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ABSTRACT

Chip designers can secure their ICs against piracy and overproduc-
tion by employing logic locking and obfuscation. However, there
are numerous attacks that can examine the logic-locked netlist with
the assistance of an activated IC and extract the correct key using a
SAT solver. In addition, when it comes to fabrication, the imposed
area overhead is a challenge that needs careful attention to pre-
serve the design goals. Thus, to assign a logic locking method that
can provide security against diverse attacks and at the same time
add minimal area overhead, a comprehensive understanding of the
circuit structure is needed. Towards this goal, in this paper, we first
build a multi-label dataset by running different attacks on bench-
marks locked with existing logic locking methods and various key
sizes to capture the provided level of security and overhead for each
benchmark. Then we propose and analyze CoLA, a convolutional
neural network model that is trained on this dataset and thus is
able to map circuits to secure low-overhead locking schemes by
analyzing extracted features of the benchmark circuits. Consider-
ing various resynthesized versions of the same circuits empowers
CoLA to learn features beyond the structure view alone. We use a
quantization method that can lower the computation overhead of
feature extraction in the classification of new, unseen data, hence
speeding up the locking assignment process. Results on over 10,000
data show high accuracy both in the training and validation phases.
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1 INTRODUCTION

As fabless manufacturing is at a crucial point, it is momentous
that semiconductor and electronic industries protect their hard-
ware Intellectual Properties (IPs) from malicious threats. Due to the
high cost of the hardware design, the designers need to preserve
their Integrated Circuits (ICs) from piracy. In addition, unautho-
rized overproduction by untrusted third-party foundries puts IC
designers at risk of not receiving the expected revenue for their
products. One of the promising solutions against these malicious
threats is logic locking and obfuscation [1-3], which adds extra
gates controlled by secret key inputs to each IC. In this case, the
circuit works properly only when the correct key is inserted, and it
malfunctions otherwise.

While there are more and more sequences of defenses [4-11]
and attacks [12-20] in logic locking area, the job of the defender
becomes more effortful because if a logic locking method is secure
against all but one attack, the defender is doomed! Thus, from the
defense perspective, one question becomes more critical than before:
how secure is a logic-locked circuit? On the other hand, the main goal
of logic locking is to protect an efficient and precious design from
being pirated and overproduced, and it is counter-intuitive if the
locking overhead is beyond a small, reasonable amount. So, another
important question is: how much overhead is imposed by locking?
In other words, a reliable framework is required to demonstrate
which type of locking works best for each circuit with the least
amount of overhead.

In addition, recent Machine Learning (ML) attacks on logic lock-
ing demonstrate the presence of structural and functional leakage
in state-of-the-art locking schemes. While all of these initiatives
are on the attacker side [21-23], to the best of our knowledge, no
research has been conducted on the opportunities that ML-based
analysis might provide for hardware designers to securely and yet
inexpensively protect their ICs in a fabless paradigm. We believe
that ML can make hardware protection easier, more proactive, and
more affordable. However, it can only do so if the underlying data
gives a comprehensive view of the environment. The Convolutional
Neural Network (CNN) is one of the best candidates to extensively
extract features of different circuits. Because the CNNs’ inputs are
in the shape of images and there is no available image dataset for
training, we create an image dataset of the locked benchmarks. With
the help of data augmentation, the CNN model can be trained on
thousands of data, gain high accuracy, and become noise-resilient.
The main contributions of this work are as follows:

o Developing a multi-label security and overhead degree dataset
consisting of more than 10,000 benchmarks locked with 8
distinct logic locking methods;

e Building and training an accurate CNN-based ML model
under 6 different attacks with hyperparameter tuning;
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Figure 1: CoLA framework

e Testing the created CNN model on seen and unseen logic-
locked benchmarks and evaluating the model’s security and
overhead prediction accuracy, which is greater than 97% in
the original model and greater than 95% in the quantized
version.

