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Abstract
As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical 
activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that 
sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations 
between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best 
for decoding. We analytically show that these correlation-based coding subspaces improve, reaching optimal limits (without an ideal 
observer), as noise correlations between cortex and upstream regions are reduced. We show that this principle generalizes across 
diverse sensory stimuli in the olfactory system and the visual system of awake mice. Our results demonstrate an algorithm the cortex 
may use to multiplex different functions, processing sensory input in low-dimensional subspaces separate from other ongoing functions.

Significance Statement

Traditionally, primary sensory cortex was thought to have one job—processing sensory signals. As technical advances allow more 
holistic measurements of the brain and body in action, it has become clear that the primary sensory cortex is involved with many 
other aspects of brain function, not just dealing with sensory input. How can a single neural circuit juggle multiple jobs simultaneous
ly? Here, we use numerical, analytical, and experimental methods to demonstrate an algorithm the brain may use to solve this prob
lem by separating different jobs into different subspaces defined by correlations between the primary sensory cortex and the brain 
regions that source the sensory input signals.
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Introduction
Neurons in primary sensory cortices are involved in diverse as
pects of brain function; their activity is not limited to encoding 
sensory signals (1–4). It is becoming increasingly clear that the pri
mary sensory cortex is a multiplex, full of cross-talk and multi
purpose signals. For example, neuronal activity in the primary 
visual cortex (V1) does not just encode physical features of visual 
stimuli, but is also related to locomotion (5, 6), whisking and pupil 
diameter (7), forepaw manipulations (8), decision making (8–10), 
and learned consequences (rewards) of the visual stimuli (11). 
Similarly, neurons in the primary olfactory cortex (piriform cor
tex, PC) go beyond odor coding, exhibiting activity related to spa
tial navigation (12), thirst (13), decision making (10), and working 
memory (14), and can drive distinct behaviors (15). In general, in
volvement in these diverse “nonsensory” functions will vary 
across repeated trials of a sensory stimulus. Thus, it is not surpris
ing that the responses of single cortical neurons to a repeated sen
sory stimulus vary greatly from trial-to-trial, often making the 
stimulus identity impossible to decode accurately with a single 

neuron. How does the brain reliably keep track of sensory signals 
when they are mixed into the complex, multipurpose dynamics of 
the cortex?

Here we propose a population-level solution to this problem. 
We start from the fact that at the sensory periphery, neuronal ac
tivity is purely sensory and not mixed with other functions. As the 
signal traverses the sensory hierarchy from the periphery to the 
cortex, it becomes increasingly mixed with nonsensory signals 
due to increasingly recurrent interactions with other brain regions 
(16–18). It stands to reason that sensory signals in thalamic nuclei 
or olfactory bulb (OB) could be less noisy (closer to purely sensory) 
than sensory signals in cortex. Consistent with this, the dorsal lat
eral geniculate nucleus (LGN), which provides input to V1, exhib
its a response to visual stimuli that has lower dimensionality than 
V1 (19) and is less affected by locomotion than response in V1 (6). 
Similarly, LGN firing is modulated more by sensory input and less 
by behavioral context compared to V1 (16). Likewise, OB, which in
nervates PC, is often less noisy than PC. For example, OB has more 
neurons that are clearly responsive to olfactory stimuli compared 
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with PC (20). (In Fig. S1, we directly show that the population-level 
signal-to-noise ratio is greater in OB compared to PC and greater in 
LGN compared to V1 for the data analyzed further below.) Thus, 
we hypothesized that certain coding subspaces in the cortex— 
those that share variability with subspaces in upstream sensory 
regions (thalamus or OB)—may contain sensory signals with less 
noise.

What do we mean by a coding subspace? Considering a popula
tion, rather than single neurons (21, 22), the single-trial response 
of N cortical neurons is a vector in an N-dimensional space; e.g. 
the sixth component of the vector is the response of the sixth neu
ron, and so on. The responses to many repeated trials of two dif
ferent stimuli can be represented as two clouds of points in 
N-dimensional cortical space, one point for each trial, and one 
cloud for each stimulus type. The spread of each cloud of points 
reflects the trial-to-trial variability (the nonsensory signals dis
cussed above) and the overlap of the two clouds makes decoding 
the stimuli difficult. However, if the response variability due to 
nonsensory noise lies along different directions than the variabil
ity due to switching the sensory signal, then decoding can be 
greatly enhanced by projecting the N-dimensional response onto 
a coding subspace, i.e. a lower dimensional subspace that ex
cludes some noise. Our hypothesis here is that such coding sub
spaces can be found by considering signal correlations and noise 
correlations between the cortical population and upstream 
populations.

Recent studies have adopted conceptually related approaches 
demonstrating that high-dimensional neural circuits may man
age multiple operations by performing them in different subspa
ces. For instance, neurons in the mouse auditory cortex “rotate” 
sensory representations from a sensory subspace to a memory 
subspace over time (23). Neurons in rat posterior parietal cortex 
use different subspaces to represent decision and movement 
(24). Motor preparatory activity in monkeys contains a subspace 
that does not impact movement, i.e. in a “nullspace” (25). 
Monkeys making a choice about motion and color of a visual 
stimulus exhibited neurons in prefrontal cortex (PFC) that used 
three different subspaces to encode color, motion, and choice 
(26). Similarly, working memory and movement planning are sep
arated into different subspaces within a population of PFC neu
rons in monkeys (27). In anesthetized monkeys, signals are 
transmitted between V1 and V2 in a “communication subspace” 
(28). The outputs of mouse cerebellar neurons were shown to re
present quiescent and active behavioral states in orthogonal sub
spaces (29). Computational models together with human brain 
imaging suggest that orthogonal subspaces are used to represent 
different task variables in an image classification task (30). 
Computational models of entorhinal cortex suggest that encoding 
of spatial navigation and navigation-independent context are sep
arated into orthogonal subspaces (31). Our work here extends 
these ideas, establishing sensory subspaces in cortex and in the 
sensory brain regions that provide input to cortex and an algo
rithm for finding these subspaces.

Projecting high-dimensional activity into a lower dimensional 
coding subspace is a type of dimensionality reduction. More gen
erally, dimensionality reduction has long been recognized and 
used to improve decoding of sensory signals with supervised pat
tern classification techniques like linear discriminant analysis 
(LDA) (32, 33). However, LDA and similar techniques require se
mantic labels for the stimuli, which can be challenging to imple
ment in a biologically plausible way (but perhaps not 
impossible, see e.g. Refs. (34, 35)). Here, we identify a totally un
supervised decoding strategy. We show that low-dimensional, 

optimal coding subspaces can be found without any knowledge 
of stimuli identities by considering correlations between cortex 
and upstream brain areas that provide input to cortex. Using ca
nonical correlation analysis (CCA, see Refs. (22, 36) for an intro
duction), we define subspaces in cortex and subspaces in LGN or 
OB in which responses to stimuli are most correlated across the 
brain regions. We show that these cross-population correlated 
subspaces can effectively separate signal from noise, often ap
proaching the theoretical limits of optimal decoders (like LDA). 
We developed an analytical approach to better understand these 
coding subspaces and successfully predicted improved coding 
subspaces among neurons with low cross-population noise corre
lations. We first present the theory and then test its predictions 
using spike data.

