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Abstract—In cloud computing systems, elastic events and
stragglers increase the uncertainty of the system, leading to
computation delays. Coded elastic computing (CEC) introduced
by Yang et al. in 2018 is a framework which mitigates the impact
of elastic events using Maximum Distance Separable (MDS)
coded storage. It proposed a CEC scheme for both matrix-
vector multiplication and general matrix-matrix multiplication
applications. However, in these applications, the proposed CEC
scheme cannot tolerate stragglers due to the limitations imposed
by MDS codes. In this paper we propose a new elastic computing
scheme using uncoded storage and Lagrange coded computing
approaches. The proposed scheme can effectively mitigate the
effects of both elasticity and stragglers. Moreover, it produces
a lower complexity and smaller recovery threshold compared to
existing coded storage based schemes.

I. INTRODUCTION

Coded distributed computing is an recently emerging
paradigm to tackle the straggler effect by computation redun-
dancy. Examples include [1]-[8] that use codes to deal with
stragglers in applications such as matrix multiplications, where
any subset of machines with cardinality larger than the recov-
ery threshold can recover the matrix multiplication. Another
important phenomenon that can degrade the performance of
the cloud systems is the elastic events, i.e., some machines can
be preempted and additional machines may be available, which
presents new challenges in allocating computation tasks to
available machines. Recently, coded elastic computing (CEC)
was proposed by Yang et al. to mitigate the impact of elastic
events [9]. In elastic computing, computations are performed
on the same set of data over many time steps. Between each
time step, once an elastic event occurs, the system knows im-
mediately about which machines leave or join, so that current
available machines can adjust their allocated computation tasks
immediately. In [9] the idea is to assign computation tasks to
available machines in a cyclic way using a Maximum Distance
Separable (MDS) coded storage scheme. This CEC scheme
can effectively mitigate the impact of elasticity and minimize
the computing load when all machines have the same storage
capacity and computation speed.

A CEC scheme can be divided into two parts: a coded
computing scheme and a computation assignment. On the one
hand, for designing a computation assignment the authors in
[10] aim to maximize the overlap of the task assignments
between computation time steps for homogeneous computing
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systems where the machines have the same computation speed.
On the other hand, most coded computing schemes used
in existing CEC schemes, including [9] and [11], focus on
matrix-vector multiplication and use MDS codes. In [9] a CEC
scheme for matrix-matrix multiplication was also proposed.
This scheme cannot mitigate the effect of stragglers due to
the limitations of MDS codes.

In this paper, we focus on straggler tolerance for matrix-
matrix multiplication in CEC. We first present an application
of Lagrange coded computing proposed in [6] which can
mitigate the impact of stragglers. Compared to existing coding
techniques for matrix partitioning that can be applied to CEC,
this scheme has a better trade-off between computational com-
plexity and recovery threshold. Then, we apply this scheme to
CEC by combining it with an uncoded storage assignment.
In the case of the cyclic assignment, we obtain a homoge-
neous CEC scheme with straggler tolerance. Compared to
the CEC scheme for matrix-matrix multiplication in [9], our
CEC scheme enables new features as straggler mitigation,
an arbitrary matrix partition, a larger maximum number of
machines, and a flexible recovery threshold.

Notation Convention: [n] denotes the set {1,2,--- ,n}.

II. PROBLEM FORMULATION

We consider a distributed network that consists of a master
and N machines [N] = {1,2,--- , N}. Given data matrix A €
F2*?_ in time step ¢ the input matrix is B; € FV*" and a set of
N, available machines N; C [N] aims to compute C; = AB;.
A CEC scheme can be divided into four phases as follows:

1) In the storage phase prior to any computation, each
machine stores a function of A. The size of storage
normalized by the size of A is the storage ratio R.

2) In time step t, the input is B; and there are N; available
machines N;. In the communication phase, the master
selects a computation assignment that decides the com-
putation load and specifies the allocated computation
task of available machines in the later computing phase.
According to this assignment, the master sends an a
function of B; to the available machines.