2 BACKGROUND AND RELATED WORKS

The selection of logic locking techniques in our machine learning
model is based on the manifold of the methods, consisting of tradi-
tional pre-SAT approaches [1-3] and advanced SAT-resilient [4, 5],
compound [6] and cyclic methods [7, 8]. The choice of logic locking
attacks is commonly based on the most powerful SAT-based oracle-
guided attacks whose repositories are publicly available [12-17].
On the other hand, the choice of the machine learning method is
centered on its functionality, data format, and prediction time. How-
ever, the training process of our universal model is not dependent on
the selection of defenses and attacks, and other locking/unlocking
methods can be applied with the same procedure to further train
the model.

2.1 Logic Locking Defenses

We can divide logic locking methods into pre-SAT and post-SAT
categories. In pre-SAT xor-based locking [1], a combination of
random buffers and inverters get matched with the key bits. After-
wards, with the usage of key bit controlled xor gates, it replaces
the selected buffers and inverters. If the hiding gate is a buffer, the
correct key bit is “0” while if that is an inverter, the correct key bit
is “1”. In addition, in Mux-based locking [2], random signals are
chosen and replaced with 2-1 muxs with the real signal and random
dummy ones as inputs and key bits as the selectors. The correct key
here must select the terminal to which the real signal is connected
and avoid the dummy signal. The LuT-based locking [3] is being
implemented to IC prefabrication. The goal is to separate the inputs
from the outputs so that every path from inputs to outputs passes
through a barrier. The use of LUTS ensures the existence of such
barriers. The key inputs are the values stored in the lookup tables.
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Both SAR-Lock [4] and Anti-SAT [5] are post-SAT locking so-
lutions that prevent the correct key leakage to the attacker by
increasing the number of Distinguishing Input Patterns (DIPs) that
may be used to prune a wrong key. In this situation, the original
SAT-based attack [12] will take exponentially more iterations to
find the correct key with respect to the key size. As an advanced
post-SAT method, Bilateral Logic Encryption (BLE) [6] uses obfus-
cation and integrated locking on a sensitive component of a circuit.
Using this method, the security impact, including the structural
complexity and the logic complexity, gets transmitted to the entire
circuit, whereas the performance overhead is less than the locking
of the whole circuit. In [7], random cycle insertion (RND-Cycle)
is presented, which inserts dummy cycles in the circuit with two
criteria. First, each cycle must have many entrance points. Second,
each cycle must include at least two removable edges. Last but
not least, dummy and real cycle insertion (R&D-cycle) [8] turns
an acyclic combinational circuit to a cyclic circuit before cyclically
locking it. In all of the above logic locking methods, the correct key
must be put in a tamper-proof memory soon after the fabricated
ICs return from the foundry.

2.2 Logic Locking Attacks

The original SAT-based attack [12] finds unique input patterns
called DIPs to exclude equivalence classes of keys.

To attack post-SAT locking approaches like SAR-Lock [4] and
Anti-SAT [5], Double-DIP [13] is proposed to repeatedly find two
DIPs (instead of one) in each iteration and prune incorrect keys.
Finding the key of a locked circuit considering the exactness limi-
tation of the SAT-based attack could lead to a huge amount of time
consumption, which is not ideal for real-world problems. AppSAT
[14] uses an approximate flow to find the probably-approximate-
correct key. Random sampling and a user-defined error threshold
can be used to establish the degree of approximation.

In order to attack RND-Cycle logic locking [7], an oracle-guided
attack called CycSAT [15] is proposed which assumes there exists
at least one correct key for which no structural cycle occurs in the
circuit. The attack first calculates a formula, presuming the circuit
has no sensitizable cycles, and then performs the original SAT-
based attack on the constrained locked circuit. While CycSAT uses
structural analysis to find the possible cycles in a cyclically locked
circuit, BeSAT [16] pursues a behavioral method to unlock cyclic
logic locking with the goal of reducing the missing cycle problem
of CycSAT. Finally, IcySAT [17] has been introduced that follows
a cycle unrolling approach, contrary to CycSAT which follows a
cycle breaking strategy.

