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Abstract—We discuss a federated learned compression prob-
lem, where the goal is to learn a compressor from real-world
data which is scattered across clients and may be statistically
heterogeneous, yet share a common underlying representation.
We propose a distributed source model that encompasses both
characteristics, and naturally suggests a compressor architecture
that uses analysis and synthesis transforms shared by clients.
Inspired by personalized federated learning methods, we employ
an entropy model that is personalized to each client. This allows
for a global latent space to be learned across clients, and
personalized entropy models that adapt to the clients’ latent
distributions. We show empirically that this strategy outperforms
solely local methods, which indicates that learned compression
also benefits from a shared global representation in statistically
heterogeneous federated settings.

I. INTRODUCTION

Traditional learned compression usually takes place in a
centralized setting, where one compression model is learned
from data collected from various sources and stored at a single
location. The standard lossy neural compression models the
centralized data as a single source * ~ Px supported on X.
Learned compression, under this source assumption, can be
set up through the lens of nonlinear transform coding (NTC)
[1]. NTC seeks to find an analysis transform g, : X — Y
that maps x to a latent variable y, and a synthesis transform
gs Y — X that maps from the latent space back to
the source/reconstruction space. The latent variable y is then
quantized to y = |y] such that each entry is quantized to the
nearest integer, and entropy coded using likelihoods generated
from some entropy model py(y). The goal is to minimize the
operational rate-distortion trade-off

Ex[—logy py([ga(®)])] + AEz[d(z, gs(lga(2)])], (D)

where A > 0 controls the trade-off. The transform functions
Jas gs, as well as the entropy model are all parameterized
using neural networks.

In practice, NTC models are typically trained on aggregated
datasets such as MS-COCO [2] or ImageNet [3], which are
collected from many clients into one location and form the
samples from the source x. Then, a single model is trained on
this source using the objective in (1). This centralized approach
has been successful in a wide variety of applications and
modalities such as image compression [4]-[6], compression
of channel state information (CSI) in wireless communications
[71, [8], and in audio compression [9].

However, in many cases, a centralized approach is not
necessarily feasible or applicable to the end user’s setting.
Rather than already existing in a central location, the data
may be scattered across clients and it may not be feasible
to centrally collect it due to limitations such as privacy
constraints. Moreover, it can be expensive to collect all data
at a centralized location when there are many clients. These
challenges motivate analyzing learned compression from a
distributed setup where multiple clients all wish to learn a
compressor for their respective data in a federated fashion,
potentially with the help of a central server.

One immediate challenge that arises is that there are now
potentially n different sources, where n is the number of
clients. The single source NTC setup in (1) is, however,
formulated for a single source. This parallels a well-known
challenge in federated learning (FL), which is a related prob-
lem where clients wish to jointly learn a classifier or regressor
from their data, where the data across clients are statistically
heterogeneous, yet may share some underlying structure. For
example, medical images collected using different equipment
or in different locations may be modeled by different source
distributions; yet, they are all fundamentally the same type of
image. In the context of data compression, a natural question
arises: how to model common structure across statistically
heterogeneous sources? Furthermore, how can this shared
structure be leveraged by the clients in order to learn good
lossy compressors for each client?

For the former question, one difference that precludes
direct application of the FL setup is that in FL, the statis-
tical heterogeneity is modeled within the labels of the data
distribution, not the features (e.g., pixel values in images).
Learned compression is, however, an unsupervised task, and
has no labeled data. Thus, all statistical heterogeneity and
common structure that may exist across client data needs to be
modeled solely within the features. In our work, we take these
considerations into account by modelling the clients’ sources
as distributions induced by a shared generative function f
applied to n independent latent sources. This shared generative
function f ensures that all sources share a common feature
space.

For the latter question, a naive approach to solve this
problem is to try to learn a single NTC-based compressor,
where clients send model updates to the server at each round,
and the server computes the average of the received models.
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This approach would extend FedAvg [10] in FL to this
federated compression setting. However, under our source
heterogeneity assumption, it is more natural to learn client-
specific compressors that are better tuned to each client’s
source distribution. One client-specific solution is to train a
local model for each client. A challenge this approach faces
in practice is that the number of samples each client has
is small relative to the number of clients. Under our data
heterogeneity model, however, there is intrinsic structure in the
feature space defined by the shared function f, which can be
leveraged across client data. We thus propose a novel solution
with NTC models: learn globally shared analysis and synthesis
transforms, with client-specific entropy models. This approach
allows the shared analysis and synthesis transforms to try and
undo the shared function f, extracting the client-specific latent
source, which is then compressed using client-specific entropy
models.

Our contributions are as follows.

1) We propose a federated learned compression framework
that simultaneously encompasses statistical heterogene-
ity and shared intrinsic structure across clients.

