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Standfirst: 
 
As artificial intelligence (AI) proliferates, synthetic chemistry stands to benefit from its progress. 
Despite hidden variables and ‘unknown unknowns’ in datasets that may impede the realization of 
a digital twin for the laboratory flask, there are many opportunities to leverage AI and large 
datasets to advance synthesis science.  
 
 
Introduction: 
 
There is an ambition that unsolved problems in science and engineering might be accessible to 
artificial intelligence (AI) if provided enough empirical data to train on, which could then perhaps 
make accurate judgements on problems that humans struggle to resolve. The field of synthetic 
chemistry offers many such problems. Given the past century of modern chemistry, our collective 
understanding of synthetic chemistry and the empirical outcomes of chemical reactions are 
distributed across journals, patents, and notebooks. Subsets of this institutional knowledge have 
been processed into large-scale reaction databases, so there is a tantalizing opportunity to use these 
datasets in combination with AI to drive synthesis science and supplant heuristics and trial-and-
error synthetic chemistry. 

 
Just as decision-making algorithms represent a major AI challenge in self-driving cars, synthesis 
planning algorithms are a primary bottleneck in realizing self-driving chemical synthesis 
laboratories1–3. Even if we know what hypothetical molecule or material we would like to 
synthesize and have the hardware to do so, designing a detailed process with full specification of 
reaction conditions is a formidable challenge. Here, we reflect upon the available datasets of both 
organic and inorganic chemical syntheses and the capabilities of models available today. We chart 
a path towards how our community might realize the promise and potential of AI for synthesis 
science (Figure 1). We believe that hidden variables of synthesis representing the ‘unknown 
unknowns’ in our training dataset are a particularly urgent issue to address. Nevertheless, there are 
exciting and valuable applications of machine learning (ML)/AI as a ‘laboratory assistant’ that can 
process experimental observations and suggest new directions to explore.   
 
Short-Term Vision: Data Accessibility and Searchability  
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Collecting and categorizing existing knowledge into structured databases offers substantial added-
value over traditional search engine approaches to literature review. The digitization of data 
enables programmatic queries to answer questions like, “What has been tried before?” and perhaps 
more importantly, “What has not been tried before?”  
 
For synthetic organic chemistry, such databases have existed for many years in the form of 
commercial offerings such as SciFinder (www.scifinder.cas.org) and Reaxys (www.reaxys.com), 
and more recent reaction collections such as Pistachio (www.nextmovesoftware.com), the open 
access USPTO dataset,4 and the emerging Open Reaction Database5. Additional information—
exempt from the literature bias towards high-yielding reactions—exists in firewalled electronic 
notebooks. These resources make experimental records accessible in a digital format and are 
routinely used to identify known synthetic preparations to molecules of interest, yet they can only 
contain as much procedural detail as a researcher originally reported, which may not be sufficient 
for the field’s longer-term goals. 
 
In inorganic materials chemistry, no commercial databases that catalogue reaction recipes and 
synthesis outcomes exist. However, natural language processing algorithms can be applied to the 
corpus of scientific data to learn semantic relationships6 and to prepare large, structured datasets. 
Successful examples include the text-mined dataset of inorganic materials synthesis reactions, 
which provides 19,488 inorganic solid-state synthesis recipes7 and 35,675 solution-based 
(hydrothermal and solvothermal) synthesis recipes8. Even though the ~50,000 machine-classified 
reactions from these examples are far more than what have been catalogued before, approximately 
only 1 out of 4 text-mined paragraphs could be fully processed by the ML pipeline. This could be 
improved by standardizing the language of synthesis methods and validating procedures before 
publication (www.syncheck.org)9.  
 
Even without machine learning, data visualization, such as histograms and distribution maps, can 
be instructive to a scientist—identifying empty places in parameter space or chemical space to 
screen. Data visualization can elucidate trends in the general conditions for the synthesis of Li-ion 
batteries7, or provide ‘cheat-sheets’ for specific reaction types (for instance, Buchwald–Hartwig 
coupling10).  
 
Medium-Term Vision: Virtual Laboratory Assistants 
 
While searchable synthesis databases enable a more powerful ‘recall’ approach to synthesis 
planning than using online search engines, AI can and should be able to provide higher-level 
analysis, reasoning, and abstraction. If building databases is like having access to every scientist’s 
laboratory notebook, the next goal is access to every scientist’s brain.  