2.3 Machine Learning Models

One of the machine learning methods to interpret the circuit struc-
ture is Graph Neural Network (GNN) which comes in handy. To
extract features of ICs, a GNN uses an undirected graph to show
the netlist, representation of circuits, and the gates’ connectivity.
In [24], an end-to-end GNN framework is proposed to predict the
runtime of the original SAT-based attack with respect to the ex-
tracted features of locked benchmarks using an adjacency matrix.
Although, graph representation preserves the topology of the cir-
cuit, using an undirected graph for netlist representation is one of
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the shortcomings of GNNs because the inputs/outputs neighbor-
hood of the netlist will be indistinguishable. Furthermore, existing
GNN models perform poorly in the presence of noise and changes
in the circuit structure, implying that the model is highly dependent
on the specific gates in the circuit but not on their dependent func-
tionalities to each other. For instance, in [22] authors incorporates a
standard cell library to assign gate feature maps to the GNN model,
which makes the model strictly dependent on the structure of the
circuit. Thereby, we use a regular CNN to receive image data of the
circuits with various structures as input. With the help of resynthe-
sis and data augmentation techniques, we can provide more circuit
structures for the same function to create a large-sized dataset. This
helps the model predict the label of new, unseen circuits with high
accuracy. In addition, the model will be able to recognize different
circuit structures under the same functionality.

3 CONVOLUTIONAL NEURAL NETWORK
LOGIC LOCKING ASSIGNMENT MODEL

In this section, we propose CoLA, a Convolutional neural network
logic Locking Assignment model that finds a low-area-overhead
secure locking method for a given circuit. First, we gather data and
use the area overhead and the error rate of each locked benchmark
to label the data and make them ready for training. Then, we train
CoLA on the augmented labeled data in order to extract their fea-
tures. Finally, the trained model is ready to assign a low-overhead
logic locking method to new, unseen data. The CoLA framework is
shown in Fig. 1.

3.1 Data Gathering, Labeling, and
Augmentation

A suitable dataset is needed so that the CNN model can learn many
features of the circuit for a high-accuracy prediction. Data labeling
has two phases. First, we need to find the security of each locking
technique for each benchmark. Second, we need to export the area
overhead of the locked benchmarks. Based on the fact that not all
the low-overhead locking methods can provide a secure design, we
need to define a parameter that relies both on the area overhead
and the security of the locking method.

Error Rate (ER) & Key Correctness Value (KCV): We define
ER of a key as the number of input patterns in which the locked
circuit under that key and the oracle are the same, divided by all the

a) Original c) Flip

R

d) Noise e) Sharpen f) Rotation

Figure 2: Visual examples of data augmentation
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input patterns. ER equal to 0 means that the key found by an attack
is the exact correct key. Approximate attacks find keys with an ER
between 0 and 1, which has been calculated by random sampling
of the oracle and the locked benchmark under the reported key.
Along the same lines, we define a reported key’s KCV as 1 — ER.
From the defender’s point of view, the higher the ER (i.e., the lower
the KCV), the more secure the locking technique.

Locking Area Overhead (LAO): We define LAO as the area
overhead of the locking technique on the original circuit.

To allocate a parameter that mutually considers the effects of
area and error rate, we define Low-overhead & Secure Label (LSL)
as the following:

LSL = aLAO + (1 - a)KCV 1)

where « is the weighted coefficient with an amount between 0 and
1 to put emphasis on the key correctness side or the area side. Based
on Equation 1, among all the predicted labels of a model, the lowest
LSL is the best one, which means that the chosen locking technique
has a trade-off between the lowest KCV (highest security) and the
lowest LAO (lowest area). As a circuit has multiple key ERs because
of the usage of different attack methods, we use the lowest key ER
for Equation 1 to account for the highest vulnerability of a locking
method against any of the attacks.

