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Standfirst:

As artificial intelligence (Al) proliferates, synthetic chemistry stands to benefit from its progress.
Despite hidden variables and ‘unknown unknowns’ in datasets that may impede the realization of
a digital twin for the laboratory flask, there are many opportunities to leverage Al and large
datasets to advance synthesis science.

Introduction:

There is an ambition that unsolved problems in science and engineering might be accessible to
artificial intelligence (Al) if provided enough empirical data to train on, which could then perhaps
make accurate judgements on problems that humans struggle to resolve. The field of synthetic
chemistry offers many such problems. Given the past century of modern chemistry, our collective
understanding of synthetic chemistry and the empirical outcomes of chemical reactions are
distributed across journals, patents, and notebooks. Subsets of this institutional knowledge have
been processed into large-scale reaction databases, so there is a tantalizing opportunity to use these
datasets in combination with Al to drive synthesis science and supplant heuristics and trial-and-
error synthetic chemistry.

Just as decision-making algorithms represent a major Al challenge in self-driving cars, synthesis
planning algorithms are a primary bottleneck in realizing self-driving chemical synthesis
laboratories!. Even if we know what hypothetical molecule or material we would like to
synthesize and have the hardware to do so, designing a detailed process with full specification of
reaction conditions is a formidable challenge. Here, we reflect upon the available datasets of both
organic and inorganic chemical syntheses and the capabilities of models available today. We chart
a path towards how our community might realize the promise and potential of Al for synthesis
science (Figure 1). We believe that hidden variables of synthesis representing the ‘unknown
unknowns’ in our training dataset are a particularly urgent issue to address. Nevertheless, there are
exciting and valuable applications of machine learning (ML)/Al as a ‘laboratory assistant’ that can
process experimental observations and suggest new directions to explore.

Short-Term Vision: Data Accessibility and Searchability
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Collecting and categorizing existing knowledge into structured databases offers substantial added-
value over traditional search engine approaches to literature review. The digitization of data
enables programmatic queries to answer questions like, “What has been tried before?” and perhaps
more importantly, “What has not been tried before?”

For synthetic organic chemistry, such databases have existed for many years in the form of
commercial offerings such as SciFinder (www.scifinder.cas.org) and Reaxys (www.reaxys.com),
and more recent reaction collections such as Pistachio (www.nextmovesoftware.com), the open
access USPTO dataset,* and the emerging Open Reaction Database’. Additional information—
exempt from the literature bias towards high-yielding reactions—exists in firewalled electronic
notebooks. These resources make experimental records accessible in a digital format and are
routinely used to identify known synthetic preparations to molecules of interest, yet they can only
contain as much procedural detail as a researcher originally reported, which may not be sufficient
for the field’s longer-term goals.

In inorganic materials chemistry, no commercial databases that catalogue reaction recipes and
synthesis outcomes exist. However, natural language processing algorithms can be applied to the
corpus of scientific data to learn semantic relationships® and to prepare large, structured datasets.
Successful examples include the text-mined dataset of inorganic materials synthesis reactions,
which provides 19,488 inorganic solid-state synthesis recipes’ and 35,675 solution-based
(hydrothermal and solvothermal) synthesis recipes®. Even though the ~50,000 machine-classified
reactions from these examples are far more than what have been catalogued before, approximately
only 1 out of 4 text-mined paragraphs could be fully processed by the ML pipeline. This could be
improved by standardizing the language of synthesis methods and validating procedures before
publication (www.syncheck.org)’.

Even without machine learning, data visualization, such as histograms and distribution maps, can
be instructive to a scientist—identifying empty places in parameter space or chemical space to
screen. Data visualization can elucidate trends in the general conditions for the synthesis of Li-ion
batteries’, or provide ‘cheat-sheets’ for specific reaction types (for instance, Buchwald-Hartwig
coupling!?).

Medium-Term Vision: Virtual Laboratory Assistants

While searchable synthesis databases enable a more powerful ‘recall” approach to synthesis
planning than using online search engines, Al can and should be able to provide higher-level
analysis, reasoning, and abstraction. If building databases is like having access to every scientist’s
laboratory notebook, the next goal is access to every scientist’s brain.

