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Abstract—The proposed two-stage ensemble machine learning
model aims to bridge the gap between energy harvesting and
vibration sensing applications for lead zirconate titanate (PZT)
and similar piezoceramic materials by enabling one device to
perform both functions simultaneously. Two PZT cantilever
configurations were tested: one without a tip mass for maximum
linearity at low frequencies and one with a tip mass for maximum
energy output. The highest absolute prediction error on the
testing set is 19% and 7%, respectively. While the R2 score
remained nearly 1, the PZT cantilever with the tip mass showed
an 11% lower mean absolute error (MAE) and 38% lower mean
squared error (MSE) compared to the PZT without, suggesting
that PZT cantilevers in energy harvesting configurations can be
used to predict acceleration with acceptable accuracy.

Index Terms—PZT, vibration energy harvesting, vibration
sensing, accelerometer, machine learning.

I. INTRODUCTION

Lead zirconate titanate (PZT) has been used in devices for
sensing mechanical force and for harvesting kinetic energy
with separate device configurations optimized for each ap-
plication in terms of size, power output, resonant frequency,
bandwidth, and sensitivity to acceleration [1]–[9]. For exam-
ple, PZT devices designed for measuring acceleration may be
small in size and have a high resonant frequency to achieve
a linear response in the lower frequencies, while a PZT
device designed for energy harvesting may be comparatively
large and have a low resonant frequency to match ambient
vibration frequencies in the intended environment. We studied
how PZT devices respond to acceleration and whether a
single device could simultaneously be used for both energy
harvesting and vibration sensing. This paper presents that a
PZT cantilever set up for energy harvesting can also accurately
predict acceleration through machine learning.

Section II reviews piezoelectric transducers and the ma-
chine learning models used. Section III presents the proposed
method to predict acceleration. Section IV shows the results
and a performance comparison between the PZT cantilever
setups. Finally, Section V concludes the paper.

II. BACKGROUND

A. Piezoelectric Transducer

PZT is a commonly used piezoelectric ceramic composition
for sensors and actuators due to its strong piezoelectric ef-
fect [1]. For example, bending a PZT film induces mechanical

stress and generates a voltage across the PZT terminals and
vice versa. The bidirectional capability to act as a sensor
or as an actuator is what makes a PZT device a transducer.
Piezoelectric transducers have applications in acoustic sensors
as microphones [10], in acoustic actuators as speakers [11],
and in energy harvesting by converting vibrations or kinetic
energy in the environment to electrical energy [12].

B. Machine Learning Models Used

Machine learning approaches include classification and
regression modeling. Classification models predict discrete
classes, whereas regression models predict continuous quanti-
ties. The models used in this paper are multi-layer perceptron
(MLP), extra trees, and support vector regressors. The MLP
model is a feedforward neural network comprising input,
output, and inner “hidden” layers of artificial neurons [13].
The extra trees model combines multiple decision tree models,
each constructed from a random subset of the training data,
with random node splitting for each feature [14]. The support
vector model uses a kernel function to map features into a
higher dimensional space and then finds a hyperplane that
maximally separates the data [15].

III. PROPOSED METHOD

A. System Overview

A block diagram for applications using a PZT device
for both energy harvesting and vibration sensing is shown
in Fig. 1. The power management circuit (PMC) manages
the power delivered to the load, and a microcontroller unit
(MCU) or field-programmable gate array (FPGA) implements
a machine learning model to predict acceleration. This work
focuses on the machine learning model.

B. Machine Learning Model

The machine learning model (Fig. 2) is based on a su-
pervised learning approach with an accelerometer’s output
converted to acceleration in g as the target. The predictors are
the PZT output voltage amplitude and frequency. A two-stage
ensemble improves the accuracy over that of a single model
by combining the outputs of several different models. The
first stage comprises three parallel models to provide diversity:
MLP, extra trees, and support vector regressors, whose outputs
are the input to a single extra trees regressor in the second
stage to calculate the final predicted acceleration.
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Fig. 2. Machine learning model block diagram.

IV. RESULTS AND DISCUSSION

A. Experiment Setup

The data was collected using an analog ±8 g micro-
electromechanical systems (MEMS) accelerometer (Analog
Devices ADXL354) and a PZT cantilever (Mide S118-J1SS-
1808YB) mounted on a modal shaker (The Modal Shop
K2007E01) at constant ambient temperature (Fig. 3). 3D-
printed braces fixed the accelerometer and PZT cantilever to
the shaker platform to keep the devices from coming loose
during testing, to minimize variance between samples, and to
minimize any resonance extrinsic to the devices. Measurement
probes and wires were mounted above the shaker platform to
avoid weighing down or unbalancing the shaker. The vibration
is along the z-axis and parallel to the force of gravity, and the
PZT cantilever setup used is effective in only one direction, so
only the accelerometer’s z-axis output was measured and used
as a reference for modeling. The general form of a sinusoid
to represent position is

x(t) = A sin(ωt+ φ), (1)

and acceleration is the second derivative of position

∂2x

∂t2
= −Aω2 sin(ωt+ φ), (2)

so a quadratic relationship between acceleration and frequency
was expected.