Results
A central idea underpinning our theory is that the brain can im
prove decoding of sensory input by projecting neural activity 
onto a subspace which excludes some of the “noise” that compro
mises decoding. We hypothesized that we could identify such de
coding subspaces based on inter-regional correlations between 
cortex (V1 or PC) and upstream extracortical regions (LGN or 
OB). To demonstrate how this might work, we first present a sim
ple, instructive case based on simulated data: two neurons in cor
tex (Fig. 1C) and two neurons in the upstream region (Fig. 1B). In 
this simulated example, the responses are drawn from a multi
variate Gaussian distribution (Materials and methods) with pa
rameters chosen such that the two cortical neurons have strong 
noise correlations and a small difference in mean response for 
the two stimuli. The two extracortical neurons have noisy over
lapping responses to the two stimuli. (In this example, there are 
no cross-population noise correlations, which is important for 
our approach, as we discuss further below.) All four of these neu
rons are rather poor decoders at the single neuron level, but de
coding improves substantially when projected onto a particular 
subspace (green lines in Fig. 1B and C). The optimal subspace 
can easily be found using LDA (the dashed line in Fig. 1C is the 
LDA classification boundary), but LDA requires knowledge of the 
stimulus identities; the brain does not have direct access to stimu
lus identities before they are decoded. The optimal subspace can 
also be found, without knowledge of stimulus identity, by per
forming CCA, which is the key advance presented in this paper.

Before proceeding, we briefly introduce CCA for unfamiliar 
readers (see also Refs. (22, 36)), comparing and contrasting with 
the more commonly used principal component analysis (PCA). 
Similar to PCA, CCA generates a set of basis vectors based on 
the covariance matrix of multivariate data; these are the canonic
al components (CCs) for CCA and the principal components (PCs) 
for PCA. In our context, PCA would take a set of spike count re
sponses from a single population of neurons and generate one 
set of components. In contrast, two sets of spike count responses, 
one from each of two different populations of neurons, are the in
puts to CCA. Likewise, CCA generates two sets of components, one 
for each population. The first canonical component (CC1) for the 
first population is related to CC1 for the second population; CCA 
is defined such that the correlation between the two populations 
is maximized when they are projected onto their respective 
CC1s. In contrast, PCA is defined such that projection onto PC1 
maximizes variance. In the example in Fig. 1C, PC1 (black arrow) 
is aligned with noise fluctuations in the cortical population, but 
CC1 (green arrow) is aligned with the direction along which signal 
varies most (orthogonal to PC1 in this case), thus identifying the 
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optimal decoding subspace (orthogonal to the LDA classification 
boundary). In general, PCA will not identify the optimal decoding 
subspace.

Throughout this paper, we report various types of decoding ac
curacy including DLDA, Dn3, DCC1, and optimal D. In all of these 
cases, we are working with a 1D response to two stimuli; it is 1D be
cause it is projected onto a line or, in the case of Dn3, simply be
cause it is the response of one single neuron. We define decoding 
accuracy as the fraction of correctly predicted stimuli using the 
best possible threshold to separate the responses. For example, 
in Fig. 1E, the best possible threshold is marked with the dashed 
line.

Is the example in Fig. 1 indicative of a more general principle? 
Does CC1 always reveal the optimal decoding subspace? To answer 
these questions, we next performed a more extensive analytical and 
numerical study of this 2 × 2 case considering a wide variety of cor
relations among the four neurons and signal-to-noise scenarios. 
We assumed that each neuron had responses to two different stim
uli that were drawn from multivariate Gaussian distributions. We 
further assumed that the responses of the 4 neurons are governed 
by 15 parameters: 8 mean responses (2 stimuli × 4 means), 4 varian
ces, 2 within-population covariances, and 1 cross-population covari
ance (Fig. 2A). Variances and covariances were assumed to be the 
same for the two stimuli. By centering on the mean response for 
one stimulus type, we reduce this to 11 parameters, without loss 
of generality. We considered 50,000 different configurations of these 
11 parameters, drawn randomly (Materials and methods). We note 
that here we used analytical methods to compute the CC directions, 
optimal D, and other quantities; these results depend only on the 11 
parameters discussed above and are not limited by finite numbers of 
samples (Materials and methods).

We found that CC1 is not, in general, well-aligned with the op
timal decoding subspace, resulting in decoding DCC1 that is often 
suboptimal (Fig. 2B, blue). Nonetheless, for many of the 50,000 
random populations, DCC1 was very close to optimal. Next, we 
asked what factors determine whether the subspace defined by 

CC1 is near-optimal or not? We found that the most important 
factor was correlated noise shared across the two populations. 
This is consistent with previous work highlighting the importance 
of noise correlations for decoding (37, 38). When we set these 
cross-population noise correlations to zero, keeping all the other 
parameters fixed, the CC1 direction was exactly optimal in all 
cases (Fig. 2B, black and supplementary material [Mathematical 
Results]). Thus, our theory predicts that if there were no 
stimulus-independent shared variability between, say, LGN and 
V1 neurons, then CCA would be a perfect algorithm for visual de
coding, even without knowing the stimulus labels. But, of course, 
it is very unlikely that LGN and V1 have zero noise correlations. 
Therefore, we next asked whether near-optimal CC1 decoding 
might be achieved even with small, nonzero noise correlations? 
Or does sensitivity to noise correlations render the algorithm use
less in real neural systems? To answer these questions, we exam
ined how DCC1 depends on cross-population noise correlations Cxy. 
We found that nonzero, but small Cxy—below about 0.4 for our 
simulations—resulted in a CC1 that was very close to the optimal 
subspace (Fig. 2C). Thus, the algorithm is robust to some degree of 
noise correlations and could be useful for real sensory systems.

One further prediction from the theory comes from considering 
the correlation coefficient RCC1 of the responses across the two 
populations after projection onto the two CC1 directions. RCC1 is 
the quantity that is maximized by the CCA algorithm. If noise cor
relations are small, then we expect CCA to identify a CC1 direction 
that aligns with signal fluctuations and RCC1 should reflect the 
strength of the signal. We confirmed this; for low Cxy cases, we 
found that if RCC1 is too low, then CC1 decoding deteriorates 
(Fig. 2D). In this case, the two populations are nearly independent 
with no shared information about noise or signal. Thus, a more 
complete prediction from our theory is as follows. If there exist 
neurons in the primary sensory cortex and the upstream brain re
gions that have sufficiently low Cxy and sufficiently high RCC1, then 
the sensory system could identify low-noise coding subspaces 
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Fig. 1. Using inter-regional correlations to find coding subspace. A) We hypothesize that correlations between primary sensory cortices (PC or V1) and 
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simultaneous recordings from V1 and LGN during visual stimulation (top) or PC and OB during olfactory stimulation (bottom). B) Each point represents 
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(PC1, black) with maximal variability; in this case, the variability is due to noise. D) Response distributions for the two stimulus types overlap 
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two stimulus types, achieving optimal decoding accuracy (94%, same as LDA). The dashed line indicates the optimal threshold used for calculating the 
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using CCA. Next, we set out to test this prediction in real neurons 
recorded in awake mice.

