
The Annals of Applied Probability
2022, Vol. 32, No. 1, 461–496
https://doi.org/10.1214/21-AAP1685
© Institute of Mathematical Statistics, 2022

GIBBS POSTERIOR CONVERGENCE AND THE THERMODYNAMIC
FORMALISM

BY KEVIN MCGOFF1, SAYAN MUKHERJEE2 AND ANDREW B. NOBEL3

1Department of Mathematics and Statistics, University of North Carolina at Charlotte, kmcgoff1@uncc.edu
2Departments of Statistical Science, Mathematics, Computer Science, and Biostatistics & Bioinformatics, Duke University,

sayan@stat.duke.edu
3Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, nobel@email.unc.edu

In this paper we consider the posterior consistency of Bayesian infer-
ence procedures when the family of models consists of appropriate stochastic
processes. Specifically, we suppose that one observes an unknown ergodic
process and one has access to a family of models consisting of dependent
processes. In this context, we consider Gibbs posterior inference, which is a
loss-based generalization of standard Bayesian inference. Our main results
characterize the asymptotic behavior of the Gibbs posterior distributions on
the space of models. Furthermore, we show that in the case of properly spec-
ified models our convergence results may be used to establish posterior con-
sistency. Our model processes are defined via the thermodynamic formalism
for dynamical systems, and they allow for a large degree of dependence, in-
cluding both Markov chains of unbounded orders and processes that are not
Markov of any order. This work establishes close connections between Gibbs
posterior inference and the thermodynamic formalism for dynamical systems,
which we hope will lead to new questions and results in both nonparametric
Bayesian analysis and the thermodynamic formalism.

1. Introduction. In this paper we study the posterior convergence of a generalized Bayes
inference procedure for fitting an observed stochastic process to a model family consisting of
a suitably parametrized collection of Gibbs measures. We focus on Gibbs measures for finite
alphabet ergodic processes, which we will call Gibbs processes. Gibbs processes include irre-
ducible Markov chains and processes with infinite order dependence. Standard approaches to
Bayesian inference require full specification or substantial knowledge of the data generating
process, which is usually assumed to belong to the family of models under study. However,
when studying dynamical or other complex systems, this requirement is difficult to verify
and often unrealistic. Instead, we assume the existence of a loss-function that can be used to
assess how well a sequence generated by a model process fits the observed data sequence.
We then study the resulting Gibbs posterior, which is a loss-based extension of the standard
Bayesian posterior that does not require specification of the data generating model. The stan-
dard Bayesian posterior corresponds to the special case of negative log-likelihood loss.

We characterize the asymptotic behavior of the Gibbs posterior distribution on the param-
eter space as the number of observations tends to infinity. In particular, we establish that the
limiting exponential growth rate of the normalizing constant (partition function) of the Gibbs
posterior is characterized by a variational problem over the space of joinings of the observed
and model systems. Moreover, we show that the Gibbs posterior distributions concentrate
around the solution set of this variational problem. The variational problem is a general-
ization of the well-known variational principle for Gibbs measures. In the case of properly
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specified models our convergence results may be used to establish posterior consistency. We
apply the posterior convergence result to the direct observation of a Gibbs process as well as
hidden Gibbs processes, generalizing previous posterior consistency results for Markov and
hidden Markov models in Bayesian nonparametrics.

Both Gibbs posteriors and Gibbs measures have close connections with statistical physics;
our analysis shows that they provide a natural framework for generalized Bayesian inference.
Our work relies in part on ideas from the thermodynamic formalism and the theory of dy-
namical systems, and one of its primary contributions is demonstrating how these ideas can
be brought to bear on problems of statistical inference.

1.1. Connections to previous work. The work in this paper lies at the intersection of
several research areas, including Bayesian nonparametrics, inference for stochastic processes,
generalized Bayes inference, and ergodic theory and dynamical systems. Here we discuss
some related literature.

In the i.i.d. setting, Doob [13] established Bayesian posterior consistency for almost every
parameter value in the support of the prior using martingale methods. Subsequently, Schwartz
[48] gave necessary and sufficient conditions for posterior consistency at individual param-
eter values. The challenges of establishing posterior consistency for nonparametric models
were highlighted by Diaconis and Freedman in [11] (see also [12]). Bayesian nonparametrics
remains an active area of research: for a detailed review we refer the reader to the recent
books of Ghosal and van der Vaart [19] and of Ghosh and Ramamoorthi [20].

Recent work on inference from stationary ergodic processes and dynamical systems in-
cludes denoising (filtering) [30, 31], consistency of maximum likelihood estimation [38],
forecasting and density estimation [24, 50], empirical risk minimization [40, 41], as well
data assimilation and uncertainty quantification [32]. More information can be found in the
survey [39].

A number of researchers have been working on Bayesian posterior consistency for finite
state hidden Markov chains [8, 14, 17, 51]. Our work generalizes these results, covering the
setting of deterministic dynamics in the state transitions, as well as models with longer range
dependencies.

Shalizi [49] considered posterior consistency for dependent processes, extending the
testing-based approach of Schwartz [48]. His work describes a framework for establishing
posterior consistency based on a set of general assumptions, among which are (i) the exis-
tence of a sieve-like structure for capacity control that must be compatible with the prior, the
model family, and the observed process, (ii) finiteness of the relative entropy rate between the
observed process and a set of models having positive prior measure, and (iii) the existence of
a dominating measure for the model family. In the setting studied here, the first condition is
difficult to verify and the latter two conditions will not hold in general.

Our approach and results differ from those in the existing literature in several respects. We
do not adopt the testing-based (or sieve-based) approach of Schwartz and others. Instead, our
arguments proceed in a direct way from the definition of the Gibbs model families and the
Gibbs posterior construction, making only mild assumptions on the regularity of the model
families and the integrability and modulus of continuity of the loss function.

The idea of a variational formulation of Bayesian inference was developed by Zellner
[59], and the link between statistical mechanics and information theory with Bayesian infer-
ence was at the heart of the inference framework advocated by Edwin T. Jaynes [25]. The
motivation for generalized Bayes is to have a coherent inferential procedure that quantifies
uncertainty when the model may be misspecified, the likelihood is difficult to compute, or
the data generating process is known modulo invariants or equivariance. Generalized Bayes
can adapt classical conditional probability updating to these settings.
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Generalized Bayes inference refers to loss-based procedures for updating prior beliefs.
These procedures remain valid when one does not have access to a true likelihood; standard
Bayesian inference corresponds to the negative log likelihood loss. The idea of using loss
functions to update beliefs goes back at least to Vovk [52]. It has played a central role in
the PAC-Bayesian approach to statistical learning [6, 37] and has been adopted by the main-
stream Bayesian community [4, 42]. In [27] the term Gibbs posterior was introduced, and the
advantages of the Gibbs posterior over standard Bayesian approaches in some settings was
demonstrated. In [22] the authors provide a generalized Bayesian framework (closely related
to the Gibbs posterior) that is consistent under misspecification. In [23] consistency and rates
of convergence are obtained for generalized Bayesian methods including the Gibbs posterior
as well as PAC-Bayes procedures. In [2] a general inference procedure called data dependent
measures is introduced, of which Gibbs posteriors are a special case, along with consistency
and rates of convergence in the i.i.d. setting. The Gibbs posterior framework was adapted
in [62] for uncertainty quantification for inverse problems involving the solution of partial
differential equations.

Bayesian inference for infinite dimensional problems has been explored in the control
theory and inverse problems literatures [36, 43, 45]. Whereas our work considers posterior
consistency for discrete, deterministic dynamics, the generating process in [36] is a stochastic
differential equation. In [43, 45] the authors consider nonlinear estimation and communica-
tion from a variational Bayesian point of view, establishing close connections between infor-
mation theoretic quantities and associated primary and secondary Bayes problems. While the
objectives of this work are different than ours, the underlying models are similar to those in
this paper, and exploring connections in more detail is clearly of interest.

The setting and results of [40] and [41] may be considered frequentist analogues of the
present work. They consider empirical risk minimization based on observation of an unknown
ergodic process, a model family determined by a continuous self-map of a compact space,
and a loss function relating observations and model trajectories. The asymptotic behavior of
empirical risk minimization is determined by a variational problem that is similar in spirit,
but substantially simpler than that arising in the Bayesian setting studied here.

The thermodynamic formalism in dynamical systems, originally pioneered by Sinai, Ru-
elle, and Bowen, arises from the study of statistical physics, and has played a large role in
the development of dynamical systems over many years. For an introduction to the area and
some connections to statistical physics, see the books by Bowen [5], Ruelle [46], or Walters
[53]. Let us mention that connections to Markov chains and other stochastic processes have
a long history in this area [3, 57, 58].

1.2. Overview. The next section describes our general framework for the observed sys-
tem and model families. In Section 3, we describe Gibbs posterior inference and introduce
loss functions in our setting. Section 4 contains statements and discussion of our main results,
and Section 5 describes our main application of these results, posterior consistency for hidden
Gibbs processes. In Section 6, we present a detailed discussion of the rate function that arises
in our main results. Finally, after establishing a technical preliminary in Section 7, we present
the proofs of our main results in Sections 8–10. Note that we also provide several appendices
containing background material and routine technical results that are used throughout our
proofs.

2. Observed system and model family.

2.1. Observed system. Our inference framework consists of two main components. The
first component is an observed stochastic process, which we formulate in terms of dynamical
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systems as follows. Let Y be a complete separable metric space. Here and throughout this
work we assume that all such spaces are endowed with their Borel σ -algebras, and we sup-
press this choice in our notation. Let T : Y → Y be a Borel measurable map. We let M(Y)

denote the set of Borel probability measures on Y , endowed with the weak∗ topology on
measures. A measure ν ∈ M(Y) is said to be invariant under T if ν(T −1E) = ν(E) for all
Borel sets E ⊂ Y . The set of T -invariant measures in M(Y) is denoted by M(Y, T ). Fur-
thermore, ν ∈ M(Y, T ) is said to be ergodic if ν(E) ∈ {0,1} for all Borel sets E satisfying
T −1(E) = E. We assume in what follows that we observe the trajectory of a system (Y, T , ν)

where ν ∈ M(Y, T ) is ergodic.

2.2. Gibbs measures. The second component of our inference framework is a collec-
tion of models. In order to model dependence in the standard statistical setting, one typically
considers (hidden) Markov models or more complex state space models. In our analysis we
would like to be able to handle model processes with long range dependencies, and so we
consider a general class of processes arising from so-called Gibbs measures in dynamical
systems. This class of processes strictly generalizes the class of finite state Markov models
with arbitrarily large order (see Example 1). Furthermore, as we discuss below, the thermody-
namic formalism guarantees that these model families can be continuously parametrized and
that they admit strong exponential estimates. These properties ensure that our model families
are suitable for Gibbs posterior inference.

Let us also remark that Gibbs measures and their associated processes have strong connec-
tions to lattice models in statistical physics, such as the Ising model or the Potts model. Lattice
models have been used in statistics for problems like image segmentation [18] and Bayesian
variable selection [34]. The use of lattice models for inference requires that a unique proba-
bility measure exists and can be specified for the configuration space on the lattice: if a unique
measure cannot be specified, then quantities such as the posterior and the likelihood would
not be well defined. As we describe below, the thermodynamic formalism provides general
conditions under which the configuration space on the lattice Zd has a distinguished measure.
For stochastic processes, the natural lattice to consider is Z.

Before giving a precise definition of a Gibbs measure and its corresponding stochastic
process, we must first introduce the underlying state space for such models, which is called a
mixing shift of finite type (SFT). A shift of finite type is a dynamical system that is the topo-
logical analogue of a finite state aperiodic and irreducible Markov chain. SFTs have been
widely studied in the dynamical systems literature, both for their own sake [35] and as model
systems for some smooth systems such as Axiom A diffeomorphisms [5]. Furthermore, SFTs
have substantial connections to statistical physics and other fields such as coding and infor-
mation theory [35, 46].

