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ABSTRACT
Chip designers can secure their ICs against piracy and overproduc-

tion by employing logic locking and obfuscation. However, there

are numerous attacks that can examine the logic-locked netlist with

the assistance of an activated IC and extract the correct key using a

SAT solver. In addition, when it comes to fabrication, the imposed

area overhead is a challenge that needs careful attention to pre-

serve the design goals. Thus, to assign a logic locking method that

can provide security against diverse attacks and at the same time

add minimal area overhead, a comprehensive understanding of the

circuit structure is needed. Towards this goal, in this paper, we first

build a multi-label dataset by running different attacks on bench-

marks locked with existing logic locking methods and various key

sizes to capture the provided level of security and overhead for each

benchmark. Then we propose and analyze CoLA, a convolutional
neural network model that is trained on this dataset and thus is

able to map circuits to secure low-overhead locking schemes by

analyzing extracted features of the benchmark circuits. Consider-

ing various resynthesized versions of the same circuits empowers

CoLA to learn features beyond the structure view alone. We use a

quantization method that can lower the computation overhead of

feature extraction in the classification of new, unseen data, hence

speeding up the locking assignment process. Results on over 10,000

data show high accuracy both in the training and validation phases.

CCS CONCEPTS
• Security and privacy → Security in hardware; • Computing
methodologies → Supervised learning; • Hardware → Hardware

reliability screening.
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1 INTRODUCTION
As fabless manufacturing is at a crucial point, it is momentous

that semiconductor and electronic industries protect their hard-

ware Intellectual Properties (IPs) from malicious threats. Due to the

high cost of the hardware design, the designers need to preserve

their Integrated Circuits (ICs) from piracy. In addition, unautho-

rized overproduction by untrusted third-party foundries puts IC

designers at risk of not receiving the expected revenue for their

products. One of the promising solutions against these malicious

threats is logic locking and obfuscation [1–3], which adds extra

gates controlled by secret key inputs to each IC. In this case, the

circuit works properly only when the correct key is inserted, and it

malfunctions otherwise.

While there are more and more sequences of defenses [4–11]

and attacks [12–20] in logic locking area, the job of the defender

becomes more effortful because if a logic locking method is secure

against all but one attack, the defender is doomed! Thus, from the

defense perspective, one question becomesmore critical than before:

how secure is a logic-locked circuit? On the other hand, the main goal

of logic locking is to protect an efficient and precious design from

being pirated and overproduced, and it is counter-intuitive if the

locking overhead is beyond a small, reasonable amount. So, another

important question is: how much overhead is imposed by locking?
In other words, a reliable framework is required to demonstrate

which type of locking works best for each circuit with the least

amount of overhead.

In addition, recent Machine Learning (ML) attacks on logic lock-

ing demonstrate the presence of structural and functional leakage

in state-of-the-art locking schemes. While all of these initiatives

are on the attacker side [21–23], to the best of our knowledge, no

research has been conducted on the opportunities that ML-based

analysis might provide for hardware designers to securely and yet

inexpensively protect their ICs in a fabless paradigm. We believe

that ML can make hardware protection easier, more proactive, and

more affordable. However, it can only do so if the underlying data

gives a comprehensive view of the environment. The Convolutional

Neural Network (CNN) is one of the best candidates to extensively

extract features of different circuits. Because the CNNs’ inputs are

in the shape of images and there is no available image dataset for

training, we create an image dataset of the locked benchmarks.With

the help of data augmentation, the CNN model can be trained on

thousands of data, gain high accuracy, and become noise-resilient.

The main contributions of this work are as follows:

• Developing amulti-label security and overhead degree dataset

consisting of more than 10,000 benchmarks locked with 8

distinct logic locking methods;

• Building and training an accurate CNN-based ML model

under 6 different attacks with hyperparameter tuning;
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Figure 1: CoLA framework

• Testing the created CNN model on seen and unseen logic-

locked benchmarks and evaluating the model’s security and

overhead prediction accuracy, which is greater than 97% in

the original model and greater than 95% in the quantized

version.