Before proceeding, let us examine what it could mean for the ex
periments to not confirm the theory. Why might our predicted CCA 
decoding subspaces not exist in reality? The most likely reason, as 
already discussed, is that cross-population noise correlations (Cxy) 
could be too large. However, the theory could also fail, because the 
theory assumed (rather unrealistically) that the responses are 
Gaussian-distributed and that the neural covariance structure is 
the same for both stimuli (Materials and methods). In the experi
ments, spike count responses are nearly Poisson-distributed and 
many neurons will certainly have different variances for different 
stimuli. Finally, it is possible that the limited number of trials in ex
periments will preclude an effective test of the theory. This would 
not contradict the theory, but like LDA and other decoding 
schemes, our CCA decoding scheme when applied to real data 
with small numbers of trials can, in principle, provide overesti
mates of decoding accuracy. We will address each of these possible 
pitfalls below.

To test our predictions, we required simultaneous recordings 
from at least four neurons, two in the primary sensory cortex 
and two more in an upstream brain region that provides input 
to cortex. However, considering that many neurons may have 
substantial noise correlations across populations, our theory pre
dicts that many neurons will be unsuitable for CCA decoding. 
Therefore, we sought out recordings with far more than two neu
rons in each region. We analyzed two datasets—one in the visual 
system (V1 and LGN), generated by the Allen Institute (16), and 

another in the olfactory system (PC and OB) generated by 
Bolding and Franks (20, 39). In the Bolding–Franks data (n = 8 
mice), the number of recorded neurons per recording was 27 ± 6 
(mean ± SD) in OB and 48 ± 11 in PC. We analyzed responses to 6 
different odorants (fixed concentration) with 15 trials each. In 
the Allen Institute data (n = 9 mice), the number of recorded neu
rons per recording was 61 ± 27 in LGN and 245 ± 48 in V1. We an
alyzed responses to static gratings with 6 different orientations 
and 5 different spatial frequencies with 42 trials each. For both 
the olfactory and visual data, we defined response as the spike 
count in the 250 ms period following stimulus onset.

We begin with an example population from the visual system 
(two LGN neurons + two V1 neurons, Fig. 3A) and another example 
from the olfactory system (two OB neurons + two PC neurons, 
Fig. 3F). For both these examples, projecting the response onto 
CC1 results in optimal decoding for the cortex population. Here, 
optimal decoding is determined with a brute-force algorithm; 
we try all possible lines (with π/200 angular resolution), project re
sponses onto each line, and pick the one with the highest decoding 
accuracy (Materials and methods). However, considering the 
same cortical population and choosing a different pair of neurons 
from LGN (Fig. 3B) or a different pair from OB (Fig. 3G) can result in 
a CC1 direction that is far from optimal. Going beyond these ex
ample cases, for each mouse and each pair of stimulus types, 
we considered 10,000 randomly chosen populations, each with 2 
neurons in cortex and 2 neurons in the upstream region. For 
each such 2 × 2 population, we computed the decoding accuracy 
DCC1 for responses projected onto CC1. For the visual system 
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data, DCC1 tended to be higher when decoding gratings with a 
greater angle difference; up to 15% of populations had DCC1 > 0.7 

(Fig. 3D) and the maximum values of DCC1 exceeded 85% for 

most mice (Fig. 3E). When we compared DCC1 to optimal decoding 

(Fig. 3C and H), we found it was close to optimal for some popula

tions, but more typically was far from optimal. Our theory sug

gests that the populations deviate from optimal for two reasons. 

First, they may have large cross-population noise correlations 

(Cxy). Second, if Cxy is not large, low RCC1 could cause deviation 

from optimal (Fig. 2). Before testing these predictions, we first veri

fied that our measured values of DCC1 are statistically robust (i.e. 

not artificially high due to overfitting finite numbers of trials) us

ing a 10-fold cross-validation method (Fig. S2).

To test whether our observed differences between DCC1 and op
timal decoding were due to high Cxy or low RCC1, we performed an 
additional analysis of the populations with high optimal decoding. 
Our rationale was that these cases can have the largest range of 
different possible deviations from optimal, and, thus, would be 
good candidates for studying the source of such deviations. For 
each mouse and stimulus pair, we selected the 50 populations 
(out of the 10,000 randomly chosen populations) with the greatest 
optimal decoding for the 2 cortical neurons. For each of these, we 
asked how DCC1 for the cortical population varied due to changing 
the upstream population. We tried 200 randomly chosen up
stream populations for each cortical population. In this way, we 
kept optimal decoding accuracy fixed while varying DCC1, Cxy, 
and RCC1.
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Motivated by our theory (Fig. 2B–D), our working hypothesis 
for how Cxy, and RCC1 impact DCC1 is illustrated conceptually in 
Fig. 4A. We consider that multiple (at least two) channels of 
interaction exist between, say V1 and LGN. For simplicity, we 
call one channel “signal,” which carries the sensory signals we 
wish to decode, and call the other channel “noise,” which has 
nothing to do with the sensory signals. Then, our working hy
pothesis is that DCC1 deviates from optimal when the “noise” 
channel dominates the inter-regional correlations. In this case 
Cxy, will be large and CCA will, by definition, identify a CC1 dir
ection that aligns with those noise fluctuations, DCC1 will be far 
from optimal, and RCC1 will indicate the strength of noise, not 
the strength of signal. In the opposite scenario (small Cxy), 
when the signal channel is responsible for the largest inter- 
regional correlations, then CC1 will be well-aligned to reveal 
changes in signal, DCC1 will approach optimal, and RCC1 will indi
cate the strength of the signal. Note that the interpretation of 
RCC1 depends on the strength of Cxy.

In agreement with our theory and this working hypothesis, we 
found that the amount that DCC1 deviates from optimal decoding 
increased as Cxy increased for both the visual system (Fig. 4B and 
C) and olfactory system (Fig. 4F and G). For this result, we excluded 
cases with low RCC1 (Materials and methods), because our theory 
predicts that very low RCC1 precludes high-quality CC1 decoding 
as discussed above. As a more direct test of the predicted depend
ence on RCC1 (Fig. 2D), we showed that CC1 decoding deviates fur
ther from optimal as RCC1 decreases (Fig. 4D, E, H, and I). Here, we 
excluded cases with high Cxy (Materials and methods), because 
high Cxy precludes high-quality CC1 decoding. We also performed 
a multivariate linear regression to predict deviation from optimal 
decoding using Cxy and RCC1. The regression coefficients for Cxy 

were positive and significant; the coefficients for RCC1 were nega
tive and significant (Fig. S3). Thus, we conclude that, for diverse 
types of sensory stimulation in multiple mice, there are many 
neural populations that exhibit near-optimal CC1 decoding. 
Moreover, the populations that deviate from optimal CC1 decod
ing are consistent with our theory; they behave as if they are in
volved in other interactions between cortex and upstream 
sensory regions that are unrelated to the sensory signals we are 
decoding.