Here we give a proper definition for a mixing SFT. Let A be a finite set, known as an
alphabet, and let � = AZ be the set of bi-infinite sequences x = (xn) with values in A. For
i ≤ j in Z, we set x

j
i = xi . . . xj . Define the left-shift map σ : � → � by σ(x)n = xn+1. A

set X is called an SFT if there exists n ≥ 0 and a collection of words W ⊂ An such that X is
exactly the set of sequences in � that contain no words from W :

X = {x ∈ � : ∀i ∈ Z, xi+1 . . . xi+n /∈ W}.
Here W is called a set of forbidden words for X . Note that by choosing W = ∅, one obtains
the full sequence space �, which is known as the full shift (on the alphabet A). Also, we
endow A with the discrete topology and � with the product topology, which makes any such
X closed and compact. We define the map S : X → X to be the restriction of the left shift
σ to X . Let Lm denote the set of words of length m (i.e., elements of Am) that appear in
at least one point of X , and let L = ⋃

m≥0 Lm. An SFT X is said to be mixing if for any
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two words u, v ∈ L, there exists N such that for all m ≥ N , there exists a word w ∈ Lm

such that uwv ∈ L. The following equivalent definition is perhaps more intuitive to readers
familiar with Markov chains. Let A be the square matrix indexed by An defined for for words
u, v ∈ An by the rule

Auv =
{

1, if ∃x ∈ X such that xn−1
0 = u and xn

1 = v

0, otherwise.

Then X is mixing if and only if there exists N ≥ 1 such that AN contains all positive entries.
Our standard assumption on X is that it is a mixing SFT.

To model stochastic behavior on the topological system (X , S), we consider a family of
stochastic processes defined by S-invariant probability measures on X , called Gibbs mea-
sures. To introduce Gibbs measures, one begins with a function f : X → R, which is called
a potential function (or just a potential). A Borel probability measure μ on X is said to be a
Gibbs measure corresponding to the potential function f : X → R if there exists constants
P ∈ R and K > 0 such that for all x ∈ X and m ≥ 1,

(1) K−1 ≤ μ(x[0,m − 1]))
exp(−Pm + ∑m−1

k=0 f (Sk(x)))
≤ K,

where x[0,m−1] is the cylinder set of points y in X such that xi = yi for all i = 0, . . . ,m−1.
The property in (1) is called the Gibbs property. By a celebrated result of Bowen [5], under
mild regularity conditions on f , there is a unique Gibbs measure μ ∈ M(X , S) with potential
function f , and furthermore the measure μ is ergodic. The constant P = P(f ) is called the
pressure of f .

DEFINITION 1. Let f : X → R be a potential with unique Gibbs measure μf . Then the
Gibbs process with potential f is the process Xf = {Xi}i∈Z with Xi ∈ A and distribution
μf .

The Gibbs measure is a generalization of the canonical ensemble in statistical physics
to infinite systems. Potential functions have natural connections with Hamiltonians in the
study of lattice systems in statistical physics. In considering inference, we will think of loss
functions as potential functions. We remark (again) that the class of Gibbs measures strictly
generalizes the class of Markov chains, allowing for arbitrarily long dependencies. Indeed,
Example 1 shows that any Markov chain of order k on the alphabet A can be realized as
a Gibbs measure by an appropriate choice of a potential function that depends on only k

coordinates. On the other hand, when the potential function f depends on infinitely many
coordinates, the corresponding Gibbs measure is not Markov of any order. In this way, our
model families may include Markov chains with unbounded orders, which highlights the
degree of dependence allowed by our framework.

EXAMPLE 1. Suppose P is the transition matrix for an irreducible aperiodic Markov
chain on the state space A. Let p be the unique stationary distribution for P , and let X′ be the
corresponding Markov process. In this example we show how to construct a potential function
f so that the associated Gibbs process Xf is equal in distribution to X′. First, consider the
0−1 matrix A such that Auv = 1 if and only if Puv > 0. Then let X be the SFT on alphabet A
defined by the matrix A. Equivalently, one may take the set of forbidden words W to be the set
of words uv of length two such that Puv = 0. Note that X is mixing since P is irreducible and
aperiodic. Next, define the potential function f :X →R by the rule f (x) = − logP(x0, x1).
Then the corresponding Gibbs process Xf is equal in distribution to the Markov process X′
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(defined by stationary distribution p and transition matrix P ). Similarly, one may check that
if Y = {Yi}i∈Z is a stationary irreducible aperiodic k-step Markov chain on A, and if X is
the SFT with forbidden words xk

0 ∈ Ak+1 such that P(Y k
0 = xk

0) = 0 and f : X → R is the
potential function f (x) = − logP(Yk = xk|Y k−1

0 = xk−1
0 ), then the associated Gibbs process

Xf is equal in distribution to Y.

2.3. Model families. In order to perform statistical estimation or inference, we require
not just a single model process, but rather a family of processes. In this section we specify
general conditions under which a family of Gibbs processes (see Definition 1) is suitable
for Gibbs posterior inference. As Gibbs processes are uniquely defined by their potential
functions, we specify a family of Gibbs processes by parametrizing a family of potential
functions. In order to state our regularity condition on families of potential functions, we
require some additional definitions.

For points x, y in X , we let n(x, y) denote the infimum of all |m| such that xm �= ym. We
then set dX (x, y) = 2−n(x,y), and we remark that dX (·, ·) is a metric on X (see [35], p. 174).
For r > 0, we let Cr(X ) denote the set of continuous functions from X to R with Hölder
exponent r , that is, the set of functions f : X → R for which there exists a constant c such
that for all x, y ∈ X ,

∣∣f (x) − f (y)
∣∣ ≤ c dX (x, y)r .

Furthermore, we endow Cr(X ) with the topology induced by the norm ‖ · ‖r , where

‖f ‖r = sup
x∈X

∣∣f (x)
∣∣ + sup

x �=y

|f (x) − f (y)|
dX (x, y)r

.

Now we define the regularity condition necessary for our model families.

DEFINITION 2. Let � be a compact metric space with metric d�. A parametrized family
of potential functions F = {fθ : θ ∈ �} will be called a regular family if there exists r > 0
such that F ⊂ Cr(X ) and the map θ → fθ is continuous in the topology induced by the norm
‖ · ‖r .

If a family {fθ : θ ∈ �} is a regular family, then the map θ 
→ μθ is continuous in the
weak∗ topology on measures, and the constants K(fθ) and P(fθ ) that appear in (1) depend
continuously on θ (see [1]). Furthermore, since � is compact, a uniform Gibbs property
holds: there exists a uniform constant K and a continuous function θ 
→ P(fθ ) such that for
all θ ∈ �, x ∈ X , and m ≥ 1,

(2) K−1 ≤ μθ(x[0,m − 1])
exp(−P(fθ )m + ∑m−1

k=0 fθ (Skx))
≤ K.

We assume throughout that F = {fθ : θ ∈ �} is a regular family of potential functions,
and that our model class consists of the corresponding Gibbs measures {μθ : θ ∈ �}, or
equivalently, Gibbs processes {Xθ : θ ∈ �}, where we define Xθ = Xfθ . In this way we obtain
a continuously parametrized family of measures, or equivalently dependent processes, that
are characterized by the potential functions fθ . These model families substantially generalize
parameterized families of finite order Markov chains.
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3. Gibbs posterior inference. The inference paradigm we consider is known as Gibbs
posterior inference, which is a generalization of the standard Bayesian inference framework.
The basic idea behind the Gibbs posterior [4, 27] is to replace the likelihood with an exponen-
tiated loss or utility function in the standard Bayesian procedure for updating beliefs about
an unknown parameter of interest θ . Whereas the standard Bayes posterior takes the form

π(θ |data) = Likelihood(data|θ) × π(θ)∫
� Likelihood(data|θ ′) × π(θ ′) dθ ′ ,

the Gibbs posterior has the form

π(θ |data) = exp(−�(data, θ)) × π(θ)∫
� exp(−�(data, θ ′)) × π(θ ′) dθ ′ ,

where �(data, θ) is the loss associated with θ based on the observed data. When the loss
function is the negative log-likelihood then the two paradigms are identical. The original
motivation for the Gibbs posterior was to specify a coherent procedure for Bayesian inference
when the parameter of interest is connected to observations via a loss function, rather than
the classical setting where the likelihood or true sampling distribution is known; see [4] for
more arguments in favor of the Gibbs posterior and discussion about how the Gibbs posterior
framework addresses model misspecification and robustness to nuisance parameters. Note
that in the general Gibbs posterior framework without a likelihood, there is no generative
model assumed for the observations.

Recall that as part of our standard assumptions, the model class {μθ : θ ∈ �} is a family
of Gibbs measures on X corresponding to a regular family of potential functions (Definition
2) indexed by parameters from a compact metric space � with metric d�. The elements
of � will also be used to parametrize the relationship between states and observations, for
example, emission probabilities in hidden Gibbs processes. Define a metric on � ×X by

d
(
(θ, x),

(
θ ′, x′)) = max

(
d�

(
θ, θ ′), dX (

x, x′)).
Recall that the observed system has a Polish state space Y with invariant measure ν. Here and
throughout this work, we assume that we have a loss function � : � ×X ×Y →R satisfying
the following conditions:

(i) � is continuous;
(ii) there exists a measurable function �∗ : Y → R such that for all y ∈ Y , supθ,x |�(θ, x,

y)| ≤ �∗(y), and
∫

�∗ dν < ∞;
(iii) for each δ > 0 there exists a measurable function ρδ : Y → (0,∞) such that for each

y ∈ Y ,

sup
{∣∣�(θ, x, y) − �

(
θ ′, x′, y

)∣∣ : d
(
(θ, x),

(
θ ′, x′)) ≤ δ

} ≤ ρδ(y),

and limδ→0+
∫

ρδ dν = 0.

Condition (ii) is an integrability condition on the loss, while condition (iii) is a requirement
on the modulus of continuity of the loss. In Section 4.1 we provide examples of loss func-
tions satisfying these conditions. Note that including the parameter θ in the loss function
may be considered nonstandard in statistics. However, this formulation will simplify notation
throughout the paper, and in Section 4.1 we establish that this setting is equivalent to the
standard one. Also note that the dependence of the loss on � and on the uncountable space
X allows us to model continuous observations and emission probabilities.

With the loss function and parameter θ ∈ � fixed, we define the loss of the finite sequence
xn−1

0 ∈ X n with respect to a finite sequence of observations yn−1
0 ∈ Yn to be the sum of the
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per-state losses:

(3) �n

(
θ;xn−1

0 , yn−1
0

) =
n−1∑
k=0

�(θ, xk, yk).

When xn−1
0 = (x, Sx, . . . , Sn−1x) and yn−1

0 = (y, T y, . . . , T n−1y) are initial segments of
trajectories of S and T (defined in Section 2), respectively, we write �n(θ, x, y) instead of
�n(θ;xn−1

0 , yn−1
0 ).

Let us now give the definition of Gibbs posterior distributions on �. Here we consider the
(subjective) case, in which one begins with a fully supported prior probability measure π0

on �. As a first step in obtaining the Gibbs posterior, we extend π0 to a prior distribution on
� ×X . In detail, given the family {μθ : θ ∈ �} of Gibbs measures on X , define the induced
prior distribution P0 on � ×X by

(4) P0(E) =
∫ ∫

1E(θ, x) dμθ(x) dπ0(θ)

for any Borel set E ⊂ � × X . Under the Gibbs posterior paradigm [4, 27], given observa-
tions (y, T y, . . . , T n−1y) ∈ Yn, our updated beliefs are represented by the Gibbs posterior
distribution Pn(·|y) on � ×X defined for Borel sets E ⊂ � ×X by

Pn(E|y) = 1

Zn(y)

∫
E

exp
(−�n(θ, x, y)

)
dP0(θ, x)(5)

= 1

Zn(y)

∫ ∫
1E(θ, x) exp

(−�n(θ, x, y)
)
dμθ(x) dπ0(θ).(6)

Here Zn(y) is the normalizing constant (also known as the partition function in statistical
physics terminology), given by

Zn(y) =
∫

exp
(−�n(θ, x, y)

)
dP0(θ, x).

The Gibbs posterior distribution πn(·|y) on � is simply the �-marginal of Pn(·|y), defined
for Borel sets A ⊂ � by

πn(A|y) = Pn(A ×X |y).

We are interested in the asymptotic behavior of the posterior distributions πn(·|y). As the
observed process need not be in our model family, standard notions of posterior consistency
are not appropriate. Instead, we establish that the posteriors πn(·|y) concentrate on the set of
parameters that minimize a lower semicontinuous rate function. In this sense, our inferential
focus is on parameters θ , and not the initial states x of the models, as the latter is known to
be impossible for many dynamical systems, including shifts of finite type [30, 31]. Let us
summarize our framework.

• We begin with a fully supported prior π0 on a compact set � that smoothly parametrizes a
family of Gibbs measures {μθ : θ ∈ �} on X .