2 BACKGROUND AND RELATEDWORKS
The selection of logic locking techniques in our machine learning

model is based on the manifold of the methods, consisting of tradi-

tional pre-SAT approaches [1–3] and advanced SAT-resilient [4, 5],

compound [6] and cyclic methods [7, 8]. The choice of logic locking

attacks is commonly based on the most powerful SAT-based oracle-

guided attacks whose repositories are publicly available [12–17].

On the other hand, the choice of the machine learning method is

centered on its functionality, data format, and prediction time. How-

ever, the training process of our universal model is not dependent on

the selection of defenses and attacks, and other locking/unlocking

methods can be applied with the same procedure to further train

the model.

2.1 Logic Locking Defenses
We can divide logic locking methods into pre-SAT and post-SAT

categories. In pre-SAT xor-based locking [1], a combination of

random buffers and inverters get matched with the key bits. After-

wards, with the usage of key bit controlled xor gates, it replaces

the selected buffers and inverters. If the hiding gate is a buffer, the

correct key bit is “0” while if that is an inverter, the correct key bit

is “1”. In addition, in mux-based locking [2], random signals are

chosen and replaced with 2-1 muxs with the real signal and random

dummy ones as inputs and key bits as the selectors. The correct key

here must select the terminal to which the real signal is connected

and avoid the dummy signal. The lut-based locking [3] is being

implemented to IC prefabrication. The goal is to separate the inputs

from the outputs so that every path from inputs to outputs passes

through a barrier. The use of luts ensures the existence of such

barriers. The key inputs are the values stored in the lookup tables.

Both SAR-Lock [4] and Anti-SAT [5] are post-SAT locking so-

lutions that prevent the correct key leakage to the attacker by

increasing the number of Distinguishing Input Patterns (DIPs) that

may be used to prune a wrong key. In this situation, the original

SAT-based attack [12] will take exponentially more iterations to

find the correct key with respect to the key size. As an advanced

post-SAT method, Bilateral Logic Encryption (BLE) [6] uses obfus-

cation and integrated locking on a sensitive component of a circuit.

Using this method, the security impact, including the structural

complexity and the logic complexity, gets transmitted to the entire

circuit, whereas the performance overhead is less than the locking

of the whole circuit. In [7], random cycle insertion (RND-Cycle)

is presented, which inserts dummy cycles in the circuit with two

criteria. First, each cycle must have many entrance points. Second,

each cycle must include at least two removable edges. Last but

not least, dummy and real cycle insertion (R&D-cycle) [8] turns

an acyclic combinational circuit to a cyclic circuit before cyclically

locking it. In all of the above logic locking methods, the correct key

must be put in a tamper-proof memory soon after the fabricated

ICs return from the foundry.

2.2 Logic Locking Attacks
The original SAT-based attack [12] finds unique input patterns

called DIPs to exclude equivalence classes of keys.

To attack post-SAT locking approaches like SAR-Lock [4] and

Anti-SAT [5], Double-DIP [13] is proposed to repeatedly find two

DIPs (instead of one) in each iteration and prune incorrect keys.

Finding the key of a locked circuit considering the exactness limi-

tation of the SAT-based attack could lead to a huge amount of time

consumption, which is not ideal for real-world problems. AppSAT

[14] uses an approximate flow to find the probably-approximate-

correct key. Random sampling and a user-defined error threshold

can be used to establish the degree of approximation.

In order to attack RND-Cycle logic locking [7], an oracle-guided

attack called CycSAT [15] is proposed which assumes there exists

at least one correct key for which no structural cycle occurs in the

circuit. The attack first calculates a formula, presuming the circuit

has no sensitizable cycles, and then performs the original SAT-

based attack on the constrained locked circuit. While CycSAT uses

structural analysis to find the possible cycles in a cyclically locked

circuit, BeSAT [16] pursues a behavioral method to unlock cyclic

logic locking with the goal of reducing the missing cycle problem

of CycSAT. Finally, IcySAT [17] has been introduced that follows

a cycle unrolling approach, contrary to CycSAT which follows a

cycle breaking strategy.