2) We propose a novel method to learn client-specific

neural compressors that leverages the shared structure

across clients.

We demonstrate empirically that learning a shared anal-

ysis and synthesis transform followed by locally opti-

mized entropy models performs better than solely local

NTC models.

3)

II. RELATED WORK

A. Neural Compression

The use of neural networks to design lossy compressors
was initiated by merging quantization with autoencoder ar-
chitectures [11]-[14]. These methods, under the umbrella of
NTC [1], operate by mapping the source to a latent space and
back by using an analysis and synthesis transform parameter-
ized with neural networks. Uniform quantization and entropy
coding (using an additional learned entropy model) is then
performed in the latent space, which is generally much lower
in dimensionality. More recent work improve upon the entropy
modeling to remove additional redundancy in the latent space.
The scale hyperprior [4] transmits side information to generate
different entropy models for each sample, with [S] and [6]
building on top of this via autoregression of the latent variable.
In single-image compression, these methods have shown to
outperform recent handcrafted codecs such as HEVC [15] and
VVC [16].

These methods are typically trained on data that has been
pre-collected and stored centrally. One model is typically
trained and deployed. In contrast, our work considers the
case where the data resides across distributed clients such
that collecting them centrally is not possible, and designing
architectures to learn good compressors in such a setting.

2

B. Federated Learning

There have been many recent works discussing federated
learning (FL), especially under client heterogeneity [17]-[20].
Most of these works have been applied in classification or re-
gression settings, where each client 7 has its own training data
x,y ~ P; and wishes to learn a good predictor that generalizes
well on their respective distribution P;. One popular approach
is FedAvg [10], where a single model is sent to clients to
update the model, before the central server averages their
updates. Another approach is FedRep [17], where a global
feature extractor is learned on centralized data, and local client
heads are jointly trained which use the extracted features to
predict on local client data. Both methods have been shown
to recover the underlying shared representation across clients
in simple regression settings [21].

One difference in our setup is that learned compression
does not assume labeled data. The assumptions of personalized
FL are that heterogeneity resides in the labels, and hence
the natural architecture to arise is a shared feature extractor
followed by a predictor that is personalized. In contrast,
we propose a different notion of heterogeneity with shared
structure that purely resides in the features. We argue that
this naturally leads to an architecture with shared analysis and
synthesis transforms followed by personalized entropy model.

C. Distributed Neural Compression

There have also been recent works in designing distributed
neural compression schemes [22]-[25]. These works are in-
spired by the information-theoretic results on compression
with side information [26], [27], which say that if one has
side information on a source to be compressed, an encoder
that does not observe side information can perform just as
well as one that does (in both cases the decoder observes the
side information). However, this is slightly different from the
federated setting. In contrast, we are interested in learning
n point-to-point lossy compressors (i.e., one for each client),
where each compressor does not assume any side information
from the other clients to be available. Rather than exploiting
side information (i.e., a correlated source), we want to exploit
underlying structure of the n sources, despite being statistically
independent.

III. PROBLEM FORMULATION

A. Single-Source Neural Compression

As discussed in the introduction, classical neural compres-
sion models the data as a single source  ~ Py, and attempts
to learn a model that performs well in terms of rate and
distortion defined w.r.t. . The main intuition is that sources
such as images have a low-dimensional latent space which can
be extracted by the analysis and synthesis transforms. The low-
dimensional latent representation is modelled probabilistically
using a learned entropy model, which quantizes and entropy
codes the latent variable. A figure describing this setup is
shown in Fig. 1.
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Fig. 1: Single source neural compression.

Algorithm 1 Local-NTC

Require: Total iterations 7, step size 7, rate-distortion trade-

off A\ >0 )
Initialize {gff)}?:l, {pgj )}?:1
fort=1,...,T do

for each client 7 do

(9", 98 )

nv(géi),gii),pg)) (Bn + ADn)

end for
end for

{ggl) }?:1’

(@) (@) (i))

« (9a”, 95"y

This method encompasses centralized training, where
datasets are aggregated ahead of time and a single model is
trained using the combined data.

B. Federated Compression

In the federated setting, instead of a single, effectively cen-
tralized source, we have n sources P, ..., P,, with z® ~ P,
consisting of the data seen by client . Centralized training
corresponds to aggregating all sources into the single source
setup with Px %Z?:l P;. Typically, however, since the
sources are heterogeneous across clients, it is better to have
client-optimized models. Thus, the most general federated
compression setup consists of n separate compressors, such
that each client ¢ has its own analysis and synthesis transforms
g((li), ggi), as well as entropy model pg Thus, the local
federated objective consists of

min

1 & @y
Cmin =Y (Bgw[—logypy (g8 (2)])]
{98798 pSYp, M Y

FAE, 0 [d(, g7 (L¢P (2)])]), @)

where the goal is minimize the rate and distortion averaged
over the clients. We call the objective in (2) Local-NTC, whose
training algorithm can be found in Alg 1.