• From π0 and {μθ : θ ∈ �}, we obtain an extended prior P0 on � ×X .
• We observe the initial trajectories y, . . . , T n−1y of a stationary ergodic system (Y, T , ν).
• From P0, the observed initial trajectory, and the loss function � we obtain the Gibbs poste-

rior Pn on � ×X .
• Finally, we marginalize Pn to get the posterior πn on �.
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4. Main results. Before stating our main results, let us briefly summarize the standard
assumptions that we make here and throughout this work. We assume that � is a compact
metric space, π0 is a fully supported prior distribution on �, {fθ : θ ∈ �} is a regular family of
potential functions on a mixing SFT X (as in Definition 2), {μθ : θ ∈ �} is the corresponding
family of Gibbs process measures, (Y, T , ν) is a stationary ergodic probability-preserving
system on a complete separable metric space equipped with the Borel σ -algebra, and � : �×
X × Y → R is a loss function satisfying conditions (i)–(iii). With these objects in place, we
consider Gibbs posterior inference, as described in Section 3 above. Our analysis begins with
the exponential growth rate of the (random) partition function Zn for large n. In particular, we
establish a variational principle for the almost sure limit of n−1 logZn as n tends to infinity.

THEOREM 1. Under the standard assumptions above there exists a lower semicontinu-
ous function V : � →R such that for ν-almost every y ∈ Y ,

lim
n

−1

n
logZn(y) = inf

θ∈�
V (θ).

REMARK 1. The compactness of � and lower semicontinuity of V ensure that the infi-
mum in Theorem 1 is obtained. The conclusion of the theorem is similar to a large deviations
principle (see, e.g., [15]), with V : � → R playing the role of the rate function. For this rea-
son, we refer to V as the rate function in this setting. A detailed discussion of V appears in
Section 6, where we show that V can be expressed as the sum of an expected loss term and a
divergence term.

The variational expression that appears in Theorem 1 suggests that we focus on the
(nonempty, compact) set of parameters θ that minimize the rate function,

�min = argmin
θ∈�

V (θ).

The Gibbs posterior distribution is asymptotically concentrated on this set.

THEOREM 2. For each open neighborhood U of �min and ν-almost every y ∈ Y ,

lim
n

πn(� \ U |y) = 0.

In light of this result, it is possible to answer questions about Gibbs posterior consistency
by analyzing the variational problem defining �min. We illustrate this approach to posterior
consistency in our main application, hidden Gibbs processes (see Section 5).

REMARK 2 (Optimality of �min). One may wonder whether πn(·|y) in fact concentrates
around a strict subset of �min. Proposition 8 (in Appendix B) addresses this question on
the exponential scale. It states that if U ⊂ � is open and intersects �min, then the posterior
probability of U cannot be exponentially small as n tends to infinity, that is, for ν-almost
every y the quantity n−1 logπn(U |y) tends to zero as n tends to infinity.

REMARK 3 (Support of the prior). Recall that as part of our standard assumptions, we
assume that the prior π0 is fully supported on �. In general, the topological support of π0
will be closed (by definition) and therefore compact, as � is compact by assumption. Thus,
if the support of π0 is a strict subset �′ ��, then Theorems 1 and 2 continue to hold with �

replaced by �′.
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REMARK 4 (Functions of Markov chains and differentiable state space models). Al-
though we present our results here in the context of Gibbs processes, we note that analogous
results may be immediately obtained for functions of Gibbs processes. In particular, our re-
sults hold for appropriate model families consisting of functions of mixing Markov chains,
which may not be Markov of any order. Additionally, results similar to those here may be
established for certain state space models in which the underlying dynamics are governed by
families of differentiable dynamical systems on manifolds (as in [38]). In particular, using
our results and the well-known connections between SFTs and Axiom A systems (see [5]),
it is possible to establish analogous conclusions for Axiom A diffeomorphisms with Gibbs
measures.

REMARK 5 (Ground states and MAP). From a thermodynamic perspective, it is natural
to introduce an inverse temperature parameter β ∈ R and consider the new loss function
�β(θ, x, y) = β · �(θ, x, y). In this setting, one would like to understand what happens as β

tends to infinity. In Section 6.7, we identify the limit of both V and �min as β tends to infinity
in terms of variational problems considered in previous work [40].

The use of an inverse temperature parameter has also been used in practice to perform
maximum a posteriori (MAP) estimation. MAP estimation is a common alternative to fully
Bayesian inference that is used in both statistics and machine learning. It involves finding
the parameter that is the posterior mode. The motivation for MAP estimation is often com-
putational efficiency and the lack of a need for uncertainty quantification. The idea of adding
an inverse temperature parameter (β) to a Gibbs distribution for MAP estimation was intro-
duced for Bayesian models in a seminal paper by Geman and Geman [18], who also gave an
annealing schedule to increase the inverse temperature with a provable guarantee for finding
the posterior mode.

REMARK 6 (Connections to penalization). The formulation of Bayesian updating as a
variational problem with an entropic penalty has been previously explored [4, 59], and these
ideas are related to Jaynes’ maximum entropy formulation of Bayesian inference [26]. In both
[4] and [59], posterior inference was formulated as follows: given a loss function �(θ, x) and
a prior π , the posterior distribution is

π(θ |x) = arg min
μ

{∫
θ
�(θ, x) dμ(θ) + dKL(μ,π)

}
,

where dKL(μ,π) is the relative entropy between μ and π . The function being minimized
above has close connections to the function V (θ) in Theorem 1; see Definition 4 below.

REMARK 7 (Convergence of full Gibbs posteriors). Our main results establish the con-
centration of the �-marginal posterior distributions πn(·|y) around the limit set �min. In con-
trast, the X -marginal of the full posterior distribution Pn(·|y) need not concentrate around
any particular subset of X (according to the negative results of [30, 31]). Nonetheless, Propo-
sition 9 (in Appendix C) gives a characterization of any Cesàro limit of the full posteriors.

REMARK 8 (Posterior contraction rate). In light of the posterior convergence guaranteed
by Theorem 2, it is natural to ask about the rate of this convergence. We expect that the
thermodynamic formalism could be used to obtain a posterior contraction rate under the
assumptions of this paper, but our arguments cannot be easily adapted to yield such a rate.
We mention it here as an interesting question for future research.



GIBBS POSTERIOR CONVERGENCE 471

REMARK 9 (Importance of the Gibbs property). The Gibbs property (1) of the measures
μθ makes them particularly suitable as model distributions for the purposes of Gibbs poste-
rior inference. Broadly speaking, the existence of such exponential estimates for the model
distributions renders them amenable to analysis, and similar estimates appear elsewhere in
the Bayesian nonparametrics literature [19, 55]. At a technical level, this property ensures
that the divergence term in the rate function V is well behaved. Finding generalizations of
this property that are satisfied by additional model classes represents an interesting avenue
for future research.

4.1. Examples of inference settings and associated loss functions. While the inference
framework above allows very general observations, the model families we consider are
restricted to Gibbs measures on shift spaces, which correspond to families of dependent
finite-valued processes. The latter may seem limited when compared to real-valued or more
abstract-valued processes. However, as the following examples illustrate, this is not the case.
The sequence space X is typically uncountable, and, in conjunction with the left shift and
appropriate state-observable maps, it can be used to generate real or more general valued
processes from the finite state processes in the model family. This flexibility in modeling
arises in part from the generality of the loss function, and its potential dependence on θ . Each
of the examples below yield loss functions that satisfy conditions (i)–(iii).

EXAMPLE 2 (Continuous, deterministic observations). Suppose that the state space Y
of the observed system is a subset of the real line, so that the observations y,T y,T 2y, . . .

are real-valued and deterministic. In this case, we may fit the observations to a family of
continuous models generated by the Gibbs measures {μθ : θ ∈ �} on X using a continuously
parametrized family {ϕθ : X → R} of continuous observation functions. Given θ and x, the
initial part of the real-valued sequence {ϕθ(S

kx)}k≥0 can be fit to the observations. Models of
this sort are called dynamical models, and they have been studied in the context of empirical
risk minimization in [41]. If the measure ν has finite second moment, and � is the squared
loss �(θ, x, y) = |ϕθ(x) − y|2, then conditions (i)–(iii) on the loss are satisfied.

EXAMPLE 3 (Discrete observations). Let A and B be finite sets. Suppose that we make
B-valued observations, that is, Y ⊂ BZ, and we wish to model these observations with a
family of Gibbs measures {μθ : θ ∈ �} on X with X ⊂AZ. Let ϕ : A → B be an observation
function, so that a point x in X gives rise to the B-valued sequence {ϕ(xk)}k≥0. Let � be the
discrete loss, �(θ, x, y) = 1(ϕ(x0) �= y0). Then the conditions (i)–(iii) on the loss are satisfied.

EXAMPLE 4 (Family of conditional likelihoods). Suppose that {p(·|x, θ) : θ ∈ �,x ∈X }
is a family of conditional densities on Y with respect to a common Borel measure m on Y .
Here p(·|x, θ) is the conditional likelihood of a single observation given the parameter θ and
system state x. Under appropriate continuity and integrability conditions on the family of
likelihoods, the negative log-likelihood function, �(θ, x, y) = − logp(y|x, θ), satisfies con-
ditions (i)–(iii). In this situation, the Gibbs posterior is the same as the standard Bayes pos-
terior. Furthermore, the dependence of the loss on the parameter θ allows one to parametrize
the conditional observation densities, as in the parametrization of emission densities in the
study of hidden Markov models. Note that in the Gibbs posterior framework, the true ob-
servation system (Y, T , ν) may be fully misspecified—it need not be related to any of the
generative processes implied by the family of Gibbs measures and conditional likelihoods.
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5. Application. In this section we present an application of our main results on Gibbs
posterior consistency to standard posterior consistency for families of properly specified
dependent processes. In particular, we establish Bayesian posterior consistency for hidden
Gibbs processes. This result generalizes previous results on posterior consistency for hidden
Markov models by allowing substantially more dependence in the hidden processes, includ-
ing families of Markov chains with unbounded orders.

5.1. Hidden Gibbs processes. In this section we consider posterior consistency for more
general observation processes. Let X be a mixing SFT, {fθ : θ ∈ �} ⊂ Cr(X ) a regular family
of Hölder potential functions (as in Definition 2), and {μθ : θ ∈ �} the corresponding family
of Gibbs measures. Let 
0 be any fully supported prior distribution on �.

The novel feature of the present setting is that we allow for general observations of the
underlying family. Suppose that m is a σ -finite Borel measure on a complete separable metric
space U and that ϕ : � × X × U → [0,∞) is a jointly continuous function such that for all
θ ∈ � and x ∈ X , ∫

ϕθ(u|x)dm(u) = 1.

We regard {ϕθ(·|x) : θ ∈ �, x ∈ X } as a family of conditional likelihoods for u ∈ U given θ

and x. We assume that the function L : �×X ×U →R given by L(θ, x,u) = − logϕθ(u|x)

satisfies the integrability and regularity conditions (i)–(iii) from Section 3. Furthermore,
we require condition (L2) from [38], which stipulates that there exists α > 0 and a Borel
measurable function C : � × U → [0,∞) such that for each (θ, u) ∈ � × U , the function
L(θ, ·, u) :X →R is α-Hölder continuous with constant C(θ,u), and for each β > 0,

sup
(θ,x)∈�×X

∫
exp

(
βC(θ,u)

)
ϕθ(u|x)dm(u) < ∞.

This condition may be viewed as a condition on the regularity of the conditional density
functions; it is used in [38] to control the likelihood function in the large deviations regime.

With these conditions in place, we assume that the conditional likelihood of observing
un−1

0 ∈ Un given (θ, x) ∈ � ×X is

pθ

(
un−1

0 |x) =
n−1∏
k=0

ϕθ

(
uk|Skx

)
,

and that the likelihood of observing un−1
0 ∈ Un given θ ∈ � is

pθ

(
un−1

0

) =
∫

pθ

(
un−1

0 |x)dμθ(x).

In other words, for each θ ∈ �, we have an observed sequence U0,U1, . . . generated as fol-
lows: select X ∈ X according to μθ and for each k ≥ 0 let Uk ∈ U have density ϕθ(·|SkX)

with respect to m. Denote by PU
θ the process measure for the process {Uk}, which has likeli-

hood pθ .
Now let 
n(·|un−1

0 ) be the standard Bayesian posterior distribution on � given observa-
tions un−1

0 based on the prior 
0 and the likelihood pθ : for Borel sets E ⊂ �,


n

(
E|un−1

0

) =
∫
E pθ(u

n−1
0 ) d
0(θ)∫

� pθ(u
n−1
0 ) d
0(θ)

.