2.3 Machine Learning Models
One of the machine learning methods to interpret the circuit struc-

ture is Graph Neural Network (GNN) which comes in handy. To

extract features of ICs, a GNN uses an undirected graph to show

the netlist, representation of circuits, and the gates’ connectivity.

In [24], an end-to-end GNN framework is proposed to predict the

runtime of the original SAT-based attack with respect to the ex-

tracted features of locked benchmarks using an adjacency matrix.

Although, graph representation preserves the topology of the cir-

cuit, using an undirected graph for netlist representation is one of
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the shortcomings of GNNs because the inputs/outputs neighbor-

hood of the netlist will be indistinguishable. Furthermore, existing

GNN models perform poorly in the presence of noise and changes

in the circuit structure, implying that the model is highly dependent

on the specific gates in the circuit but not on their dependent func-

tionalities to each other. For instance, in [22] authors incorporates a

standard cell library to assign gate feature maps to the GNN model,

which makes the model strictly dependent on the structure of the

circuit. Thereby, we use a regular CNN to receive image data of the

circuits with various structures as input. With the help of resynthe-

sis and data augmentation techniques, we can provide more circuit

structures for the same function to create a large-sized dataset. This

helps the model predict the label of new, unseen circuits with high

accuracy. In addition, the model will be able to recognize different

circuit structures under the same functionality.

3 CONVOLUTIONAL NEURAL NETWORK
LOGIC LOCKING ASSIGNMENT MODEL

In this section, we propose CoLA, a Convolutional neural network
logic Locking Assignment model that finds a low-area-overhead

secure locking method for a given circuit. First, we gather data and

use the area overhead and the error rate of each locked benchmark

to label the data and make them ready for training. Then, we train

CoLA on the augmented labeled data in order to extract their fea-

tures. Finally, the trained model is ready to assign a low-overhead

logic locking method to new, unseen data. The CoLA framework is

shown in Fig. 1.

3.1 Data Gathering, Labeling, and
Augmentation

A suitable dataset is needed so that the CNN model can learn many

features of the circuit for a high-accuracy prediction. Data labeling

has two phases. First, we need to find the security of each locking

technique for each benchmark. Second, we need to export the area

overhead of the locked benchmarks. Based on the fact that not all

the low-overhead locking methods can provide a secure design, we

need to define a parameter that relies both on the area overhead

and the security of the locking method.

Error Rate (ER) & Key Correctness Value (KCV): We define

ER of a key as the number of input patterns in which the locked

circuit under that key and the oracle are the same, divided by all the

a) Original b) Blur c) Flip

d) Noise e) Sharpen f) Rotation

Figure 2: Visual examples of data augmentation

input patterns. ER equal to 0 means that the key found by an attack

is the exact correct key. Approximate attacks find keys with an ER

between 0 and 1, which has been calculated by random sampling

of the oracle and the locked benchmark under the reported key.

Along the same lines, we define a reported key’s 𝐾𝐶𝑉 as 1 − 𝐸𝑅.
From the defender’s point of view, the higher the 𝐸𝑅 (i.e., the lower

the 𝐾𝐶𝑉 ), the more secure the locking technique.

Locking Area Overhead (LAO): We define LAO as the area

overhead of the locking technique on the original circuit.

