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Abstract

Recent advances in text-to-image generative mod-
els provide the ability to generate high-quality
images from short text descriptions. These foun-
dation models, when pre-trained on billion-scale
datasets, are effective for various downstream
tasks with little or no further training. A natu-
ral question to ask is how such models may be
adapted for image compression. We investigate
several techniques in which the pre-trained mod-
els can be directly used to implement compres-
sion schemes targeting novel low rate regimes.
We show how text descriptions can be used in
conjunction with side information to generate
high-fidelity reconstructions that preserve both
semantics and spatial structure of the original. We
demonstrate that at very low bit-rates, our method
can significantly improve upon learned compres-
sors in terms of perceptual and semantic fidelity,
despite no end-to-end training.

1. Introduction

Recent works from the lossy compression literature have
demonstrated that when human satisfaction or semantic vi-
sual information is prioritized, compression schemes that
manually encode images using human-written text descrip-
tions as the compressed representation (Bhown et al., 2018;
2019) yield significant improvements compared to tradi-
tional compressors. These works show that when operating
at such low bit-rates, high levels of human satisfaction can
still be achieved despite low pixel-wise fidelity. (Weissman,
2023) argues that transmitting the compressed information
directly in the form of human language, known as textual
transform coding, encodes information that scales with the
semantic content in the image as interpreted by a human,
rather than pixel-wise content.

Concurrent work in text-to-image generative models have
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(a) Ground-truth.

(b) Text only reconstr. (0.0023 bpp). (c) Text + sketch reconstr. (0.013 bpp).

Figure 1. Text-only reconstruction (PIC) preserves semantic infor-
mation. Adding a sketch (PICS) preserves structural components.

provided the ability to generate high-quality images that
represent the semantic information of the text across many
domains (Ramesh et al., 2022; Rombach et al., 2022). These
models, when scaled to orders of magnitude larger parame-
ter counts and billion-scale datasets, have achieved remark-
able capabilities in terms of converting language concepts
to high quality images when assessed by humans. At such
scale, these foundation models provide impressive zero-shot
capabilities, allowing them to be used as a backbone when
designing models for tasks not explicitly trained for.

Prior neural compression paradigms, such as generative
compression, attempt to align its reconstructions with hu-
man assessment at low bit-rates by enforcing a distribu-
tion matching constraint. In contrast, our work investigates
neural compression schemes that target human satisfaction
by directly transmitting text containing human-aligned se-
mantic information. By leveraging the recent advances in
pre-trained foundation models that operate with vision and
language, we demonstrate how neural compression can ben-
efit from the scale of such models, whereas similarly scaled
neural compressors would require extensive resources to
train end-to-end.

Directly using an off-the-shelf text-to-image model (with no
further training) to implement a textual transform code can
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yield good results in terms of preserving coarse semantic in-
formation at very low bit-rates. However, current language-
vision models, typically built on top of CLIP (Radford et al.,
2021), are limited in the amount of semantic concepts they
can synthesize, especially pertaining to the spatial place-
ment of objects. As shown in Fig. 1, when sending a text
that is CLIP-optimized as the compressed representation,
coarse semantic information is kept, but lower-level details
of the image such as the placement of objects is poor. We
show how transmitting limited side information in the form
of a sketch can preserve lower-level structures. Our full
contributions are as follows.

1) We design a neural compressor that uses text-to-image
models in a zero-shot manner to implement compres-
sion schemes preserving human semantics at rates be-
low 0.003 bits-per-pixel (bpp), which is an order of
magnitude lower than previously studied regimes.

2) We show how side information in the form of a com-
pressed spatial conditioning map can be used to provide
the high-level structural information in the image along
with a transmitted text caption, producing reconstruc-
tions that improve structural preservation.

3) We show that our schemes outperform state-of-the-
art generative compressors in terms of semantic and
perceptual quality, despite no end-to-end training.