We consider the properly specified case, in which there exists a parameter θ∗ ∈ � such that
the observed process {Yn} is drawn from PU

θ∗ . In order to address posterior consistency, we
define the identifiability class of θ∗, denoted [θ∗], to be the set of θ ∈ � such that PU

θ = PU
θ∗ ;

in other words, a parameter is in [θ∗] if its associated process has the same distribution as the
process generated by θ∗. The following result establishes posterior consistency in this setting.
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THEOREM 3. Let E ⊂ � be an open neighborhood of [θ∗]. Then
lim
n


n

(
� \ E|Yn−1

0

) = 0, PU
θ∗-a.s.

The proof of Theorem 3 is based on the principal results above. In particular, we use
these results to establish convergence of the posterior distribution, and then we use problem-
specific arguments to prove that the limit set �min is equal to the identifiability set [θ∗]. These
problem-specific arguments rely on previously studied connections between large deviations
for Gibbs measures and identifiability of observed systems [38].

5.2. Example: Ising model, Potts model, and nearest neighbor spin systems. In this ex-
ample we consider models from statistical physics that have been used for statistical infer-
ence in the presence of dependence and verify that they satisfy the hypotheses of our results.
In the simplest version of these models the random variables . . . ,X−1,X0,X1, . . . corre-
spond to ordered sites in a one-dimensional lattice system. Each site can be in one of q ≥ 1
states (or “spins”) that we label A = {1, . . . , q}. The energy of the system and the probability
of state configurations are determined by a function h : A → R that captures the baseline
energy of individual states and a function g : A × A → R that captures the interactions
between neighboring pairs of states. For n ∈ N the model assumes that the configuration
xn

0 = x0 . . . xn ∈ An+1 appears with probability proportional to

exp

(
n−1∑
k=0

g(xk, xk+1) +
n∑

k=0

h(xk)

)
.

If q ≥ 2, h is identically zero, and g(a, b) = 2β · 1(a = b), then this is the well-known Potts
model with inverse temperature β . The special case q = 2 corresponds to the standard Ising
model. Gibbs processes can be viewed as generalizations of such models in which nontrivial
interactions between states may occur at arbitrary distances with appropriate decay in the
strength of interaction as the distance increases [46].

Ising and Potts models have been used in statistical contexts [18, 44], where the underlying
states xn

0 are considered hidden (or latent) variables, and the observations y0, . . . , yn ∈ R are
conditionally independent given these latent states. More precisely, the conditional likelihood
of observing yn

0 ∈ Rn+1 given xn
0 ∈ An+1 is assumed to be

p
(
yn

0 |xn
0
) =

n∏
k=0

p(yk|xk),

where p(·|a) is a probability density for each hidden state a ∈ A. Following [44], we suppose
that for each hidden state a ∈ A, the corresponding observation is conditionally normal with
mean m(a) and variance σ(a)2 > 0, that is,

yk|xk ∼ N
(
m(xk), σ (xk)

2).
Such models have been used as dependent versions of finite mixture models.

As long as the dependence of h, g, m, and σ is continuous in the parametrization, these
models satisfy all of the conditions for our consistency results. More precisely, we will estab-
lish the following result.

PROPOSITION 4. Suppose that � is a compact metrizable space, and for each a, b ∈ A,
the functions θ 
→ hθ(a), θ 
→ gθ (a, b), θ 
→ mθ(a), and θ 
→ σθ (a) are all continuous.
Then the corresponding family of hidden Gibbs models satisfies all of the conditions stated
in Section 5.1.
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PROOF. In this example, the state space X is simply AZ (since finite configurations have
positive probability), which is trivially a mixing SFT. Now, for each parameter value θ ∈ �,
define the potential fθ : X → R by setting fθ(x) = gθ (x0, x1) + hθ(x0). As these functions
depend on only two coordinates (x0 and x1), they are all α-Hölder continuous on X for any
α < 1 (we fix one for the sake of concreteness). Hence, the latent process measure μθ satisfies
the Gibbs property (1). Furthermore, the continuous dependence of gθ and hθ on θ imply that
the family {fθ : θ ∈ �} is a regular family (as in Definition 2).

As our conditional likelihood function is normal, the function L : �×X ×R →R is given
by

L(θ, x, y) = − logpθ(y|x) = log
(
σθ (x0)

) + 1

2σθ (x0)2

(
mθ(x0) − y

)2 + log(
√

2π).

Using this explicit expression, the fact that the observations have finite second moments,
and the continuous dependence of mθ and σθ on θ , one may easily check that L satisfies
conditions (i)–(iii). Additionally, for each θ ∈ � and y ∈ R, the function L(θ, ·, y) : X → R

depends only on one coordinate (x0), and one may check that it is α-Hölder with C(θ, y) =
C0 + C1|y| for uniform constants C0,C1 > 0. Then it satisfies condition (L2) from [38]
(which one may check using the exponential moments of the normal distribution). Thus we
have verified all of the conditions in Section 5.1. �

6. Joinings, divergence, and the rate function. In this section we discuss the rate func-
tion V : � → R, whose existence is asserted by Theorem 1. In order to provide a thorough
discussion, we first recall some background material from ergodic theory, including joinings
and fiber entropy.

6.1. Joinings. Joinings were introduced by Furstenberg [16], and they have played an
important role in the development of ergodic theory (see [10, 21]). Suppose (U0,R0, η0)

and (U1,R1, η1) are two probability measure-preserving Borel systems with Ri : Ui → Ui

and ηi ∈ M(Ui ,Ri). The product transformation R0 × R1 : U0 × U1 → U0 × U1 is defined
by (R0 × R1)(u, v) = (R0(u),R1(v)). A joining of these two systems is a Borel probability
measure λ on U0 ×U1 with marginal distributions η0 and η1 that is invariant under the product
transformation R0 × R1. Thus, a joining is a coupling of the measures η0 and η1 that is
also invariant under the joint action of the transformations R0 and R1; the former condition
concerns the invariant measures of the two systems, while the latter concerns their dynamics.
Let J (η0, η1) denote the set of all joinings of (U0,R0, η0) and (U1,R1, η1). Note that this set
is nonempty, since the product measure η0 ⊗η1 is always a joining. When the transformation
R0 : U0 → U0 is fixed but we have not associated any invariant measure with it, we set

J (R0 : η1) = ⋃
η0∈M(U0,R0)

J (η0, η1),

which is the family of joinings of (U1,R1, η1) with all systems of the form (U0,R0, η0), with
η0 ∈ M(U0,R0).

6.2. Entropy. Our statements and proofs also require us to introduce some notions from
the entropy theory of dynamical systems. Let U be a compact metric space, R : U → U
continuous, and η ∈ M(U,R). For any finite measurable partition α of U , we define

H(η,α) = − ∑
C∈α

η(C) logη(C),
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where 0 · log 0 = 0 by convention. For k ≥ 0, let R−kα = {R−kA : A ∈ α}, and for any parti-
tions α0, . . . , αn, define their join to be the mutual refinement

n∨
k=0

αk = {
A0 ∩ · · · ∩ An : Ai ∈ αi}.

For n ≥ 0, let αn = ∨n−1
k=0 R−kα. By standard subadditivity arguments, the following limit

exists:

hR(η,α) := lim
n

1

n
H(η,αn) = inf

n

1

n
H(η,αn).

The measure-theoretic or Kolmogorov–Sinai entropy of (U,R) with respect to η is given by
hR(η) = supα hR(η,α), where the supremum is taken over all finite measurable partitions α

of U . We note for future reference that for any ε > 0, the value hR(η) remains the same if
the supremum is instead taken over all finite measurable partitions with diameter less than ε.
When the transformation R is clear from context, we may omit the subscript.

6.3. The variational principle for pressure. Let X be a mixing SFT, and let f : X → R

be a Hölder continuous potential. The variational principle [5] for the pressure P(f ) states
that

(7) P(f ) = sup
{∫

f dμ + h(μ) : μ ∈ M(X , S)

}
,

and furthermore, the supremum is achieved by the measure μ ∈ M(X , S) if and only if μ is
the Gibbs measures associated with f .

6.4. Disintegration of measure. The following result is a special case of standard results
on disintegration of Borel measures (see [21]).

THEOREM ([21]). Let U and Y be standard Borel spaces, and φ : U × Y → Y be the
natural projection. Let λ ∈ M(U × Y), and let ν = λ ◦ φ−1 be its image in M(Y). Then
there is a Borel map y 
→ λy , from Y to M(U) such that for every bounded Borel function
f : U ×Y →R, ∫

f dλ =
∫ (∫

f d[λy ⊗ δy]
)

dν(y).

Moreover, such a map is unique in the following sense: if y 
→ λ′
y is another such map, then

λy = λ′
y for ν-almost every y.

Note that if λ is a joining, then the family {λy}y∈Y satisfies an important invariance prop-
erty, which we state as Lemma 10 in Appendix A.3.

6.5. Fiber entropy. Now we give a definition of fiber entropy, along with statements of
some properties relevant to this work; for a thorough introduction, see [29]. Let U be a com-
pact metric space and Y be a separable complete metric space. Further, let R : U → U be
continuous and T : Y → Y be Borel measurable. For any Borel probability measure λ on
U ×Y with Y-marginal ν, let λ = ∫

λy ⊗ δy dν(y) be its disintegration over Y . Then for any
finite measurable partition α of U , we define

(8) H(λ,α|Y) =
∫

H(λy,α) dν(y).
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Now suppose ν ∈ M(Y, T ). It’s possible to show (see, e.g., [28]) that if λ ∈ J (R : ν) and
λ = ∫

λy ⊗ δy dν(y) is its disintegration over ν, then for every finite measurable partition α

of U the following limit exists:

hν(λ,α) := lim
n

1

n
H(λ,αn|Y) = inf

n

1

n
H(λ,αn|Y) dν(y),

where αn = ∨n−1
k=0 R−kα. Furthermore, when λ is ergodic, it can be shown (again see [28])

that for ν-almost every y,

hν(λ,α) = lim
n

1

n
H(λy,αn).

The fiber entropy of λ over ν is defined as hν(λ) = supα hν(λ,α), where the supremum is
taken over all finite measurable partitions α of U . Note that the supremum may also be taken
over partitions with diameter less than any ε > 0. The fiber entropy hν(λ) quantifies the
relative entropy of λ over ν.

6.6. Divergence terms. Consider a parameter θ ∈ � and a joining λ ∈ J (S : ν). We
would like to quantify the divergence of the joining λ to the product measure μθ ⊗ ν, as
it will play a role in the rate function V . (Note that the measure μθ ⊗ ν may be interpreted
as a prior distribution on X × Y given θ , as the prior on X is assumed to be independent
of the observations.) However, the standard KL-divergence is insufficient for our purposes,
since any two ergodic measures for a given system are known to be mutually singular, and
hence their KL-divergence will be infinite. Instead, we make the following definitions, which
are more suitable for dynamical systems.

Given two Borel probability measures η and γ on a compact metric space U and a finite
measurable partition α of U , we write η ≺α γ whenever γ (C) = 0 implies that η(C) = 0 for
C ∈ α. Let

KL(η : γ |α) =
⎧⎪⎨
⎪⎩
∑
C∈α

η(C) log
η(C)

γ (C)
, if η ≺α γ

+∞, otherwise,

where 0 · log 0
x

= 0 for any x by convention. Note that KL(η : γ |α) is the KL-divergence
from γ to η with respect to the partition α, which is nonnegative.

Now consider a Hölder continuous potential f : X → R on a mixing SFT X with associ-
ated Gibbs measure μ ∈ M(X , S). Let α be the partition of X into cylinder sets of the form
x[0] for some x ∈ X , and let η ∈M(X , S) be ergodic. In this situation, it is known [7] that

lim
n

1

n
KL(η : μ|αn) = P(f ) −

(
h(η) +

∫
f dη

)
,

where we recall that P(f ) is the pressure of f , the partition αn is defined to be
∨n−1

k=0 S−kα,
and h(η) is the entropy of η with respect to S. Next we generalize this result to handle the
relative situation, which involves joinings and relative entropy.

