
DK Lock: Dual Key Logic Locking Against

Oracle-Guided Attacks

Jordan Maynard

Computer Engineering & Computer Science Department

California State University Long Beach

Long Beach, CA, USA

jordan.maynard@student.csulb.edu

Amin Rezaei

Computer Engineering & Computer Science Department

California State University Long Beach

Long Beach, CA, USA

amin.rezaei@csulb.edu

AbstractÐThe semiconductor industry must deal with different
hardware threats like piracy and overproduction as a result of
outsourcing manufacturing. While there are many proposals to
lock the circuit using a global protected key only known to the
designer, there exist numerous oracle-guided attacks that can
examine the locked netlist with the assistance of an activated IC
and extract the correct key. In this paper, by adopting a low-
overhead structural method, we propose DK Lock, a novel Dual
Key locking method that securely protects sequential circuits with
two different keys that are applied to one set of key inputs at
different times. DK Lock structurally adds an activation phase
to the sequential circuit, and a correct key must be applied
for several cycles to exit this phase. Once the circuit has been
successfully activated, a new functional key must be applied to the
same set of inputs to resume normal operation. DK Lock opens
up new avenues for hardware IP protection by simultaneously
refuting the single static key assumption of the existing attacks
and overcoming the state explosion problem of state-of-the-art
sequential logic locking methods. Our experiments confirm that
DK Lock maintains a high degree of security with reasonable
power and area overheads.

Index TermsÐLogic Locking, Logic Encryption, SAT Attack,
Logic Obfuscation, Sequential Circuits, Dynamic Key

I. INTRODUCTION AND BACKGROUND

The semiconductor chip business has numerous security

concerns, including piracy and overproduction, because every

Integrated Circuit (IC) often consists of several pieces from

different offshore foundries, each with its own set of potential

hardware hazards. Logic locking (a.k.a. logic encryption)

technique [1], which adds extra key inputs to a given netlist,

is a well-studied but yet highly fragile approach to preventing

unauthorized ICs from working. After the manufactured ICs

return from the foundry, the correct key, which is known only

to the designer, must be placed into a tamper-proof memory

to make the locked circuit operational.

Traditional logic locking schemes such as XOR-based [1]

and MUX-based locking [2] were found to be susceptible to the

SAT attack [3] that can report the correct key in a short time

with the help of an activated IC. This led to the development of

several SAT-resilient locking schemes for both combinational

and sequential circuits [4]±[36]. Despite the range of methods

used to uncover the original functionality and/or the correct

key of a locked circuit, all the existing attacks [37]±[52] have

one thing in common: they only search for a single globally

correct key. While SLED [35] uses dynamic key values that

change upon a chosen event in the circuit, it still utilizes a

single static set of values to activate the correct key sequence

and thus remains susceptible to existing attacks. Generally

speaking, any approach that employs an initial ªseedº can

be vulnerable to state-of-the-art attacks because the seed

functions as a global key that, if discovered by the attacker,

can unlock the circuit easily and nullify the security.

Furthermore, in contrast to the commonality of sequential

circuits in the market, there are a relatively small amount of

sequential logic locking methods [32]±[36]. Several existing

sequential locking schemes use Finite State Machine (FSM)-

based approaches to hide IC functionality. HARPOON [32]

is a proposed scheme that adds extra states to the original

state transition graph which act as an authentication mode

requiring a correct sequence of inputs to reach the original

initial state. Active hardware metering [33] is another FSM-

based approach that adds ªblack holeº states which lock the

circuit in an inescapable state after the incorrect input sequence

is applied. JANUS-HD [34] uses a set of coherent synthesis

augmentations to achieve simultaneously high output corrupt-

ibility and pruning attack resilience. All of these methods

have been deciphered by sequential attacks like KC2 [52] and

RANE [50].

In addition, FSM locking uses a behavioral approach, mean-

ing that the outputs are computed as a function of the input

sequence. Adding authentication states using the behavioral

model leads to the state explosion problem. Our solution is

to use a structural approach instead of a behavioral one to

add locking functionality. Instead of adding states to the FSM,

leading to an abundance of new states that must be considered,

our activation logic is added structurally. This allows activation

to be achieved solely through key inputs without having to

worry about primary input sequences.

Our proposed logic locking method structurally adds an

activation phase in a given sequential circuit, and a correct

initial key must be applied for several cycles to exit this phase.