3) In the computing phase, each machine computes the al-
located computation task and then sends the computation
result to the master.
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4) In the decoding phase, the master gathers the computation
results from sufficient number of machines and decodes
C;. Define L as the recovery threshold, which is the
minimum number of machines required for successful
decoding.
In this paper we focus on one time step ¢, for simplicity of
notation we denote B; as B, C; as C, and let Ny = [INy].
Yang et al. proposed the first CEC scheme for matrix
multiplication in [9], without straggler tolerance due to the
limitations of MDS codes. In order to illustrate these limi-
tations and to explain our motivation, we use the following
example in [9].
Example 1: ([9]) When [N] = N; = [4] and L = 3, the
master computes C' = AB as the following steps.
1) In the storage phase, the master partitions A into 3
column blocks A;, As, A3 € F9%3 and selects a

MDS generator matrix X = [z, 21 21 21T € F4*3,
where ; = (%;1, %;2, %;3). Each machine n € [4]
stores A, = > iel3) Zn;A; and it is further partitioned

int~0 4 groups of cglumns with equal size, ie., 4, =
{An,h An,27 An,37 An,4}-

2) In the communication phase, the master partitions B into
3 row blocks B;, Bs, By € F5*" and further partitions
each B; into 4 groups of rows with equal size, ie.,
Bj ={Bj1, Bj2, Bj3s, Bja}. Next, define 4 groups of
machines P; = {1,3,4}, Py = {1,2,4}, Ps = {1,2,3},
Py = {2,3,4}, and define 4 matrices Hy, = (X37)~!
for k € [4], where X;, € F3*3 is a invertible matrix
composed of vectors x,, for n € Pj. Then, for group
k € [4] and the i-th assigned machine in P, denoted
by Py.i, the master encodes Bp, , x = > jer3) HryiiBik
and sends Bpkmk to machine Py ;, where Hj, ; ; is the
value of entry (,7) in matrix Hy.

3) In the computing phase, for group k € [4] the machine
Pi,; computes flpkmképw_k and sends it to the master.

4) In the decoding phase, > 5 Ak Bjk, k € [4] is ob-
tained by summing 3 computation results Apkyi’k.épk_“k
from machines in Pj;. For example, when k = 1, the
master decodes 3¢5 A;1Bj,1 by computing

Z APM,lBPM,l

1€[3]

= A1,1B1,1 + A3,1B3,1 + 1‘14,1@4,1
=[A11, A1, A5 2| XT HL[BY,, BY,, B3, ]"
= [A11, A2, A3, ]I[B 1, B 1, By )"
=A11B11+ A21B21 + A31B3 1,

where [ is an identity matrix. Therefore, for each group
k € [4] the master repeats the decoding and recovers
AB = Zk6[4] ZjE[B} AjkBj-
From this example, we can see the limitation of straggler
tolerance is derived from that 1) the encoding of B requires
the master to assign exactly L machines for each group k,
since Hy is determined by X} using matrix invertibility; 2)
the recovery threshold is L due to X} Hj, = I in the decoding.

This observation motivates us to present a new CEC scheme
such that for each group the master assigns D > L machines
and there are at least L machines completing their computing
successfully, which results in straggler tolerance of D — L.
We decompose the problem into two sub-problems: 1) giving
a coded computing scheme with straggler tolerance, meaning
that any set of L machines can recover the computation output
C. 2) applying this scheme to CEC by combining it with a
computation assignment.

III. CODED COMPUTING SCHEME VIA LAGRANGE CODE

In this section, we present an uncoded storage coded com-
puting scheme using the Lagrange code [6], such that any set
of L machines can recover the computation output C.

A. An illustrating Example

Given two matrices A € F9%? and B € FV*", the master
computes C' = AB with N = 5 machines. First, we divide
each matrix into 3 x 3 sub-matrices as follows.