LEMMA 1. Let f : X → R be a Hölder continuous potential on a mixing SFT X with
associated Gibbs measure μ. Let α be the partition of X into cylinder sets of the form x[0],
and let λ ∈ J (S : ν) be ergodic. Then for ν-almost every y ∈ Y ,

lim
n

1

n
KL(λy : μ|αn) = P(f ) −

(
hν(λ) +

∫
f dλ

)
.
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We defer the proof of Lemma 1 to Appendix A.6. Based on this lemma, we make the
following definition.

DEFINITION 3. Let X be a mixing SFT, f : X → R a Hölder continuous function, and
μ the associated Gibbs measure. Further, let (Y, T , ν) be an ergodic system. Then define the
relative divergence rate of λ ∈ J (S : ν) to μ to be

(9) D(λ : μ) = P(f ) −
(
hν(λ) +

∫
f (x) dλ(x, y)

)
.

In the present setting, D(λ : μ) is always finite, and one may check that it is also nonneg-
ative (see Lemma 15 in Appendix A.6).

6.7. The rate function. In this section we define and discuss the rate function V : � →R

whose existence is guaranteed by Theorem 1.

DEFINITION 4. For θ ∈ �, let

V (θ) = inf
{∫

�dλ + D(λ : μθ) : λ ∈ J (S : ν)

}
.

Note that the variational expression defining V contains the sum of an expected loss term
and a divergence term. It is known that Bayesian posterior distributions satisfy a similar
variational principle in the finite sample setting (see [27, 60, 61]). Our results show that this
interpretation passes to the limit as the number of samples tends to infinity.

By Proposition 7, which appears in Appendix A.7, we have that V is lower semi-
continuous. Since the loss function is continuous, the proof of Proposition 7 essentially fol-
lows from the upper semi-continuity of the fiber entropy on the space of joinings J (S : ν).

REMARK 10. Consider the introduction of an inverse temperature parameter β ∈ R, as
discussed in Remark 5, and let �β = β · � be the associated loss function. If we let Vβ be the
associated rate function, then we see from Definition 4 that

Vβ(θ) = inf
{
β ·

∫
�dλ + D(λ : μθ) : λ ∈ J (S : ν)

}
.

Dividing by β and letting β tend to infinity to investigate the ground state behavior, it is clear
that the associated variational expression is

V∞(θ) := lim
β→∞

Vβ(θ)

β
= inf

{∫
�dλ : λ ∈ J (S : ν)

}
.

Interestingly, this variational expression has been studied recently as part of an asymptotic
analysis of estimators based on empirical risk minimization for dynamical systems [40, 41].
Indeed, the solution set �∞ of this ground state variational problem exactly characterizes the
set of possible limits of parameter estimates that asymptotically minimize average empirical
risk.

7. A technical preliminary. Define

L(η : γ |α) =
⎧⎪⎨
⎪⎩
∑
C∈α

η(C) logγ (C), if η ≺α γ,

−∞, otherwise,
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where 0 · log 0 = 0 by convention. With these definitions, we always have

(10) −KL(η : γ |α) = H(η,α) + L(η : γ |α).

We now establish a lemma that is used in the proof of Theorem 1. This result allows
us to approximate the expected information in the prior P0, where the expectation is with
respect to an arbitrary measure, in terms of an average of a continuous function. These types
of estimates are available precisely because our model class consists of Gibbs measures:
indeed, they do not hold for arbitrary invariant measures for dynamical systems.

For any Borel probability measure η on � ×X , let ηn denote its time-average up to time
n:

ηn(E) = 1

n

n−1∑
k=0

η
(
(I� × S)−kE

)
,

where I� : � → � is the identity.

LEMMA 2. Let K be the constant in the uniform Gibbs property (2). For any ε > 0 there
exists δ > 0 such that if the diameter of α is less than δ and the prior π0 assigns positive
measure to each element of α, and if β is the partition of X into cylinder sets of the form
x[0], then for any Borel probability measure η on � ×X , and any n ≥ 0,∣∣∣∣1

n
L(η : P0|α × βn) − 1

n

∫ (
fθ (x) −P(fθ )

)
dηn(θ, x)

∣∣∣∣ ≤ ε + logK

n
.

PROOF. Let ε > 0. By the uniform continuity of fθ and P(fθ ) in θ and the uniform
Gibbs property, there exists δ > 0 such that if the diameter of α is less than δ and β is the
partition of X into sets of the form x[0], then for all θ ∈ �, x ∈ X , and n ≥ 1,

K−1 exp(−εn) ≤ P0((α × βn)(θ, x))

exp(−nP(fθ ) + ∑n−1
k=0 fθ (Skx))

≤ K exp(εn).

Taking logarithms and dividing by n, we obtain the inequality∣∣∣∣∣1

n
logP0

(
(α × βn)(θ, x)

) − 1

n

n−1∑
k=0

fθ

(
Skx

) +P(fθ )

∣∣∣∣∣ ≤ ε + logK

n
,

which is uniform over (θ, x) ∈ �×X . Now let η be any Borel probability measure on �×X .
Then by integrating with respect to η, we see that∣∣∣∣1

n
L(η : P0|α × βn) − 1

n

∫ (
fθ (x) −P(fθ )

)
dηn(θ, x)

∣∣∣∣ ≤ ε + logK

n
. �

8. Proof of Theorem 1. In this section, we prove Theorem 1, which concerns the conver-
gence of the average log normalizing constant (partition function) n−1 logZn. In an attempt to
keep the paper mostly self-contained, we have included an appendix (Appendix A) contain-
ing several routine technical results that we use in the proof. The starting point of the proof,
which is an application of the Pressure Lemma (in Appendix A.1), allows us to express the
main statistical object, the Gibbs posterior distribution, as the solution of a variational prob-
lem involving information theoretic notions such as entropy and average information, which
have long been studied in dynamics. The proof of Theorem 1 follows.

To ease notation slightly in this section, we let g = −� and gn = −�n, where �n is defined
in (3). We also set U = � ×X and R(θ, x) = (θ, S(x)). For λ ∈ J (R : ν), we will have use
for the notation

G(λ) =
∫ (

P(fθ ) − fθ (x)
)
dλ(θ, x, y) − hν(λ).
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Although we do not use this fact, we note that G(λ) can be written as an integral over θ of
terms of the form D(λθ ,μθ) (as in Definition 3). Lemma 12 (in Appendix A.5) ensures that
hν(·) is harmonic (see Appendix A.2 for precise definition), and therefore the same is true of
G : J (R : ν) →R. In this notation, our goal is to prove

lim
n

1

n
logZn = sup

{∫
g dλ − G(λ) : λ ∈ J (R : ν)

}
.

We present the proof in two stages: first we establish that the expression in the right-
hand side is a lower bound for limn n−1 logZn, and then we prove that the same expression
provides an upper bound.

8.1. Lower bound. The goal of this section is to prove the following result.

PROPOSITION 5. For ν-almost every y ∈ Y ,

lim
n

1

n
logZn ≥ sup

{∫
g dλ − G(λ) : λ ∈ J (R : ν)

}
,

where Zn = Zn(y).

Before proving this proposition, we first establish a lemma. If η is a Borel probability
measure on �×X and η(C) > 0, then let ηC denote the conditional distribution η(·|C). Also,
we say that β is a partition of X according to central words whenever β = {[xm−m] : x ∈ X }
for some m ≥ 0.

LEMMA 3. Let α be a finite measurable partition of � with diam(α) < δ, and let β

be a partition of X according to central words such that diam(β) < δ. Then for any Borel
probability measure η on � ×X , any y ∈ Y , and any n ≥ 1,∫

gn(θ, x, y) dη(θ, x) − KL(η : P0|α × βn)

≤ log
[∫

exp
(
gn(θ, x, y)

)
dP0(θ, x)

]
+

n−1∑
k=0

ρδ

(
T ky

)
,

where ρδ is the local difference function appearing in property (iii) of the loss.

PROOF. If η ⊀α×βn P0, then the inequality holds trivially. Now suppose η ≺α×βn P0, and
let ξ = {C ∈ α × βn : η(C) > 0}. For C ∈ ξ and (θ, x), (θ ′, x′) ∈ C, property (iii) of the loss
function, and our hypotheses on α and β yield that

gn

(
θ ′, x′, y

) ≤ gn(θ, x, y) +
n−1∑
k=0

ρδ

(
T ky

)
.

Integrating out (θ ′, x′) with respect to the conditional distribution ηC gives∫
C

gn

(
θ ′, x′, y

)
dηC

(
θ ′, x′) ≤ gn(θ, x, y) +

n−1∑
k=0

ρδ

(
T ky

)
.

After exponentiation and integration with respect to the P0,C , we get

exp
(∫

C
gn

(
θ ′, x′, y

)
dηC

(
θ ′, x′))

≤ exp

(
n−1∑
k=0

ρδ

(
T ky

))∫
C

exp
(
gn(θ, x, y)

)
dP0,C(θ, x).
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Invoking the Pressure Lemma (Lemma 9 in Appendix A.1) and the inequality above, we find
that ∫

gn

(
θ ′, x′, y

)
dη

(
θ ′, x′) − KL(η : P0|α × βn)

= ∑
C∈ξ

η(C)

[
logP0(C) +

∫
C

gn

(
θ ′, x′, y

)
dηC

(
θ ′, x′) − logη(C)

]

≤ log
∑
C∈ξ

exp
(

logP0(C) +
∫
C

gn

(
θ ′, x′, y

)
dηC

(
θ ′, x′))

= log
∑
C∈ξ

exp
(∫

C
gn

(
θ ′, x′, y

)
dηC

(
θ ′, x′))P0(C)

≤ log
∑
C∈ξ

(∫
C

exp
(
gn(θ, x, y)

)
dP0,C(θ, x)

)
P0(C) +

n−1∑
k=0

ρδ

(
T ky

)

= log
∫

exp
(
gn(θ, x, y)

)
dP0(θ, x) +

n−1∑
k=0

ρδ

(
T ky

)
,

as was to be shown. �

PROOF OF PROPOSITION 5. Fix an ergodic joining λ ∈ J (R : ν) and ε > 0. Let δ > 0 be
sufficiently small that the bound of Lemma 2 holds and that

∫
ρδ dν < ε (using property (iii)

of the loss). Fix a finite measurable partition α of � such that diam(α) < δ and such that the
prior π0 assigns positive measure to all elements of α (which can be done since � is compact
and metrizable and π0 is fully supported), and select m large enough so that the partition β of
X generated by central words of length m satisfies diam(β) < δ. Then for ν-almost every y,

H(λy,α × βn) + L(λy : P0|α × βn) +
∫

gn dλy

=
∫

gn dλy − KL(λy : P0|α × βn)

≤ log
∫

exp
(
gn(θ, x, y)

)
dP0(θ, x) +

n−1∑
k=0

ρδ

(
T ky

)
,

where the inequality follows from Lemma 3. Dividing each side of the inequality above by
n, and then letting n tend to infinity, we have that for ν-almost every y ∈ Y ,

hν(λ,α × β) +
∫ (

fθ (x) −P(fθ )
)
dλ +

∫
g dλ ≤ lim inf

n

1

n
Zn(y) + 2ε.

(The limit of the entropic term is part of the definition of fiber entropy. The limit of the
middle term is obtained by an application of Lemma 2. The limit of the average loss term is a
consequence of the invariance property of the decomposition of λ, stated formally as Lemma
11 in Appendix A.4, and the limit of the term containing ρδ is given by the ergodic theorem,
using hypothesis (iii) on the loss function.) Taking the supremum over all partitions α of �

with diameter less than δ and all partitions β of X generated by central words of length at
least m, we obtain the inequality∫

g dλ − G(λ) ≤ lim inf
n

1

n
logZn(y) + 2ε.
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Since ε > 0 was arbitrary,

(11)
∫

g dλ − G(λ) ≤ lim inf
n

1

n
logZn.

Notice that the left-hand side is harmonic in λ (see Appendix A.2 for details), and therefore

sup
λ∈J (R:ν)

∫
g dλ − G(λ) = sup

λ∈J (R:ν)
λ ergodic

∫
g dλ − G(λ).

Hence there exists a sequence {λk}∞k=1 of ergodic joinings in J (R : ν) that achieves the
supremum. For each k ≥ 1, we have shown that there is a measurable set Ek ⊂ Y such that
ν(Ek) = 1 and equation (11) holds with λ = λk for all y ∈ Ek . Then for all y ∈ ⋂

k Ek , we
have that

sup
λ∈J (R:ν)

{∫
g dλ − G(λ)

}
≤ lim inf

n

1

n
logZn.

