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Abstract

Odor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through
the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating.
Despite the importance of olfaction for an animal’s well-being and that ortho and retro naturally occur, it is unknown how the
modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed
and perceived. Using multielectrode array recordings in tracheotomized anesthetized rats, which decouples ortho-retro modality
from breathing, we show that mitral cells in rat olfactory bulb can reliably and directly transmit orthonasal versus retronasal mo-
dality with ethyl butyrate, a common food odor. Drug manipulations affecting synaptic inhibition via GABA, lead to worse decod-
ing of ortho versus retro, independent of whether overall inhibition increases or decreases, suggesting that the olfactory bulb
circuit may naturally favor encoding this important aspect of odors. Detailed data analysis paired with a firing rate model that
captures population trends in spiking statistics shows how this circuit can encode odor modality. We have not only demonstrated
that ortho/retro information is encoded to downstream brain regions but also used modeling to demonstrate a plausible mecha-
nism for this encoding; due to synaptic adaptation, it is the slower time course of the retronasal stimulation that causes retro-
nasal responses to be stronger and less sensitive to inhibitory drug manipulations than orthonasal responses.

NEW & NOTEWORTHY Whether ortho (sniffing odors) versus retro (exhalation and eating) is encoded from the olfactory bulb to
other brain areas is not completely known. Using multielectrode array recordings in anesthetized rats, we show that the olfactory
bulb transmits this information downstream via spikes. Altering inhibition degrades ortho/retro information on average. We use
theory and computation to explain our results, which should have implications on cortical processing considering that only food
odors occur retronasally.

decoding accuracy; ethyl butyrate; firing rate model; retronasal olfaction; synaptic inhibition

INTRODUCTION

Olfaction is driven by odor molecules entering the nasal
cavity, inducing a cascade of action potentials in the nervous
system that transmit and process odor information. There
are two routes by which odor molecules can enter the nasal
cavity: through the nostrils during inhalation and sniffing
(ortho) or from the throat during exhalation and while eating
(retro). Orthonasal stimulation is by far the most commonly
studied modality, despite the fact that retronasal delivery
naturally occurs during eating. Prior imaging studies have
shown differences in the activation of the regions of the
nasal epithelium with ortho and retro stimulation (1-3).
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Moreover, humans are able to discriminate whether food
odors are delivered orthonasally or retronasally without
being told which modality and without active sniffing (4).
Imaging studies have shown that at least with food odors,
ortho/retro are two distinct modalities, rather than two dif-
ferent routes to the same modality, independent of odor in-
tensity (5). Importantly, there is evidence that cortical
processing depends on whether odors are delivered ortho-
versus retronasally (6, 7), and humans report perceiving the
same smells differently depending on ortho or retro modal-
ity (8, 9). Together these studies convincingly show that
ortho versus retro information is transmitted to cortical
brain regions, but the details of how this occurs and the core
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network mechanisms that facilitate this encoding are largely
unknown.

There are several ways that ortho/retro information could
be made available to higher brain regions. As ortho and retro
stimuli are naturally dictated by inhalation and exhalation,
the motor signals that control breathing could provide effer-
ent copies of this information to various brain regions.
Moreover, even without such motor signals, the mechanical
stimulation of neurons in the nasal cavity by breath-driven
airflow generates strong breath-related signals throughout
the olfactory system (10, 11). However, previous experiments
have delivered stimuli independently of the breath cycle and
still found significant differences in ortho versus retro
response in cortex (9, 12) and olfactory receptor neuron
(ORN) input to olfactory bulb (OB) (2). Thus, there are impor-
tant breath-independent aspects of ortho/retro coding.
Although these different mechanisms for odor modality
encoding are all plausible, here we designed our experiments
to study “bottom up” breath-independent mechanisms. We
specifically performed a double tracheotomy, which redir-
ected the rats’ breath to bypass the nasal cavity entirely and
allowed us to deliver ortho and retro stimuli at times that
were independent of inhale and exhale times. So, the mecha-
nisms of ortho and retro coding that we study here are inde-
pendent of any motor or mechanosensory signals caused by
breathing.

Before odor information reaches the brain, it is processed
in the olfactory bulb (OB) and relayed to higher brain regions
via excitatory mitral cells (MCs) (and tufted cells). Thus, the
OB is critical for determining whether ortho versus retro-
nasal odors are encoded before being conveyed to the brain
for processing and perception. More broadly, OB activity is
tied to odor perception (13). Although the role of inhibitory
cells in influencing OB processing of ortho versus retro odors
is unknown, inhibition is known to play a key role in many
other aspects of OB processing. OB inhibition is known to al-
ter activity patterns that represent odors (14), granule cells
that provide inhibition reflect changes in odor concentration
(15), and OB inhibition levels alter odor discrimination dy-
namics (16). These facts motivated us to both decrease and
increase the levels of GABA, synaptic inhibition via drug
manipulations in our experiments, which consist of in vivo
recordings of MCs in the OB of double tracheotomized rats.

We show that the mode of olfaction (ortho vs. retro) is
indeed transmitted to cortical brain regions with a common
food odor, ethyl butyrate (EB). We find that encoding is gen-
erally good and well above chance level for the intact circuit
and even with altered levels of inhibition. Thus, down-
stream brain regions may readily have access to ortho ver-
sus retronasal odor modality encoded via firing rate from
the OB. Importantly, the altered circuits with both
increases [via muscimol (Mus) application, a GABA, ago-
nist] and decreases in inhibition [via bicuculline (Bic), a
GABA, antagonist] result in worse individual encoding on
average. This suggests that the intact OB circuit may be ad-
vantageous for encoding ortho versus retro modality.

Our data enable investigation of the OB circuit mecha-
nisms that promote this encoding with a computational
model. We show how a simple excitatory-inhibitory (E-I)
reciprocally coupled model captures the modality-depend-
ent differences in the population firing rate. Our data show
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that the GABA, (ant-)agonists do not significantly alter the
odor-evoked population firing rate with slower longer-lasting
retronasal stimulation, in contrast to ortho stimulation. Our
model captures these aspects of our data, exploiting the tem-
poral differences, i.e., the slow retro stimulation leads to
short-term synaptic depression of the excitatory synapse to
diminish the effects of the inhibition. Furthermore, we
model trial-to-trial spike rate variability to be largely consist-
ent with our data, so that the model can encode ortho/retro-
like stimuli. We find that average encoding is degraded
when inhibition is either increased or decreased, as observed
in our data. Given the commonality of reciprocally coupled
excitatory-inhibitory circuits, these results may apply out-
side of the OB, specifically to where stimuli have temporal
differences.

MATERIALS AND METHODS
Ethics Statement

All procedures were carried out in accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
approved by University of Arkansas Institutional Animal
Care and Use Committee (Protocol No. 14049). Isoflurane
and urethane anesthesia were used and urethane overdose
was used for euthanasia.