Ain Ao Aigs Bii1 Bip Bigs
A= |Ayy Ao Asz|,B=|B21 Bz Baz|. (1)
As1 Azo Ass Bs1 Bsa Bsgs

In the storage phase, each machine stores the entire A. In the
communication phase, the master selects 3 distinct numbers
B ={p1, B2, 83} in F and generates 3 polynomials

Vi(2) Biyx Bix Big] |Hkepnm gl:akk
Va(2)| = |B21 Baa DBag [iep 2 52277&
Va(2) B31 Bsa Bss e sy mns

Let V(z) = {Vi(z), Va(z), V3(2)}. We notice that for i € [3]
and j € [3], V;(B;) = B;,; holds. Then we have

V(Bj) = {Bu1,j, B2,j, B3}, 2)

which is exactly the j-th column block in matrix B. The mas-
ter then selects 5 distinct numbers o = {1, ao, a3, g, 5 } in
IF, such that N B = (). For each machine j € [5], the master
obtains B; = V(a;) = {Vi(q;), Va(a;), Vs(ey)} = {Bu,
By j, B3 ;} and sends B; to machine j.

In the computing phase, machine j € [5] computes 3
functions f;(A, B;), i € [3] and sends the computation results
to the master, where

fi(A,Bj) = Ay 1By j + A1 2Boj + Ay 3Bs
fa(A,Bj) = Ag 1By j + Ay aBsj + Az 3Bs 5,
f3(A,B;) = A3 1By + A3 2B + A3 3Bs ;.

In the decoding phase, we define 3 polynomials as follows.
hi(2)=f1(A,V(2)) = A11Vi(2) + A12Va(2) + A1 3V3(2),
ha(z)=f2(A,V(2)) = A21V1(2) + A22Va(2) + A2,3V3(2),
hs(2)=f3(A,V(2)) = A31V1(2) + A32Va(2) + A3,3V3(2).
For each polynomial h;(z), ¢ € [3], we have two observations.

On the one hand, from (2) we have h;(5;) = fi(4,V(5;)) =
Ai,lBl,j + Ai’QBQA’j + Ai’3B3’j for all j € [3], which is the
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block C; ;, i.e., the product between the i-th row block of
A and the j-th column block of B. On the other hand, each
computation result f;(A, B;) from machine j € [5] is also
an evaluation of the polynomial h;(z) on argument «; since
hi(a;) = fi(A, V(a;)) = fi(A, B;). Based on above observa-
tions, decoding a block C; ;, i € [3], j € [3] means to interpo-
late the polynomial h;(z) with degree d = 2 and to evaluate
hi(;). That is, upon receiving computation results from any
d + 1 = 3 machines denoted by £, the master obtains C; ;
by computing h;(3;) = > e p fi(A, Br) - [ecy i a,fi‘,j’,-
Finally, the master recovers C' = AB in the following way.

hi(B1) hi(B2) hi(Bs)
C = |h2(B1) ha(B2) ha(Bs3)
h3(B1) hs(B2) ha(Bs)

B. General Coded Computing Scheme

We divide matrix A into m X p sub-matrices and B into
p X n sub-matrices as follows.

A Ao -0 Ay Bi1 Bia - Bin

Asq Ago -+ Aoy By By -+ Bay

Am,l Am,2 Am,p Bp,l Bp72 Bp,n
3

Then the computation output C contains mn blocks C; j, i €
[m], j € [n], which is the product between the i-th row block
of A and the j-th column block of B.

In the storage phase, each machine stores the entire A. In the
communication phase, the master selects n distinct numbers

{Bi : i € [n]} in F and generates a set of p polynomials
V(z) = {Vi(z) : i € [p]} each of degree n — 1, where
— Bk
=2 B 1l Bi — Bk

Jj€ln] ke[n]\{5}

For i € [p] and j € [n], V;(B;) = B; ; holds. Then we have

V(B;) ={B1,B2j, -, Bpj}s &)

which is exactly the j-th column block of B. The master then
selects IV distinct numbers {a; : j € [N]} in F such that
{aj : j € [N]} n{Bi : i € [n]} = 0. For each machine
j € [N], the master obtains B; = V(a;) = {Vi(aj) : i €
[p]} = {Bi; : i € [p]} and sends B; to machine j.