Since ν(
⋂

k Ek) = 1, this completes the proof. �

8.2. Upper bound. In Proposition 6 below we establish an almost sure upper bound on
the limiting behavior of n−1 logZn(y). Together with the lower bound in Proposition 5, this
completes the proof of Theorem 1.

PROPOSITION 6. For ν-almost every y ∈ Y ,

lim sup
n

1

n
logZn(y) ≤ sup

λ∈J (R:ν)

{∫
g dλ − G(λ)

}
.

We begin with a preliminary lemma. Recall that P0 is the prior distribution on � × X
generated by the prior π0 (defined in (4)) and the family {μθ : θ ∈ �}, while Pn(·|y) is the
Gibbs posterior distribution associated with y,T y, . . . , T n−1y (defined in (5)). To simplify
notation, in what follows Pn(·|y) is denoted by P

y
n .

LEMMA 4. If α is a finite measurable partition of �×X with diameter less than δ, then
for y ∈ Y and n ≥ 1,

log
∫

exp
(
gn(θ, x, y)

)
dP0(θ, x)

≤ H
(
P y

n ,αn

) + L
(
P y

n : P0|αn

) +
∫

gn(θ, x, y) dP y
n (θ, x) +

n−1∑
k=0

ρδ

(
T ky

)
.

PROOF. Let α be a finite measurable partition of �×X with diam(α) < δ, and let y ∈ Y .
By definition P

y
n and P0 are equivalent measures, and hence P

y
n ≺αn P0 and P0 ≺αn P

y
n . Let

ξ = {C ∈ αn : P0(C) > 0} = {C ∈ αn : P y
n (C) > 0}.

Fix C ∈ ξ for the moment. For points (θ, x), (θ ′, x′) ∈ C the hypothesis on α ensures that

gn(θ, x, y) ≤ gn

(
θ ′, x′, y

) +
n−1∑
k=0

ρδ

(
T ky

)
,

where ρδ is defined in condition (iii) of the loss. Exponentiating both sides of the inequality
and integrating (θ, x) with respect to the prior P0,C conditioned on being in C yields

∫
C

exp
(
gn(θ, x, y)

)
dP0,C ≤ exp

(
gn

(
θ ′, x′, y

))
exp

(
n−1∑
k=0

ρδ

(
T ky

))
.
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Taking logarithms and integrating (θ ′, x′) with respect to the posterior P
y
n,C conditioned on

being in C yields

(12) log
∫
C

exp
(
gn(θ, x, y)

)
dP0,C ≤

∫
C

gn

(
θ ′, x′, y

)
dP

y
n,C +

n−1∑
k=0

ρδ

(
T ky

)
.

By the definition of Pn and the pressure lemma (Lemma 9 in Appendix A.1) we have

log
∫

exp
(
gn(θ, x, y)

)
dP0

= log
∑
C∈ξ

exp
[
log

∫
C

exp
(
gn(θ, x, y)

)
dP0

]

= ∑
C∈ξ

P y
n (C)

[
− logP y

n (C) + logP0(C) + log
∫
C

exp
(
gn(θ, x, y)

)
dP0,C

]

= H
(
P y

n ,αn

) + L
(
P y

n : P0|αn

) + ∑
C∈ξ

P y
n (C) log

∫
C

exp
(
gn(θ, x, y)

)
dP0,C.

Applying inequality (12) to the terms of the final sum above, we see that

log
∫

exp
(
gn(θ, x, y)

)
dP0(θ, x)

≤ H
(
P y

n ,αn

) + L
(
P y

n : P0|αn

) +
∫

gn(θ, x, y) dP y
n (θ, x) +

n−1∑
k=0

ρδ

(
T ky

)

as desired. �

PROOF OF PROPOSITION 6. First, let

νn = 1

n

n−1∑
k=0

δyk
.

Additionally, for y ∈ Y , we define

ηy
n = 1

n

n−1∑
k=0

(
P y

n ◦ R−k) ⊗ δyk
.

By [28], Lemma 2.1, for ν-almost every y, the sequence {ηy
n}n is tight and all of its limit

points are contained in J (R : ν). Using this fact and the ergodic theorem, there exists a set E

such that ν(E) = 1 and the following relations hold:

• the sequence {ηy
n}n is tight and all of its limit points are in J (R : ν);

• {νn}∞n=1 converges weakly to ν;
• for each m ≥ 1, we have

∫
�∗>m �∗ dνn → ∫

�∗>m �∗ dν.

We refer to elements of E as generic points. Fix a generic point y ∈ E. Let λ and {nk} be
such that η

y
nk → λ ∈ J (R : ν).

Let ε > 0, and choose δ > 0 such that
∫

ρδ dν < ε. Choose a finite measurable partition
α of � × X such that diam(α) < δ, the prior π0 assigns positive measure to each element
of α, and proj�×X (λ)(∂α) = 0 (which exists since � ×X is compact [53], Lemma 8.5, and
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π0 is fully supported). By adapting an argument from [53], p. 190, involving subadditivity of
measure-theoretic entropy, we obtain that for each q ≥ 1, for n ≥ q ,

1

n
H

(
P y

n ,αn

) ≤ 1

n

n−1∑
k=0

1

q
H

(
P y

n ◦ R−k, αq

) + o(1)

= 1

q
H

(
ηy

n,αq |Y) + o(1),

where o(1) refers to a term that tends to 0 as n tends to infinity (for fixed q). Then by letting
n tend to infinity and applying [28], Lemma 2.1, again, we see that

lim sup
n

1

n
H

(
P y

n ,αn

) ≤ 1

q
H(λ,αq |Y),

where the conditional entropy H(·|Y) is defined in (8). To proceed with the proof, we require
the following lemma. Recall that at the beginning of this section, we set g = −� and gn =
−�n.

LEMMA 5. Let y, {nk}, and λ be as above. Then

(13) lim
k

1

nk

∫
gnk

(θ, x, y) dP y
nk

(θ, x) =
∫

g dλ.

PROOF. Let ηn = η
y
n . By definition of ηn,

1

n

∫
gn(θ, x, y) dP y

n (θ, x) = 1

n

∫ n−1∑
k=0

g
(
θ, Skx, yk

)
dP y

n (θ, x)

=
∫

g dηn.

Note that g is continuous, since we have assumed that � is continuous. If g were bounded,
then the desired limit would follow directly from the Portmanteau theorem for weak con-
vergence. In general we rely on a truncation argument; although the details are routine, we
include them here for completeness.

For m ∈ N, define the truncated function

gm(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

g(θ, x, y), if
∣∣g(θ, x, y)

∣∣ ≤ m,

m, if g(θ, x, y) ≥ m,

−m, if g(θ, x, y) ≤ −m.

Note that |gm| ≤ |g| and that gm → g as m tends to infinity. The integrability of g with
respect to λ follows from that of �∗ with respect to ν, and the dominated convergence theorem
then ensures that

∫
gm dλ → ∫

g dλ. Moreover, with νn defined as above, it follows from the
choice of y that

lim sup
n

∫
|g − gm|dηn ≤ lim sup

n

∫
�∗>m

�∗ dνn =
∫
�∗>m

�∗ dν.

In order to establish (13), let ε > 0 be fixed. By virtue of the results in the previous para-
graph, there exist integers m and n1 sufficiently large that for each n ≥ n1∣∣∣∣

∫
gm dλ −

∫
g dλ

∣∣∣∣ < ε/3 and
∫

|g − gm|dηn < ε/3.
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Moreover, as ηn ⇒ λ and gm is continuous and bounded, there exists n2 ≥ n1 such that for
each n ≥ n2, ∣∣∣∣

∫
gm dλ −

∫
gm dηn

∣∣∣∣ < ε/3.

Combining the inequalities above, a straightforward bound shows that∣∣∣∣
∫

g dλ −
∫

g dηn

∣∣∣∣ < ε

for n > n2. As ε > 0 was arbitrary, we conclude that (13) holds. �

Combining Lemma 5 with Lemmas 2 and 4, we find that for ν-almost every y ∈ Y

lim sup
n

1

n
log

∫
exp

(
gn(θ, x, y)

)
dP0(θ, x)

≤ 1

q
H(λ,αq |Y) +

∫ (
fθ (x) −P(fθ )

)
dλ(θ, x, y) +

∫
g dλ + 2ε.

Letting q tend to infinity, we get

lim sup
n

1

n
log

∫
exp

(
gn(θ, x, y)

)
dP0(θ, x)

≤ hν(λ,α) +
∫ (

fθ (x) −P(fθ )
)
dλ(θ, x, y) +

∫
g dλ + 2ε

≤ hν(λ) +
∫ (

fθ (x) −P(fθ )
)
dλ(θ, x, y) +

∫
g dλ + 2ε.

Since ε was arbitrary, we obtain

lim sup
n

1

n
log

∫
exp

(
gn(θ, x, y)

)
dP0(θ, x)

≤
∫

g dλ − G(λ)

≤ sup
{∫

g dλ − G(λ) : λ ∈ J (R : ν)

}
.

This concludes the proof of Proposition 6. �

9. Convergence of Gibbs posterior distributions. The purpose of this section is to es-
tablish Theorem 2 concerning convergence of the Gibbs posterior distributions to the solution
set of a variational problem. From the dynamics point of view, this convergence highlights
the role of the variational problem and the associated equilibirum joinings. We believe these
objects to be worthy of further study. From the statistical point of view, this result describes
the concentration of posterior distributions, which is of interest in any frequentist analysis of
Bayesian methods. The proof follows somewhat directly from Theorem 1.

PROOF OF THEOREM 2. Let U be an open neighborhood of �min. Let F = �\U , which
is closed and therefore compact. If π0(F ) = 0, then πn(F |y) = 0 for all n. Now suppose
π0(F ) > 0, and let π̃0 = π0(·|F) be the conditional prior on F . Let V∗ be the common value
of V (θ) for θ ∈ �min. As V : � →R is lower semi-continuous and F is compact and disjoint
from �min, there exists ε > 0 such that infθ∈F V (θ) ≥ V∗ + ε. Now we apply Theorem 1 in
two ways: first, with the full parameter set � and prior π0, and second, with F in place of
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� and the conditional prior π̃0 in place of π0. Let ZF
n denote the normalizing constant in the

second case. Then for ν-almost every y ∈ Y , there exists N1 = N1(y) and N2 = N2(y) such
that for all n ≥ N1,

−1

n
logZF

n (y) ≥ V∗ + 2ε/3,

and for all n ≥ N2,

−1

n
logZn(y) ≤ V∗ + ε/3.

Then for all n ≥ max(N1,N2), we have

πn(F |y) = Pn(F ×X |y)

= 1

Zn(y)

∫
F×X

exp
(−�n(θ, x, y)

)
dP0(θ, x)

= π0(F )ZF
n (y)

Zn(y)

≤ exp
(−V∗n − (2ε/3)n + V∗n + (ε/3)n

)
≤ exp

(−(ε/3)n
)
.

Thus, for ν-almost every y ∈ Y , we see that πn(F |y) tends to 0. �

10. Posterior consistency for hidden Gibbs processes. In this section we establish pos-
terior consistency for hidden Gibbs processes, as described in Section 5.1. In addition to mod-
eling substantial dependence with the underlying Gibbs processes, this setting also allows for
quite general observational noise models. Note that hidden Markov models with arbitrarily
large order appear as a special case in this framework. Here the first part of the proof involves
an application of our main results to show that the posterior converges to the set �min. How-
ever, the second part of the proof begins with the well-known fact that the Gibbs measures
μθ satisfy large deviations principles (see [56]), and then relies on some recent results from
[38] connecting these large deviations properties to the likelihood function in our general
observational framework.

PROOF OF THEOREM 3. We begin by placing the setting of Section 5.1 within the gen-
eral framework of Section 1. Let X , {fθ : θ ∈ �}, {μθ : θ ∈ �}, 
0, U , m, and {ϕθ(·|x) : θ ∈
�,x ∈X } be as in Section 5.1. To define the observation space in our general framework, we
let Y = UN. We define the map T : Y → Y to be the left-shift, that is, if y = {yk} ∈ Y , then
T (y) is the sequence whose kth coordinate is yk+1. Furthermore, we define ν = PU

θ∗ , which
is the process measure on Y described in Section 5.1. Then (Y, T , ν) is an ergodic measure
preserving system (see [38], Proposition 6.1, for ergodicity). Now define � : �×X ×Y →R
by �(θ, x, {yk}) = − logϕθ(y0|x). Note that the conditions (i)–(iii) on � are satisfied by our
assumptions on ϕ. Define πn(·|y) to be the Gibbs posterior defined as in Section 1. Note that
in this setting, if y = {yk}, then the Gibbs posterior πn(·|y) is equal to the standard posterior

n(·|yn−1

0 ). We require a few lemmas before finishing the proof of the theorem. Before we
state the first such lemma, recall that �∗ denotes the ν-integrable function on Y appearing in
property (ii) in Section 3.