Once the circuit has been successfully ªactivated,º a new final

key must be applied to the same set of inputs for the circuit

to resume normal operation. To the best of our knowledge, no

locking scheme has been proposed with a fixed-size set of key

inputs that require the application of multiple distinct sets of



Fig. 1. DK Lock overview

(a) (b) (c)

Fig. 2. DK Lock structural modules (a) Activation counter FF (b) Functional logic (c) Integration examples

values to resume original functionality. This refutes the current

assumption that finding just one correct key will uncover the

original circuit functionality.

The state-of-the-art logic locking methods [4], [5], [7], [8]

operate on the assumption that the attacker has complete

access to the locked netlist. Furthermore, he/she can purchase

a functioning circuit from the market as an oracle and get

the correct outputs for given input vectors. Also, because

practically all ICs are sequential circuits, it is presumed the

attacker has access to the scan chain. This commonly known

attacker paradigm is taken into account in this research.

Despite there currently being no other dynamic key locks on

a static set of key inputs, we still assume that the attacker is

aware of the presence of two keys.

The main contributions of this paper are as follows:

• Proposing a novel logic locking scheme called Dual

Key (DK) Lock that refutes the single static global key

assumption of existing attacks.

• Overcoming the state explosion problem of state-of-the-

art FSM locking by following a structural approach

instead of an impractical behavioral one.

• Presenting the high security gain of the DK Lock against

existing attacks with low power and area overhead.

II. DUAL KEY LOCK

The main idea behind our proposed DK Lock is to use one

set of key inputs for two different keys during different phases

of operation. The activation phase can be characterized as a

sequential lock, while the functional phase uses combinational

locking. These two phases operate using the same set of key in-

puts, and they interact in a way that ensures the combinational

portion cannot be interacted with until the sequential portion

has been unlocked. An initial (i.e., activation) key must be

applied to the locked circuit for a chosen number of cycles to

ªactivateº the circuit. The circuit becomes activated and moves

into the functional phase when the activation logic triggers a

signal which changes the state of the functional logic. When

in the functional phase, a final (i.e., functional) key must be

applied to regain original circuit functionality. DK Lock is

implemented by the addition of three structural modules into

the circuit: activation logic, functional logic, and integration

logic. Fig. 1 depicts a high-level overview of the interaction

between the added lock and the original circuit.

A. Activation Phase

The activation logic is comprised of a key-controlled up-

counter with variable bit size and logic that determines when

the activation signal is triggered. The counter begins at ª0º

and counts up when the correct key is applied. Once m

number of cycles is reached, the activation signal is triggered

and the circuit enters the functional phase. The user is able

to customize this logic by choosing the value m and the

corresponding number of bits for the counter. For example,

if m=9, and the counter size is four bits, then the circuit will

activate when the counter bits hold the binary value 1001.

At each Flip Flop (FF) input in the activation counter, 2-1

MUXs are added to allow key-controlled counting. Each MUX

main inputs are the correct counter signal and a low (i.e., ª0ºv)

signal, and a key bit drives the selector. When an incorrect key

bit is applied to the MUX of a certain FF, a low signal is fed

to that FF input. Thus, the counter will count up only when

the correct key is applied. Fig. 2a provides a low-level view of

an activation counter FF. Based on the correct key value, the



Algorithm 1: DK Lock algorithm

Input: Original netlist f(x), key size N , and # of

cycles M

Output: Locked netlsit g(x, k) and oracle h(x)
k∗a ← CreateCorrectKey(N );
// k∗

a is initial key

k∗f ← CreateCorrectKey(N );
// k∗

f is final key

g(x, k)← f(x);
i← 0;

while (i < N ) do

activation flipflop← NewActivationFF(k∗ai
,M );

Add(activation flipflop) to activation logic;

rand gate ← RandomGate(g(x, k));
key logic ← NewKeyGate(k∗fi );

Add(key logic) to g(x, k) at rand gate;

i ← i+ 1;

Add(activation logic) to g(x, k);
Add(functional logic) to g(x, k);
h(x)← g(x, k);
for (all key bits ki ∈ k) do

Remove(key inputi) from h(x);

fixed key mux← NewFixedKeyMux(k∗ai
, k∗fi );

Add(fixed key mux) to h(x);

key gatei ← fixed key mux;

return g(x, k), h(x);

MUX can be simplified to the AND of the key bit (or inverse

of the key bit) with the correct signal.

When a correct activation key is applied for the specified

m cycles, the activation counter’s FFs will hold the binary

value of m. The output of every FF is connected to a set of

gates which output an activation signal to the functional logic

once the binary value m is represented. This event triggers

the activation of the circuit and begins the second phase of

operation. A design consideration is that the value of m is not

stored in any internal memory as it is built into the customized

locking logic.