To allocate a parameter that mutually considers the effects of

area and error rate, we define Low-overhead & Secure Label (LSL)

as the following:

𝐿𝑆𝐿 = 𝛼𝐿𝐴𝑂 + (1 − 𝛼)𝐾𝐶𝑉 (1)

where 𝛼 is the weighted coefficient with an amount between 0 and

1 to put emphasis on the key correctness side or the area side. Based

on Equation 1, among all the predicted labels of a model, the lowest

LSL is the best one, which means that the chosen locking technique

has a trade-off between the lowest KCV (highest security) and the

lowest LAO (lowest area). As a circuit has multiple key ERs because

of the usage of different attack methods, we use the lowest key ER

for Equation 1 to account for the highest vulnerability of a locking

method against any of the attacks.

While thousands of data are needed to efficiently train a CNN, we

can use different layouts of each benchmark to augment our data.

To do so, we convert the .BENCH benchmarks into Verilog using

the ABC tool [25]. Then, using different routing settings, we export

multiple random resynthesized layouts for each benchmark in terms

of the structure of the layouts, and the positions of the elements. The

different layouts capture variations in logic simplification, grouping

of related nodes, showing registers without fan-outs, and enabling

global net routing. As shown in Fig. 2, to get even more data, we

apply data augmentation techniques available in Keras [26] such
as noise injection, random brightness, random flip, and rotating,

to name a few [27]. As a result, we can get thousands of different

layouts as input data to CoLA. This data augmentation helps our

model to preserve its accuracy in case of noise injection, such as

various gate positions.

The CNN model needs a training dataset and a testing dataset to

get trained and tested. With the train dataset, the CNNmodel learns

features, and with the test dataset, it tests the model’s functionality.

We randomly allocate 10% of the gathered data to the test set and the

rest of it to the train set. The original input size of each image data

ranges from 800 × 800 pixels in smaller benchmarks to 4000 × 4000

pixels in larger benchmarks. To use a decreased size of data suitable

for thememory and processing resources available to us, we convert

all the images to a size of 250 × 250 pixels, which is small enough

to feed to the model, and large enough to preserve the structure

and be readable for the model.

3.2 Training CoLA
CoLA is a CNN-based machine learning model aimed at assigning

a low-overhead locking technique to unseen circuits. A CNN is

a framework that generally gets applied to explore visual data

in the form of images. CNNs commonly use the shared-weight

architecture of the convolution filters that slide along input data
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Figure 3: CoLA structure

images with a pre-defined depth and provide a set of extracted

features known as feature maps. A CNN’s key benefit is that, if

defined properly without overfitting and underfitting, it can adapt

well to the dataset and give pretty accurate results on unseen data

as well. Overfitting refers to the term when a model works well

on the training dataset but poorly on the test dataset. Underfitting

happens when a model works poorly on both the train and test

datasets.

Each CNN model should have enough nodes in each layer to

understand features comprehensively. Also, the CNN model should

be deep-enough, i.e., should have enough numbers of layers, to

extract as many features as possible. In this work, we structure

a CNN with five convolution layers for feature extraction, each

followed by a maximum pooling layer, and three dense layers, also

known as fully connected layers, for classification. The number of

nodes in the last dense layers is equal to the number of labels. Each

convolution layer except the last one uses the LeakyReLU activation

function with an alpha parameter equal to 0.01. LeakyReLU returns

all the positive numbers to their own amount, and all the negative

numbers to 0.01 of their amount. The accuracy of the model, in

the training and validation phases, depends on many aspects such

as the size of the dataset, the number of layers, and the size of

the pooling layers. With the help of hyperparameter tuning, i.e.,

increasing the number of weights, changing the size of the pooling

layers, and increasing the number of layers, we can increase the

model’s accuracy while avoiding overfitting. The structure of CoLA
and its layers is shown in Fig. 3.

3.3 Evaluating CoLA
The training phase is an offline phase, which means users have

access to capacious memory as well as enough timing. So, training

a roughly large model, like CoLA, will not cause any timing or re-

source problems. But when it comes to the validation phase, which

is an online phase, the size of the model and dataset affect the execu-

tion time, as well as the consumed memory. So, we propose to use a

quantized version of CoLA for the validation phase. If the majority

of the numbers place in the range we demand, we can get high ac-

curacy of the model, while consuming fewer resources. A quantized

model uses less memory and processes the computation faster. In

the case of overflow and underflow in the quantization process, we

assign the highest and lowest range demand, respectively.