What about larger neural populations and canonical compo
nents beyond the first component? Indeed, our theory holds for 
arbitrarily large populations; our choice to work with 2 × 2 popula
tions in Fig. 2 was primarily for simplicity and convenience of visu
alization. We repeated some of our analyses for 3 × 3 and 4 × 4 
populations. In both cases, we found strong evidence that CC1 de
coding stands up to 10-fold cross-validation and even reaches de
coding accuracies slightly higher than those found in the 2 × 2 
populations (Fig. S2). To find 3 × 3 and 4 × 4 populations with ef
fective CC1 decoding, we selected neurons that performed well 
at the 2 × 2 level (those with DCC1 > 0.7). This mathematically en
sures that the lower bound on optimal decoding accuracy for 
these larger populations was 0.7 because the optimal decoder 
could always project responses onto the same line that was opti
mal for the 2 × 2 case. However, in line with our theory and the hy
pothesis sketched in Fig. 4A, CC1 decoding did not always reach 
this optimal decoding level. As shown in Fig. 4J–L, deviations 
from optimal for 3 × 3 populations in the visual system were 
well explained by the same considerations of Cxy and RCC1 that 
we described above for 2 × 2 populations. Finally, we note that 
we did not find any signs of effective CC2 decoding for the 3 × 3 
case (Fig. 4J–L). Additional studies are needed to fully explore 
possibilities of decoding using higher canonical components, but 

our initial steps in this direction suggest that, at least for simple 
stimuli like static gratings, CC1 represents the best decoding 
subspace.

Discussion
We have described an algorithm—CC1 decoding—that may be 
used by neural circuits in the primary sensory cortex to improve 
the accuracy of sensory decoding, in an “unsupervised” way, i.e. 
without “ideal observer” knowledge of stimulus labels. The 
algorithm achieves this decoding improvement by projecting high- 
dimensional population responses onto a 1D subspace with 
reduced noise (the first CC1). This subspace is readily found by 
CCA, provided that noise correlations between cortex and up
stream brain regions are not too large and the signals are not too 
weak. We demonstrated that many real neurons measured in 
awake mice, in visual and olfactory systems (LGN and V1, OB 
and PC), meet the conditions required for CC1 decoding. We 
demonstrated these findings using populations of 4, 6, and 8 
neurons from cortex and upstream brain regions. However, we 
emphasize that our theory predicts that CC1 decoding should 
work well with larger populations as well.

Before discussing further CC1 decoding, we note that there 
are alternatives to our interpretation of noise correlations as det
rimental to coding. For example, one recent study showed that 
neurons in task-related neurons in V1 and middle temporal re
gion exhibit more shared variability than task-independent neu
rons (40). The authors proposed that this shared variability could 
be useful for “tagging” which neurons are encoding task infor
mation and could aid in decoding sensory signals involved in 
the task. It remains unclear if this scheme might also be present 
for LGN and V1 or for OB and PC, but nonetheless, it stands as an 
interesting alternative to the age-old view of shared noise im
peding encoding.

How might real neurons implement the CC1 decoding algo
rithm we describe here? Assuming that there are some neurons 
with sufficiently small cross-region noise correlations (as we 
found in our experimental data), such an implementation re
quires three operations. First, the CC1 subspace must be identi
fied. Second, neural activity must be projected onto CC1. Third, 
the projected activity must be thresholded to “decide” which 
type of stimulus was present. The latter two operations are quite 
naturally performed by neurons. Neurons sum up their inputs, 
weighted by synapse strength, which performs projections onto 
subspaces. For instance, in the cartoon in Fig. 5, neurons 3 and 4 
together generate a 2D input signal to neuron 5, but when added 
up and weighted by w3 and w4, their input becomes 1D; it is pro
jected onto a line determined by the relative weights of w3 and w4. 
Moreover, if neuron 5 also receives input from the upstream popu
lation (neurons 1 and 2 in Fig. 5), then its input could sum up two 
projections, one onto CC1 for the upstream population, and the 
other onto CC1 for the cortical population. Recalling that these 
two projections are maximally correlated, their sum would be 
an excellent 1D signal for decoding the stimuli. After this projec
tion, the spiking mechanism of neurons naturally thresholds the 
1D input. How might neurons identify CC1? In other words, how 
might they tune the synaptic weights so that they implement 
the specific projections onto CC1? A line of theoretical research 
has addressed this possibility directly (41–43) culminating recent
ly (42) in a model with biologically plausible synaptic plasticity 
mechanisms. According to this theory, a network of reciprocally 
connected excitatory and inhibitory neurons that receive input 
like that received by neuron 5 in Fig. 5 can perform precisely the 
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sum of two CC1 projections illustrated in Fig. 5. This operation can 
be performed “on-the-fly”; it does not require a “memory” of previ
ous observations to be stored for later use. The synaptic plasticity 
rules are based solely on information available locally to each 
synapse—information about the pre- and postsynaptic neurons’ 
activity. Moreover, the plasticity rules are based on non-Hebbian 
mechanisms involving Ca2+ plateau potentials (44) which are con
sistent with evidence from the cortex. Taken together with our 
work here, we conclude that CC1 decoding not only can reach op
timal limits of decoding but is also plausibly performed by cortical 
circuits.

Here, we focused on sensory coding subspaces, but our findings 
suggest a more general principle for multiplexing many functions 
within the same neural circuit. Any two brain regions that cooper
ate to execute a particular function are likely to exhibit some cor
related activity. But this shared signal is likely mixed in with other 
activity (“noise”) that is involved in other ongoing functions. Our 
results suggest that the common, correlated activity between 

the two regions can define a CC1 subspace which effectively 
separates the function of interest from other ongoing functions, 
thus allowing the same circuits to execute many functions 
simultaneously.

Materials and methods
Experiments
The olfactory dataset was recorded and first reported by Bolding and 
Franks (45). Their methods were approved by Duke University 
Institutional Animal Care and Use Committee. Their methods for ol
factory stimulation, head-fixation, respiration monitoring, electro
physiology, and spike-sorting were also described in detail 
previously (45). Here studied the following recordings: 170,608, 
170,609, 170,613, 170,615, 170,618, 170,619, 170,621, 170,622. The vis
ual dataset was first reported by Siegle et al. (16) recorded by the 
Allen Institute for Brain Science. The visual stimulation, head- 
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fixation, electrophysiology, and spike-sorting are described and the 
data is available for public download Animal use protocols were ap
proved by the Allen Institute’s Institutional Animal Care and Use 
Committee. Here we analyzed experiments with the following ses
sion IDs: 754312389, 715093703, 750749662, 754829445, 757970808, 
759883607, 761418226, 763673393, 799864342.

CCA with Matlab
To perform CCA on experimental data, we used the Matlab func
tion “canoncorr,” e.g. (A, B, ∼, U, V, ∼) = canoncorr(Region1Data, 
Region2Data). Here, each set of responses (e.g. Region1Data and 
Region2Data) is a T × N matrix (T trials, N neurons). The ith trial 
from Region1Data projected onto the jth CC is stored as U(i, j), 
and the vector that defines the direction of the jth CC in Region1 
is stored as the jth column of A. Note that for the analytical study 
(Figs. 1 and 2), CCA was not done with Matlab; the CC directions 
were computed through the associated eigenvalue problem (see 
below and supplementary material).

Optimal decoding
For 2D Poisson-distributed spike count responses, like the experi
mental data we studied here, typical supervised machine learning 
algorithms (e.g. LDA and support vector machines) often do not 
find the optimal decoding accuracy. Thus, we made a brute-force 
algorithm that projects the responses onto a line and evaluates 
decoding accuracy (as described in next subsection), trying 
many possible angles of projection between 0 and π rad (in steps 
of π/200 rad). Optimal decoding accuracy is that of the projection 
with the maximum decoding accuracy of all these projections.