In the computing phase, each machine j € [N] computes m
functions f;(A, B;j),i € [m] and sends the computation results
to the master, where

fi(AB;) = > Ak By 6)

ke[p]
In the decoding phase, we define m polynomials h;(z),: €
[m] each of degree n — 1, where

hi(z) = [i(A,V(2) = D Aig - Vilz ()

ke[p]

such that for j € [n] we have h;(8;) =
= Zke[p] Ak - Vk(ﬁj) =

ZkE[p] Ai,k : Bk’j = Ci’j due to

(5). Meanwhile, we have h;(a;) = fi(A,V(a;)) = fi(A, B])
from machine j € [N]. Hence, decoding C; ;, i € [m], j € [n]
means to interpolate the polynomial h,;(z) in (7) by using
computation results in (6) from any n machines denoted by
L C [N], and to evaluate h;(3;). That is, the master computes

Cij=hi(B;)=>_ fi(ABe)- ][] fi_ak/. (8)

kel K eL\{k}

Therefore, the master evaluates m polynomials h;(z), i € [m]
on n arguments 3, j € [n] to obtain mn blocks C; ;. The
computation output C' = AB is recovered.

IV. CEC SCHEME VIA LAGRANGE CODE

We first provide the definition of computation assignment in
CEC and then apply the coded computing scheme presented
in Section III to CEC.

Definition 1: In time step t, there are IV, available machines
N;. Given a coded computing scheme with recovery threshold
L and straggler tolerance D — L, where L < D < N,
(D,G, p,v,P) is a computation assignment applying the
coded computing scheme to CEC by the following steps:

1) Define a partition vector v = (71, - ,7¢g), Where
ZiE[G] 7v; = 1. Partition the computation task of each
machine into G disjoint groups. The proportion of the
g-th group is v,.

2) Define G groups of machines P = {Py,---,Pg} such
that for the g-th group we have P, C N; and |P,| = D

3) In the computing phase, machines in Py, g € [G] compute
the g-th group of computation task.

4) In the decoding phase, the master decodes a partial C for
each group g € [G] so that it can recover C.

In computation load vector g = (w1, -+, Wn,), where
Zze[ Ny i = D, p; is the fraction of allocated computation
task of the i-th machine in N;.

Remark 1: For homogeneous computing system, the cyclic

assignment in [9] can be noted as (D = L, G = N;, p = (N%,
...’N%)’»y:(l’...,]\l,) = {Py : g € [N}]}), where
Py =1(g—L+ )%Nt» (9 — L +2)%Ny, -+, g%N:} and

we define a%N; £ a + [ 5L N,

The key of applying the proposed coded computing scheme
to CEC is to identify the computation task stated in step 1 in
Definition 1 and to specify the partition of this computation
task. In the coded computing scheme in Section III-B, the
computation task of machine j is a set of m polynomials in
(6), where each polynomial f;(A, B; ) 1s the summation of p
matrix multiplications of A4;) € Fm ™ » and By j € Fr X
Partitioning this computation task into G' groups is equ1valent
to partitioning each polynomial fi(A,Bj) into G groups
symmetrically. To do this, according to the partition vector
v we divide each B 4 in (6) into G dlSjOlnt groups of
columns, ie., By, = {(B;” e FiXn g € [G]}.
Hence, polynomlal fi(A,B;) is d1V1ded into G disjoint groups
[fig(AB) : g € [GT}. where fig(A.B}) = Yycpy Auk -
(Bk ;j)g- Then, the g -th group of computation task in machine
jis {fig(A,B;) : i € [m]}, which contains the g-th groups
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of blocks Bk,j, k € [p]. Then for each machine j, selecting its
allocated computation task is equivalent to selecting allocated
groups in By, ;, k € [p]. Moreover, to reduce the complexity of
encoding B and communication cost, in the communication
phase the master can exactly encode and send the allocated
groups in Bku” k € [p] to machine j, instead of sending Bkyj
and then making the machine to use the allocated groups.