2. Related Work

Neural Compression. The use of neural networks to de-
sign lossy compressors was initiated by merging quantiza-
tion with autoencoder architectures (Toderici et al., 2016;
Ballé et al., 2017; Theis et al., 2017; Agustsson et al., 2017).
These models are traditionally trained with reference distor-
tion metrics such as MSE, MS-SSIM (Wang et al., 2003),
and LPIPS (Zhang et al., 2018). However, reconstructions
suffer from blurriness at low bit-rates, motivating the field
of generative compression (Agustsson et al., 2019; Mentzer
et al., 2020). In this field, distortion can be sacrificed for
perceptual quality (Blau & Michaeli, 2019), measured as
alignment between source and reconstruction distributions.
This improves human satisfaction in the rate regime of <0.1
bpp, compressors tuned for pixel-wise distortions fail to gen-
erate realistic reconstructions. At such low bitrates, pixel-
wise fidelity metrics fail to align with human perception,
since they largely focus on low-level details rather than the
higher-level structures. Generative compression thus allows
for realistic but not necessarily faithful (with regards to a dis-
tortion measure) reconstructions. However, it poses realism
in terms of a distribution matching formulation which can
offer some alignment with human satisfaction; textual trans-
form coding attempts to directly encode the human-aligned
semantic information in the form of language.

Text-to-Image Models. While many architectures have
been studied for text-to-image generation, such as VAEs
(Ramesh et al., 2021; Ding et al., 2021) and GANs (Gal
et al., 2021), diffusion models have become the method of
choice due to easier scaling to massive datasets (Rombach
et al., 2022; Ramesh et al., 2022). These methods typically
leverage CLIP (Radford et al., 2021), a pre-trained model
that provides a shared text-image embedding space, to re-
trieve an embedding corresponding to the input text. The
diffusion model uses this embedding as a conditional input
to denoise randomly sampled noise into an image corre-
sponding to the text. Our work does not necessarily require
diffusion models per se; it can use any foundation model
that can generate images from text, pre-trained at scale.

Diffusion-based neural compressors have also been inves-
tigated (Yang & Mandt, 2022; Pan et al., 2022). Rather
than transmit text, these models transmit a quantized em-
bedding as the conditional input to the diffusion-based de-
coder. DiffC (Theis et al., 2022) directly transmits pixels
corrupted by noise in a diffusion process. Contrary to these
models, our proposed compressor uses fully pre-trained text-
to-image models, transmits text directly as a compressed
representation for the conditional input, and utilizes a spatial
conditioning input as side information.

Human Compression. (Bhown et al., 2018; 2019) demon-
strates a hand-crafted compression scheme in which humans
write down text descriptions of the image to compress; the
decoder consists of another human who has access to a
database of images and image editing software. Human-
rated scores for this scheme were higher than WebP at sim-
ilar rates, despite the fact that the reconstructions may not
necessarily be faithful at the pixel-level. Building off these
results, (Weissman, 2023) conjectures that human satisfac-
tion is a function of pixel-level fidelity with a semantic
fidelity, which can be interpreted via human language. At
large rates, pixel-wise fidelity dominates human satisfaction;
at low rates, pixel-wise fidelity becomes less meaningful
when compared to the “textual” information of the image.

3. Transmitting Text With Side Information

3.1. Textual Transform Coding via Prompt Inversion

Textual transform coding (Weissman, 2023) represents the
image using a text description, which gets encoded with
a lossless compressor. The decoder first recovers the text,
which is used to synthesize the reconstructed image. Our
decoder is assumed to be some text-to-image model G that
is pre-trained on a large-scale dataset. In this section, we
use Stable Diffusion (SD) (Rombach et al., 2022) for G.

One option to encode an image into text is via image cap-
tioning methods (Stefanini et al., 2022). However, most
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Figure 2. Diagram of PICS. Separate bitstreams for the text and sketch are losslessly encoded. Removing the bottom branch yields PIC.

image captioning methods such as (Li et al., 2022) produce
text captions that align with human language, but may not
necessarily be optimal for the text-to-image model. Since
SD uses pre-trained CLIP for text embeddings, it is more
meaningful to directly search in the embedding space of
CLIP in order to find text that represents an image for SD.

Following (Wen et al., 2023), we use prompt inversion (PI),
which performs projected gradient search in CLIP’s em-
bedding space, using cosine similarity between the image
embedding and the text embedding as the objective. To
project to a hard text, the nearest CLIP embedding is found
for each token being searched over. The tokens are con-
verted to text and losslessly compressed. At the decoder, the
decoded text is simply provided to G which synthesizes a
reconstructed image. We call this method Prompt Inversion
Compression (PIC). PIC can achieve very low rates (around
0.002-0.003 bpp), yet preserve semantic information, since
CLIP itself has semantic image comparison capabilities due
to its vision-text merged feature space.