While thousands of data are needed to efficiently train a CNN, we
can use different layouts of each benchmark to augment our data.
To do so, we convert the BENCH benchmarks into Verilog using
the ABC tool [25]. Then, using different routing settings, we export
multiple random resynthesized layouts for each benchmark in terms
of the structure of the layouts, and the positions of the elements. The
different layouts capture variations in logic simplification, grouping
of related nodes, showing registers without fan-outs, and enabling
global net routing. As shown in Fig. 2, to get even more data, we
apply data augmentation techniques available in Keras [26] such
as noise injection, random brightness, random flip, and rotating,
to name a few [27]. As a result, we can get thousands of different
layouts as input data to CoLA. This data augmentation helps our
model to preserve its accuracy in case of noise injection, such as
various gate positions.

The CNN model needs a training dataset and a testing dataset to
get trained and tested. With the train dataset, the CNN model learns
features, and with the test dataset, it tests the model’s functionality.
We randomly allocate 10% of the gathered data to the test set and the
rest of it to the train set. The original input size of each image data
ranges from 800 X 800 pixels in smaller benchmarks to 4000 x 4000
pixels in larger benchmarks. To use a decreased size of data suitable
for the memory and processing resources available to us, we convert
all the images to a size of 250 X 250 pixels, which is small enough
to feed to the model, and large enough to preserve the structure
and be readable for the model.

3.2 Training CoLA

CoLA is a CNN-based machine learning model aimed at assigning
a low-overhead locking technique to unseen circuits. A CNN is
a framework that generally gets applied to explore visual data
in the form of images. CNNs commonly use the shared-weight
architecture of the convolution filters that slide along input data
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images with a pre-defined depth and provide a set of extracted
features known as feature maps. A CNN’s key benefit is that, if
defined properly without overfitting and underfitting, it can adapt
well to the dataset and give pretty accurate results on unseen data
as well. Overfitting refers to the term when a model works well
on the training dataset but poorly on the test dataset. Underfitting
happens when a model works poorly on both the train and test
datasets.

Each CNN model should have enough nodes in each layer to
understand features comprehensively. Also, the CNN model should
be deep-enough, i.e., should have enough numbers of layers, to
extract as many features as possible. In this work, we structure
a CNN with five convolution layers for feature extraction, each
followed by a maximum pooling layer, and three dense layers, also
known as fully connected layers, for classification. The number of
nodes in the last dense layers is equal to the number of labels. Each
convolution layer except the last one uses the LeakyReLU activation
function with an alpha parameter equal to 0.01. LeakyReLU returns
all the positive numbers to their own amount, and all the negative
numbers to 0.01 of their amount. The accuracy of the model, in
the training and validation phases, depends on many aspects such
as the size of the dataset, the number of layers, and the size of
the pooling layers. With the help of hyperparameter tuning, i.e.,
increasing the number of weights, changing the size of the pooling
layers, and increasing the number of layers, we can increase the
model’s accuracy while avoiding overfitting. The structure of CoLA
and its layers is shown in Fig. 3.

3.3 Evaluating CoLA

The training phase is an offline phase, which means users have
access to capacious memory as well as enough timing. So, training
a roughly large model, like CoLA, will not cause any timing or re-
source problems. But when it comes to the validation phase, which
is an online phase, the size of the model and dataset affect the execu-
tion time, as well as the consumed memory. So, we propose to use a
quantized version of CoLA for the validation phase. If the majority
of the numbers place in the range we demand, we can get high ac-
curacy of the model, while consuming fewer resources. A quantized
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model uses less memory and processes the computation faster. In
the case of overflow and underflow in the quantization process, we
assign the highest and lowest range demand, respectively.