To apply our coded computing scheme to CEC by using
Definition 1, we first use the example in Section III-A by
adding the cyclic assignment in Remark 1 for homogeneous
systems. Then we present the general homogeneous CEC
scheme' with straggler tolerance.

A. Applying the Example in Section IlI-A to CEC

Let N; = [4] and the machine 5 is preempted. Prior to any
computation, the master has partitioned A and B as shown in
(1) and each machine has already stored the entire A.

In the communication phase, consider the cyclic assignment
in Remark 1, ie, (D=L =3, G =4, p= (3,322,
v=(314,1.2), P={Py: g€ [4]}), where P; = {1,3,4},
Py = {1,2,4}, Ps = {1,2,3}, Py = {2,3,4}. Each block
B, ; € F5*5 for i, j € [3] is further partitioned into 4 groups
of columns with equal size, i.e., (B, )1, (Bi )2, (Bij)ss
(Bi,j)a € F5*32. The master uses the set 3 in Section III-A
to generate Gp = 12 polynomials as follows

Vii(2)] [(Bii)r (Bi2)i (Bish

Va,1(2) (B21)1 (B22)1 (Bash

Va1(2) (Bs1)1 (Bs2)1 (Bssh

VLQEZ; EB1,1§2 EB1,2§2 EB1,3§2

Vao(z Bs1)2 (B22)2 (B23)2 —Bu
Vao(2)| |(B3i1)2 (Bsz)2 (Bss3)2 Heenoy 5 B px
‘/1,3(2) N (Bl,l)S (31’2)3 (31’3)3 ke[3]\{2} /32 /§5
Va,3(2) (B2,1)3 (B22)s (B2;3)3 KEBI\3) Brm
V3.3(2) (B3,1)z (Bsz2)s (Bsg3)3

Via(2) (Bi1)s (Bi2)s (Bi3)s

Va,4(2) (B2,1)s (B22)s (B23)s

_V3,4(2)_ (B31)a (Bsz2)s (B33)a ©)

Let Vy(z) = {V1,4(2),Va,4(2), V3 4(%)} denote polynomials
containing the g-th group of all blocks B; ;. Fori € [3], j € [3]
and g € [4], we have V; 4(8;) = (B;,j)4- Then we have

Vg(ﬁj) = {(Bl,j)g’ (BQJ)Q’ (B3,j)g}a

which is the g-th group of the j-th column block in B. Due
to N; = [4] the master selects numbers oy, a2, 3,4 € «
in Section III-A. According to the computation assignment,
for group g € [4] and assigned machine j € P, the
master computes and sends lg'(” = Vy(aj) = {Vig(a),
Va,g(@)), Vag(ay)} = {Byj1. Byjz2, By} to machine j.
For example, machine 1 is assigned to groups 1, 2 and 3 since
1 € P1 NPy N'P3. Then machine 1 receives 5’171 for group 1,
receives 5’271 for group 2, and receives [5’3,1 for group 3.

(10)

'0ur scheme also can be extended to CEC in heterogeneous computing
systems, by adding the computation assignment obtained by the Algorithm 1
in [11]. While in this paper we focus on the homogeneous systems.

Compared to the previous example in Section III-A, where
each machine j € [5] receives B; = {B},; : k € [3]}, in this
example machine j € P, receives B,; = {Bg] gk e[3]}
= {(By)g : k € [3]}, i.e., the collection of the g-th groups
of matrices in B Actually, B in the previous example can
be partitioned into 4 groups Bj = {Blj, ng, ng, 543}
and in this example each machine only receives its assigned
groups according to the computation assignment. the cyclic
assignment is shown in Figure 1, where the j-th column
corresponds to B~j and the g-th row corresponds to the g-th
group of all 37 in the previous example. The yellow sub-blocks
are the data received by the machines in this example. From

g1,1 §1.3 §1.4
Boa By Boa
Preempted
B3, Bs,2 B33
§4.2 ﬁ4.3 §4.4
machine 1l machine2 machine3 machine4 machine5
Fig. 1. Cyclic assignment added to the example in Section III-A.