Electrophysiological Recordings

Data were collected from eight adult male rats (240-
427 g; Rattus norvegicus, Sprague-Dawley outbred, Harlan
Laboratories, TX) housed in an environment of controlled hu-
midity (60%) and temperature (23°C) with 12-h light-dark
cycles. The experiments were performed in the light phase.

Surgical preparations.

Anesthesia was induced with isoflurane inhalation and main-
tained with urethane [1.5 g/kg body wt (bw) dissolved in saline,
intraperitoneal injection (ip)]. Dexamethasone (2 mg/kg bw,
ip) and atropine sulfate (0.4 mg/kg bw, ip) were administered
before performing surgical procedures. Throughout surgery
and electrophysiological recordings, core body temperature
was maintained at 37°C with a thermostatically controlled
heating pad. To isolate the effects of olfactory stimulation
from breath-related effects, we performed a double tracheot-
omy surgery as described previously (2). A Teflon tube (OD 2.1
mm, upper tracheotomy tube) was inserted 10 mm into the
nasopharynx through the rostral end of the tracheal cut.
Another Teflon tube (OD 2.3 mm, lower tracheotomy tube)
was inserted into the caudal end of the tracheal cut to allow
breathing, with the breath bypassing the nasal cavity. Both
tubes were fixed and sealed to the tissues using surgical
thread. Local anesthetic (2% Lidocaine) was applied at all pres-
sure points and incisions. Subsequently, a craniotomy was
performed on the dorsal surface of the skull over the right ol-
factory bulb (2 mm x 2 mm, centered 8.5 mm rostral to
bregma and 1.5 mm lateral from midline).

Olfactory stimulation.

A Teflon tube was inserted into the right nostril to deliver
orthonasal stimuli, and the left nostril was sealed by
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suturing. The upper tracheotomy tube inserted into the
nasopharynx was used to deliver odor stimuli retronasally.
Odorized air was delivered for 1 s in duration at 1-min inter-
vals, with a flow rate of 250 mL/min and 1% of saturated
vapor. Two odors were used: ethyl butyrate (EB, a food odor)
and 1-Hexanol (Hex, a nonfood odor). Here, we limited our
analysis to EB trials because food odors are perceived ortho-
and retronasally (9); nonfood odors do not naturally occur
retronasally.

Electrophysiology.

A 32-channel microelectrode array (MEA, A4x2tet, NeuroNexus,
MI) was inserted 400-um deep from dorsal surface of OB
targeting tufted and mitral cell populations. The MEA
probe consisted of four shanks (diameter: 15 pm, inter-
shank spacing: 200 um), each with eight iridium record-
ing sites arranged in two tetrode groups near the shank
tip (intertetrode spacing: 150 um, within tetrode spacing
25 um). Voltage was measured with respect to an AgCl
ground pellet placed in the saline-soaked gel foams cover-
ing the exposed brain surface around the inserted MEASs.
Voltages were digitized with 30 kHz sample rate (Cereplex +
Cerebus, Blackrock Microsystems, UT). Recordings were band-
pass filtered between 300 and 3,000 Hz and semiautomatic
spike sorting was performed using Klustakwik software, which
is well suited to the type of electrode arrays used here (17).

Pharmacology.

We topically applied GABA antagonists (bicuculline 20 uM) or
agonists (muscimol 20 uM) dissolved in artificial cerebrospi-
nal fluid (ACSF). Gel foam pieces soaked in the ACSF + drug
solutions were placed on the surface of OB surrounding the
recording electrodes. Note that the concentration of (ant-)ago-
nists can vary over orders of magnitude; some laboratories
use 10 uM (18, 19) and others use up to 10-10* higher concen-
tration levels (20, 21). The gel foams were placed 10 min before
beginning a recording.

Data Analysis

Data were collected in vivo from the mitral cell (MC)
layer in the olfactory bulb (OB) of multiple anesthetized
rats using a multielectrode array recording. The data con-
sisted of spike recordings of multiple MC spike responses
to EB and Hex presented by the two routes of stimulation,
orthonasally and retronasally, for a total of 20 trials, 10 for
each ortho and retro, with the order alternating (10 ortho
before 10 retro, then 10 retro before 10 ortho trials). The spike
counts were calculated using 100 ms overlapping time win-
dows. Three separate drug preparations were used to analyze
inhibitory effects on MC spiking responses: no drug (control),
Bicuculline (GABA, antagonist, i.e., decreasing inhibition),
and Muscimol (GABA, agonist, i.e., increasing inhibition).
Data were obtained from eight viable rats in total. After spike
sorting, we identified and eliminated units (cells) that had fir-
ing rates below 0.008 Hz or more than 49 Hz, calculated over
the entire recording duration. We took this conservative
approach to eliminate potential artifacts yielding units that
had unrealistically high or low firing; see Table 2 for the
reported number of total rats and individual cells for each
drug preparation. Note that some cells around the odor
onset (¢ = 0) will have much larger (> 49 Hz) or smaller
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firing rates than our criteria to eliminate units, but the
entire recording duration is much longer with approxi-
mately a minute between trials.

Defining single-cell decoding.

We used a form of linear discriminant analysis (LDA) for
decoding accuracy. Decoding accuracy is defined as the frac-
tion of trials correctly classified by a threshold that maxi-
mizes decoding accuracy. Letting s,(t) be the spike train of
the k™ trial (k = 1, 2, ..., N) that at each time ¢ is either = O
(no spike) or = 3(¢ — t;), where £;; denotes the j* spike on
the k™ trial. The entries of the spiking rate ¥ are:

1 Ty
xk:aL s () dt (1)
where t = O is the time the odor is presented. There are N =
20 trials total (10 ortho, 10 retro) for each individual cell. We
consider N different threshold values 0:

O =x¢ + ¢

and use both classification schemes (decode stimulus as
ortho if x; < 6 and retro if x; > 0, or as ortho if x; > 0). From
this comprehensive list, we select an optimal threshold 6*
and classification scheme that results in the best decod-
ing accuracy. Here ¢ ~ 107'¢ is machine precision and is
there to ensure that each trial is categorized as ortho or
retro. Since decoding accuracy is the percent of correctly
classified trials (ortho or retro) and N = 20, it varies
between 0.5 (chance) and up to 1 in increments of 0.05 for
each cell.

To systematically compare differences in decoding ac-
curacy, we select a fixed time window for all drug prepa-
rations and modalities based on two statistical tests (two-
sample ¢ test assuming unequal variances and Wilcoxon
rank-sum test) and their P values. We evaluated decoding
accuracy from T,, = 100 ms to T,, =1 s in 100 ms incre-
ments in the evoked state for each drug preparation. We
analyzed differences in mean between no drug prepara-
tion and Bicuculline, as well as no drug preparation and
Muscimol. This resulted in four different P values for
each time window; we found that T,, = 900 ms had the
most significant P values for both combinations of no drug/
Bicuculline and no drug/Muscimol, see Fig. A2, A and C.
Figure A2, B and D, shows the population decoding accuracies
(mean across the population and one standard deviation in
shaded region).

Statistical significance.