Decoding accuracy
The decoding accuracy of various linear projections is reported in 
the main text (optimal D, DCC1, Dn3). After responses were pro
jected down to one dimension, the decoding accuracy was deter
mined by trying every possible threshold between the minimum 
and maximum projected response. The fraction of correct classi
fications for the best threshold was reported as decoding accur
acy. For the analytical study of 2 × 2 populations a different 
approach (independent of a number of trials) was taken (see below 
and supplementary material).

Cxy and RCC1: definitions and details
RCC1 is defined as the Pearson correlation coefficient of responses 
r1

CC1 and r2
CC1, where ri

CC1 is the 1D vector of responses from 

population i after projection onto its CC1 direction. By definition, 
CCA chooses the CC1 directions to maximize RCC1. Cxy is the aver
age pairwise noise correlation between the two populations. For 
each neuron, we calculate the mean response to all trials of type 
A and subtract it from each response to trials of type A. We repeat 
this for type B responses and for all neurons. After subtracting 
these stimulus-specific mean responses from each neuron, we 
then calculate the pairwise Pearson correlation coefficient for all 
neurons. Cxy is defined as the average pairwise correlation of all 
cross-population pairs.

In Fig. 2C and D, we showed that DCC1 approaches optimal de
coding for small Cxy and large RCC1. To better separate the effects 
of these two quantities, we excluded cases with low RCC1 in Fig. 2C 
and excluded cases with high Cxy for Fig. 2D. These cutoffs were 
RCC1 > 0.75 and Cxy < 0.1. We did a similar cutoff for the results 
in Fig. 4, showing that DCC1 deviated from optimal for large Cxy 

or small RCC1. For Fig. 4, the cutoffs were set as follows: for 
LGN-V1 data, RCC1 > 0.3 and Cxy < 0.06; for OB-PC data, RCC1 > 0.4 
and Cxy < 0.1.

For the regression mentioned in the Results and summarized in 
Fig. S3, we employed a generalized least squares (GLS) method 
from the Python library statsmodels to fit the following regression 
equation: y = β1x1 + β2x2 + ɛ, where, y represents the dependent 
variable Δ, and x1 and x2 correspond to the independent variables 
Cxy and RCC1, respectively. The GLS method estimates the coeffi
cients, β1, and β2 that minimize the sum of squared residuals, ac
counting for potential heteroscedasticity in the error term ɛ.

Selecting 2 × 2, 3 × 3, and 4 × 4 populations
The majority of our results are demonstrated with four neuron 
populations (two from cortex and two from upstream region). 
Ten thousand of these 2 × 2 populations were chosen at random 
to generate the results in Fig. 3C and H. In Fig. 4, the 10,000 popu
lations were winnowed down to include only those with top 50 val
ues of optimal decoding. In Figs. 3 and S2, we present results from 
∼700 3 × 3 populations and 400 4 × 4 populations. These popula
tions were selected from among neurons that performed well at 
the 2 × 2 level (the top 1,000 values of DCC1 from all 10,000 popula
tions, considering only decoding of 0° vs. 90° gratings).

Analytical 2 × 2 study
In Figs. 1 and 2, we consider the case of two populations (X and Y ) 
of simulated neurons whose responses to two stimuli, A and B, are 
correlated both within and across populations. We assume the re
sponses ( rX and rY) to each stimulus can be described by a 
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Fig. 5. Biophysical implementation of CC1 decoding. Synaptically weighted summation of inputs naturally performs projections of high-dimensional 
input onto 1D subspace. The spike threshold ϴ naturally imposes a “decision boundary” for classifying stimulus type of input. Synaptic plasticity 
mechanisms can tune the synaptic weights so that the projections are aligned with CC1 (38).
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multivariate Gaussian

P(rX, rY|S) = N
μX,S
μY,S

􏼔 􏼕

, ΣS

􏼒 􏼓

, 

where S = {A, B}, μX,S ∈ Rm, μY,S ∈ Rn, and ΣS is a symmetric, 

positive-definite matrix of size (m + n) × (m + n). Here populations 
X and Y contain m and n neurons, respectively (m = 2 and n = 2 
for the simulated results in Figs. 1 and 2); for example, Y may be 
a cortical region and X may represent OB or LGN. Without loss 
of generality, we simplify notation by shifting the mean responses 
so that μX,A = 0, μY,A = 0; thus, we can drop the stimulus subscript 

on the mean vectors and use μX = μX,B, μY = μY,B. We further as

sume that the stimulus-conditioned noise covariance matrix is 
the same for each stimulus: i.e. that ΣA = ΣB = : Σ. For simplicity, 
we assume that noise correlations cXY were equal for any pair of 
cells across the two populations.

Σ = Λ

1 cOB cXY cXY

cOB 1 cXY cXY

cXY cXY 1 cPC

cXY cXY cPC 1

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦Λ; Λ =

σX1 0 0 0
0 σX2 0 0
0 0 σY1 0
0 0 0 σY2

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

As noted earlier, mean response to stimulus A was 0, and mean 
response to stimulus B was:

μ = μX1
μX2

μY1
μY2

􏼂 􏼃T 

Each of the 11 parameters μX1
, μY1

, μX2
, μY2

, σX1 , σX2 , σY1 , σY2 , cOB, 

cPC, cXY was chosen randomly from the following distributions:

σX1 , σX2 , σY1 , σY2 ∼ NF(0, 2)

μX1
, μY1

∼ N(0, 1); μX2
, μY2

∼ NF(0, 1)

cOB, cPC, c̃ ∼ U(0, 1); cXY = max (c̃ − 0.01, 0) 

Here, NF is the folded normal distribution (if X ∼ N(μ, σ), 
then |X| ∼ NF(μ, σ)), and U is the uniform distribution. 
Parameters are defined so that—without loss of generality— 
μX2

, μY2
≥ 0, all noise correlation parameters are non-negative, 

and cXY has about a 1% chance of being 0. For a single simulation, 
each parameter was chosen independently from the above 
distributions; the covariance matrix was then checked for positive 

definiteness (equivalently, cXY <
����������������������
((1 + cOB)(1 + cPC))

􏽰
/2): if it failed, 

a new set of parameters was chosen. This was then repeated 
50,000 times, allowing a robust and wide-ranging survey of pos
sible signal and noise correlation structures.

We next explored decoding under different assumptions. First, 
we sought to determine how well the stimulus can be decoded 
from responses within each population. In this simplified setting 
(responses are Gaussian, and the noise covariance is stimulus in
dependent), the optimal decoder is linear and can be determined 
by a simple analytical formula (see supplementary material, 
Materials and methods). That is, we decode the stimulus by pro
jecting the population response onto a single vector and then 
compare that value with a threshold. Next, we use the principal 
direction from CCA, or CC1, as a linear decoder. Finally, we artifi
cially remove cross-population noise correlations by setting 
cXY = 0, and recompute the CCA with the revised 
stimulus-unconditioned covariance. We show that in this setting, 
the most correlated direction CC1 is in fact equal to the optimal 
projection vector (see supplementary material, Materials and 
methods). These three decoding vectors—optimal, CC1, and CC1 
with cXY = 0—are demonstrated in Fig. 5A as black, yellow, and 
green, respectively.