Fig. 1, we can see that each available machine j € [4] receives
a fractlon of B This shows that both encoding complexity
and commumcatlon cost for each machine are reduced by
factor 2.

In the computing phase, for group g € [4] the assigned
machine j € P, computes the following 3 functions:

fr9(A, By ;) = A11By 1 + A12Bg jo + A13Bg 3,
f2,9(A,Bg ;) = A21Bg ;1 + A22Bg 2 + A2 3B j3, (11)
f3,9(A, By j) = A3 1By 1+ A3 2By j2 + A3 3By 3,

and sends the computation results to the master. Compared
to the previous example, the computation complexity of each
available machine j is also reduced by factor % since it uses
a fraction % of Bj to multiply with its storage.

In the decoding phase, for group g € [4] we perform the

following processes. Define 3 polynomials

hi,g(2)=f1,4(AVy(2))=A11V1 ((2) + A1, V2, f(2) + A1,3V5,4(2),
ha,q(2)=f2,4(AV(2))=A2,1V1 (2) + A2 2V2,((2) + A2 5V5 o(2),
ha,g(2)=F3,4(AV(2))=A3,1V1 (2) + A3 2V2,o(2) + A3 3V3 ¢ 2),

such that for ¢ € [3] and j € [3], we have h;4(5;) =
fig(AVg(85)) = AinVig(B;) +Ai2Va e (B5)+ AisVag(5;)
= Ai1(Buj)g + Ai2(Ba,j)g + Ais(Bsj)g = (Ai1B1j)g +
(Ai2Bs2 j)g+(Ai3B3)g = (Ai,lBl,j+Ai,ZBQ,j+Ai,3B3,j)y
= (C; ;)4 due to (10), where (-), is the g-th group of columns
in matrix (-). Also, we have h; 4(o;) = fig(A4,Vy(ey)) =
fi.g(A,B;,) for machine j € P,. Hence, decoding (C; ;).
i € [3], j € [3] means to interpolate the polynomial h; 4(z)
by using computation results {f; ,(A,B,x) : k € P,}, and
to evaluate h; 4(3;). Therefore, the master decodes the g-th
groups of all blocks C; ;. After repeating the above decoding
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process for all groups g € [4], the master is able to decode

C =AB.

B. General Homogeneous Straggler Tolerant CEC Scheme

Let us consider the general homogeneous CEC scheme with
arbitrary partitioning parameters. The master has divided A
into m X p sub-matrices and divided B into p X n sub-matrices
as shown in (3). Each machine has stored the entire A.

In the communication phase, consider the cyclic assignment

with straggler tolerance S, where 0 < S < N; —n, ie., (D =
n+ 8 G=Nop= (g £hv= (" w)

P ={Py:9€[N}), whereP = {(g D—i—l)%Nt, (9—D+

2)%Ny, -+, g%N; } and we deﬁne a%N; & a+ | Mezatl “HJNt
In this assignment, each machine is assigned to D groups
According to vy, the master partltlons each block B; ;€ Fr*n
into Ny groups, i.e., B;; = {(Bij)g € Fo”aN g e [Ny}
From this notation, the computation output C' is composed
of mnN; blocks (C;;), € F# 7% i € [m], j € [n] and
g € [N;]. The master selects n distinct numbers {f; : i € [n]}
in F and for group g € [IV¢] it generates a set of p polynomials

Vy(z) = {Vig(2) : i € [p]} each of degree n — 1, where
z— Bk
Vig@) = Bude- Il 5—5 (2
j€ln] kefl\g}
such that for i € [p| and j € [n], Vi 4(8;) = (Bi,;)y holds.