We use three tests to assess whether a given effect is statistical
significant: 1) two-sample t test with unequal variance, 2)
Wilcoxon rank-sum test, and 3) one-way ANOVA. Each of
these tests is used to rule out the null hypothesis that the pop-
ulation means are the same in two different categories (22).
Each test is different and has various underlying assump-
tions: 1) normal samples, 2) nonparametric test assuming in-
dependent groups and equal variance, and 3) including
sample variance to assess differences in means assuming
equal variance and normally distributed residuals. We con-
sider three tests to provide a more complete picture of the
results and to demonstrate robustness, or lack thereof, for a
given effect.
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In addition to the P values that indicate the probability of
the null hypothesis holding (no effect, same population
means), we also report the effect sizes. We use the conven-
tions outlined in Cohen (22) and Tomczak and Tomczak (23)
that provide formulas for effect sizes, and a qualitative “rule
of thumb” for when effect sizes are small, medium, or large.
For two groups of length n; and n,, respectively, the effect
sizes we use:

For ¢ test, use M7 Cohen’s d, where (2)

Gp

o — (n1 —I)S% + (I’l2 —I)S%
P n + np—2 '

9
Vi + ng’

where ( is the z-score. (4)

For Wilcoxon rank-sum test, use :

SS roup
For one-way ANOVA, use : —“

group
ratio of particular sum of squares. (5)

The variables p; and S? denote the sample mean and var-
iances of the j* group. Effect sizes for t test and Wilcoxon
rank-sum test with values: (0,0.2] are considered small,
(0.2,0.5] are medium, (0.5,0.8] and above are large (22, 23).
Effect sizes for one-way ANOVA with values (0,0.01] are con-
sidered small, (0.01,0.06] are medium, (0.06,0.14], and above
are large (22).

Population decoding.
The two methods are applied to each population of simulta-
neously recorded MCs.

PCA + LDA: For each recording, principal component
analysis (PCA) was applied to the concatenated matrix X of
size 20 x M, where M is the number of MCs (Fig. 6A), rows 1-
10 correspond to the spiking rate with ortho and rows 11-20
correspond to retro. We only use the first two principal com-
ponents and apply linear discriminate analysis (LDA) to find
a line in the two-dimensional plane that maximizes classifi-
cation accuracy (24). We used built-in MATLAB routines
pca, fitcdiscr, predict (see GitHub for code).

SVM: We use support vector machine with supervised
“learning” to classify data into ortho or retro. We use a non-
linear classification method with Gaussian kernels, and
Bayesian optimization to find the best kernel scale and box
constraints for the SVM (we ensured that for all recordings
and drug preparations, the objective was minimized within
the allowable function evaluations). After the SVM is fit to
the data, the decoding accuracy is the correct classification
rate obtained from the MATLAB function kfoldLoss using
10-fold cross-validation. We used built-in MATLAB routines
(see GitHub link for code).

Firing Rate Model

We use a space-clamped Wilson-Cowan rate model of
coupled E-I cells: E (MC, excitatory) and I (inhibitory from
PGC, GC, etc.). The models of the respective cell firing rate,
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Aj(t) j e (M, P), are represented by the following ordinary dif-
ferential equations:

dA t F 1 rn ! El

T 7E = —AE( ) + (WUI‘}LE O ( ) w S ( )) ( )
dA t F 1 t 1EDL

Tr _[ = —AI( ) + (M)Ul‘nj Ol'ﬂ( ) w ( )> ( )

where the synaptic term, S; j € {E, I}, is defined by synapses
with rise and decay time scales (same Tyige, Tdgecay fOr E/I) as
follows:

waseay D0 = 5,0) + X,() ®)
dx;(t) e
rise — = *X/([) + 1~'rlseAj([)- 9

In Egs. 6 and 7, I{t) is the sum of external currents (e.g.,
stimulus input and other currents) that varies over time to
account for stimulus input, w,,,; are the coupling strengths
of olfactory receptor neuron (ORN) input to j, wj are the cou-
pling strengths from cell k to j, and the transfer function F is
a threshold linear function:

F(x) = max (x,0). (10)

Without synaptic depression, we fix w;z = 1. With synaptic
depression, wy(t) is governed by:

dwig _
‘EH,T = —wWi + Fd<AE(l)> (11)
B 1

with initial value w;z(0) set to its steady-state value at t =
—0.5sin Egs. 6-12.
The trial-to-trial variability of spiking rate is modeled as a
negative binomial random variable:
r(l—p)
p
Given output from the Wilson-Cowan model Ag(t), we set:

Hng = (13)

1 Tey
s = 7 || aetnar (14)

0

Table 1. Parameter values in firing rate model (Egs.
6-12)

Parameter Value

e 10 ms

T 55ms

Tdecay 10 ms

Trise 2 ms

Tw 100 ms

Wom,E 1

Worn. 1.1875 (ortho), 0.3 (retro)

Drug Preparation
No Drug Bic Mus

Wg; 0.2 0.15 0.25
p for ortho 0.32 0.32 0.32
p for retro 0.32 0.53 0.052

Last 2 rows describe the parameter p in simulated trial variability
using negative binomial distribution. Bic, bicuculline; Mus, muscimol.
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Figure 1. Individual mitral cells encode modality. Ai: experiment setup to test whether OB MCs encode ortho versus retro stimulation, with example raster
plot for 1 MC. Aii: population-averaged firing rate (trial- and population-averaged), i.e., PSTH for each modality and drug preparation; t = O denotes when
ethyl butyrate (EB, a food odor) is presented. Aiii: the proportion of population that fire more for ortho (or retro), i.e., ortho selective <= higher trial-aver-
aged firing rate for ortho than retro in 0.9 s after odor onset. B: schematic of how decoding accuracies are calculated for each MC based on trial firing
rates: g/ are the trial-averaged firing rates. Shaded regions correspond to incorrect decoding, unshaded regions to correct decoding. C: distribution of
decoding accuracies of MC with three different preparations: intact no drug (gray), less inhibition via Bic (green), and more inhibition via Mus (purple).
Mean decoding accuracy for no drug is 0.724; with Bic and Mus the means are: 0.680, 0.690 (resp.). Differences are all statistically significant (o = 0.01
with two-sample t test assuming unequal var, Wilcoxon rank-sum test, and one-way ANOVA) with mostly “medium” effect size, see Table 3. Time window
Ty = 0.9 s was determined systematically, see Fig. A2, A and C, and MATERIALS AND METHODS. Bic, bicuculline; MC, mitral cell; Mus, muscimol; PSTH, peri-

stimulus time histogram.

by manually determining the p parameter in the negative bi-
nomial distribution (see Table 1) for each drug preparation,
and setting the parameter » = uxgp/(1 — p).