LEMMA 6. Let θ ∈ �. Then for each n ≥ 1 and y ∈ Y ,∣∣∣∣1

n
log

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x)

∣∣∣∣ ≤ 1

n

n−1∑
k=0

�∗(T ky
)
.
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PROOF. For notation, let

In(y) =
∫
X

exp
(−�n(θ, x, y)

)
dμθ(x).

First suppose that In(y) ≤ 1. Then by Jensen’s inequality and the definition of �∗,∣∣∣∣1

n
log In(y)

∣∣∣∣ = −1

n
log

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x)

≤ 1

n

∫
�n(θ, x, y) dμθ(x)

= 1

n

n−1∑
k=0

∫
�
(
θ, Skx, T ky

)
dμθ(x)

≤ 1

n

n−1∑
k=0

�∗(T ky
)
.

Now suppose that In(y) > 1. Then∣∣∣∣1

n
log In(y)

∣∣∣∣ = 1

n
log

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x)

≤ 1

n
log sup

x∈X
exp

(−�n(θ, x, y)
)

≤ 1

n

n−1∑
k=0

sup
x∈X

∣∣�(θ, Skx, T k(y)
)∣∣

≤ 1

n

n−1∑
k=0

�∗(T ky
)
,

where we have used that both the logarithm and the exponential are increasing. �

LEMMA 7. Let θ ∈ �. Then

lim
n

−1

n
Eθ∗

[
logpθ

(
Yn−1

0

)] = V (θ).

PROOF. For each n ≥ 1, let

fn(y) = −1

n
log

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x),

and let Fn(y) = n−1 ∑n−1
k=0 �∗(T ky). By property (ii), �∗ is ν-integrable and thus the pointwise

ergodic theorem ensures that Fn(y) converges for ν-almost every y to the constant Eθ∗[�∗].
Furthermore, limnEθ∗[Fn] = Eθ∗[�∗]. By Lemma 6, |fn| ≤ Fn for each n ≥ 1. Therefore, by
the generalized Lebesgue dominated convergence theorem and the definition of the loss,

lim
n

−1

n
Eθ∗

[
logpθ

(
Yn−1

0

)] = lim
n

Eθ∗[fn]

= Eθ∗
[
lim
n

fn

]
.

By Theorem 1, the Pθ∗-almost sure limit of {fn} is equal to V (θ). Combining these facts, we
obtain the desired equality. �
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LEMMA 8. Suppose θ ∈ � \ [θ∗]. Then
V
(
θ∗) < lim

n
−1

n
Eθ∗

[
logpθ

(
Yn−1

0

)]
.

PROOF. The well-known large deviations principles for the Gibbs measures μθ [56] im-
ply that they satisfy property (L1) from [38]. By hypothesis, g satisfies the regularity of
observations property (L2) from [38]. Then results from [38] (in particular Propositions 4.3
and 6.4) yield the desired inequality. �

We now proceed with the proof of Theorem 3. Recall that for y = {yk} ∈ Y our choice of
loss function ensures that the Bayesian posterior 
n(·|yn−1

0 ) is equal to the Gibbs posterior
πn(·|y). By Theorem 2, the Gibbs posterior πn(·|Y) concentrates ν-almost surely around the
set �min, defined as the set of θ ∈ � such that V (θ) = inf{V (θ ′) : θ ′ ∈ �}. Hence 
n(·|Yn−1

0 )

concentrates PU
θ∗-almost surely around �min. It remains to show that �min = [θ∗].

Suppose θ ∈ � \ [θ∗]. Then by Lemmas 7 and 8, we have

V (θ) = lim
n

−1

n
Eθ∗

[
logpθ

(
Yn−1

0

)]
> V

(
θ∗).

It follows immediately that �min ⊂ [θ∗]. For the reverse inclusion, note that if θ ∈ [θ∗], then
PU

θ = PU
θ∗ , and thus for each n,

Eθ∗
[
logpθ

(
Yn−1

0

)] = Eθ∗
[
logpθ∗

(
Yn−1

0

)]
.

Then Lemma 7 gives that V (θ) = V (θ∗) for each θ ∈ [θ∗]. This concludes the proof of
Theorem 3. �

11. Discussion. The two main contributions of this paper are as follows: 1) showing
that ideas developed in the thermodynamic formalism of dynamical systems can be used to
provide guarantees on loss-based Bayesian inferential procedures, and 2) proving posterior
consistency for inference of deterministic dynamical systems with observational noise and
long range dependencies. Our results show that ideas from dynamical systems and ergodic
theory are relevant for statistical inference, and that problems arising in statistical inference
can suggest new and interesting questions in dynamical systems. It is of interest to explore
how the variational formulation of the Gibbs posterior developed here may affect estimation
procedures in the dynamical setting of this paper. Additionally, it is of interest to bridge
the work on uncertainty quantification in stochastic differential equations with the results in
this paper on inference for discrete dynamical systems. Last, we consider relaxation of the
compactness assumptions in this work to be an interesting avenue for further investigation.

APPENDIX A: BACKGROUND AND TECHNICAL LEMMAS

A.1. Pressure lemma. We refer to the following elementary fact, which is an easy con-
sequence of Jensen’s inequality, as the Pressure Lemma; see [53], Lemma 9.9.

LEMMA 9. Let a1, . . . , ak be real numbers. If pi ≥ 0 and
∑k

i=1 pi = 1, then

k∑
i=1

pi(ai − logpi) ≤ log

(
k∑

i=1

exp(ai)

)
,

with equality if and only if

pi = exp(ai)∑k
j=1 exp(ai)

.
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A.2. The space of joinings and the ergodic decomposition. Our proofs rely on a gen-
eral version of the ergodic decomposition for invariant probability measures. The following
version, a restatement of [47], Theorem 2.5, is sufficient for our purposes.

THEOREM ([47]). Suppose that R : U → U is a Borel measurable map of a Polish space
U and that μ ∈ M(U,R). Then there exists a Borel probability measure Q on M(U) such
that

(1) Q({η is invariant and ergodic for R}) = 1
(2) If f ∈ L1(μ), then f ∈ L1(η) for Q-almost every η, and∫

f dμ =
∫ (∫

f dη

)
dQ(η).

Whenever (2) holds, we write μ = ∫
η dQ.

Additionally, we require the following results about the structure of J (S : ν) from [40].

THEOREM ([40]). Suppose R : U → U is a continuous map of a compact metrizable
space and (Y, T , ν) is an ergodic measure-preserving system as in Section 1. Then J (R : ν)

is nonempty, compact, and convex. Furthermore, a joining λ ∈ J (R : ν) is an extreme point
of J (R : ν) if and only if λ is ergodic for R × T . Lastly, if λ ∈ J (R : ν) and λ = ∫

η dQ is
its ergodic decomposition, then Q-almost every η is in J (R : ν).

Let λ ∈ J (R : ν). By the above theorem, the ergodic decomposition of λ is a representation
of λ as an integral combination of the extreme points of J (R : ν). A function F : J (R : ν) →
R is called harmonic if for each λ ∈ J (R : ν),

F(λ) =
∫

F(η)dQ(η),

where λ = ∫
η dQ is the ergodic decomposition of λ.

A.3. Disintegration results. Suppose R : U → U is a continuous map of a compact
metric space and (Y, T , ν) is an ergodic system. It is well known in ergodic theory (see [21])
that for any joining λ ∈ J (R : ν), if λ = ∫

λy ⊗ δy dν(y) is its disintegration over ν, then the
family of measures {λy}y∈Y satisfies an additional invariance property, which we state in the
following lemma.

LEMMA 10. Let λ ∈ J (R : ν), and let λ = ∫
λy ⊗ δy dν(y) be its disintegration over ν.

Then (λy ⊗ δy) ◦ (R × T )−1 = λTy ⊗ δTy for ν-almost every y ∈ Y , and hence, for every
f ∈ L1(λ) and ν-almost every y ∈ Y ,∫

f (Ru,T y)dλy(u) =
∫

f (u,T y)dλTy(u).

A.4. Limiting average loss. The following lemma will be applied to the limiting av-
erage loss. Recall that when R : U → U is a continuous map of a compact metric space,
the space J (R : ν) of joinings is nonempty. For notation, if f : U × Y → R, then we let
fn(u, y) = ∑n−1

k=0 f (Rku,T ky).

LEMMA 11. Suppose that R : U → U is a continuous map of a compact metric space
U , and that f : U × Y → R is a Borel function for which there exists f ∗ : Y → R in L1(ν)
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such that supu∈U |f (u, y)| ≤ f ∗(y) for each y ∈ Y . Then for any joining λ ∈ J (R : ν) with
disintegration λ = ∫

λy ⊗ δy dν(y) over ν, for ν-almost every y ∈ Y ,

lim
n

1

n

∫
fn(u, y) dλy(u) =

∫
f dλ.

PROOF. For y ∈ Y define f̃ (y) = ∫
f (u, y) dλy(u). Then f̃ ∈ L1(ν), since f ∈ L1(λ)

(using the hypotheses involving f ∗). Now Lemma 10, together with the pointwise ergodic
theorem, yields that for ν almost every y,

lim
n

1

n

∫
fn(u, y) dλy(u) = lim

n

1

n

n−1∑
k=0

f̃
(
T ky

) =
∫

f̃ dν =
∫

f dλ.
�

A.5. Fiber entropy. We require two additional properties of the fiber entropy in our
setting. The first property is that fiber entropy is harmonic. This fact appears with proof as
Lemma 3.2 (iii) in [33] in a setting under which T : Y → Y is a continuous map of a compact
space, but careful inspection shows that the proof does not depend on this hypothesis.

LEMMA 12. The map λ 
→ hν(λ) from J (R : ν) to the nonnegative extended reals satis-
fies the following property: if λ = ∫

η dQ(η) is the ergodic decomposition of λ, then

hν(λ) =
∫

hν(η) dQ(η).

Next, we note that fiber entropy function is upper semi-continuous in our setting. The proof
of Lemma 2.2 in [54] establishes upper semi-continuity of fiber entropy in a setting closely
related to ours. By making only minor modifications of that proof, one may adapt it to our
setting and prove the following lemma.

LEMMA 13. Let �, (X , S), and (Y, T , ν) be as in the introduction, and let R = I� × S

act on the product space U = � ×X . Then the map λ 
→ hν(λ) from J (R : ν) to R is upper
semi-continuous.

A.6. Divergence terms and average information. Recall that we have defined

L(η : γ |α) =
⎧⎪⎨
⎪⎩
∑
C∈α

η(C) logγ (C), if η ≺α γ

−∞, otherwise,

where 0 · log 0 = 0 by convention. With these definitions, we always have

(14) −KL(η : γ |α) = H(η,α) + L(η : γ |α).

Recall that H(η,α) may be interpreted as the expected information of η under the partition
α, where the expectation is with respect to η. In contrast, −L(η : γ |α) may be interpreted
as the expected information of γ under the partition α, where the expectation is again taken
with respect to η. In what follows, if α is a partition of a space U and u ∈ U , we let α(u)

denote the partition element containing u. Here we restate and then prove Lemma 1.

LEMMA 14. Let f : X → R be a Hölder continuous potential on a mixing SFT X with
associated Gibbs measure μ. Let α be the partition of X into cylinder sets of the form x[0],
and let λ ∈ J (S : ν) be ergodic. Then for ν-almost every y ∈ Y ,

lim
n

1

n
KL(λy : μ|αn) = P(f ) −

(
hν(λ) +

∫
f dλ

)
.
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PROOF. Recall that by the Gibbs property for μ, for any n ≥ 1 and x in X , we have

K−1 ≤ μ(αn(x))

−nP(f ) + ∑n−1
k=0 f ◦ Sk(x)

≤ K.

Taking logarithms yields the bound∣∣log
(
μ
(
αn(x)

)) − (−nP(f ) + fn(x)
)∣∣ ≤ logK.

As this inequality is uniform in x, we may integrate with respect to λy to obtain∣∣∣∣L(λy : μ|αn) −
(
−nP(f ) +

∫
fn dλy

)∣∣∣∣ ≤ logK.