B. Functional Phase

The functional stage is characterized by the removal of

blocker signals to allow key gate propagation in the circuit.

A blocker is a signal which, when applied to a certain gate,

causes a fixed output (i.e., a stuck-at fault) regardless of other

gate inputs. Prior to circuit activation, each traditional key

gate inserted into the original circuit has additional gates at

its output. This added logic disallows the propagation of the

key gates and thus the correct signals to the rest of the circuit

during the activation phase. The functional logic interacts with

the circuit integration logic (i.e., key gates) and removes the

blockers once the functional stage is reached.

As shown in Fig. 2b, the functional logic consists of a

modified n-bit ring counter which does not change state

TABLE I
2-BIT FUNCTIONAL COUNTER STATES

Activation Phase Functional Phase

Current Next Current Next

00 00 00 01
00 00 01 10
00 00 10 11
00 00 11 01

until activated. This counter is designed with low overhead,

utilizing only n additional FFs. Once activated, the counter

will continuously cycle through FF values without returning

to the initial value set. Table I shows the states of a 2-bit

functional counter, as an example. These FFs are connected

to the blockers in key gate logic (W0 and W1), which is

integrated with the original circuit at randomly chosen places

(see Fig. 2c). Every state after activation allows propaga-

tion of traditional key gates, meaning the functional phase

is equivalent to traditional single-gate locking. One design

consideration is that the attacker does not know the initial

state of the functional counter. In the 2-bit functional counter

of Table I, ª00º is the initial value set, but it can be any state

for different designs.

C. Integration With Original Circuit

As previously mentioned, the activation phase of operation

is completed by removing blockers from key gates. Two

examples with two blocker signals are shown in Fig. 2c. A

random signal from the original circuit X is chosen and the

depicted logic is added. W0 and W1 will act as blockers

during the activation phase, so both will have a logic low

before activation. This causes corruption at the output Y

regardless of the key input signal. During the functional phase,

Y will equal X only if the correct final key bit is applied.

The presence of these blockers disallows observation of final

key propagation to primary outputs of the circuit during the

activation phase. This is the facet of DK Lock which preserves

security of the final key while the initial key is being applied.

SAT-based techniques are unable to resolve both keys because

of their sequential application to the same set of inputs. The

transition from activation to functional phase allows for final

key propagation to primary outputs, but SAT-based attacks

alone are unable to reach this stage without returning UNSAT

model or an incorrect key.

In summary, activation and functional modules are con-

nected to the original circuit through randomly inserted key

logic. The addition of this logic along with a single set of

dynamic key inputs effectively locks the circuit from all the

state-of-the-art attacks that assume the existence of a single

correct key. The correct operation of the circuit will be delayed

until an initial key is applied for m cycles. Once the circuit

is past activation, a different final key must be applied to

the same set of key inputs to recover proper functionality.

Algorithm 1 shows the pseudo-code of DK Lock.



TABLE II
COMBINATIONAL ATTACKS ON THE LOCKED BENCHMARKS WITH DK LOCK

Benchmark Attacks

Set Benchmark Key Size SAT [3] CycSAT [37] Double-DIP [40]

Set 1 s27, s298, s349, s444, s510, s641, s713, s832, s953, s1196,
s1488, s5378, s9234, s13207, s15850

Fixed Key Size of 10 UNSAT UNSAT UNSAT

Set 2 s27, s298, s349, s444, s510, s641, s713, s832, s953, s1196,
s1488, s5378, s9234, s13207, s15850

6, 10, 21, 10, 27, 58, 59, 38, 40,
29, 28, 84, 13, 117, 98

UNSAT UNSAT UNSAT

Set 3 b01, b02, b03, b04, b06, b07, b08, b09, b10, b11, b12, b13,
b14, b15, b17

Fixed Key Size of 10 UNSAT UNSAT UNSAT

Set 4 b01, b02, b03, b04, b06, b07, b08, b09, b10, b11, b12, b13,
b14, b15, b17

2, 2, 4, 11, 2, 2, 2, 9, 2, 11, 7,
5, 10, 32, 36, 37

UNSAT UNSAT UNSAT

D. Obfuscation

One important security feature of our design is that the

number of cycles m is hidden from the attacker. Instead of

being stored in memory or somewhere the attacker may be

able to access, it is built in to the logic itself. This deters

SAT-based approaches further, adding many possibilities for

the attacker to consider.