RESULTS

We collected spike data with multielectrode array record-
ings of urethane anesthetized rats from the OB mitral cell
layer, where each cell (MC) was subject to the same odor
delivered with ortho and retro stimulation (Fig. 1Ai),
repeated for 10 trials for each modality. In addition, two
drugs were applied to alter the circuit: a GABA, antagonist
(Bicuculline) and a GABA, agonist (Muscimol), see Table 2.
For reference, Fig. 1Aii shows the population-averaged firing
rate (trial-averaged and population-averaged firing rate) by

Table 2. Number of rats and respective individual cells
for each drug preparation subject to the food odor ethyl
butyrate

No Drug Bicuculline Muscimol
Rats 8 4 3
Cells 913 413 419

1230

modality for a given drug preparation, with ¢t = 0 denoting
time of odor presentation, held for 1 s. This is commonly
referred to as the peristimulus time histogram (PSTH).

Individual MCs Encode Ortho versus Retro

To remain agnostic to how higher brain regions decode
population activity, we predominately consider individual
MCs odor modality encoding, a logical first step (25). We
use odor-evoked firing rate in a given trial as the source of
encoding. Specifically, the firing rate in the k" trial, xy, is
the sum of the evoked spike counts normalized by time
window T,, = 0.9 s:

Xk (#Evoked spikesinT,,) (15)

1
T,

fork=1,2, ..., 20, same as Eq. 1 in MATERIALS AND METHODS.
The time window T,, is systematically chosen from a range
of possible values, see Fig. A2, A and C, in APPENDIX and
MATERIALS AND METHODS for details. To assess whether MCs
might prefer one modality over the other, we compare the
trial-averaged firing rate for ortho and retro as a measure of
selectivity (Fig. 1Aiii). Most MCs “prefer” or spike more with
retro than ortho (=~63%), and the proportions do not vary
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much across drug preparations (but see APPENDIX and Table
Al for analysis of Off-Response cells).

We define decoding accuracy as the fraction of trials cor-
rectly classified by a threshold that maximizes decoding accu-
racy; this is a measure of information accessible by an ideal
observer from each MC individually (Fig. 1B). We only consider
EB, a common food odor, because typically only food odors are
perceived retronasally (9). It has been shown that nonfood
odors artificially delivered retronasally can be perceived as well
as food odors (9). However, numerous studies have shown that
human perception of nonfood odors delivered retronasally is
degraded compared with food odors (4, 5, 8).

The OB circuit encodes ortho versus retro very well. Figure
1C shows the spiking activity of individual MCs encode (meas-
ured by decoding accuracy) ortho versus retro for the vast ma-
jority of cells. MCs have a wide range of decoding accuracies
varying between 0.5 (chance) and 1 (perfect decoding). With
no drugs, the mean decoding accuracy (0.724) is better than
both Bic and Mus, which have lower average decoding accura-
cies of 0.680 and 0.690, respectively. These averages are
numerically small in difference, but note that the range of
decoding accuracies is only 0.5. Furthermore, the differences
in the mean decoding accuracy are all statistically significant
(o = 0.01) using three tests: two-sample ¢ test, Wilcoxon rank-
sum test, and one-way ANOVA. Table 3 demonstrates that
the P values are all small and that the effect size is generally
“medium,” with some “small” (see Statistical Significance
in MATERIALS AND METHODS).

Figure 2 shows a more complete picture of the entire
(pooled) population’s spike rate statistics across drug prepa-
rations and modality, beyond the PSTH in Fig. 1Aii. There
are very strong positive correlations between the mean firing
rates and standard deviations (across trials) in all drug prep-
arations and both modalities (see Fig. A3 and Table A2). For
further discussion on the modulation of evoked spiking vari-
ability in the OB, see Ref. 26.

Drug Effects on Average Population Spiking

To better understand the dynamics of MC decoding accu-
racy, we consider how GABA, (ant-)agonists affect popula-
tion activity. Although population activity is a coarse
measure that neglects individual cell heterogeneity, it can
still be insightful for determining average trends. A charac-
teristic of an individual MC that might be indicative of

Table 3. Population decoding accuracy: significance
measured by P values of average decoding accuracies
over MC, shown in Fig. 1C

Relationship/

P Value t Test Rank Sum ANOVA
Bic < ND 36x10°"° 49x10°° 18x10°8
Mus < ND 1.2x10°* 1.8x10°° 71%10°°
Relationship/
Effect Size t Test Rank Sum ANOVA
Bic < ND 0.336 (medium) 0.126 (small)  0.0237 (medium)
Mus < ND 0.235 (medium)  0.131 (small) 0.0118 (medium)

Using three tests: two-sample ¢ test assuming unequal variance,
Wilcoxon rank-sum test, and one-way ANOVA. Bottom section of ta-
ble shows effect size (see MATERIALS AND METHODS). Bic, bicuculline;
MC, mitral cell; Mus, muscimol; ND, no drug.
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encoding fidelity is the distance between the scaled trial-
averaged firing rate of ortho and retro stimulation | & — 2|
(Fig. 1B). We expect larger distances to coincide with better
decoding accuracy than smaller distances, if all other factors
are equal. Figure 3A shows moderate to strong correlations
(Pearson’s and Spearman’s rank) between g—f; — i—g and
decoding accuracies for all drug preparations. The spread in
the horizontal direction is large for a given decoding accuracy
value and the correlations are not 100%. Nevertheless, this
motivates considering the population-averaged spiking activ-
ity as a means to better understand the dynamics of decoding
accuracy.

The effects of the GABA, (ant-)agonists on population firing
rate depend on the odor modality; only ortho-evoked firing
rates show statistically significant differences in the mean
(over MC population) firing rate (Fig. 3B). As expected, Mus
(increased inhibition) results in lower firing rates and Bic (less
inhibition) results in higher firing rates compared with no
drug, especially in the spontaneous state. However, the evoked
firing rates are only significantly different (o = 0.01) across
drug preparations with ortho stimulation and not significantly
different with retro stimulation. This holds for nearly all time
points (see * in P value plots of two-sample ¢ test with unequal
variance). This effect is clear in the right panels of Fig. 3, Bi
and Bii. For completeness, the APPENDIX shows the PSTH in
Figs 1Aii and 3B for a longer timeframe (Fig. Al, A and B).

If we assume these population trends (Fig. 3B) hold indi-
vidually for MCs (i.e., drugs only affect spiking rate in ortho
but not retro), then we might expect decoding accuracies to
change in specific ways: if ortho firing rate is less than retro
with no drug, then Bic should increase firing rate (shift firing
rate histograms to the right) causing more overlap and lower
decoding accuracy. For exposition purposes, these results
are detailed in APPENDIX and Fig. A4 where predictions on
decoding changes based on individual MC’s relationship of
ortho versus retro firing rate are partially verified.