Rather than learn a local model for each client, results from
federated learning suggest that heterogeneous data can poten-
tially benefit from first learning a shared common representa-
tion. In the FedRep framework [17], a common representation
is extracted from a shared feature extractor, before individual
client heads are learned to predict from this fixed represen-
tation. The intuition behind these works is the assumption
that data heterogeneity exists primarily in the labels of the
dataset, whereas the data samples (e.g., covariates or features)
have a shared common structure. Learned compression, on

3

the other hand, is a fully unsupervised task, and so both the
heterogeneity and shared structure need to be modelled within
the features.

C. Heterogeneous Source Modelling

As an example, if one wishes to compress similar types of
images (e.g., medical images) that are collected using different
equipment across the clients, one might expect that these
images lie on the same image manifold despite the image
distributions being different across clients. Mathematically,
we can model P, ..., P, as follows. Let {z(¥}7"_, be the
latent sources of randomness underlying the images sources,
which could represents properties of the images such as
class, orientation, lightning, or style. Then, the sources in
the ambient space which the clients observe are generated
as (V) = f(z("), for some fixed but unknown function f,
which models the shared source manifold, but the statistically
heterogeneity is modelled implicitly via the z(%)’s.

In Local-NTC, the analysis and synthesis transforms at each
client attempt to “undo” this generative function f in order
to recover z(* and model its probability density. However,
each client may be data limited, and thus learning f at every
client’s model may be difficult to accomplish. Instead, in order
for each client ¢ to recover the underlying source, it may be
easier to globally learn the function f across clients. The NTC
framework itself naturally possesses an architecture that can
naturally support this heterogeneous source model, where the
images across clients share an underlying latent representation.

D. Sharing Analysis and Synthesis Transforms

The analysis transform can be seen as a feature extractor that
extracts a latent representation (typically of lower dimension-
ality), which is then quantized and entropy encoded according
to a learned entropy model. One can thus view the “prediction
head” of learned compression as the entropy coding part of the
model. At the decoder side, the decompressed latent variable
is transformed back to the reconstruction using the synthesis
transform. Thus, if one learns a shared analysis and synthesis
transform g,, gs across clients, the induced distribution of the
latent variables for client i will be g, (x(?)). A client-specific
entropy model p?(;) is then fine-tuned individually to more
accurately model the distribution induced by g, (x(")). Similar
to federated learning, we expect this scheme to perform better
than solely local training when the data per-client is small;
this helps the analysis and synthesis transforms learn better
feature extractors by leveraging all the data across clients. We
call this setting Fed-NTC, where the objective is

1 n

> (Eaoo [~ logz p (Lga(@)])]

FAE, o0 [d(z, g5([9a()])]),  3)

which jointly optimizes the client-averaged rate and distortion
R, + AD,,, where R,, and D,, are defined as

min
Gargs: (P Yy T

1 & ; ,
Ry:= =% Bool~logapy (lgal™))], @)
i=1
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Fig. 2: Federated neural compression under Fed-NTC frame-
work. Analysis and synthesis transforms are learned globally
through a central server, whereas the entropy models are
learned per-client.

Algorithm 2 Fed-NTC

Require: Participation rate 7, communication rounds 7', en-
tropy model updates T}, transform updates T}, step size 7,
rate-distortion tradeoff A>0
Initialize gq, s, {py 2
fort=1,...,7 do

Server sends Ja, gs to random fraction r of clients I,
for T, 1terat10ns do

(D) an@ (Rn + /\Dn),

Py py Viel,
end for

Initialize (g((z ), ggl))
for T, iterations do

D 4D) (g o) NV ) 40y (B + ADy)

(ga »Gs )
end for
Each client 7 sends (g((L ), ggz)) back to server

(gar9s) = Nies (957, 98)
end for

- %ZEM [d@?, g5(|ga())]. 3

Fig. 2 describes the training framework. To optimize (3), one
can alternate global updates, which are coordinated through
the use of a server as shown in Fig. 2, with local entropy
model updates. The full algorithm is shown in Alg. 2.