The dynamic nature of the unblocking signals from func-

tional logic assist in obscuring key observability. Fixed state

FFs in an activation-based design are an obvious flag to at-

tackers, thus the addition of this characteristic to our structural

design. The changing states of the functional logic also open

flexibility for the design of key gate logic. The functionality

of the designs shown in Fig. 2c may be realized through

any number of unique layouts. By having several different

approaches to key-gate logic within the design, structural

analysis and removal attacks become more tedious for the

attacker. Varying the gate-level implementation of these facets

removes repetition within the design and hinders the attacker’s

ability to identify added logic by targeting repetition.

The functional counter logic is also more secure when the

size is expanded (i.e., more FFs). This allows for dynamic

states before and after activation, creating even further diffi-

culty for observation by the attacker. Additional obfuscation

currently implemented is a re-synthesis of the design which

mixes the locking logic into the original circuit. However, the

most beneficial approach would be a high-level transformation

of the data-flow with the objective of making the gate-level

design confusing to attackers. Identifying and tampering with

critical signals in the design would be infeasible due to the

obscurity of the logic. As a result, bypassing any part of the

locking would prove significantly more difficult.

III. EXPERIMENTAL RESULTS

In this section, the robustness of DK Lock against state-of-

the-art attacks is demonstrated on the ISCAS ’89 [53] and ITC

’99 [54] sequential benchmarks. All attacks are run in Ubuntu

with 4GB of RAM. Please note that DK Lock is independent

of the benchmark structure and thus applies to any circuit.

Overall, four sets of benchmarks are created. The key size

of Set1 & Set3 is fixed at 10, and the key size of Set2 &

Set4 scales with the primary input size. The benchmarks are

also implemented on the Nexys A7-100T FPGA board for

TABLE III
SEQUENTIAL ATTACKS ON THE LOCKED BENCHMARKS WITH DK LOCK -

SET 1 & SET 3 (FIXED KEY SIZE OF 10)

Bench
KC2 [52] RANE [50]

Time #Iter. Result Time Result

(s) (s)

s27 0.82 99 Wrong Key 0.38 Wrong Key

s298 2.26 95 Wrong Key 0.92 Wrong Key

s349 - 2 Attack Failed 1.95 Wrong Key

s444 4.38 94 Wrong Key 0.97 Wrong Key

s510 140.04 96 Wrong Key 0.98 Wrong Key

s641 0.11 4 Wrong Key 2.39 Wrong Key

s713 133.03 96 Wrong Key 2.51 Wrong Key

s832 0.15 5 Wrong Key 1.22 Attack Failed

s953 - 1 Attack Failed 3.00 Wrong Key

s1196 0.13 2 Wrong Key 3.39 Wrong Key

s1488 - 2 Attack Failed 3.59 Wrong Key

s5378 - 2 Attack Failed 11.77 Wrong Key

s9234 2.81 6 Wrong Key 2.09 Attack Failed

s13207 485.63 98 Wrong Key 5.13 Attack Failed

s15850 637.85 98 Wrong Key 5.01 Attack Failed

b01 0.50 48 Wrong Key 0.79 Wrong Key

b02 0.39 50 Wrong Key 0.75 Wrong Key

b03 1.06 49 Wrong Key 0.88 Wrong Key

b04 - 49 Attack Failed 1.65 Attack Failed

b06 - 48 Attack Failed 0.77 Wrong Key

b07 3.27 49 Wrong Key 1.19 Attack Failed

b08 - 49 Attack Failed 0.9 Wrong Key

b09 5.07 50 Wrong Key 0.86 Wrong Key

b10 - 49 Attack Failed 0.93 Wrong Key

b11 600 38 Wrong Key 1.51 Wrong Key

b12 - 49 Attack Failed 1.92 Wrong Key

b13 - 49 Attack Failed 0.57 Attack Failed

b14 600 5 Wrong Key 11.21 Attack Failed

b15 600 17 Wrong Key 13.27 Attack Failed

b17 600 14 Wrong Key 51 Attack Failed

area and power analysis. To implement the benchmarks on

the FPGA, we use the ABC tool [55] to convert .BENCH

files to .V files, followed by synthesis and implementation in

Xilinx Vivado 2016.4 webpack edition.

Both combinational and sequential attacks were run against

each benchmark to provide a wide array of results. The original

SAT attack [3], CycSAT [37], and Double-DIP [40] were

chosen for combinational attacks. For each locked benchmark,

a combinational version was created by replacing FFs with

scan inputs and outputs. Each FF input is replaced with a



(a) (b) (c)

Fig. 3. Overhead - ISCAS ’89 benchmarks (a) Power Consumption (Watts) (b) Number of LUTs (c) Number of FFs

(a) (b) (c)

Fig. 4. Overhead - ITC ’99 benchmarks (a) Power Consumption (Watts) (b) Number of LUTs (c) Number of FFs

primary output and each FF output is replaced with a primary

input. The sequential attacks we ran against our locked circuits

include KC2 [52] and RANE [50].