An interesting fact of language-vision models such as SD
is that quantization is naturally built into the model, where
the language to vision conversion takes place. Text, after
converted to tokens, is directly mapped to a codebook of em-
bedding vectors. Thus, one can interpret prompt inversion
as the encoder searching for the best CLIP codeword.

3.2. Adding Spatial Conditioning Maps

One challenge with using PIC is that it is difficult to increase
reconstruction quality as the bitrate of text increases. As
shown in (Wen et al., 2023), increasing the number of to-
kens after a certain point fails to improve the CLIP score
of the reconstructed image. Rather than attempting to in-
crease the textual information in a way that G can process,
we instead propose to send side information in the form
of a “sketch” of the original image, which contains finer
structural information.

In this setting, we choose G to be ControlNet (Zhang &

Agrawala, 2023), a text-to-image model built on top of SD
that can process spatial conditioning maps in the form of
edge detection maps, segementation maps, depth maps, etc.
It ensures that the reconstructed images follow the spatial
structure of the input map, and the style suggested by the
text prompt. We use ControlNet as our decoder by send-
ing a compressed version of the edge detection map (i.e.,
the sketch) as side information in addition to the prompt
inversion text. In particular, we use the variant of Control-
Net trained with Holistically-nested Edge Detection (HED)
maps (Xie & Tu, 2015) since those were found to have lower
rate-distortion compared to Canny edge and segmentation
maps. To compress the sketch, we use standard learned non-
linear transform codes (NTC) (Ballé et al., 2021) trained on
a small dataset of HED maps. We call this scheme Prompt
Inversion Compressor with Sketch (PICS), shown in Fig. 2.

4. Experimental Results

4.1. Setup

Datasets and Evaluation: We use three evaluation datasets:
Kodak (Franzen), CLIC 2021 (CLI) test, and DIV2K
(Agustsson & Timofte, 2017) validation. Since textual trans-
form coding operates in an order of magnitude lower regime
than even “extreme” compression (< 0.1bpp), pixel-wise
reference distortion metrics (PSNR, MS-SSIM, LPIPS) are
not as meaningful. As human-aligned semantic reference
metrics are still an open problem (Weissman, 2023), we use
cosine similarity of CLIP embeddings as a proxy,

dCLIP(x, x̂) = 1� e(x) · e(x̂)
ke(x)kke(x̂)k , (1)

where e(·) is the image encoder of CLIP. Ideally, a human
study would be performed, which we leave for future work.
In addition, we use standard no-reference metrics to measure
realism according to distributional alignment, FID (Heusel
et al., 2017) and KID (Bińkowski et al., 2018).

Baseline Methods: These include a generative compression
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Figure 3. Achieved rate-perception and rate-distortion tradeoffs on CLIC 2021.

Figure 4. Achieved rate-perception and rate-distortion tradeoffs on DIV2K.

(a) Ground-truth. (b) (Cheng et al., 2020) (0.018 bpp).

(c) HiFiC (0.016 bpp). (d) PICS (0.013 bpp).

Figure 5. Zoomed-in version of Fig. 1.

baseline, HiFiC (Mentzer et al., 2020), and a NTC baseline
(Cheng et al., 2020) optimized for MS-SSIM.

PIC/PICS: See appendix.

4.2. Results

Quantitative Results: Shown in Figs. 3, 4, we compare
PIC/PICS in terms of rate-perception and distortion (in
terms of dCLIP). At such a low rate regime, HiFiC achieves
better rate and semantic and perceptual quality than MS-
SSIM trained NTC models. However, PICS is able to im-
prove upon that further, with strict improvement in all trade-
offs. Interestingly, while PIC also strictly improves the rate-
perception tradeoff, it performs worse in terms of semantic

quality than PICS and HiFiC (albeit at lower rate). This
shows that adding the sketch actually helps the generative
model achieve higher semantic quality.