Dividing by n and applying Lemma 11 gives

(15) lim
n

1

n
L(λy : μ|αn) = −P(f ) +

∫
f dλ.

It follows from (10) that KL(λy : μ|αn) = −H(λy,αn)−L(λy : μ|αn). Since λ is ergodic,
for ν-almost every y, we have n−1H(λy,αn) → hν(λ,α) = hν(λ), where the equality is a
result of the fact that α is a generating partition for (X , S). Combining this fact with (15), we
find that for ν-almost every y,

lim
n

1

n
KL(λy : μ|αn) = −hν(λ) −

(
−P(f ) +

∫
f dλ

)

as desired. �

Now we prove a lemma that guarantees that D(λ : μθ) ≥ 0.

LEMMA 15. For each θ ∈ � and λ ∈ J (S, ν),∫
fθ dλ + hν(λ) ≤ P(fθ ).

PROOF. Let μ be the X -marginal of λ. Then hν(λ) ≤ hν(μ ⊗ ν) = h(μ), where the in-
equality follows from elementary information theoretic facts concerning conditional entropy
(see [9]) and the equality is a basic property of fiber entropy. Then by the variational principle
for pressure (7), ∫

fθ dλ + hν(λ) ≤
∫

fθ dμ + h(μ) ≤ P(fθ ),

as desired. �

A.7. Lower semi-continuity of the rate function.

PROPOSITION 7. The map V : � → R defined in Definition 4 is lower semi-continuous,
and hence the set �min is compact and nonempty.

PROOF. Let U = � × X and let R : U → U be given by R = I� × S, where I� is the
identity on �. Define ψ : U ×Y →R by

ψ(θ, x, y) = −�(θ, x, y) + fθ (x) −P(fθ ),

which is continuous and satisfies supu∈U |ψ(u,y)| ≤ ψ∗ ∈ L1(ν). Finally, define F : J (R :
ν) →R by

F(λ) =
∫

ψ dλ + hν(λ).
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Since ψ is continuous and hν is upper semi-continuous (by Lemma 13), F is upper semi-
continuous. Let proj� : J (R : ν) → M(�) be defined by setting proj�(λ) to be the �-
marginal of λ, which is a continuous surjection of compact spaces. One may easily check
from the definition of upper semicontinuity that the function

θ 
→ sup
{
F(λ) : proj�(λ) = δθ

}
is also upper semicontinuous. Since V (θ) is the negative of this function, we conclude that
V is lower semi-continuous.

For the second part of the proposition, we note that �min is the argmin of the lower semi-
continuous function V on the compact set �, and hence it is nonempty and compact. �

APPENDIX B: CONVERSE STATEMENT

In this section we collect some auxiliary results about Gibbs posterior inference. We begin
with a converse to Theorem 2 on the exponential scale: if U is an open set intersecting �min,
then the Gibbs posterior measure of U cannot be exponentially small as n tends to infinity.
This result appears as Proposition 8 below. First we establish a few preliminary lemmas.

LEMMA 16. For all θ, θ ′ ∈ �, for all x ∈ X , and for all n ≥ 1, we have

K−2e−n(|P(θ)−P(θ ′)|+‖fθ−fθ ′ ‖) ≤ μθ [xn−1
0 ]

μθ ′ [xn−1
0 ] ≤ K2en(|P(θ)−P(θ ′)|+‖fθ−fθ ′ ‖).

PROOF. Let θ , θ ′, x, and n be as above. By applying the Gibbs property (1) to both μθ

and μθ ′ and then simplifying, we have

μθ [xn−1
0 ]

μθ ′ [xn−1
0 ] ≤ Ke−nP (θ)+∑n−1

k=0 fθ (Sk(x))

K−1e−nP (θ ′)+∑n−1
k=0 fθ ′ (Sk(x))

= K2en(P (θ ′)−P(θ))+∑n−1
k=0 fθ ′ (Sk(x))−fθ (Sk(x)).

By elementary estimates, we then have that

μθ [xn−1
0 ]

μθ ′ [xn−1
0 ] ≤ K2en|P(θ)−P(θ ′)|+∑n−1

k=0 |fθ (Skx)−fθ ′ (Skx)|

≤ K2en|P(θ)−P(θ ′)|+n‖fθ−fθ ′ ‖

= K2en(|P(θ)−P(θ ′)|+‖fθ−fθ ′ ‖).
This estimate gives one of the inequalities in the conclusion of the lemma, and then inter-
changing the roles of θ and θ ′ gives the other. �

LEMMA 17. Let δ > 0 and y ∈ Y . Suppose θ, θ ′ ∈ � and x, x′ ∈ X satisfy dθ (θ, θ ′) < δ

and dX (Skx, Skx′) < δ for all k = 0, . . . , n − 1. Then

e−�n(θ,x,y)

e−�n(θ ′,x′,y)
≤ e

∑n−1
k=0 ρδ(T

ky).

PROOF. Let δ > 0, y ∈ Y , θ, θ ′ ∈ �, x, x′ ∈X , and n ≥ 1 be as above. Note that for each
k = 0, . . . , n − 1, we have that d((θ, Skx), (θ ′, Skx′)) < δ. Then

e−�n(θ,x,y)

e−�n(θ ′,x′,y)
= e−∑n−1

k=0 �(θ,Skx,T ky)

e−∑n−1
k=0 �(θ ′,Skx′,T ky)
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= e−∑n−1
k=0 �(θ,Skx,T ky)−�(θ ′,Skx′,T ky)

≤ e
∑n−1

k=0 |�(θ,Skx,T ky)−�(θ ′,Skx′,T ky)|

≤ e
∑n−1

k=0 ρδ(T
ky),

which concludes the proof of the lemma. �

LEMMA 18. Let δ > 0 and y ∈ Y . Suppose θ, θ ′ ∈ � satisfy d�(θ, θ ′) < δ. Let m ≥ 1 be
such that if x ∈X and x′ ∈ [xm−1

0 ], then dX (x, x′) < δ. Then for any n ≥ 1, we have∫
X e−�n(θ,x,y) dμθ (x)∫

X e−�n(θ ′,x′,y) dμθ ′(x′)
≤ K2e(m+n)(|P(θ)−P(θ ′)|+‖fθ−fθ ′ ‖)+∑n−1

k=0 ρδ(T
ky).

PROOF. Let δ > 0, y ∈ Y , θ, θ ′ ∈ �, and m ≥ 1 be as above. For each n ≥ 1, let Ln

denote the set of words w ∈An such that there exists x ∈ X with xn−1
0 = w. For any such w,

we let μθ,w denote the conditional measure μθ(·|[w]) obtained from μθ by conditioning on
the cylinder set [w]. Then we have∫

X
e−�n(θ,x,y) dμθ(x) = ∑

w∈Lm+n

μθ

([w]) ∫
[w]

e−�n(θ,x,y) dμθ,w(x)

≤ ∑
w∈Lm+n

μθ

([w]) max
x∈[w] e

−�n(θ,x,y).

By Lemma 17 and our choice of m, we have that

max
x∈[w] e

−�n(θ,x,y) ≤ e
∑n−1

k=0 ρδ(T
ky) min

x′∈[w] e
−�n(θ ′,x′,y).

Combining the above inequalities and also applying Lemma 16, we obtain∫
X

e−�n(θ,x,y) dμθ (x) ≤ ∑
w∈Lm+n

μθ

([w]) max
x∈[w] e

−�n(θ,x,y)

≤ e
∑n−1

k=0 ρδ(T
ky)

∑
w∈Lm+n

μθ

([w]) min
x′∈[w] e

−�n(θ ′,x′,y)

≤ K2e(m+n)(|P(θ)−P(θ ′)|+‖fθ−fθ ′ ‖)+∑n−1
k=0 ρδ(T

ky)

· ∑
w∈Lm+n

μθ ′
([w]) ∫

[w]
e−�n(θ ′,x′,y) dμθ ′,w

(
x′)

= K2e(m+n)(|P(θ)−P(θ ′)|+‖fθ−fθ ′ ‖)+∑n−1
k=0 ρδ(T

ky)

·
∫
X

e−�n(θ ′,x′,y) dμθ ′
(
x′),

as desired. �

PROPOSITION 8. Suppose U ⊂ � is open and U ∩ �min �= ∅. Then for ν-almost every
y ∈ Y ,

lim
n

1

n
logπn(U |y) = 0.

PROOF. Let θ0 ∈ U ∩ �min. By definition of �min we have V (θ0) = V∗ = infθ V (θ). Let
ε > 0 be arbitrary, and select δ > 0 sufficiently small that
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• ∫
ρδ dν < ε/3,

• if d�(θ, θ ′) < δ, then |P(θ) − P(θ)| < ε/3 and ‖fθ − fθ ′‖ < ε/3, and
• the ball U0 of radius δ around θ0 is contained in U .

Now choose m ≥ 1 such that if x ∈ X and x′ ∈ [xm−1
0 ], then dX (x, x′) < δ.

Since π0 is fully supported, π0(U0) > 0. Note that for each y ∈ Y and n ≥ 1,

πn(U |y) = 1

Zn(y)

∫
U

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x)dπ0(θ)

≥ 1

Zn(y)

∫
U0

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x)dπ0(θ).

Applying Lemma 18 to θ0 and any θ ∈ U0 and using our choice of δ, we see that∫
X

exp
(−�n(θ, x, y)

)
dμθ(x) ≥ K−2 exp

(−(m + n)
(∣∣P(θ) − P(θ0)

∣∣ + ‖fθ − fθ0‖
))

·
∫
X

exp
(−�n

(
θ0, x

′, y
))

dμθ0

(
x′)

≥ K−2 exp
(−(m + n)(ε/3 + ε/3)

)
·
∫
X

exp
(−�n

(
θ0, x

′, y
))

dμθ0

(
x′).

Combining the above inequalities, we have

πn(U |y) ≥ 1

Zn(y)

∫
U0

∫
X

exp
(−�n(θ, x, y)

)
dμθ(x)dπ0(θ)

≥ 1

Zn(y)
K−2 exp

(
−2(m + n)ε/3 −

n−1∑
k=0

ρδ

(
T ky

))

·
∫
U0

∫
X

exp
(−�n

(
θ0, x

′, y
))

dμθ0

(
x′)dπ0(θ)

≥ 1

Zn(y)
K−2 exp

(
−2(m + n)ε/3 −

n−1∑
k=0

ρδ

(
T ky

))

·
∫
X

exp
(−�n

(
θ0, x

′, y
))

dμθ0

(
x′) · π0(U0).

Taking logarithms, dividing by n, and letting n tend to infinity yields

lim inf
n

1

n
logπn(U |y) ≥ V∗ − 2ε/3 −

∫
ρδ dν − V∗ ≥ −ε.

(Note that the above inequality holds for ν-almost every y.) As ε > 0 was arbitrary, we obtain
the desired result. �

APPENDIX C: CONVERGENCE OF THE POSTERIOR

We now address the Cesàro convergence of the full posterior Pn on � × X . Recall that
we let I� : � → � be the identity map on �. In the thermodynamic formalism, invariant
measures that achieve the optimal value in the variational expression for pressure are called
equilibrium measures. In our setting, we introduce terminology for joinings that achieve the
optimal value in the variational expression for the rate function. We will call a joining λ ∈
J (I� × S : ν) an equilibrium joining if

λ ∈ argmin
{∫

�dλ′ + G
(
λ′) : λ′ ∈ J (I� × S : ν)

}
.
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PROPOSITION 9. For each y ∈ Y and n ≥ 1, let Qn(·|y) ∈ M(� × X ) be defined for
Borel sets E ⊂ � ×X by

Qn(E|y) = 1

n

n−1∑
k=0

Pn

(
(I� × S)−kE|y).

Then for ν-almost every y ∈ Y , all limit points of {Qn(·|y)}n≥1 are (� × X )-marginals of
equilibrium joinings.

PROOF. As in Section 8.2, let

ηn = 1

n

n−1∑
k=0

(
P y

n ◦ (I� × S)−k) ⊗ δT ky.

By definition, Qn(·|y) is the (� × X )-marginal of ηn. Let Q be a weak limit of the subse-
quence {Qnk

(·|y)}k≥1. By repeating the arguments of Section 8.2, one may show that there
is a subsequence {nkj

}j≥1 such that {ηnkj
}j≥1 converges weakly to an equilibrium joining λ.

As Q is necessarily the (� ×X )-marginal of the limit λ, the proof is complete. �
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