluates s (hi,g(z))
to obtain all blocks s((Ci,j)g). Finally, the master is able to
recover s(C) = s(AB).

5) Computational complexity: Let our CEC scheme and the
CEC scheme in [9] have the same matrix size q, v, r, number
of available machines Nt and recovery threshold n. Besides,
let the straggler tolerance S = 0 in our CEC scheme.

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

140

Authorized licensed use limited to: The University of Utah. Downloaded on February 06,2024 at 05:32:21 UTC from IEEE Xplore. Restrictions apply.

Denote the per-machine encoding complexity as the com-
plexity of encoding the data computed by one machine,
including the complexity of encoding both A and B. In our
CEC scheme, for one machine in the g-th group the master
obtains p matrices by (12) and each matrix requests O(vr

pNt
)

multiplications. Since each machine is assigned to n groups,
after adding the complexity of all its allocated groups, the per-
machine encoding complexity of B is O(vrnNt

), which is same
as that of scheme in [9]. Note that [9] also has a per-machine
encoding complexity of A being O(qv).

For per-machine computation complexity, from (14) one
machine in the g-th group computes m functions requesting
O(qvr

nNt
) multiplications. By adding the complexity of all its

allocated n groups, the per-machine computation complexity
is O(qvrNt

), which is the same as that of scheme in [9].
Consider the communication cost of sending encoded B and

receiving computation results. In our CEC scheme, the former
communication cost is O(vr) and the latter communication
cost is O(qr). In the CEC scheme in [9], the former com-
munication cost is also O(vr) while the latter communication
cost is O(qrnNt).

For the decoding complexity, in the g-th group the master
decodes mn blocks in (16), and each one requests O(qr

mNt
)

multiplications. By adding the complexity of all Nt groups,
the resulting decoding complexity is O(qrn). The scheme in
[9] has the advantage of a decoding complexity of O(1) since
it only has additive operations.

B. Discussion of Coded Computing Schemes

The straggler tolerance of CEC schemes is determined by
the employed coded computing schemes. Apart from MDS
and Lagrange codes, there are many other existing coded
techniques that can be applied to CEC and mitigate the
impact of stragglers, such as entangled polynomial codes (EP
codes) [8] and PolyDot codes [5]. Given the same compu-
tation assignment, comparing the complexities of obtained
CEC schemes equals to comparing the corresponding coded
computing schemes. Moreover, given the same parameters, the
PolyDot codes have the same complexity and larger recovery
threshold then the EP codes. Hence, we only compare our
coded computing scheme with the EP codes in [8].

Let these two schemes have the same number of machines
N , partitioning parameters m,n, p, and matrix size q, v, r.
Since the storage ratio of our coded computing scheme is
R = 1 while that of EP codes is R = 1

pm , we let each
machine use an EP codes with pm coded matrices to achieve
the same storage ratio for a fair comparison. Then, the recovery
threshold for the EP codes is reduced from pmn + p − 1 to
⌈n+ 1

m− 1
pm⌉. Hence, for the balanced EP codes each machine

receives pm coded matrices in the communication phase,
computes pm computation tasks in the computing phase, and
attempts to send pm computation results to the master in the
decoding phase.

The comparison is summarized in Table I. Define CeA and
CeB as the per-machine encoding complexity of A and B,
respectively, Cc as the per-machine computation complexity

and Cd as the decoding complexity. Further, define U and D
as the communication cost of sending an encoded version of B
to all machines and receiving computation results, respectively.

TABLE I
COMPLEXITY COMPARISON BETWEEN PROPOSED SCHEME AND EP CODES

[8]

Our Scheme EP codes [8]

L n

{
n if p = 1

n+ 1 if p > 1

R 1 1
(CeA, CeB) (O(1),O(vr)) (O(qvmp),O(vrmp))

Cc O(qvr
n

) O(qvr
n

)

Cd O(qrn) O(qrp log2(pmn) log log(pmn))

(U ,D)
(
O(vrN

n
),O(qr)

) (
O(vrmN

n
),O(qrp)

)

From this table, our coded computing scheme has the lower
per-machine encoding complexity, the communication cost,
the decoding complexity and a smaller recovery threshold
when p > 1, under the same storage ratio and per-machine
computation complexities.

ACKNOWLEDGEMENT

This research was sponsored by the National Science Foun-
dation (NSF) CAREER Award 2145835.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920–1933, 2020.

[3] J. So, B. Güler, and A. S. Avestimehr, “Codedprivateml: A fast and
privacy-preserving framework for distributed machine learning,” IEEE
J. Select. Areas Inf. Theory, vol. 2, no. 1, pp. 441–451, 2021.

[4] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr,
“Polynomially coded regression: Optimal straggler mitigation via data
encoding,” arXiv:1805.09934, 2020.

[5] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Trans. Inf. Theory, vol. 66, no. 1, pp. 278–301, 2020.

[6] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.
Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” in Proc. IEEE Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), 2019, pp. 1215–1225.

[7] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensic Secur., vol. 15, pp. 2722–2734, 2020.

[8] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure,
private, and batch distributed matrix multiplication: Breaking the “cubic”
barrier,” in Proc. IEEE Int. Symp. on Inform. Theory (ISIT), 2020, pp.
245–250.

[9] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” arXiv:1812.06411v3, 2018.

[10] H. Dau, R. Gabrys, Y.-C. Huang, C. Feng, Q.-H. Luu, E. Alzahrani, and
Z. Tari, “Optimizing the transition waste in coded elastic computing,”
in Proc. IEEE Int. Symp. on Inform. Theory (ISIT), 2020, pp. 174–178.

[11] N. Woolsey, R.-R. Chen, and M. Ji, “Heterogeneous computation
assignments in coded elastic computing,” in Proc. IEEE Int. Symp. on
Inform. Theory (ISIT), 2020, pp. 168–173.

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

141

Authorized licensed use limited to: The University of Utah. Downloaded on February 06,2024 at 05:32:21 UTC from IEEE Xplore. Restrictions apply.