Drug Effects on Trial-to-Trial Variability

The trial-to-trial variability plays a key role in decoding ac-
curacy differences. We analyze trial variance for each MC to
test whether the population average is different across drug
preparations. We find with Mus application, the average trial
variability is smallest, followed by Bic, then no drug (i.e.,
Mus < Bic < ND), for both ortho and retro. The significance
measured by P values and effect size are shown in Tables 4
and 5 for ortho and retro trials, respectively, using the same
three statistical tests. For ortho stimulation, Mus < ND is sig-
nificant for two of the three tests (o = 0.01), whereas Bic <
ND and Mus < Bic are only significant with Wilcoxon rank-
sum test. For retro stimulation, again only the Wilcoxon
rank-sum test shows this relationship is significant (all with
o = 0.01 except for Bic < ND for retro where P = 0.038).
Overall, the Bic < ND relationship is not as strong as the
others, and the trend Mus < Bic < ND is stronger with ortho
stimulation. Note that the effect size is considered “small” in
all cases, see Tables 4 and 5.

Within all three drug preparations, the average trial var-
iances for ortho compared with retro are statistically indis-
tinguishable, consistent with study by Craft et al. (27) who
did similar analyses but on only one rat instead of eight rats.
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Figure 2. Detailed spiking rate statistics of (pooled) MC populations. A: colormap showing trial-averaged spiking rate of individual MC (individual PSTH),
each of the three columns is sorted in three different ways, by time-averaged firing rate of ortho firing rate (4 s total, 2 s in spontaneous and evoked, but
only showing 1s of spontaneous). B: colormap showing trial variability of spiking rate (measured by standard deviation across trials) of individual MC,
using the same corresponding index in top row (ortho firing rate). To see relative differences across MC, the color scales were effectively thresholded so
that the larger values did not obscure the entire population. See Fig. A3 for more on relationship between firing rate and trial-to-trial variability. MC, mitral
cell; PSTH, peristimulus time histogram.

Model Connects Network Dynamics and Decoding that the amplitude of ORN inputs with ortho are larger than

Accuracy

To reveal the neural network dynamics that explain our ex-
perimental data results, we use a simple firing rate model. Our
rich dataset with three total drug preparations enables a model
framework that is highly constrained by data (26, 28, 29). In
addition, we incorporate known differences in temporal dy-
namics of ORN inputs to MCs with ortho versus retro stimula-
tion (1-3, 30, 31). Ortho stimulation results in a fast increase
and fast decrease of ORN inputs to MCs while retro input
results in a slower increase and slower decrease of ORN inputs
than ortho (Fig. 4B). Figure 2C of Furudono et al. (1) suggests
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retro (Fig. 4B). We develop a principled model that is structur-
ally the same with both odor modalities but effectively have
different dynamics stemming from different ORN inputs (27);
note that paper had a different purpose with data only from
intact circuit with no drug manipulations. We decided not to
use the biophysical model by Craft et al. (27) because 1) indi-
vidual MC spiking statistics are modulated by net inhibitory
inputs, distinguishing interneurons is a complication more rel-
evant for joint statistics of MC populations; 2) resolving trial-
average spike statistics is more computationally expensive,
making parameter tuning to capture both firing rate differen-
ces and average decoding accuracies across three drug
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Figure 3. Population activity: retronasal response is less affected by changes in OB inhibition. A: distance between scaled trial-averaged mean | i—ﬁ - (‘:—Z|
is correlated with decoding accuracy. The “Correlation” is Pearson’s correlation coefficient, and “Rank Correlation” is Spearman’s. B: drug effects on
evoked population PSTH are different with statistically significant effects only with ortho stimulation (Bi) but not retro (Bii). The right panels with three sub-
plots show the time series of P values from two-sample t test assuming unequal variances, comparing pairs of drug preparations. Bic, bicuculline; Mus,

muscimol; ND, no drug; OB, olfactory bulb; PSTH, peristimulus time histogram.

preparations impractical; and 3) calculating many decoding
accuracies where each parameter set has an optimal threshold
that has to be determined exhaustively (see Fig. 5, B and C,
below) is a necessary additional component here [not in Craft
et al. (27)] that is also computationally expensive.

Table 4. Ortho stimulation only: significance (P values) of
average (over MC) trial variance differences between
drugs with various statistical tests

We first set out to implement an OB model that accounts
for the large changes in population PSTH with GABA, (ant-)
agonists with ortho stimulation only and small (or no signifi-
cant) changes in population PSTH with retro (Fig. 3B). We
use a reciprocally coupled two-cell E-I network (Fig. 4A),

Table 5. Retro stimulation only: significance (P values) of
average (over MC) trial variance differences between
drugs with various statistical tests

Relationship/

Relationship/

P Value t Test Rank Sum ANOVA P Value t Test Rank Sum ANOVA

Mus < ND 1.8 %1073 7.7 x1078 0.021 Mus < ND 0.039 1.9 %107 0.1

Mus < Bic 0.055 24x107" 0.053 Mus < Bic 0.57 7.6 x1077 0.57

Bic < ND 0.82 5.0 %10 0.82 Bic < ND 0.26 0.038 0.30
Relationship/ Relationship/

Effect Size t Test Rank Sum ANOVA Effect Size t Test Rank Sum ANOVA

Mus < ND 0.137 (small) 0.147 (small) 0.00402 (small) Mus < ND 0.0953 (small)  0.102 (small) 0.00193 (small)
Mus < Bic 0.134 (small) 0.254 (medium) 0.00450 (small) Mus < Bic 0.0399 (small) 0.171(small)  3.98 x 10~ * (small)
Bic < ND 0.0137 (small)  0.0955 (small) 4.06 x 10~° (small) Bic < ND 0.0610 (small) 0.0569 (small)  7.97 x 10~* (small)

Using same three tests as before; ND = “no drug”; bottom table
shows effect size. Bic, bicuculline; MC, mitral cell; Mus, muscimol;
ND, no drug.

J Neurophysiol « doi:10.1152/jn.00101.2023 - www.jn.org
Downloaded from journals.physiology.org/journal/jn at $ {institutionUser.bannerText} (129.119.235.004) on January 24, 2024.

Using same three tests as before; ND = “no drug”; bottom table
shows effect size. Bic, bicuculline; MC, mitral cell; Mus, muscimol;
ND, no drug.
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consistent with OB networks that have many such E-I pairs
[granule and periglomerular cells are reciprocally connected
to MCs with fast dendrodendritic synapses (32)]. We model
the drug effects of Bic (Mus) by decreasing (increasing) the
coupling strength from I to E cell by 25% of the baseline
value (wg; = 0.2 with no drugs, arbitrary units, see Egs. 6
and 7 and Table 1).

The data show that effects of drugs altering inhibition
are largely absent with slower longer-lasting retro stimula-
tion (Fig. 3B), thus finding a neural network principle that
effectively removes the inhibitory cell input is imperative
and might be indicative of the core mechanisms. We
hypothesize that short-term plasticity on the excitatory
synapse (E — I) could be a factor in explaining the differen-
ces of population firing between ortho versus retro with
GABA, (ant-)agonists because of known temporal differen-
ces in ORN inputs. There is indeed evidence of plasticity
in the OB circuit (33), specifically for short-term synaptic
depression in the main OB (34) and from MC to granule
cells (35). As the relative differences in firing rate with
ortho are already large without plasticity (1st column in
Table 6), honing in on decreasing the firing rate differen-
ces in retro (3rd column in Table 6) would make the model
more consistent with the data (Fig. 3B). We use short-term
synaptic depression as a means to nonlinearly change the
retro firing rates to diminish the differences because retro
has longer lasting stimuli. Although Dietz and Murthy (35)
showed that E—1I synapses in OB have both facilitation

1234

and depression with facilitation appearing more promi-
nent, we found that short-term facilitation alone made our
model less consistent with our data.