 
There is an opportunity for AI-based laboratory assistants to facilitate creativity by suggesting a 
new pathway that hadn’t previously been considered by a human chemist operating within their 
comfort zone. At a high level, this might look like a recommendation system that proposes what 
to try and—in response to newly observed experimental data—what to try next. Making creative 
recommendations would require some sort of novelty metric and a mechanism for quantifying 
dissimilarity in synthetic pathways, perhaps analogous to metrics from natural language processing 
word embeddings11. 

http://www.syncheck.org/


 
Retrosynthesis tools for organic synthesis are one example where one can already see value in idea 
generation and a collaborative partnership between AI and expert chemists12. In the field of 
inorganic synthesis, the concept of retrosynthesis differs significantly, as syntheses often are one-
pot, exhibit high sensitivity to differences in mechanical processing, and do not involve isolating 
intermediate structures as “checkpoints” that provide opportunities for control. A natural approach 
to a challenging materials preparation would be to draw analogies to previously successful 
reactions (at the expense of creativity). For an AI system to recapitulate that strategy, it must be 
able to quantify the synthetic similarity between a target material and known materials from its 
knowledge base of existing recipes. The nature of this similarity metric may involve elemental 
similarity, or structural similarity, though it is not clear that this translates to synthesis similarity.  
 
To achieve the highest value, AI recommendations must be consistent enough with existing 
knowledge to have a reasonable chance of success. Responding to unexpected synthesis outcomes 
should take a holistic view of reactivity and not only follow established sequential experimental 
design techniques (for example, black box Bayesian optimization13) to adjust parameters around a 
local optimization target. Achieving this vision may require the development of models with 
stronger priors informed by chemistry, rather than domain-agnostic models. 

 
Long-Term Vision: Digital Twins and Autonomous Laboratories 
 
The long-term vision for predictive chemical synthesis is akin to a full digital twin—a virtual 
representation of a synthetic process that can predict the outcome of a reaction and optimize 
conditions prior to any physical experimentation. This would substantially reduce the need for 
costly and time-consuming physical trials by transferring the burden of condition/parameter 
optimization from experimental to digital exploration. Expanding this vision, connecting such a 
digital twin with a robotic laboratory would enable a fully closed-loop autonomous ‘self-driving’ 
laboratory, which given a desired target material, could fully execute a synthesis from start to 
finish1–3,14. 
 
The challenge is that such a digital twin, were it to exist, needs essentially perfect predictive 
accuracy. We often assume that the experimental data on which models are trained represents some 
unarguable “ground truth” about chemical reactivity and the mapping of synthetic recipe to product 
identity, yield, rate, and so forth. But it is well known that the outcomes that one chemist observes 
often does not match what is observed by another. Uncertainties or ambiguities in synthesis 
procedures obfuscate subtler patterns driving reactivity, limiting the accuracy and generalizability 
of the models that we train.   
 
Since many of these confounding variables represent ‘unknown unknowns’ in synthesis datasets, 
they may represent fundamental impediments towards training a perfectly predictive synthesis 
digital twin. Consider the example of the reported (now retracted) metal-free Suzuki coupling15, 
which described high-yielding C-C formation without the use of a palladium catalyst, which 
despite extensive efforts could not be reproduced in others’ labs. The successful coupling observed 
by the authors was later explained by impurities16 whose existence was not known at the time of 
publication. In another example, during the synthesis of single crystal o-Nb12O29 and Nb12O54, 2 
mol% rhodium was added to “aid crystallization” of the target materials.17 No understanding or 



explanation of the role that rhodium played in crystallization was given. . To anticipate the 
outcomes in these two examples, a digital twin would need to (a) be aware of the possibility of 
confounding impurities and (b) recognize how the absence of an additive will impact performance 
even if there is no mechanistic understanding or prior evidence of that additive’s influence. 
Without extensive characterization of starting materials and equipment or more rigorous reporting 
of “ablation” studies, this remains a long-term prospect. 
 