Table II shows the results of combinational attacks run on

locked benchmarks with DK Lock. As anticipated, none of the

existing attacks are able to find the correct key. The SAT-based

combinational attacks report ªUNSATº since there is no single

correct key that satisfies the equivalence of the locked circuit

and the activated IC. The only case where they can report the

correct key is when we use the same key for activation and

functional phases, which reduces DK Lock to a single global

key model. The key size has no effect on the strength of the

proposed locking method against combinational attacks, as the

single-key assumption is thwarted regardless of this factor.

Consider the way the SAT attack functions. Comparing the

locked circuit to an oracle, the attack assumes that there is a

single key that will make the functionality equivalent. As soon

as a different output pattern is detected for some input pattern,

the key is pruned. Since our lock requires two distinct keys,

there is no single correct key that will return the circuit to

normal functionality. This means that the locked circuit and

oracle will continue to have different outputs for the same

inputs until the circuit is unlocked. For this reason, the SAT

attack will prune the correct activation key and never get a

chance to consider the functional key.

Running the sequential attacks against DK Lock-protected

benchmarks yielded similar results. Neither RANE [50] nor

KC2 [52] were able to report correct keys for any of the locked

benchmarks. Table III shows the results of both sequential

attacks run against Set1 and Set3 benchmarks. Akin to the

combinational attacks, the single global key assumption held

true for the sequential attacks. KC2 reported only a single

incorrect key when it was able to run through all solver

iterations without preemptively terminating. RANE [50] was

able to detect the presence of two keys; when a key was

reported, it was split into two incorrectly sized wrong keys. As

seen in Table III, considerably high run times were reported for

KC2 [52] against benchmarks s510 and s15850. These further

prove the security and scalability of DK Lock to large circuit

sizes. Only a 10-bit key was used for all of these benchmarks,

while a slight area and power overhead was incurred. In several

smaller benchmarks, the iteration count of KC2 [52] reached

near its set limit of 100.

Some benchmarks run against KC2 [52] proved incompat-

ible with the attack for unknown reasons. In fact, multiple of

the benchmarks which we now have results for did not run

successfully at first. Take s13207 run against KC2 [52] for

example. The first run was instantly aborted without providing

any further information about why it failed. However, when the

same original benchmark was locked with a different correct

key set of the same size, the attack ran until the iteration limit

and returned an incorrect key. Another example of this came

from s27 locked with a 10 bit key and a 13 bit key. The

13-bit key version encountered an error during the run, but

the 10-bit key locked benchmark returned a wrong key after

reaching the iteration limit. This solidifies the validity of our

results and even suggests that certain conditions may make the

locked benchmark more secure against current attacks.

Several of the benchmarks run against RANE [50] also

seemed to give issues related to the attack framework itself. At

first, none of our locked benchmarks seemed to be compatible

with the attack. The reason for these problems was we

applied DK Lock to .BENCH benchmarks, while RANE is

compatible with only the .V file format. The RANE attack uses



a different .BENCH to .V conversion tool than we first used

to parse and rewrite our locked circuits. After determining this

as the initial source of error, the built-in converter was used

instead. This allowed the attack to report the results shown in

Table III. For all remaining benchmarks which still caused the

attack to report errors, these 10-bit key locked circuits were

recreated from scratch using our script. These new circuits

locked with different randomized keys were then converted

to .V format using the provided tool in RANE [50] and the

attack was re-run against them. The benchmark s13207 was

the only one which newly became compatible with the attack

after these measures were taken. While it is possible that

different versions of these problematic benchmarks with varied

key sizes could prove compatible, time constraints prevented

a full exploration into this. Regardless of the error status of

some cases, not a single correct key was reported by the attack

for any of the given benchmarks.

Fig. 3 and Fig. 4 show the power usage of the locked

benchmarks of each set compared with the original ones, as

well as the resource utilization (i.e., number of LUTs and

FFs) of the original and locked benchmarks implemented on

the Nexys A7-100T FPGA board. As can be seen, DK Lock

scales well in terms of overhead. For example, the power

consumption increase of s13207 is only 3% with 17% of more

LUTs and 11% of more FFs under a key size of 10 (Set1).