E. Rate-Distortion Function For Heterogeneous Sources

In this section, we explain why sharing analysis and syn-
thesis transforms is principled, from a rate-distortion point of
view. In general, the rate-distortion function of n independent
(but not necessarily identical) sources (D) ~ P, is achievable
using a locally optimal code for each source, with an appropri-
ate rate allocation across the n sources. As such, the optimal

4

trade-off between client-averaged rate and distortion Rfd(D)
is given by [28, Sec. 10.3.3]

mln ,E Ri(
D, n ., D;<DMN

niy

R™(D) = (6)

Di,...,
where R;(D) is the rate-distortion function of P;. This result
appears to suggest that to obtain the best rate-distortion trade-
off, it suffices to should learn n separate compressors, one
for each client, which is what Local-NTC does. However,
under our proposed heterogeneous source model described in
Sec. III-C, codes that share a global transform can also achieve
R™4(D) using the following structure. Setting g, = f~! and
gs = f, first transform ¥ to 2(, which is compressed using
an optimal code with respect to distortion function

d.(27,29) :=d(f (1), f(21)). (7

The compressed version of z(?) is transformed back using f.
Thus, assuming that 2() can be optimally compressed, both
Local-NTC and Fed-NTC possess the architectures to perform
optimal compression using this above scheme. However, in
Local-NTC, each user’s pair of transforms will need to learn
f~! and f individually, whereas in Fed-NTC, f only needs
to be learned for a single set of transforms at the global level,
which should benefit learning-based compressors, especially
when samples are limited. An algorithmic analysis of Fed-
NTC is left for future work.

IV. EXPERIMENTS

We first discuss how we set up the experiments in order to
introduce heterogeneity in the data, followed by their results.

A. Experimental Setup

1) Datasets: To experimentally test the Fed-NTC frame-
work, we test a federated setup on image compression of
SVHN, and CIFAR10 datasets, which are all 32 x 32 RGB im-
age datasets. While generally used for classification purposes,
we use their class identities to introduce data heterogeneity
across the clients. SVHN and CIFAR10 are both 10-class
datasets. We assign S classes to each client, on average, by
using the non-i.i.d. data partitioning method detailed in [10].
We then vary S in order to vary the heterogeneity across
clients, where S € {2,5}. The number of training samples
per user is fixed at N/n, where N is the total number of
training samples. This way of introducing heterogeneity can
be viewed as the latent source z(*) representing features of the
subset of classes; for example, different poses and styles of the
class object within the image frame. The generative mapping
f then projects these features to the image manifold.

2) Compression Models: For the compression models, we
use the NTC methods detailed in [1], with a factorized prior
for pg, which models each entry of py independently using
a single-variable density model parameterized by a neural
network. In practice, all spatial elements along each channel
dimension are modeled by the same density model in order
to maintain translation-invariance across the entire model [4].
We add uniform noise to the g, () to serve as a proxy during
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Fig. 3: SVHN with 100 clients.

training, with hard quantization and entropy coding during
evaluation of the models.

3) Federated Setup: For the federated setup, we use a total
of n = 100 clients in all image compression experiments.
For the baseline model (Local-NTC), which consists of each
client having its own model, each client trains its model on
its own local data, e.g. in Alg. 1, with no communication
among the clients. For the proposed Fed-NTC method, we
use a participation rate of » = 0.1 in Alg. 2 and a total of
100 rounds of communication. For evaluation, the number of
bits needed to compress the hard-quantized latents, and the
distortion are measured and averaged for the final 10 rounds
of communications.

B. Results

In Fig. 4 and 3, we plot the comparisons of Fed-NTC with
Local-NTC for CIFAR10 and SVHN, respectively. We observe
that in almost all settings, Fed-NTC outperforms Local-NTC
models. This indicates that learning a shared representation
is able to compress the data across clients better at a variety
of different levels of heterogeneity, and that shared generative
function is a plausible model for the heterogeneous data with
shared structure. The Fed-NTC models are able to recover the
global functon f by leveraging the data across clients.

We additionally compare Fed-NTC with a model that shared
a single global model across all users. This model, trained
under the FedAvg scheme [10], alternates between 10 local
updates for each client, before sending back to the server
which averages all models. As shown in Figs. 5, such a
model performs significantly worse than Fed-NTC and even
local training, indicating that a single global model struggles
with client heterogeneity in learned compression. We noted
no significant difference if the number of local updates was
reduced in an effort to reduce client drift. Further experimental
results can be found in the extended version of this paper.
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Fig. 4: CIFAR10 with 100 clients.
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(a) SVHN, 5 classes per client.
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(b) CIFARI10, 5 classes per client.

Fig. 5: Comparison with a single global NTC model trained
under FedAvg.

V. CONCLUSION

We propose a federated framework for learned compression,
where the data across clients may be heterogeneous. We
propose a model for such data that has shared structure in the
form of a common generative function. This model suggests
that in compression, one should first extract a common latent
space before client-specific entropy modelling takes place.
Experimental results confirm that this assumption is true across
a broad class of settings and this scheme is superior to
solely local models. Potential avenues for future work include
analyzing privacy aspects and algorithmic analysis of different
federated schemes.
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