Figure 4C shows comparisons of various model outputs
(Egs. 6-12). The model indeed follows the firing rate mod-
ulation with GABA, (ant-)agonists with both odor modal-
ities, whether or not synaptic depression is included.
Specifically, ortho MC firing rates (Fig. 4, top left) with dif-
ferent drug preparations are well-separated, whereas the
retro MC firing rates are pretty close together (Fig. 4, bot-
tom left). The effects of synaptic depression significantly
narrow the differences in retro population PSTH among all
three drug applications, while with ortho, the differences
across drug preps remain large (see Table 6 for relative dif-
ferences). Taken together, synaptic depression is crucial
for capturing the data (Fig. 3B) with this model. With retro
stimulation in all three drug preparations, the E — I synap-
tic connections are depressed for longer so that the I-cell
fires less, giving a boost to E-cell firing. In both modalities,
there is overall higher E (MC) firing with short-term synap-
tic depression because of less inhibition (for all three drug
preparations). Synaptic depression effectively diminishes
the reciprocal loop so that the inhibitory drug effects are
weakened. In principle, Mus should have the opposite effect
as Bic, but the coupling strength wg; has moderate varia-
tion: 0.15 (Bic), 0. 2 (ND), and 0.25 (Mus). Also, we mod-
eled short-term depression so that inhibition is almost
completely turned off with retro, resulting in MC being
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effectively decoupled from the I cell. Our model does not
have realistic levels of synaptic depression, Cang and
Isaacson (33) report moderate levels of synaptic depres-
sion. If synaptic depression was limited in our model so
that the minimum w;z was 0.5, the ortho firing would be
similar but the retro firing would strongly modulate with
drug effects, which is inconsistent with our data. And
anesthetized rats have less active granule cells (33) than
awake, so perhaps other interneurons would have to be
active for our model to be consistent with our data. The
exact type of inhibitory neurons in the OB that would
have to be involved and their corresponding dynamics
with excitation are unknown to us.

With the neural dynamics captured in our model, we turn
to connecting the model to decoding accuracy. The firing
rate model does not explicitly have trial-to-trial variability,
an important piece for decoding accuracy. A natural choice
would be to assume Poisson statistics for the spike counts,

but this single parameter distribution results in trial variance
ordered by the firing rate: Mus < ND < Bic, which is incon-
sistent with our data and has perfect (100%) decoding ac-
curacy with these firing rate models. Capturing the trial
variability trends in our data seems to require tunable pa-
rameters that are not directly tied to the (mean) firing
rate. We use a simple two-parameter model that makes
simulation easy and transparent: the negative binomial
distribution. Note that there may be other models of trial vari-
ability that are more realistic in relation to MCs, but that is
unlikely to be as pragmatic for capturing firing rate and
decoding accuracy trends. Specifically, for each drug (ND/Bic/
Mus) and each input (ortho/retro), we fit a negative binomial
distribution to the average decoding accuracy. The two distri-
bution parameters were chosen so that 1) the mean of distri-
bution coincided with the model spiking rate T%Jge” Ag(t)dt
(solid curves in Fig. 4C, left column) and 2) the decoding accu-
racy matches the averages in the experimental data.

Table 6. Relative differences of firing rate model between no drug and inhibitory drugs in both modalities

Ortho Retro
Relative Differences (%) Without Depression With Depression Without Depression With Depression
No Drug/Bicuculline 37.87 38.16 16.08 6.04
No Drug/Muscimol 30.31 45.09 12.90 6.25
Ortho Retro
Tiﬂ joT < Ag(t) dt Without Depression With Depression Without Depression With Depression
No Drug 6.1 8.58 9.64 15.65
Bicuculline 8.43 11.86 1.19 16.59
Muscimol 4.26 4.7 8.40 14.67

All percent differences (top table) are relative to no drug: |[” AL 8 (1) dr — [y Ay ™8 (1) dr| / [ AR°P™8(r) dr. Bottom section of table
shows average firing rate TijOT Ag(t) dr (Hz), i.e., the components of the relative differences.
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The negative binomial distribution has distribution:

rx(,’l‘.z;; ) p"(1 - p)* with parameters: p e (0, 1) and 7 > O that are
not directly related to the physiology. We manually (by trial
and error) determine the parameter p for each modality and
drug preparation, which are all the same p except for retro

with Bic and Mus (see Table 1), after which the r parameter is

determined by:
o P i Tev
T 1- p |:Tev JO AE(Z)d[:|

since the mean of the negative binomial is “4=*). We choose p
for each regime so that the resulting decodjing accuracy is
close to the averages from the experiments: 0.724 (no drug),
0.680 (Bic), and 0.690 (Mus).

The results are summarized in Fig. SA. We simulated
50,000 trials and found the optimal threshold to get decod-
ing accuracies that match the data.

We check whether our model results are consistent with
the trial-to-trial variability of our data by calculating the var-

iances of firing rate over trials, which is simply @ for the

negative binomial distribution. The values listed in Table 7
show that trial variance is consistent with the data: Mus <
ND < Bic, except for retro Mus firing that has the largest var-
iance. Recall in our data that the trends for variance of firing
rate was weakest with retro stimulation with larger P values
(Table 5).

A test of our model is to determine whether the specified
parameter values for p results in ND generally having better
decoding accuracy than Bic and Mus. We start with the base

model of spiking rate: 7 [y Ag(¢) dt (solid curves in Fig. 4C,
left column) and perturb these values to get different means:
u*O/R = TLW OT” Ag(t)dt = Mog, where Mpe{-2, ..., 4 Hzon 25
equally spaced points and Mg € {6, ..., 9} Hz on 31 equally
spaced points. Once a mean is specified, we use the same p
(Table 1) and set r* to correspond to the mean p*:

*: p *
1-p

we simulate 50,000 trials to get a decoding accuracy value
for each set of parameters. We get 775 decoding accuracy val-
ues corresponding to the different (py), py) combinations for
each drug preparation (Fig. 5B). Importantly, our model does
not soundly capture many details of realistic MC heterogene-
ities in our data (Figs. 1C and 5B have different shapes), but
Fig. 5B at least matches the result that ND on balance has
better decoding accuracy than Bic and Mus. Finally, Fig. 5C
shows how decoding accuracy varies with scaled distance
MR _ Yo
OR co

(16)

r (17)

. The decoding accuracies can vary for a given drug

preparation, but the ND and Bic have strong positive correla-
tions (like the data, see Fig. 3A), but Mus has strong negative
correlations that are inconsistent with the data.