The power and resource utilization are obviously higher when

we use larger key sizes, but as the attack evaluation findings

verified, we can safely lock any circuit with a fixed key size

that is independent of the circuit size. For instance, there is

no point in locking s713 with a key size of 59 (Set2) to face

double power consumption and resource utilization while it

can gain the same security benefit with a much smaller key

size (Set1).

IV. CONCLUSION & FUTURE OUTLOOK

In this paper, we introduced the idea of multiple key

values being inserted into the fixed-size set of key inputs.

Formally, we proposed a dual key logic locking method named

DK Lock that structurally adds an activation phase in any

given sequential circuit which requires an activation key to

be applied for several cycles. After this activation phase is

completed, another key must be applied to the same set of

key inputs to move into normal operation. Experimental results

showed that DK Lock is secure against state-of-the-art attacks

[3], [37], [40], [50], [52] on logic locking schemes while

consuming reasonable power and area overheads.

DK Lock opens up a new avenue for sequential defenses

against IC piracy and overproduction. Our scheme introduces

a significant weakness of state-of-the-art combinational and

sequential attacks by voiding the single static global key

assumption. With multiple keys needed to unlock the circuit,

current attacks are stumped by their search for a single

correct key. As we predicted and as our experimental results

demonstrate, dynamic key inputs provide strong resistance

to attacks on both sequential and combinational benchmarks.

Based on these findings, multi-key schemes is a promising

direction for further research in sequential logic locking.

An expansion of dual key locking to include any number

of keys is a promising path for future works. This could

take shape in a multi-level activation phase which unlocks

different parts of the original circuit at each stage. Another

separate approach could consist of changing the correct final

key on several fixed-cycle periods. If implemented using a

structural approach, these designs may prove to add a high

level of protection without severely impacting area and power

overheads.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation

under Award No. 2245247.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, ªEpic: Ending piracy of
integrated circuits,º In Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 1069-1074, 2008.

[2] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, ªSecurity Analysis
of Logic Obfuscation,º In Design Automation Conference (DAC), pp.
83±89, 2012.

[3] P. Subramanyan, S. Ray, and S. Malik, ªEvaluating the security of
logic encryption algorithms,º In International Symposium on Hardware

Oriented Security and Trust (HOST), pp. 137-143, 2015.

[4] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, ªSARLock:
SAT attack resistant logic locking,º In International Symposium on

Hardware Oriented Security and Trust (HOST), pp. 236-241, 2016.

[5] Y. Xie and A. Srivastava, ªMitigating SAT attack on logic locking,º In
International Conference on Cryptographic Hardware and Embedded

Systems (CHES), pp. 127-146, 2016.

[6] Y. Shen, A. Rezaei, and H. Zhou, ªA comparative investigation of
approximate attacks on logic encryptions,º In Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 271-276, 2018.

[7] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O.
Sinanoglu, ªProvably-secure logic locking: From theory to practice,º In
ACM SIGSAC Conference on Computer and Communications Security

(CCS), pp. 1601±1618, 2017.

[8] A. Rezaei, Y. Shen, and H. Zhou, ªRescuing logic encryption in post-
SAT era by locking & obfuscation,º In Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 13-18, 2020.

[9] H. Zhou, A. Rezaei, and Y. Shen, ªResolving the trilemma in logic
encryption,º In International Conference on Computer Aided Design

(ICCAD), pp. 1-8, 2019.

[10] A. Rezaei, Y. Shen, S. Kong, J. Gu and H. Zhou, ªCyclic locking
and memristor-based obfuscation against CycSAT and inside foundry
attacks,º In 2018 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 85-90, 2018.

[11] A. Rezaei, Y. Li, Y. Shen, S. Kong, and H. Zhou, ªCycSAT-unresolvable
cyclic logic encryption using unreachable statesº In Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 358±363, 2019.

[12] A. Rezaei, J. Gu, and H. Zhou, ªHybrid memristor-CMOS obfuscation
against untrusted foundries,º In IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI), pp. 535-540, 2019.

[13] X. Yang, P. Chen, H. Chiang, C. Lin, Y. Chen, and C. Wang,
ªLOOPLock 2.0: An enhanced cyclic logic locking approachº In IEEE

Transactions on CAD of Integrated Circuits and Systems, vol. 41, no.
1, pp. 29±34, 2021.

[14] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, ªFull-
Lock: Hard distributions of SAT instances for obfuscating circuits using
fully configurable logic and routing blocks,º In Proceedings of Design

Automation Conference (DAC), pp. 1-6., 2019.