4 EXPERIMENTAL RESULTS

We created CoLA on an Intel Core i7-10750H CPU, with a RAM size
of 16 GB. To build CNN, we used Python and the Tensorflow package.
To extract data in the form of images, we used the web edition of
Intel Quartus II. To create a labeled dataset, we gathered data using
the circuit benchmarks of MCNC’91 [28] and ISCAS’85 [29], and
different locking methods [1-8] on each benchmark shown in Table
1. We recorded the LAOs by comparing the area of each locked
benchmark with its original version. To gather the ERs, we ran
different attacks [12-17] on the locked benchmarks and chose the
minimum ER among the reported keys for each benchmark. The
setup for SAT [12], Double-DIP [13], and CycSAT [15] attacks is
the same as the default setup, and we consider it a timeout with an
error rate of 1, if the key cannot be found in one day of running.
For all the other attack methods (i.e., AppSAT [14], BeSAT [16],
and IcySAT [17]) we used the NEOS suite [30] with a default setup.
Then, we used equation 1 to assign “LSL” labels to each benchmark
with ¢ = 0.5 which means that both area overhead and security
degree are considered to be equally important. The distribution
of the LAO and ER in our dataset is shown in Fig. 4. Finally, we
converted the benchmarks to image netlists and augmented the

1 1 c— e cE——cnen ea» e cmeam
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Figure 4: Area overhead and error rate distributions of the
dataset
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Table 1: Logic locking benchmarks (#In, #K, and #G are the number of primary inputs, key inputs, and gates, respectively.)

XOR-based || MUX-based || LUT-based SAR-Lock | Anti-SAT BLE RND-Cycle || R&D-Cycle
Bench | #In [1] [2] (3] [4] [5] [6] (7] [8]
#G #K #G #K #G #K #G | #K #G | #K #G | #K #G #K #G #K
apex2 | 39 643 31 642 32 1780 | 292 644 | 31 687 | 38 713 | 40 630 20 670 40
apex4 | 10 5628 | 268 || 5628 | 269 18441 | 3356 || 5633 | 268 || 5381 | 10 5388 | 10 5380 | 20 5420 | 40
c432 36 170 8 170 10 1101 184 168 8 233 | 36 254 | 36 180 20 220 40
c499 41 212 10 214 12 1891 288 212 10 291 44 310 | 42 222 20 262 40
c880 60 404 19 385 22 1831 | 3112 || 403 19 504 | 60 536 60 403 20 443 40
c1908 | 33 925 44 734 46 1586 200 928 | 44 945 32 968 34 900 20 940 40
c5315 | 178 || 2427 | 115 || 2113 | 124 7841 | 1176 || 2424 | 115 || 2307 | 134 || 1495 | 178 || 2327 | 20 2367 40
dalu 75 2418 | 115 || 2417 | 119 4875 640 2436 | 115 || 2447 | 74 || 2491 | 76 2318 | 20 2358 40
des 256 || 6804 | 324 || 6809 | 336 17879 | 2856 || 6804 | 324 || 6550 | 38 7116 | 256 || 6493 | 20 6533 40
ex5 8 1109 | 53 1108 | 53 4627 | 888 || 1109 | 53 || 1072 | 8 1078 | 8 1075 | 20 1115 | 40
4 192 360 17 365 27 1538 272 355 17 527 94 821 | 192 358 20 398 40
i7 199 || 1384 | 66 1391 | 76 4921 | 908 || 1389 | 66 || 1340 | 12 || 1818 | 200 || 1335 | 20 1375 | 40
8 133 || 2589 | 123 || 2594 | 130 8144 | 1348 || 2598 | 66 2533 | 34 || 2802 | 134 || 2484 | 20 2524 | 40
i9 88 || 1089 | 52 1091 | 56 3477 | 608 || 1092 | 52 | 1088 | 26 || 1258 | 88 || 1055 | 20 1095 | 40
k2 46 1908 | 91 1907 | 93 4482 620 1906 | 91 1908 | 46 1933 | 46 1835 | 20 1875 40
seq 41 3697 | 176 || 3697 | 178 10829 | 1848 || 3700 | 176 || 3600 | 40 3627 | 42 3539 | 20 3579 | 40

gathered data to more than 10, 000 samples using the approaches
discussed in Section 3.