Then we have

Vo(Bi) = {(B1,j)g: (B2,j)g, > (Bpi)g}

which is exactly the g-th group of the j-th column block in
B. Next, the master selects N, distinct numbers {a; : j €
[N¢]} in F such that {o; : j € [N} N{B; : i € [n]} =
(). According to the computation assignment, for group g €
[V¢] and assigned machine j € P, the master computes and
sends By ; = V(o) = {Vig(e), Vaglay), -+, Vpgalay)}
={By 1, By j2, ‘-, Bgjp} to machine j.

In the computing phase, for g € [IV;] the assigned machine
j € P, computes m functions f; ,(A, B, ;),i € [m] and sends
the computation results to the master, where

fz A qu Z Alk BQJ,

ke[p]

13)

(14)

In the decoding phase, in order to decode mn blocks
{(Cij)g : i €m], j € [n]} for group g € [N¢], we define m
polynomials h; 4(2), i € [m], where

hig(2) = fig(AVe(2)) = > Aik - Viegl(z
ke[p]
such that for j € [n] we have h; 4(8;) = fi,4(4,V4(5;)) =
Zke[p] Ai,k'Vk,g(ﬁj) = Zke ] Ai,k‘(Bk,j)g = Zk‘G[p] (Aik
Bij)g = (Zke[p} A 5 = (C; ;)4 due to (13), where
g
(+)g is the g-th group of columns in matrix (-). Also, we
have h; 4(o;) = fig(A4,V4(;)) = fi(A, By, ;) for machine
J € Pg. Hence, decoding (C; ;)g, @ € [m], j € [n] means

to 1nterpolate the polynomial h;4(z) by using computation
results {f; (A, B, %) : k € Ly}, and to evaluate h, ,(53;),

5)

ik~ Brj

where £, C P, is the set of n machines in Py. That is, the
master computes

Bi — aw

(Cij)g = hig(B;) = Z fi(A Byk H h'
k€L, keL\(k} K

(16)

For all groups g € [V¢] the master performs above decoding
and obtains mnN, blocks (C; ), for i € [m], j € [n], and
g € [Ny]. Finally, it recovers C' = AB.

V. DISCUSSION

A. Discussion of Homogeneous CEC Schemes

Compared to the existing homogeneous CEC scheme in
[9] for matrix multiplication, our scheme presented in Section
IV-B has the following advantages.

1) Straggler tolerance: As we already discussed in Section
I, the CEC scheme in [9] is not robust for stragglers. In
contrast, in our CEC scheme for each group we perform
encoding using polynomials such that the master can assign
D > L machines by evaluating D arguments, where L = n.
For decoding the master uses Lagrange polynomial interpola-
tion that requires computation results from any L machines.
Therefore, the scheme has straggler tolerance of D — L.

2) Maximum number of machines and recovery threshold:
We prefer to larger maximum number of machines N, ., and
smaller recovery threshold L so that the distributed system can
use more machines and require fewer successful machines. In
the CEC scheme in [9], N4, and L are determined by the
size of MDS generator matrix X € FNmazxL which limits not
only the size of V,,4, but also the flexibility of the parameters
Ny and L. In contrast, in our CEC scheme N, ., can be
large and flexible, where Ny, = |F| — L, and |F| is the size
of finite field F. Note that N,,,, machines correspond to a
set of Ny,qp, numbers {a; € F : j € [Nyqz)} that has no
intersection with {8; € F : ¢ € [L]} in (12).

3) Fartitioning and recovery threshold: Since the CEC
scheme in [9] has the unique partitioning parameter L, it only
can partition two matrices into column and row blocks respec-
tively. In contrast, in our CEC scheme multiple partitioning
parameters m, n, p divide matrices into smaller blocks flexibly,
while keeping a lower recovery threshold n.

4) Applications to function computation: In some machine
learning applications the objective is to compute a non-linear
function s(-) based on a matrix multiplication, i.e., s(AB).
When s(-) is a polynomial function, our CEC scheme also
can compute s(AB). Specifically, in the computing phase

similar to (14). In the

decoding phase, similar to (16) the master evaluates s (h; 4(2))
to obtain all blocks s((C; ;)4). Finally, the master is able to
recover s(C) = s(AB).