The accelerometer and PZT cantilever output voltages were
recorded while sweeping the shaker frequency from 5–200 Hz

PZT

Accelerometer

Fig. 3. Shaker platform with the accelerometer and PZT cantilever mounted.

at a fixed sinusoidal input amplitude between 25–250 mV in
25 mV increments and with the shaker gain set to 10 dB to
cover the reference accelerometer’s full operating range. The
experiment was successively repeated three times each, with
and without mass attachments, specifically magnets, at the end
of the PZT cantilever, to ensure repeatability and to observe
how the machine learning model performance changes with
the PZT configuration. The setup with the tip mass represents
the case for maximum energy due to the higher PZT deflection
and higher output voltage, and the setup without the tip mass
was expected to be more linear at low frequencies due to the
higher PZT resonant frequency.

B. Measurement Results

The accelerometer frequency response was converted to
acceleration in g using a two-point calibration and shows an
approximately linear increase in magnitude with frequency up
to 50 Hz at five different amplitudes before saturating (Fig. 4).
The shaker displacement decreased with frequency, so the
response deviates from the theoretical quadratic relationship in
(2) assuming constant displacement. The saturation at higher
frequencies is likely due to the shaker behavior because the
saturation occurs at all the input amplitudes tested.
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Fig. 4. Accelerometer magnitude from 5–200 Hz.



The PZT cantilever frequency response exhibits a primary
resonant peak whose magnitude and frequency depends on
the PZT configuration. The PZT cantilever without the tip
mass has a resonant peak around 80 Hz (Fig. 5(a)), decreasing
to around 20 Hz with the tip mass (Fig. 5(b)). Another
resonant peak appears around 30 Hz, possibly due to the
measurement probes and wires not being mounted securely
and thus systematically interfacing with the shaker platform
during measurement. The PZT cantilever without the tip mass
is more linear up to 30 Hz with acceleration, while the tip
mass increases the PZT output voltage amplitude up to 35 V
and hence the amount of energy harvested.
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Fig. 5. PZT magnitude from 5–200 Hz (a) without the tip mass, (b) with the
tip mass.

The standard magnitude deviation for the three sample
sweeps in each PZT configuration with a majority of the points
concentrated near zero indicates a consistent PZT response
across the measured frequency range (Figs. 6(a) and 6(b)).
The deviation is greatest around the resonant peaks and may
benefit from a shaker setup with no loose probes or wires that
could alter the system dynamics.

The PZT and accelerometer are approximately 180◦ out
of phase at low frequencies (Figs. 7(a) and 7(b)), which
corresponds to a delay related to the deflection time for the
free end of the PZT cantilever to swing in the same direction
as the fixed end mounted to the shaker. The absolute phase
difference and corresponding delay decreases with frequency
until after the resonant peak where the PZT and accelerometer
are nearly in phase.
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Fig. 6. PZT standard magnitude deviation from 5–200 Hz (a) without the tip
mass, (b) with the tip mass.
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Fig. 7. PZT phase relative to the accelerometer from 5–200 Hz (a) without
the tip mass, (b) with the tip mass.



C. Machine Learning Model Predictions

The preprocessed measurement data, with 4830 total sam-
ples for each PZT configuration, was normalized and randomly
split with 70% used for training and 30% used for testing. The
models were trained with the training set and then evaluated
with the testing set using the scikit-learn library in Python to
determine the performance (Tables I and II).

TABLE I
MODEL PERFORMANCE FOR THE PZT WITHOUT THE TIP MASS

Statistic
Stage 1 Stage 2

MLP Extra Trees Support Vector Extra Trees

MAE 0.1664 0.04884 0.3741 0.01760
MSE 0.08865 0.01417 0.4799 0.003353
R2 0.9881 0.9981 0.9357 0.9996

TABLE II
MODEL PERFORMANCE FOR THE PZT WITH THE TIP MASS

Statistic
Stage 1 Stage 2

MLP Extra Trees Support Vector Extra Trees

MAE 0.1997 0.03779 0.5018 0.01561
MSE 0.08717 0.007062 0.5437 0.002078
R2 0.9883 0.9991 0.9272 0.9997

The performance metrics considered are the mean absolute
error (MAE), mean squared error (MSE), and coefficient of
determination R2. The second-stage model statistics show the
overall ensemble model performance, and the higher R2 score
in the second stages indicates that the ensemble better fits the
data compared to the individual first-stage models. Although a
high R2 score does not necessarily mean the model generalizes
well to new data, the score suggests a consistent PZT response
between the three sample sweeps. The PZT cantilever with
the tip mass yields better accuracy compared to the PZT
cantilever without, possibly due to the larger output dynamic
range providing better separation between the samples. The
MAE is only reduced by 11.3% from 0.01760 g to 0.01561 g,
but the MSE is reduced by 38.0% from 0.003353 to 0.002078
by adding the tip mass, which indicates fewer prediction
outliers and is confirmed visually by Figs. 8 and 9 showing
the predicted acceleration and relative percent error for each
prediction. The maximum absolute prediction error is reduced
from 19% to 7% by adding the tip mass.

V. CONCLUSION AND FUTURE WORK

The PZT cantilever could be used simultaneously for energy
harvesting and as a vibration sensor for predicting absolute
acceleration with acceptable accuracy via machine learning.
Predictions could include negative acceleration by considering
the PZT voltage polarity in the model. Predictions could also
be extended to the x-axis and y-axis or partial orientations
with a multi-directional PZT system. Future work includes
testing with multiple PZT cantilevers to study process and
temperature variation effects on accuracy and to study the
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Fig. 8. Predicted vs. actual acceleration.
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Fig. 9. Prediction error vs. actual acceleration.

model’s generalizability with vibration inputs resembling real-
world scenarios.
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