After creating the dataset, we trained CoLA and extracted the
features. Then, a quantized version of CoLA is used to get validation
computation fast. The accuracy of the training phase and testing
phase can be affected by several hyperparameters. Using Keras [26]
hyperparameter tuning, we increased the accuracy of the training
and validation phases with a loss value of below 0.1% and without
overfitting and underfitting. To avoid overtraining the model, we
used an early stopping technique to stop training the model if, after
five consecutive iterations, the model did not get higher accuracy
than previous iterations, or if the loss value got higher than 1. At
this stage, if the model accuracy was still not high enough, we
restructured the model layers by changing the size of the sliding
window, pooling window, and the number of layers.

Fig. 5 shows the values of validation accuracy and loss of CoLA
per epoch. We trained the model for 1500 epochs with the pri-
mary dataset, which is 240 elements of data without augmentation,
4560 elements of data with Keras-only augmentation, and 10560
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Figure 5: Validation accuracy and loss of CoLA per epoch
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elements of data with all the augmentation techniques mentioned.
As illustrated, with a small amount of data, the accuracy cannot
go higher than 69%, and the loss stays at a high rate of 4% which
both are not ideal. On the other hand, if we feed enough data to the
model, we can gain accuracy of 97.3% for the validation phase with
aloss value of around 0.05%, two of which show the model’s proper
functionality. The validation accuracy ensures that, unlike GNN
models, CoLA learns features beyond the structure and topology of
the circuit.

As a neural network uses inputs, weights, and activations to
predict the label, the values of each of the numbers affect the model’s
accuracy. The distribution of the values of weights and activations is
represented in Fig. 6. As the figure shows, over 99% of the numbers
fall within the 8-bit representation range, and less than 1% of the
numbers place in the 16-bit range. Consequently, using an 8-bit
quantized model, we can still achieve a very high level of accuracy.
Table 2 shows a group of data to compare the execution time of
the quantized model and the original model. We used a validation
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Table 2: Label prediction and execution time on a group of
benchmarks on the validation dataset using the 8-bit quan-
tized CoLA. The augmentation type is resynthesis. Pred. LSL:
Prediction Label with quantized CoLA, Q time: Quantized
model execution time, R time: Regular model execution time.

Bench | Overhead | Qtime | R time Pred. Same
(ms) (ms) LSL Label?
ex1010 5% 360 1179 Anti-SAT Yes
ex1010 10% 173 612 Anti-SAT Yes
c3540 25% 271 843 Anti-SAT Yes
c7552 5% 149 577 Anti-SAT No
€7552 5% 159 593 Anti-SAT Yes
c1355 5% 124 541 SAR-Lock No
c1355 10% 169 627 SAR-Lock Yes
c3450 5% 173 663 R&D-C Yes
3540 10% 233 760 R&D-C Yes
c7552 10% 207 827 R&D-C Yes
ex1010 25% 268 873 BLE Yes
c2670 5% 145 659 BLE Yes
c6288 5% 142 736 BLE Yes
c7552 25% 186 619 BLE Yes

set with some benchmark sizes larger than the training dataset
to check the accuracy of the model for the larger, unseen data.
Results show that the quantized CoLA assigns the logic locking
faster than the original model with a negligible loss. The accuracy
of the quantized model is 95.61% on 1056 items of validation data,
whereas the original model is 97.3%.

5 CONCLUSION

In this paper, we explored logic locking and obfuscation from a
defense point of view to answer two important questions: 1) how
secure is a logic-locked circuit?, and 2) how much overhead is im-
posed by locking? First, we gathered several benchmarks locked
with different methods and assigned a label to each, based on both
their security against state-of-the-art attacks and their overhead
compared to the original ones. Then, we augmented the gathered
data to more than 10,000 image circuits by using resynthesis as
well as image data augmentation methods. Finally, we proposed
CoLA, a CNN-based low-overhead logic locking assignment model
that extracts features from given data and uses them to assign a
low-overhead lock to a given circuit using an 8-bit quantized model.

Experimental results show that not only CoLA can efficiently
assign a secure low-overhead lock on new, unseen logic circuits, but
it can also pave the way for a comparative model for the security
and overhead analysis of future logic locking methods.
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