Table 7. Simulated trial variance of the model: %

Muscimol No Drug Bicuculline
Ortho 14.73 26.83 37.06
Retro 282.12 48.90 31.31
1236

Population Decoding Results

Thus far, we have focused on decoding odor modality
using the firing rate of individual MCs. Although this
approach avoids making assumptions about how higher-
level cortical regions might use the population as a whole
(25), population coding is known to be important for compli-
cated tasks (36). We apply standard population coding metrics
to assess how well odor modality can be decoded from popu-
lations of MCs. We show that modality is well-encoded, but
that the differences with GABA manipulations are minor.

We applied two approaches to population decoding. First,
we used principal component analysis (PCA) to project the
population response onto a two-dimensional subspace that
captures the most variance (first 2 PCs) and then applied lin-
ear discriminant analysis (LDA) to find an optimal decoder
in that subspace (PCA + LDA). Second, we used a support
vector machine (SVM), a common supervised learning algo-
rithm to (nonlinearly) classify data. We use the first two PCs
in PCA + LDA because it is a natural extension of 1-D decod-
ing with LDA that was the primary focus of prior sections.
The SVM is at another extreme using all dimensions possi-
ble; together, these two provide a glimpse into the various
accuracies of population decoding.

With both methods, we find odor modality is still encoded
well above chance even when inhibition is altered (Fig. 6, B
and C). Not only is the average decoding accuracy (across
separate recordings) higher than before (Fig. 1C) but there
are no longer decoding accuracies near the chance level
(0.5). This is perhaps expected because these metrics
(PCA + LDA, SVM) exploit the higher dimensional popula-
tion activity to perform optimally in a binary classification
problem when in reality the MCs encode other aspects of
stimuli. Note that nearly 35% of recordings with no drug and
Mus have perfect decoding accuracy (Fig. 6, B and C).

In contrast to the case of a single MC’s encoding (Fig. 1C),
we do not find any statistically significant differences
between the mean decoding accuracy across drug prepara-
tions. In fact, the minimum P value for all relationships and
all three statistical tests is P > 0.32 for PCA + LDA, P > 0.13
for SVM. We expect population coding to perform better than
individual cell coding, especially given the large dimensional-
ity of population activity and that these metrics (PCA + LDA,
SVM) were optimized for a binary classification task.

DISCUSSION

We have shown that MCs in the OB encode odor modality
with our experimental data and use an OB model inspired by
many prior studies and constrained by our rich data to ana-
lyze plausible network components that support these dy-
namics. Our study uncovers further details for how ortho
versus retro information is encoded to early cortical regions
via the OB, which is consistent with reports that humans are
able to discriminate whether food odors are delivered ortho or
retronasally without being told which modality (4). Imaging
studies of the human mouth have shown that with food odors,
ortho stimuli delivery versus retro are two distinct modalities,
rather than two different stimulus routes to the same modal-
ity, independent of odor intensity (5). Based on in vivo rat
data, we found significant differences in decoding accuracies
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Figure 6. Population decoding of ortho versus retro is reliable and robust to altered inhibition. A: each drug preparation has a different number of record-
ings and each recording has a different number of simultaneously recorded MCs. Showing recording index and MC population size, sorted by popula-
tion size. B: decoding accuracies (one for each simultaneous recording) for all drug preparations using a 2-D PCA dimension reduction following by
LDA. Inset shows percent variance explained by PCA versus recording index (sorted by percent variance explained). C: decoding accuracies using full
dimensional support vector machine (SVM) classification. Average decoding accuracies by both methods (B and C) are statistically indistinguishable
(minimum P value for all relationships and all three statistical tests is P > 0.32 for PCA 4 LDA, P > 0.13 for SVM). MC, mitral cell; LDA, linear discriminant
analysis.

(our proxy for encoding assuming an ideal observer) for classi- There have been prior studies that implemented an OB cir-
fying ortho and retronasal odors across different drug prepa- cuit model with varying levels of realism, but none that we
rations. The intact (no drug) circuit had the best (average) are aware of that use an OB model to account for coding of
decoding accuracy, suggesting that the OB might be struc- odor modality and firing rate dynamics. We previously devel-
tured to encode this important aspect of odor input. oped a realistic biophysical OB network model (27) and used it
Our model framework used prior results, data constraints to account for different neural network dynamics (trial-aver-
(26, 28, 29), and simplicity to account for the results of our aged) with ortho/retro inputs, but did not focus on decoding
data analysis. Many prior studies (1-3, 30, 31) showed that accuracy for a given trial (which is more computationally tax-
there are differences in the temporal dynamics of ORN ing). In our prior work (27), the PSTH for ortho versus retro is
response to ortho versus retro stimulation. We used this to  different from here (Figs. 1Aii and 3B) because we previously
investigate the OB circuit components that promote efficient used only one rat versus eight rats here. There are biophysi-
coding of individual mitral cells with drug manipulations of cal models of particular OB cells (37, 38) and of the OB net-
inhibitory synapses. Further data analysis revealed that inhib- work (39, 40), and other have used models (firing rate or
itory drugs have a stronger effect on the population firing Bayesian) to investigate coding of mixed odors (41) and
with ortho stimulation than retro. Using these insights, we learning new odors (and their concentration levels) (42),
constructed a standard firing rate model that captures the var-  but we are unaware of an OB model that captures coding
ious drug effects for ortho versus retro stimulus, using only a  of odor modality. Note that muscimol increases tonic E-
pair of E - I cells. Including synaptic depression was crucial cell inhibition independent of I-cell firing; our simple
for capturing the different drug effects of firing rate. We did model does not disentangle these two components.
not explore varying the many parameters of the model to find A limitation of this study is the use of one odor (EB, a food
a “best fit” to data, rather we wanted a simple yet informative odor) with one concentration. We collected data from a non-
model that demonstrates a plausible mechanism. The model food odor (1-Hexanol), but since typically only food odors are
PSTH fits to the data are imperfect and qualitative (Fig. 4C); experienced retronasally (9), we did not include 1-Hexanol in
the spontaneous firing of ortho and retro in the model are dif- our study. It is well-known that nonfood odors delivered ret-
ferent because of differences in the ORN input strengths, the ronasally are not perceived as well as retro food odors by
ortho model firing decays faster than the data. In fact, for humans (4, 5, 8). Other food odors have different physico-
retro, it looks like the model fits the data better without syn- chemical properties that impact differences in ortho ver-
aptic depression (although the differences with GABA, sus retro responses (31), so the generalization of our results
manipulations are large and inconsistent with the data). In merits further investigation. Firing rates vary with odor
theory the model could be better fit to the data PSTH, for concentration (15) and is thus a confounding factor in dis-
example, if the ORN inputs (Fig. 4B) are held fixed and an tinguishing ortho versus retro from firing rates alone.
optimization routine is performed on a set of parameters, but Whether higher brain regions rely on other signals to
then the decoding accuracy would have to be accounted for account for concentration or different patterns of activa-
(Fig. 5A), perhaps in the objective. We thus opted to manually tion in OB to reliably estimate ortho/retro is important but
determine the model parameters. Lastly, we simulated trial- beyond the scope of this study. Our data were collected
to-trial variability by assuming a negative binomial distribu- from anesthetized rats with forced air to model ortho/retro
tion with mean defined by the firing rate model output. The (2,7, 43), which has clear advantages: control and a fair decod-
resulting model captured both decoding accuracy trends (ND ing “task” so that ortho and retro are mechanically similar
is better) and some aspects of firing rate trial variability. with the same stimulus duration. In addition to the intact
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circuit, our data also had both increased and decreased
GABA, synaptic inhibition with direct manipulations in the
OB. Via pooling data from many rats, we had a large number
of MCs. Although data from awake rats during eating would
shed light on coding odor modality in a more natural state,
we are unaware of such data of recorded MC spiking activity
for the purposes of comparing ortho versus retro during feed-
ing. There are freely available MC spike data with awake
rodents [mice in Bolding and Franks (44, 45)] but not during
feeding and not with direct manipulation of OB inhibitory
synapses.