Qualitative Results: We visualize several reconstruction
examples for all models and compare them with the ground-
truths, in Figs. 1, 5, 6, 7, and 8. In general, PIC is able to
reconstruct very coarse concepts contained in the ground-
truth image. The NTC model optimized for rate-distortion
yields blurry reconstructions in the low-rate regime. HiFiC
improves realism, producing a sharper image with perhaps
different textures than the original. In some cases, there are
still compression artifacts, since HiFiC is not operating in
the (near)-perfect realism regime. PICS is able to recover the
high-level spatial structure of the ground-truth with superior
sharpness, but synthesizes different textures or colors in the
image. For example, Fig. 5 shows how PICS generates a
house in front of a mountain of similar shape, but completely
changes the color and style of the house as well as the
composition of the mountainside. Additionally, PI-encoded
prompts mostly recover semantic concepts, in Figs. 6-8.

5. Conclusion

In this paper, we use pretrained text-to-image models to
construct a compressor that transmits a short text prompt
and compressed image sketch. The only training required is
to learn a lightweight learned compressor on HED sketches.
Experimental results demonstrate superior performance in
terms of semantic and perceptual quality. Current and future
work includes a human study to evaluate human satisfaction
of reconstructed images.
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A. Visual Reconstructions

We place visual reconstructions referenced in the main text here.

B. Implementation Details

B.1. Baselines and Evaluation

For HiFiC, we use an open-source implementation1 pre-trained on OpenImages (Kuznetsova et al., 2020) to a target bitrate
of 0.14 bpp. We then fine-tune on a subset of OpenImages with a target bitrate of 0.01 bpp, by setting �(a) = 32, 64. For the
NTC baseline, we use a model pre-trained2 on Vimeo90K (Xue et al., 2019), fine-tuned on the same dataset for a target
bitrate of 0.01 bpp.

To compute FID and KID, we use the torch-fidelity3 (Obukhov et al., 2020) package.

B.2. PIC/PICS

For PI, we set the prompt length to 16 tokens, following the ablation study in (Wen et al., 2023). To compress the HED
sketch, we train a lightweight NTC model (Cheng et al., 2020) on HED maps from Vimeo90K under MS-SSIM distortion,
targeting a bitrate of 0.01 bpp. We found that using MS-SSIM yielded better reconstructions from ControlNet compared to
PSNR.

We use HuggingFace’s diffusers library (von Platen et al., 2022) to run inference on SD and ControlNet. Although SD
and ControlNet use many more parameters than NTC or HiFiC, one does not need to train these foundation models.
Furthermore, with recent advances in efficient inference of diffusion models (Lefaudeux et al., 2022), inference can
be run efficiently on a single commodity GPU without using excessive memory. The code will be made available at
https://github.com/leieric/Text-Sketch.

1https://github.com/Justin-Tan/high-fidelity-generative-compression
2https://interdigitalinc.github.io/CompressAI/
3https://github.com/toshas/torch-fidelity
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Text + Sketch: Image Compression at Ultra Low Rates

(a) Ground-truth. (b) (Cheng et al., 2020) (0.015 bpp). (c) HiFiC reconstr. (0.013 bpp).

(d) PIC reconstr. (0.0023 bpp). (e) PICS reconstr. (0.013 bpp). (f) PICS sketch.

(g) PICS sketch reconstr., 0.01 bpp.

Figure 6. From CLIC2021 test. For PIC/PICS, encoded prompt is “rudcapebrt “U0001F1E6kuwait indie fiction brt cartagena resembles
desert handicstairs brick dwelling villa”.
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Text + Sketch: Image Compression at Ultra Low Rates

(a) Ground-truth. (b) (Cheng et al., 2020) (0.013 bpp).

(c) HiFiC reconstr. (0.020 bpp). (d) PIC reconstr. (0.0024 bpp).

(e) PICS reconstr. (0.011 bpp). (f) PICS sketch.

(g) PICS sketch reconstr.

Figure 7. Kodim02. For PIC/PICS, encoded prompt is “gayle chases eggs eggs knob withdrawn doors textures dewey red express u043D
barns farcabs hauled”.
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Text + Sketch: Image Compression at Ultra Low Rates

(a) Ground-truth. (b) (Cheng et al., 2020) (0.016 bpp). (c) HiFiC reconstr. (0.028 bpp).

(d) PIC reconstr. (0.0023 bpp). (e) PICS reconstr. (0.012 bpp). (f) PICS sketch.

(g) PICS sketch reconstr.

Figure 8. Kodim19. For PIC/PICS, encoded prompt is “confederflipkquid rated confederfemale decorate maine k adm giggs ubunseeks
lighthouse accomgigab”.
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