There is an opportunity for Al-based laboratory assistants to facilitate creativity by suggesting a
new pathway that hadn’t previously been considered by a human chemist operating within their
comfort zone. At a high level, this might look like a recommendation system that proposes what
to try and—in response to newly observed experimental data—what to try next. Making creative
recommendations would require some sort of novelty metric and a mechanism for quantifying
dissimilarity in synthetic pathways, perhaps analogous to metrics from natural language processing
word embeddings!!.
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Retrosynthesis tools for organic synthesis are one example where one can already see value in idea
generation and a collaborative partnership between Al and expert chemists!?. In the field of
inorganic synthesis, the concept of retrosynthesis differs significantly, as syntheses often are one-
pot, exhibit high sensitivity to differences in mechanical processing, and do not involve isolating
intermediate structures as “checkpoints” that provide opportunities for control. A natural approach
to a challenging materials preparation would be to draw analogies to previously successful
reactions (at the expense of creativity). For an Al system to recapitulate that strategy, it must be
able to quantify the synthetic similarity between a target material and known materials from its
knowledge base of existing recipes. The nature of this similarity metric may involve elemental
similarity, or structural similarity, though it is not clear that this translates to synthesis similarity.

To achieve the highest value, Al recommendations must be consistent enough with existing
knowledge to have a reasonable chance of success. Responding to unexpected synthesis outcomes
should take a holistic view of reactivity and not only follow established sequential experimental
design techniques (for example, black box Bayesian optimization'?) to adjust parameters around a
local optimization target. Achieving this vision may require the development of models with
stronger priors informed by chemistry, rather than domain-agnostic models.

Long-Term Vision: Digital Twins and Autonomous Laboratories

The long-term vision for predictive chemical synthesis is akin to a full digital twin—a virtual
representation of a synthetic process that can predict the outcome of a reaction and optimize
conditions prior to any physical experimentation. This would substantially reduce the need for
costly and time-consuming physical trials by transferring the burden of condition/parameter
optimization from experimental to digital exploration. Expanding this vision, connecting such a
digital twin with a robotic laboratory would enable a fully closed-loop autonomous ‘self-driving’
laboratory, which given a desired target material, could fully execute a synthesis from start to
finish!=3:14,

The challenge is that such a digital twin, were it to exist, needs essentially perfect predictive
accuracy. We often assume that the experimental data on which models are trained represents some
unarguable “ground truth” about chemical reactivity and the mapping of synthetic recipe to product
identity, yield, rate, and so forth. But it is well known that the outcomes that one chemist observes
often does not match what is observed by another. Uncertainties or ambiguities in synthesis
procedures obfuscate subtler patterns driving reactivity, limiting the accuracy and generalizability
of the models that we train.

Since many of these confounding variables represent ‘unknown unknowns’ in synthesis datasets,
they may represent fundamental impediments towards training a perfectly predictive synthesis
digital twin. Consider the example of the reported (now retracted) metal-free Suzuki coupling'>,
which described high-yielding C-C formation without the use of a palladium catalyst, which
despite extensive efforts could not be reproduced in others’ labs. The successful coupling observed
by the authors was later explained by impurities'® whose existence was not known at the time of
publication. In another example, during the synthesis of single crystal 0-Nbi2029 and Nb120s4, 2
mol% rhodium was added to “aid crystallization” of the target materials.!” No understanding or



explanation of the role that rhodium played in crystallization was given. . To anticipate the
outcomes in these two examples, a digital twin would need to (a) be aware of the possibility of
confounding impurities and (b) recognize how the absence of an additive will impact performance
even if there is no mechanistic understanding or prior evidence of that additive’s influence.
Without extensive characterization of starting materials and equipment or more rigorous reporting
of “ablation” studies, this remains a long-term prospect.