As the temporal dynamics of odors can be crucial in OB
processing, we systematically varied the evoked time window
and even considered removing the first 300 ms of the evoked
state (see Fig. A2). We found that the population-average (and
standard deviation) decoding accuracy varied slightly (Fig.
A2, B and D), and indeed, with the first part of the evoked
state removed, the average decoding accuracy increased. In
the context of our study, the temporal patterning differences
between ortho and retro have minor effects on decoding. In
awake, intact animals, the timing of the breath cycle deter-
mines the timing of ortho and retro stimulation (11). In princi-
ple, brain areas downstream from OB could use a breath-
timing-based decoding scheme to entirely distinguish ortho
from retro. However, our experiments show that timing is not
the only mechanism that impacts ortho versus retro coding.
In our experiments, the breath of the anesthetized rats did
not pass through the nose at all; it was redirected through a
tracheotomy tube. Thus, the timing of ortho and retro signals
in our experiments was decoupled from breath timing and we
kept the stimulation parameters (concentration and flow rate)
the same, changing only the direction of airflow. Yet, we
found differences in ortho and retro response in OB. Also,
when instructed not to breathe and actively sniff, humans
can correctly report ortho versus retro odor modality with
food odor without being told the modality (4). Thus, we con-
clude that the OB encodes ortho and retro stimuli not only
with the timing of the breath but also with other mechanisms.
Nonetheless, it is likely that intact, awake animals would use
both timing (inhale vs. exhale) and the mechanisms we iden-
tify here. Disentangling the relative importance of these dif-
ferent possible contributions to ortho versus retro coding will
require further experiments.

Our results predominately center on population averages of
individual MC decoding accuracy because it is a logical first
step (25). Given the importance of population coding for
many complicated tasks (36), we also considered two standard
population decoding accuracy measures: PCA + LDA and
SVM and found in both cases that the intact circuit was not
statistically significant better (on average). However, decod-
ing accuracy was again much higher than chance levels and
better compared with average individual MC decoding accu-
racy. Developing a heterogeneous OB model that accounts for
the population coding results and dynamics is a potential
next step but beyond the scope of this current study.

APPENDIX

The main text focuses on the 1-s duration of the odor,
which is longer than most breath cycles. However, there are
dynamics beyond the duration of the odor that may be
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insightful and of interest, so the population PSTHs extended
to 5 s after odor onset are shown in Fig. Al, A and B. By visual
inspection, there appears to be an increase in the firing rate
after the odor is off, e.g., ortho with Bic and retro with Mus.
Whether this change is statistical significant and the under-
lying mechanisms to explain this are fascinating but beyond
the scope of this current study. For the interested readers,
we report the fraction of “Off-Response” cells that have
higher firing rates when the odor is removed than with odor,
a well-known phenomenon dating back many decades (46).
We report the fraction of the MC population that has a
higher firing rate (time- and trial-averaged) in1 <t <2s
thanin O <t <1sinTable Al.

Figure A2, A-B, details how the time window in the
evoked state was chosen and how the optimal decoding
accuracies vary with time window.

Figure A3 shows how the trial-averaged firing rate is
related to trial-to-trial variance (and standard deviation) of
firing rate by odor modality and drug preparation. Related
to this is Table A2, which shows the correlations between
trial-averaged firing rate and trial-to-trial variability by odor
modality and drug preparation.

DECODING ACCURACY DYNAMICS FROM
DRUG EFFECTS ON POPULATION-AVERAGED
FIRING RATES

If we assume the population trends in Fig. 3B hold indi-
vidually for MCs (drugs only affect spiking rate with ortho
but not retro), then we might expect decoding accuracies to
change in specific ways, as illustrated in Fig. A4, Ai and Aii.
If ortho spiking is less than retro with no drug (uo < ug, see
Fig. A4Ai), Bic should increase spiking (shift gray curve to
the right, green curve) causing more overlap and lower
decoding accuracy, whereas Mus should decrease spiking
(shift gray curve left, purple curve) leading to less overlap
and higher decoding accuracy. Similar arguments can be
made for when retro spiking is less than ortho spiking pg <
ug, Fig. A4Aii). Thus, the predictions from observations of
the population firing rates (Fig. 2B) are:

1) When pg < pg:
(a) Bicuculline = less accuracy*
(b) Muscimol = more accuracy
2) When pg < po:
(a) Muscimol = less accuracy*
(b) Bicuculline = more accuracy

The results of these predictions are shown in Fig. A4, B
and C. Predictions 1a and 2a (Fig. A4B) denoted by asterisk
are statistically significant in difference [t test (Pnp.pic =
5.3x107'°, Pypaws = 1.8 x10°°), Wilcoxon rank-sum test
(Pyp.pic = 31x107", Pypamws = 6.9x1077), and one-way
ANOVA (Pnppic = 11x107%, Pypaus = 5.6 x107°)]. The
other two predictions (1b and 2b, Fig. A4C) do not precisely
hold; interestingly, it is because no drug preparation retains
a higher average decoding accuracy than with the two drug
applications. Two caveats: in Fig. A4Ci, with Mus, the aver-
age decoding accuracy is better when o < pr (purple filled)
compared with all cells pg < pg and po > pg (dark purple out-
line) [t test (Patys — aiaus = 1.2 % 1078), Wilcoxon rank-sum
test (Pagus— anaus = 9-4x107°), and one-way ANOVA
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(Patus — aiamus = 3.0x107°)]; in Fig. A4Cii, the difference
between Bic and no drug are no longer statistically significant
[t test (Pnp,pic = 0.22), Wilcoxon rank-sum test (Pnp pic = 0.58),
and one-way ANOVA (Pnp gic = 0.26)], so that with ug < po,
cells with Bic and no drug have indistinguishable averages.
This all shows that the observation that ortho stim is more
affected by GABA, manipulation than retro has consequences
for decoding accuracy modulation, even if the predictions are
imperfect.
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