We computed the single-population optimal decoding direc
tions vX, vY using Eq. S1 and found the decoding accuracy by 

integrating the resulting 1D Gaussians (see Eq. S2). Similarly, we 
calculated the CC1 for each population using Eq. S4, and found 
the decoding accuracy using vX,CC1, vY,CC1 as projection vectors. 
To compute single-cell decoding accuracy, we integrated under 
the marginal distributions given by projecting onto the coordinate 

directions e1 = 1
0

􏼔 􏼕

, e2 = 0
1

􏼔 􏼕

.

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
S.H.G. and W.L.S. were supported by National Science Foundation 
(NSF) grant 1912352. A.J.F., P.C.R., S.H.G., and W.L.S. were sup
ported by National Institutes of Health grant R15NS116742. C.L. 
was supported by NSF grant 1912338. A.K.B. was supported by 
NSF grant 1912320.

Author Contributions
A.B., C.Y., and W.L.S. designed the research, analyzed data, ob
tained funding, and wrote the paper. A.F. analyzed data, designed 
the research, and wrote the paper. P.C.R. and S.H.G. performed re
search and wrote the paper.

Preprint
This manuscript was posted as a preprint on bioRxiv: https://doi. 
org/10.1101/2022.06.15.496327.

Data Availability
Data analysis code is available without restriction on Figshare: 
https://doi.org/10.6084/m9.figshare.24802944.v1. All experimental 
data analyzed here is currently posted on freely accessible reposi
tories. The visual system electrophysiology dataset is freely avail
able from the Allen Institute at https://allensdk.readthedocs.io/ 
en/latest/visual_coding_neuropixels.html, and the olfactory sys
tem electrophysiological dataset is freely available from 
Collaborative Research in Computational Neuroscience data shar
ing website: https://doi.org/10.6080/K00C4SZB.

References
1 Matyas F, et al. 2010. Motor control by sensory cortex. Science. 330: 

1240–1243.
2 Zagha E, Casale AE, Sachdev RNS, McGinley MJ, McCormick DA. 

2013. Motor cortex feedback influences sensory processing by 
modulating network state. Neuron. 79:567–578.

3 Ghazanfar AA, Schroeder CE. 2006. Is neocortex essentially mul

tisensory? Trends Cogn Sci. 10:278–285.
4 Parker PRL, Brown MA, Smear MC, Niell CM. 2020. 

Movement-related signals in sensory areas: roles in natural be
havior. Trends Neurosci. 43:581–595.

5 Ayaz A, Saleem AB, Schölvinck ML, Carandini M. 2013. Locomotion 
controls spatial integration in mouse visual cortex. Curr Biol. 23: 
890–894.

6 Niell CM, Stryker MP. 2010. Modulation of visual responses by be
havioral state in mouse visual Cortex. Neuron. 65:472–479.

7 Stringer C, et al. 2019. Spontaneous behaviors drive multidimen
sional, brainwide activity. Science. 364:eaav7893.

Barreiro et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/1/pgae010/7514007 by Southern M
ethodist U

. Law
 user on 24 January 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae010#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae010#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae010#supplementary-data
https://doi.org/10.1101/2022.06.15.496327
https://doi.org/10.1101/2022.06.15.496327
https://doi.org/10.6084/m9.figshare.24802944.v1
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://doi.org/10.6080/K00C4SZB


8 Zatka-Haas P, Steinmetz NA, Carandini M, Harris KD. 2021. 

Sensory coding and the causal impact of mouse cortex in a visual 

decision. Elife. 10:e63163.
9 Allen WE, et al. 2017. Global representations of goal-directed be

havior in distinct cell types of mouse neocortex. Neuron. 94: 

891–907.e6.
10 Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD. 2019. 

Distributed coding of choice, action and engagement across the 

mouse brain. Nature. 576:266–273.
11 Shuler MG, Bear MF. 2006. Reward timing in the primary visual 

cortex. Science. 311:1606–1609.
12 Poo C, Agarwal G, Bonacchi N, Mainen ZF. 2021. Spatial maps in 

piriform cortex during olfactory navigation. Nature. 601:595–599.
13 Allen WE, et al. 2019. Thirst regulates motivated behavior 

through modulation of brainwide neural population dynamics. 

Science. 364:253.
14 Zhang X, et al. 2019. Active information maintenance in working 

memory by a sensory cortex. Elife. 8:e43191.
15 Choi GB, et al. 2011. Driving opposing behaviors with ensembles 

of piriform neurons. Cell. 146:1004–1015.
16 Siegle JH, et al. 2021. Survey of spiking in the mouse visual system 

reveals functional hierarchy. Nature. 592:86–92.
17 Felleman DJ, Van Essen DC. 1991. Distributed hierarchical pro

cessing in the primate cerebral cortex. Cereb Cortex. 1:1–47.
18 Goris RLT, Movshon JA, Simoncelli EP. 2014. Partitioning neuron

al variability. Nat Neurosci. 17:858–865.
19 Dahmen D, et al. 2020. Strong coupling and local control of di

mensionality across brain areas. bioRxiv 365072. https://doi. 

org/10.1101/2020.11.02.365072, preprint: not peer reviewed.
20 Bolding KA, Franks KM. 2018. Recurrent cortical circuits imple

ment concentration-invariant odor coding. Science. 361:eaat6904.
21 Ebitz RB, Hayden BY. 2021. The population doctrine in cognitive 

neuroscience. Neuron. 109:3055–3068.
22 Semedo JD, Gokcen E, Machens CK, Kohn A, Yu BM. 2020. 

Statistical methods for dissecting interactions between brain 

areas. Curr Opin Neurobiol. 65:59–69.
23 Libby A, Buschman TJ. 2021. Rotational dynamics reduce inter

ference between sensory and memory representations. Nat 

Neurosci. 24:715–726.
24 Raposo D, Kaufman MT, Churchland AK. 2014. A category-free 

neural population supports evolving demands during decision- 

making. Nat Neurosci. 17:1784–1792.
25 Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. 2014. Cortical 

activity in the null space: permitting preparation without move

ment. Nat Neurosci. 17:440–448.

26 Aoi MC, Mante V, Pillow JW. 2020. Prefrontal cortex exhibits 

multidimensional dynamic encoding during decision-making. 

Nat Neurosci. 23:1410–1420.

27 Tang C, Herikstad R, Parthasarathy A, Libedinsky C, Yen SC. 

2020. Minimally dependent activity subspaces for working 

memory and motor preparation in the lateral prefrontal cortex. 
Elife. 9:e58154.

28 Semedo JD, Zandvakili A, Machens CK, Yu BM, Kohn A. 2019. 
Cortical areas interact through a communication subspace. 
Neuron. 102:249–259.e4.

29 Lanore F, Cayco-Gajic NA, Gurnani H, Coyle D, Silver RA. 2021. 
Cerebellar granule cell axons support high-dimensional repre
sentations. Nat Neurosci. 24:1142–1150.

30 Flesch T, Juechems K, Dumbalska T, Saxe A, Summerfield C. 
2022. Orthogonal representations for robust context-dependent 
task performance in brains and neural networks. Neuron. 110: 
1258–1270.e11.