Many other aspects of synthetic procedures are also underreported despite recognition of their
importance: order of addition, ambient temperature/humidity (not just “room temperature”), use
of glovebox or Schlenk line (not just “inert atmosphere”), and vendors and lot numbers of
purchased reagents. Certain protocols involving bespoke electrochemical or photochemical setups
are notoriously difficult to reproduce exactly, though standardization is improving with more
commercial systems. Similar uncharacterized aspects of reactions contribute to scale-up challenges
depending on heat/mass transfer limitations, as a reported yield may be a function of the process
as much as the reagents involved. Most database efforts are directed towards structured
representations of reactions using well-defined schemas. However, the peculiarities of a particular
synthesis—especially if inorganic—may be difficult to include without unstructured fields for
additional process notes.

To address this, we need to change the way the chemistry community presents and stores reaction
information. Oftentimes, it is only the final successful synthesis methodology that is reported;
moreover, it is reported in sparse and minimal prose. There is broad agreement that reporting failed
attempts'® helps us (and machines) learn more synthesis science and that understanding the ‘secret
sauce’ is essential for long-term reproducibility of experimental methods. High-throughput
laboratories present an opportunity to directly catalogue all reaction inputs and outputs from
experiments—including failed ‘dark reactions’. Reporting negative outcomes will require a culture
shift, but it is an essential one if we want synthesis to be more predictable in the future.

Beyond Structured Data: Uncovering Hidden Opportunities

There is a rich dataset of implicit information beneath published synthesis papers that could be
mined through clever ways beyond supervised learning. For example, a synthesis recipe with long
reaction times (>2 weeks), unusual precursors, or laborious synthesis routes implies that more
straightforward approaches were probably unsuccessful. Such cases can be examined more
thoroughly afterwards from a theoretical perspective. This sort of implied information can also be
used to augment existing reaction datasets, for example, by viewing a published reaction of A + B
- C as evidence that A + B does not react to form D, E, F, and so forth under like conditions'®.

An additional application of large-scale datasets is that they can enable retroactive experiments to
test new hypotheses. We recently hypothesized that in aqueous synthesis, the kinetics of structure
selectivity can be informed by the maximal thermodynamic driving force as calculated from the
Pourbaix free energy?’. Using the text-mined solution synthesis dataset®, this hypothesis could
retroactively explain the empirically observed synthesis conditions for a large number of reactions.
Even in cases where hypothesis generation is handled by creative human scientists, validation can
make use of the empirical dataset.



Outlook

Achieving the ultimate goal of a synthesis Al digital twin is a long-term goal of synthetic chemistry
and is not the burden of experimental or computational experts alone. To begin to eliminate
confounding unknowns, there should be a broader adoption of in-house reproducibility tests, where
another member of the lab, or another lab, repeats an experiment based solely on a written
procedure prior to publication. The origin and properties of starting materials are anecdotally the
most heavily cited reason for reproducibility failures: vendor vs. in-house synthesis, purity/quality,
and repurification after purchase. Prose describing these factors can be replaced with a defined
data structure, such as the authors’ own Open Reaction Database format for organic reactions®.
But subsequent steps will need to evolve the schema to accommodate additional information and
to evolve our learning algorithms as we learn how to best make use of it. We echo the
reproducibility concerns of Bergman and Danheiser?! not only for the sake of good science, but
also for building new Al driven tools for tackling organic and inorganic materials synthesis.

While our community works towards this long-term goal, computational scientists have many
exciting opportunities to build Al-driven recommendation engines that can aid in making creative
and inspiring suggestions to guide new synthesis strategies. This will require algorithms to achieve
higher-level understanding of chemistry-structure-synthesis relationships. Such a problem is
scientific in nature and not just software; but data (both existing results and new experiments) will
play an essential role in resolving these relationships. More generally, we recommend looking
beyond the traditional (and now obvious) path of doing direct supervised machine learning to
propose synthesis recipes. Considering how to propose new hypotheses manually or
algorithmically and evaluate them against a dataset is a complementary and promising, interesting
path to improve synthesis science.
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Figure 1. Opportunities in Al for synthesis science in the style of Bloom's taxonomy. Starting
from a foundation of accessible & searchable data achievable (short-term), more advanced
capabilities can be built in the form of virtual laboratory assistants (medium-term) as a preface to
more robust digital twins and autonomous laboratories (long-term). Examples questions scientists

might be empowered to ask at stage level are included.