4 EXPERIMENTAL RESULTS
We created CoLA on an Intel Core i7-10750H CPU, with a RAM size

of 16 GB. To build CNN, we used Python and the Tensorflow package.

To extract data in the form of images, we used the web edition of

Intel Quartus II. To create a labeled dataset, we gathered data using

the circuit benchmarks of MCNC’91 [28] and ISCAS’85 [29], and

different locking methods [1–8] on each benchmark shown in Table

1. We recorded the LAOs by comparing the area of each locked

benchmark with its original version. To gather the ERs, we ran

different attacks [12–17] on the locked benchmarks and chose the

minimum ER among the reported keys for each benchmark. The

setup for SAT [12], Double-DIP [13], and CycSAT [15] attacks is

the same as the default setup, and we consider it a timeout with an

error rate of 1, if the key cannot be found in one day of running.

For all the other attack methods (i.e., AppSAT [14], BeSAT [16],

and IcySAT [17]) we used the NEOS suite [30] with a default setup.

Then, we used equation 1 to assign “LSL” labels to each benchmark

with 𝛼 = 0.5 which means that both area overhead and security

degree are considered to be equally important. The distribution

of the LAO and ER in our dataset is shown in Fig. 4. Finally, we

converted the benchmarks to image netlists and augmented the
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Table 1: Logic locking benchmarks (#In, #K, and #G are the number of primary inputs, key inputs, and gates, respectively.)

Bench #In

XOR-based MUX-based LUT-based SAR-Lock Anti-SAT BLE RND-Cycle R&D-Cycle

[1] [2] [3] [4] [5] [6] [7] [8]

#G #K #G #K #G #K #G #K #G #K #G #K #G #K #G #K

apex2 39 643 31 642 32 1780 292 644 31 687 38 713 40 630 20 670 40

apex4 10 5628 268 5628 269 18441 3356 5633 268 5381 10 5388 10 5380 20 5420 40

c432 36 170 8 170 10 1101 184 168 8 233 36 254 36 180 20 220 40

c499 41 212 10 214 12 1891 288 212 10 291 44 310 42 222 20 262 40

c880 60 404 19 385 22 1831 3112 403 19 504 60 536 60 403 20 443 40

c1908 33 925 44 734 46 1586 200 928 44 945 32 968 34 900 20 940 40

c5315 178 2427 115 2113 124 7841 1176 2424 115 2307 134 1495 178 2327 20 2367 40

dalu 75 2418 115 2417 119 4875 640 2436 115 2447 74 2491 76 2318 20 2358 40

des 256 6804 324 6809 336 17879 2856 6804 324 6550 38 7116 256 6493 20 6533 40

ex5 8 1109 53 1108 53 4627 888 1109 53 1072 8 1078 8 1075 20 1115 40

i4 192 360 17 365 27 1538 272 355 17 527 94 821 192 358 20 398 40

i7 199 1384 66 1391 76 4921 908 1389 66 1340 12 1818 200 1335 20 1375 40

i8 133 2589 123 2594 130 8144 1348 2598 66 2533 34 2802 134 2484 20 2524 40

i9 88 1089 52 1091 56 3477 608 1092 52 1088 26 1258 88 1055 20 1095 40

k2 46 1908 91 1907 93 4482 620 1906 91 1908 46 1933 46 1835 20 1875 40

seq 41 3697 176 3697 178 10829 1848 3700 176 3600 40 3627 42 3539 20 3579 40

gathered data to more than 10, 000 samples using the approaches

discussed in Section 3.