31 Low IIC, Giocomo LM, Williams AH. 2023. Remapping in a recur
rent neural network model of navigation and context inference. 
Elife. 12:RP86943.

32 Duda RO, Hart PE, Stork DG. 2001. Pattern classification. New York: 
John Wiley & Sons.

33 Quian Quiroga R, Panzeri S. 2013. Principles of neural coding. Boca 
Raton: CRC Press.

34 Miconi T. 2017. Biologically plausible learning in recurrent neural 
networks reproduces neural dynamics observed during cognitive 
tasks. Elife. 6:e20899.

35 Bengio Y, Lee D-H, Bornschein J, Mesnard T, Lin Z. 2015. Towards 
biologically plausible deep learning. arXiv. https://doi.org/10. 
48550/arXiv.1502.04156.

36 Kohn A, et al. 2020. Principles of corticocortical communication: 
proposed schemes and design considerations. Trends Neurosci. 43: 
725–737.

37 Nogueira R, et al. 2020. The effects of population tuning and 
trial-by-trial variability on information encoding and behavior. 

J Neurosci. 40:1066–1083.
38 Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, 

population coding and computation. Nat Rev Neurosci. 7:358–366.
39 Bolding KA, Franks KM. 2018. Simultaneous extracellular record

ings from mice olfactory bulb (OB) and piriform cortex (PCx) and 
respiration data in response to odor stimuli and optogenetic 
stimulation of OB. CRCNSorg. https://doi.org/10.6080/K00C4SZB.

40 Haimerl C, Ruff DA, Cohen MR, Savin C, Simoncelli EP. 2023. 
Targeted V1 comodulation supports task-adaptive sensory deci
sions. Nat Commun. 14:7879.

41 Pehlevan C, Zhao X, Sengupta AM, Chklovskii D. 2020. Neurons 
as canonical correlation analyzers. Front Comput Neurosci. 14:55.

42 Lipshutz D, Bahroun Y, Golkar S, Sengupta AM, Chklovskii DB. 
2021. A biologically plausible neural network for multichannel 
canonical correlation analysis. Neural Comput. 33:2309–2352.

43 Gou Z, Fyfe C. 2004. A canonical correlation neural network for 
multicollinearity and functional data. Neural Netw. 17:285–293.

44 Magee JC, Grienberger C. 2020. Synaptic plasticity forms and 
functions. Annu Rev Neurosci. 43:95–117.

45 Bolding KA, Franks KM. 2017. Complementary codes for odor 
identity and intensity in olfactory cortex. Elife. 6:e22630.

10 | PNAS Nexus, 2024, Vol. 3, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/1/pgae010/7514007 by Southern M

ethodist U
. Law

 user on 24 January 2024

https://doi.org/10.1101/2020.11.02.365072
https://doi.org/10.1101/2020.11.02.365072
https://doi.org/10.48550/arXiv.1502.04156
https://doi.org/10.48550/arXiv.1502.04156
https://doi.org/10.6080/K00C4SZB


1

Supporting Information for2

Sensory input to cortex encoded on low-dimensional periphery-correlated subspaces3

Andrea K Barreiro, Antonio J Fontenele, Cheng Ly, Prashant C Raju, Shree Hari Gautam, Woodrow L Shew4

Corresponding Author: Woodrow L Shew5

E-mail: shew@uark.edu6

This PDF file includes:7

Supporting text8

Figs. S1 to S39

SI References10

Andrea K Barreiro, Antonio J Fontenele, Cheng Ly, Prashant C Raju, Shree Hari Gautam, Woodrow L Shew 1 of 6



Supporting Information Text11

Supplemental Experimental Results12

0 2 4 6 8
SNR

0 2 4 6 8
SNR

1 / 7
2 / 5
3 / 6
4 / 9
5 / 5
6 / 10
7 / 8
8 / 6
9 / 5

LGN

1 / 20
mouse / stim typemouse / stim type

2 / 17
3 / 12
4 / 17
5 / 9
6 / 22
7 / 10
8 / 14

V1
OB
PC

0 30

30

60

60

90

90

120

24

4

8

8

16

16
32

120
150

orientation (degrees)

spatial frequency 
(cyc/100 deg)

1
2
3
4
5

6
7
8
9

19
18
17

2224
23

25
21
20

1610
11
12

13
14 15

H 2H

2H

IA

IA

ET

ET

EA

EA
EB

14
17
20
21
2

13
15
16
9

18
19
10

22
11 12

Fig. S1. Signal-to-noise ratio is lower in cortex than upstream regions. In the main text, it was suggested that signal-to-noise is lower in primary sensory cortex compared
with the upstream regions, closer to the sensory periphery, that provide sensory input to cortex. Here we show quantitatively that this is true for the visual system and olfactory
system data that we analyzed. [Left] Each solid line is a distribution of SNR values for the 10000 randomly chosen pairs of V1 neurons analyzed in the main text. Each dashed

line is a SNR distribution for the corresponding 10000 pairs of LGN neurons. Here we took the 2x2-population-level SNR to be
√
µT Σ−1µ, where µ is a two-element vector

of response differences (response to stimulus type A minus response to stimulus type B) and Σ is the response covariance matrix for the two neurons. Each color represents
an example from a different mouse and a different pair of stimuli. The ’stim type’ number in the legend refers to a specific pair of grating orientations or spatial frequencies as
labeled in the black grids. [Right] Same as the left, but based on the olfactory system. Note that for both the visual and the olfactory systems, the solid distributions indicate a
lower typical SNR in cortex compared to the upstream regions (dashed). Also note that this set of example mice and stimulus types is the same as those shown in Fig 4B,D,F
and H, with the same color code.
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Fig. S2. Cross-validation of DCC1. Like many other decoding algorithms, our proposed CC1 decoding can generate artificially high values of decoding accuracy if there are
too few stimulus trials or if response dimensionality is too high. In the context of our work, response dimensionality is simply the number of neurons from each population. To
account for this possibility, we did a 10-fold cross validation to verify that our measured values of DCC1 were reliable. For a given 2x2 population, we used 9/10 of the stimulus
trials to calculate CC1 directions and determine the optimal decoding threshold on the CC1-projected responses. Then, we used the same projection and threshold to calculate
decoding accuracy for the held out 1/10 of trials. We repeated this for the 10 unique folds of training and hold-out trials and finally averaged the 10 decoding accuracy values
across the 10 folds. These averaged decoding accuracies are reported here compared to the original decoding accuracies reported in the main text. Note that the cross
validated DCC1 values are strongly correlated with the original values, which means they are reliable. However, it is clear that for the olfactory data (right), which had only 15
trials per stimulus type, original DCC1 is more prone to over estimation compared the cross validated DCC1. The visual system data (left) included 42 trials per stimulus type,
which resulted in less bias, i.e. a better match between original and cross validated DCC1. The dashed line (slope unity) marks equality between original and cross validated
DCC1. Each point represents one of 10000 randomly chosen populations. The dark line and shaded area indicates the median and quartiles of the points, respectively. Points
are displayed with 20% opacity, so that density of points is clearer. [Bottom panel] Finally, we performed a similar 10-fold cross-validation for 3x3 and 4x4 populations from the
visual system (see Methods in main manuscript) and found reliable results like the 2x2 case.
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2x2 populations
β1 β2 R-square
4.9+-0.7 -0.7+-0.2 0.6+-0.03