5) Computational complexity: Let our CEC scheme and the
CEC scheme in [9] have the same matrix size g, v, r, number
of available machines NV; and recovery threshold n. Besides,
let the straggler tolerance S = 0 in our CEC scheme.

the machines compute s ( fi(A, By ;)
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Denote the per-machine encoding complexity as the com-
plexity of encoding the data computed by one machine,
including the complexity of encoding both A and B. In our
CEC scheme, for one machine in the g-th group the master
obtains p matrices by (12) and each matrix requests O(Zj}(,t)
multiplications. Since each machine is assigned to n groups,
after adding the complexity of all its allocated groups, the per-
machine encoding complexity of B is O(“5*), which is same
as that of scheme in [9]. Note that [9] also has a per-machine
encoding complexity of A being O(qv).

For per-machine computation complexity, from (14) one
machine in the g-th group computes m functions requesting
O(;5) multiplications. By adding the complexity of all its
allocated n groups, the per-machine computation complexity
is O(%), which is the same as that of scheme in [9].

Consider the communication cost of sending encoded B and
receiving computation results. In our CEC scheme, the former
communication cost is O(vr) and the latter communication
cost is O(gr). In the CEC scheme in [9], the former com-
munication cost is also O(vr) while the latter communication
cost is O(grnNy).

For the decoding complexity, in the g-th group the master
decodes mn blocks in (16), and each one requests (’)(nff\,t)
multiplications. By adding the complexity of all N; groups,
the resulting decoding complexity is O(grn). The scheme in
[9] has the advantage of a decoding complexity of O(1) since
it only has additive operations.

B. Discussion of Coded Computing Schemes

The straggler tolerance of CEC schemes is determined by
the employed coded computing schemes. Apart from MDS
and Lagrange codes, there are many other existing coded
techniques that can be applied to CEC and mitigate the
impact of stragglers, such as entangled polynomial codes (EP
codes) [8] and PolyDot codes [5]. Given the same compu-
tation assignment, comparing the complexities of obtained
CEC schemes equals to comparing the corresponding coded
computing schemes. Moreover, given the same parameters, the
PolyDot codes have the same complexity and larger recovery
threshold then the EP codes. Hence, we only compare our
coded computing scheme with the EP codes in [8].

Let these two schemes have the same number of machines
N, partitioning parameters m,n,p, and matrix size ¢, v,r.
Since the storage ratio of our coded computing scheme is
R = 1 while that of EP codes is R = p%’ we let each
machine use an EP codes with pm coded matrices to achieve
the same storage ratio for a fair comparison. Then, the recovery
threshold for the EP codes is reduced from pmn +p — 1 to
[n+ — . |- Hence, for the balanced EP codes each machine
receives pm coded matrices in the communication phase,
computes pm computation tasks in the computing phase, and
attempts to send pm computation results to the master in the
decoding phase.

The comparison is summarized in Table I. Define C. 4 and
Cep as the per-machine encoding complexity of A and B,
respectively, C. as the per-machine computation complexity

and C4 as the decoding complexity. Further, define &/ and D
as the communication cost of sending an encoded version of B
to all machines and receiving computation results, respectively.

TABLE I
COMPLEXITY COMPARISON BETWEEN PROPOSED SCHEME AND EP CODES
[8]

Our Scheme EP codes [8]
L n n %fp =1
n+1l ifp>1
R 1 1
(Cea,CeB) (0(1),0(wr)) (O(qump), O(vrmp))
C o) o(7T)
Ca O(grn) O(grplog? (pmn) log log(pmn))
D) | (o(=),0(n) (o(z22), 0(grp))

From this table, our coded computing scheme has the lower
per-machine encoding complexity, the communication cost,
the decoding complexity and a smaller recovery threshold
when p > 1, under the same storage ratio and per-machine
computation complexities.
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