[15] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, ªCross-lock: Dense layout-level
interconnect locking using cross-bar architectures,º In Proceedings of the

on Great Lakes Symposium on VLSI (GLSVLSI), pp. 147± 152, 2018.



[16] B. Hu, J. Tian, M. Shihab, G. Reddy, W. Swartz, Y. Makris, B. C. Schae-
fer, and C. Sechen, ªFunctional obfuscation of hardware accelerators
through selective partial design extraction onto an embedded FPGA,º In
Great Lakes Symposium on VLSI (GLSVLSI), pp. 171±176, 2019.

[17] P. Mohan, O. Atli, J. Sweeney, O. Kibar, L. Pileggi, and K. Mai, ªHard-
ware redaction via designer-directed fine-grained eFPGA insertion,º In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1186±1191, 2021.

[18] J. Bhandari, A. Moosa, B. Tan, C. Pilato, G. Gore, X. Tang, S. Temple,
P. Gaillardon, and R. Karri, ªExploring eFPGA-based redaction for IP
protection,º In International Conference On Computer Aided Design

(ICCAD), pp. 1±9, 2021.

[19] Z. U. Abideen, T. D. Perez and S. Pagliarini, ªFrom FPGAs to
obfuscated eASICs: Design and security trade-offs,º In Asian Hardware

Oriented Security and Trust Symposium (AsianHOST), pp. 1-4, 2021

[20] R. Karmakar, H. Kumar, and S. Chattopadhyay, ªEfficient key-gate
placement and dynamic scan obfuscation towards robust logic encryp-
tion,º In IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 4, pp. 2109-2124, 2019.

[21] U. Guin, Z. Zhou, and A. Singh, ªRobust design-for-security architecture
for enabling trust in IC manufacturing and test,º In IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp.
818±830, 2018.

[22] G. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, ªTiming
camouflage: Improving circuit security against counterfeiting by uncon-
ventional timing,º In Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 91±96, 2018.

[23] Y. Xie and A. Srivastava, ªDelay locking: Security enhancement of logic
locking against IC counterfeiting,º In Design Automation Conference

(DAC), pp. 1±9, 2017.

[24] J. Sweeney, V. Zackriya, V S. Pagliarini, and L. Pileggi, ªLatch-based
logic locking,º In IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pp. 132±141, 2020.

[25] A. Rezaei, A. Hedayatipour, H. Sayadi, M. Aliasgari, and H. Zhou,
ªGlobal attack and remedy on IC-specific logic encryption,º In IEEE

International Symposium on Hardware Oriented Security and Trust

(HOST), pp. 145-148, 2022.

[26] D. Sisejkovic, F. Merchant, L. M. Reimann, and R. Leupers, ªDeceptive
logic locking for hardware integrity protection against machine learning
attacksº In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 41, no. 6, pp. 1716-1729, 2022.

[27] R. Muttaki, R. Mohammadivojdan, M. Tehranipoor, and F. Farahmandi,
ªHLock: Locking IPs at the high-level language,º In Design Automation

Conference (DAC), pp. 79±84, 2021.

[28] H. Zhou, Y. Shen, and A. Rezaei, ªVulnerability and remedy of stripped
function logic locking,º In Cyptology ePrint Archive, report 2019/139,
2019.

[29] N. Limaye, A. Chowdhury, C. Pilato, M. Nabeel, O. Sinanoglu, S. Garg,
and R. Karri, ªFortifying RTL locking against oracle-Less (untrusted
foundry) and oracle-guided attacks,º In Design Automation Conference

(DAC), pp. 91±96, 2021.

[30] J. Slowik, G. Williams, R. Albashir, A. Samagio, G. S. Nicholas and
F. Saqib, ªDynamic key updates for LUT locked design,º In IEEE

International Symposium on Hardware Oriented Security and Trust

(HOST), pp. 105-108, 2022.

[31] R. Afsharmazayejani, H. Sayadi, and A. Rezaei, ªDistributed logic
encryption: Essential security requirements and low-overhead implemen-
tation,º In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI),
pp. 127-131, 2022.

[32] R. Chakraborty and S. Bhunia, ªHARPOON: An obfuscation-based SoC
design methodology for hardware protection.º In IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no.
10, pp. 1493-1502, 2009.

[33] Y. M. Alkabani and F. Koushanfar, ªActive hardware metering for intel-
lectual property protection and securityº In USENIX Security Symposium

on USENIX Security Symposium, article 20, pp. 1±16, 2007.