3x3 populations
β1 β2 R-square
6.1+-0.5 -0.7+-0.1 0.71+-0.02

Fig. S3. Regression results. For the regression mentioned in the Results, we employed a generalized least squares (GLS) method to fit the following regression equation:
y = β1x1 + β2x2 + ε, where, y represents the normalized deviation from optimal decoding (∆ in the main text), and x1 and x2 correspond to the independent variables
Cxy and RCC1, respectively. Here we report the mean ± standard deviation across animals.
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Mathematical Results13

Introduction. We consider the case of two populations of neurons whose responses to two stimuli, A and B, are correlated both14

within and across populations. We assume the responses to each stimulus can be described by a multivariate Gaussian, i.e.15

P (rX , rY |S) = N
([

µX,S
µY,S

]
,ΣS

)
,16

where S = {A,B} , µX,S ∈ Rm, µY,S ∈ Rn, and ΣS is a symmetric, positive-definite matrix of size (m+ n)× (m+ n). Here X17

and Y refer to two populations of neurons which are both responsive to A and B, containing m and n neurons respectively; for18

example, Y may be a cortical region and X a pre-cortical region which supplies afferent input to Y. Without loss of generality,19

we simplify notation by shifting the mean responses so that µX,A = 0, µY,A = 0; thus, we can drop the stimulus subscript on20

the mean vectors and use µX = µX,B and µY = µY,B .21

We next consider how to decode the stimulus, using only the responses within each population. We assume that the
covariance matrix is the same for both stimuli: i.e. ΣA = ΣB =: Σ. In this case the optimal decision boundary is given by a
hyperplane in Rm or Rn; equivalently, by a one-dimensional projection of the response vector. The decision boundary is given
by (for example) u ∈ Rm such that uTΣ−1

X µX = 1
2µ

T
XΣ−1

X µX + log P (B)
P (A) , (Here, ΣX and ΣY are the marginal covariances in

populations X and Y respectively.) Therefore, the projection vector must be the normal vector to this plane; i.e.:

vX = Σ−1
X µX , vY = Σ−1

Y µY [1]

in populations X and Y respectively. Alternatively, observing that vT rX |S is a one-dimensional Gaussian with

E[vT rX |S] = vTµX,S , Var[vT rX |S] = vTΣv, [2]

we can derive the same outcome by maximizing the signal-to-noise ratio; i.e. vX = argmin
(√

vT Σv
vT µX

)
. From the perspective22

of linear discriminant analysis, this maximizes between-class (where “class”=stimulus identity) variability while minimizing23

within-class variability (1).24

When cross-region noise correlations are absent, CC1 is a perfect decoder. We now compute the projection directions associ-25

ated with canonical correlation analysis (CCA). Given two sets of zero-mean observations from X and Y, the goal of CCA is to26

find the linear projections of the observations that are maximally correlated (2). This technique uses the full stimulus-averaged27

population response; however, we will show that under certain conditions, the maximally correlated direction from CCA28

coincides with the optimal decoder. Assuming P (A) = P (B), the covariance structure within each population is29

ΣXX = 1
4µXµ

T
X + ΣX ; ΣY Y = 1

4µY µ
T
Y + ΣY30

while the stimulus-averaged covariance matrix between populations X and Y is

ΣXY = 1
4µXµ

T
Y + ΣC [3]

Here ΣX , ΣY , and ΣC are the covariances within and across-populations: i.e.31

Σ =
[

ΣX ΣC
ΣTC ΣY

]
32

We now seek to find the directions which maximize correlation across the population; that is33

RCC1 = max
a,b

aTΣXY b√
aTΣXXa

√
bTΣY Y b

34

We denote the vectors that achieve this maximum as vX,CC1 and vY,CC1 respectively; i.e.35

vX,CC1, vY,CC1 = argmaxa,b
aTΣXY b√

aTΣXXa
√

bTΣY Y b
36

The vectors vX,CC1 and vY,CC1 can be obtained by finding the principal eigenvectors of DX and DY respectively:

DX = Σ−1
XXΣXY Σ−1

Y Y ΣTXY ; DY = Σ−1
Y Y ΣTXY Σ−1

XXΣXY [4]

and the corresponding eigenvalue is the correlation (RCC1) squared: that is,37

DXvX,CC1 = λvX,CC1 ⇔ RCC1 =
√
λ38

We note that the cross-covariance matrix ΣXY has two contributions, one reflecting signal correlations ( 1
4µXµ

T
Y ) and the39

other noise correlations (ΣC). The latter reflects trial-to-trial correlations which are not reflected in the mean response. We will40

now show that when noise correlations are absent (ΣC = 0), the principal CCA direction coincides with the optimal decoding41

direction. Without loss of generality, we focus on DX ; parallel statements hold for DY .42

43

Lemma 1: If ΣC = 0, then DX is a rank 1 matrix.44

45
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Proof. It is well known that the rank of a matrix product is bounded above by the minimum rank of the matrices; i.e.46

rank(AB) ≤ min(rank(A), rank(B)). From Eq. (3) ΣXY is the sum of two matrices, the first of which is rank 1; if ΣC = 0,47

therefore, the sum is rank 1 as well. Therefore any matrix product that includes ΣXY has rank at most 1.48

Theorem 1: If ΣC = 0, then the correlated (non-zero) eigenvector of DX coincides with the projection direction which is49

optimal for decoding.50

51

Proof. Recall that Eq. (1) shows that vX ∝ Σ−1
X µX . We will show that vX is also an eigenvector of DX .52

Consider the formula for DX :53

DX = Σ−1
XXΣXY Σ−1

Y Y ΣTXY54

The cross-population correlation matrix ΣXY is rank 1 and range(ΣXY ) = Span {µX}. Therefore, range(DX) = Span
{

Σ−1
XXµX

}
.55

Next, we write Σ−1
XX in terms of Σ−1

X . Using the matrix determinant lemma, and noting that56

ΣXX = ΣX + uuT57

where u = µX/2,

Σ−1
XX = Σ−1

X −
Σ−1
X uuTΣ−1

X

1 + uTΣ−1
X u

[5]

= Σ−1
X − Σ−1

X u
(

uTΣ−1
X

1 + uTΣ−1
X u

)
[6]

The second term already maps into Span
{

Σ−1
X µX

}
, regardless of what vector is multiplied on the right. In conclusion,58

range(DX) = Span
{

Σ−1
X µX

}
; i.e. DXvX ∝ vX .59

By using Eq. (6) (and the analogous simplification for Σ−1
Y Y ), one can confirm that the corresponding eigenvalue is

λ =
(

s2
X

4 + s2
X

)(
s2
Y

4 + s2
Y

)
[7]

where sX =
√
µTXΣ−1

X µX and sY =
√
µTY Σ−1

Y µY are the signal-to-noise ratios for the X and Y populations respectively.60

61

Theorem 2: If ΣC = 0, then any other eigenvector of DX gives chance-level decoding.62

Proof. If vTµX = 0, then ΣTXY v = 0 and therefore DXv = 0. Therefore v is an eigenvector of DX with eigenvalue 0. But then63

E[vT rX |A] = E[vT rX |B] = 064

i.e. the stimuli A and B cannot be discriminated.65
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