After creating the dataset, we trained CoLA and extracted the

features. Then, a quantized version of CoLA is used to get validation

computation fast. The accuracy of the training phase and testing

phase can be affected by several hyperparameters. Using Keras [26]
hyperparameter tuning, we increased the accuracy of the training

and validation phases with a loss value of below 0.1% and without

overfitting and underfitting. To avoid overtraining the model, we

used an early stopping technique to stop training the model if, after

five consecutive iterations, the model did not get higher accuracy

than previous iterations, or if the loss value got higher than 1. At

this stage, if the model accuracy was still not high enough, we

restructured the model layers by changing the size of the sliding

window, pooling window, and the number of layers.

Fig. 5 shows the values of validation accuracy and loss of CoLA
per epoch. We trained the model for 1500 epochs with the pri-

mary dataset, which is 240 elements of data without augmentation,

4560 elements of data with Keras-only augmentation, and 10560
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elements of data with all the augmentation techniques mentioned.

As illustrated, with a small amount of data, the accuracy cannot

go higher than 69%, and the loss stays at a high rate of 4% which

both are not ideal. On the other hand, if we feed enough data to the

model, we can gain accuracy of 97.3% for the validation phase with

a loss value of around 0.05%, two of which show the model’s proper

functionality. The validation accuracy ensures that, unlike GNN

models, CoLA learns features beyond the structure and topology of

the circuit.

As a neural network uses inputs, weights, and activations to

predict the label, the values of each of the numbers affect themodel’s

accuracy. The distribution of the values of weights and activations is

represented in Fig. 6. As the figure shows, over 99% of the numbers

fall within the 8-bit representation range, and less than 1% of the

numbers place in the 16-bit range. Consequently, using an 8-bit

quantized model, we can still achieve a very high level of accuracy.

Table 2 shows a group of data to compare the execution time of

the quantized model and the original model. We used a validation
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Table 2: Label prediction and execution time on a group of
benchmarks on the validation dataset using the 8-bit quan-
tized CoLA. The augmentation type is resynthesis. Pred. LSL:
Prediction Label with quantized CoLA, Q time: Quantized
model execution time, R time: Regularmodel execution time.

Bench Overhead Q time R time Pred. Same

(ms) (ms) LSL Label?

ex1010 5% 360 1179 Anti-SAT Yes

ex1010 10% 173 612 Anti-SAT Yes

c3540 25% 271 843 Anti-SAT Yes

c7552 5% 149 577 Anti-SAT No

c7552 5% 159 593 Anti-SAT Yes

c1355 5% 124 541 SAR-Lock No

c1355 10% 169 627 SAR-Lock Yes

c3450 5% 173 663 R&D-C Yes

c3540 10% 233 760 R&D-C Yes

c7552 10% 207 827 R&D-C Yes

ex1010 25% 268 873 BLE Yes

c2670 5% 145 659 BLE Yes

c6288 5% 142 736 BLE Yes

c7552 25% 186 619 BLE Yes

set with some benchmark sizes larger than the training dataset

to check the accuracy of the model for the larger, unseen data.

Results show that the quantized CoLA assigns the logic locking

faster than the original model with a negligible loss. The accuracy

of the quantized model is 95.61% on 1056 items of validation data,

whereas the original model is 97.3%.

5 CONCLUSION
In this paper, we explored logic locking and obfuscation from a

defense point of view to answer two important questions: 1) how
secure is a logic-locked circuit?, and 2) how much overhead is im-
posed by locking? First, we gathered several benchmarks locked

with different methods and assigned a label to each, based on both

their security against state-of-the-art attacks and their overhead

compared to the original ones. Then, we augmented the gathered

data to more than 10,000 image circuits by using resynthesis as

well as image data augmentation methods. Finally, we proposed

CoLA, a CNN-based low-overhead logic locking assignment model

that extracts features from given data and uses them to assign a

low-overhead lock to a given circuit using an 8-bit quantized model.

Experimental results show that not only CoLA can efficiently

assign a secure low-overhead lock on new, unseen logic circuits, but

it can also pave the way for a comparative model for the security

and overhead analysis of future logic locking methods.
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