[34] L. Li and A. Orailoglu, ªJANUS-HD: Exploiting FSM sequentiality and
synthesis flexibility in logic obfuscation to thwart SAT attack while
offering strong corruption,º In Design, Automation & Test in Europe

Conf. (DATE), pp. 1±6, 2022.

[35] Y. Kasarabada, V. Muralidharan, and R. Vemuri, ªSLED: Sequential
logic encryption using dynamic keys,º In International Midwest Sympo-

sium on Circuits and Systems (MWSCAS), pp. 844-847, 2020.

[36] A. Rezaei and H. Zhou, ªSequential logic encryption against model
checking attack,º In Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 1178-1181, 2021.
[37] H. Zhou, R. Jiang, and S. Kong, ªCycSAT: SAT-based attack on

cyclic logic encryptions,º In IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 49±56, 2017.
[38] N. Limaye, S. Patnaik, and O. Sinanoglu, ªFa-SAT: Fault-aided SAT-

based attack on compound logic locking techniques,º In Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), pp. 1166-
1171, 2021.

[39] Y. Shen, Y. Li, S. Kong, A. Rezaei, and H. Zhou, ªSigAttack: New high-
level SAT-based attack on logic encryptions,º In Design, Automation &

Test in Europe Conference & Exhibition (DATE), pp. 940-943, 2019.
[40] Y. Shen and H. Zhou, ªDouble DIP: Re-evaluating security of logic

encryption algorithms,º In Great Lakes Symposium on VLSI (GLSVLSI),
pp. 179-184, 2017.

[41] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, ªRemoval
attacks on logic locking and camouflaging techniques,º In IEEE Trans-

actions on Emerging Topics in Computing, vol. 8, no. 2, pp. 517-532,
2020.

[42] Y. Shen, A. Rezaei, and H. Zhou, ªSAT-based bit-flipping attack on
logic encryptions,º In Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 629-632, 2018.
[43] D. Sirone and P. Subramanyan, ªFunctional analysis attacks on logic

locking,º In IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 2514-2527, 2020.

[44] M. E. Massad, S. Garg, and M. Tripunitara, ªReverse engineering
camouflaged sequential circuits without scan access,º In IEEE/ACM

International Conference On Computer Aided Design (ICCAD), pp.
33±40, 2017.

[45] Y. Kasarabada, S. Chen, and R. Vemuri, ªOn SAT-based attacks on
encrypted sequential logic circuits,º In International Symposium on

Quality Electronic Design (ISQED), pp. 204-211, 2019.
[46] N. Limaye, S. Patnaik, and O. Sinanoglu, ªValkyrie: Vulnerability

assessment tool and attack for provably-secure logic locking techniques,º
In IEEE Transactions on Information Forensics and Security, vol. 17,
pp. 744-759, 2022.

[47] A. Saha and U. Chatterjee and D. Mukhopadhyay and R. S. Chakraborty,
ªDIP Learning on CAS-Lock: Using Distinguishing Input Patterns for
Attacking Logic Lockingº In Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 688-693, 2022.
[48] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott and H. Zhou, ªBeSAT:

Behavioral SAT-based attack on cyclic logic encryption,º In Asia and

South Pacific Design Automation Conference (ASP-DAC), pp 657-662,
2019.

[49] A. Rezaei, R. Afsharmazayejani, and J. Maynard, ªEvaluating the
security of eFPGA-based redaction algorithms,º In Proceedings of

IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), article 157, pp 1-7, 2022.
[50] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, ªRANE:

An open-source formal de-obfuscation attack for reverse engineering
of logic encrypted circuits,º In Great Lakes Symposium on VLSI

(GLSVLSI), pp. 221±228, 2021.
[51] C. Karfa, R. Chouksey, C. Pilato, S. Garg, and R. Karri, ªIs register

transfer level locking secure?º In Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 550±555, 2020.
[52] K. Shamsi, M. Li, D. Z. Pan and Y. Jin, ªKC2: Key-condition crunching

for fast sequential circuit deobfuscationº In Design, Automation & Test

in Europe Conference & Exhibition (DATE), pp. 534-539, 2019.
[53] F. Brglez, D. Bryan, and K. Kozminski, ªCombinational profiles of

sequential benchmark circuits,º In IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1929-1934, 1989.
[54] S. Davidson, ªITC’99 Benchmark Circuits - Preliminary Results,º In

International Test Conference (ITC), pp. 1125-1125, 1999.
[55] Berkeley Logic Synthesis and Verification Group, ªABC:

A system for sequential synthesis and verification,º
http://www.eecs.berkeley.edu/˜alanmi/abc/