Many other aspects of synthetic procedures are also underreported despite recognition of their 
importance: order of addition, ambient temperature/humidity (not just “room temperature”), use 
of glovebox or Schlenk line (not just “inert atmosphere”), and vendors and lot numbers of 
purchased reagents. Certain protocols involving bespoke electrochemical or photochemical setups 
are notoriously difficult to reproduce exactly, though standardization is improving with more 
commercial systems. Similar uncharacterized aspects of reactions contribute to scale-up challenges 
depending on heat/mass transfer limitations, as a reported yield may be a function of the process 
as much as the reagents involved. Most database efforts are directed towards structured 
representations of reactions using well-defined schemas. However, the peculiarities of a particular 
synthesis—especially if inorganic—may be difficult to include without unstructured fields for 
additional process notes.  

 
To address this, we need to change the way the chemistry community presents and stores reaction 
information. Oftentimes, it is only the final successful synthesis methodology that is reported; 
moreover, it is reported in sparse and minimal prose. There is broad agreement that reporting failed 
attempts18 helps us (and machines) learn more synthesis science and that understanding the ‘secret 
sauce’ is essential for long-term reproducibility of experimental methods. High-throughput 
laboratories present an opportunity to directly catalogue all reaction inputs and outputs from 
experiments—including failed ‘dark reactions’. Reporting negative outcomes will require a culture 
shift, but it is an essential one if we want synthesis to be more predictable in the future. 
 
Beyond Structured Data: Uncovering Hidden Opportunities 
 
There is a rich dataset of implicit information beneath published synthesis papers that could be 
mined through clever ways beyond supervised learning. For example, a synthesis recipe with long 
reaction times (>2 weeks), unusual precursors, or laborious synthesis routes implies that more 
straightforward approaches were probably unsuccessful. Such cases can be examined more 
thoroughly afterwards from a theoretical perspective. This sort of implied information can also be 
used to augment existing reaction datasets, for example, by viewing a published reaction of A + B 
à C as evidence that A + B does not react to form D, E, F, and so forth under like conditions19. 
 
An additional application of large-scale datasets is that they can enable retroactive experiments to 
test new hypotheses. We recently hypothesized that in aqueous synthesis, the kinetics of structure 
selectivity can be informed by the maximal thermodynamic driving force as calculated from the 
Pourbaix free energy20. Using the text-mined solution synthesis dataset8, this hypothesis could 
retroactively explain the empirically observed synthesis conditions for a large number of reactions. 
Even in cases where hypothesis generation is handled by creative human scientists, validation can 
make use of the empirical dataset. 
 



Outlook 
 
Achieving the ultimate goal of a synthesis AI digital twin is a long-term goal of synthetic chemistry 
and is not the burden of experimental or computational experts alone. To begin to eliminate 
confounding unknowns, there should be a broader adoption of in-house reproducibility tests, where 
another member of the lab, or another lab, repeats an experiment based solely on a written 
procedure prior to publication. The origin and properties of starting materials are anecdotally the 
most heavily cited reason for reproducibility failures: vendor vs. in-house synthesis, purity/quality, 
and repurification after purchase. Prose describing these factors can be replaced with a defined 
data structure, such as the authors’ own Open Reaction Database format for organic reactions5. 
But subsequent steps will need to evolve the schema to accommodate additional information and 
to evolve our learning algorithms as we learn how to best make use of it. We echo the 
reproducibility concerns of Bergman and Danheiser21 not only for the sake of good science, but 
also for building new AI driven tools for tackling organic and inorganic materials synthesis.  
  
While our community works towards this long-term goal, computational scientists have many 
exciting opportunities to build AI-driven recommendation engines that can aid in making creative 
and inspiring suggestions to guide new synthesis strategies. This will require algorithms to achieve 
higher-level understanding of chemistry-structure-synthesis relationships. Such a problem is 
scientific in nature and not just software; but data (both existing results and new experiments) will 
play an essential role in resolving these relationships. More generally, we recommend looking 
beyond the traditional (and now obvious) path of doing direct supervised machine learning to 
propose synthesis recipes. Considering how to propose new hypotheses manually or 
algorithmically and evaluate them against a dataset is a complementary and promising, interesting 
path to improve synthesis science.  
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Figure 1. Opportunities in AI for synthesis science in the style of Bloom's taxonomy. Starting 
from a foundation of accessible & searchable data achievable (short-term), more advanced 
capabilities can be built in the form of virtual laboratory assistants (medium-term) as a preface to 
more robust digital twins and autonomous laboratories (long-term). Examples questions scientists 
might be empowered to ask at stage level are included. 
 
 


