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Abstract

As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical
activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that
sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations
between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best
for decoding. We analytically show that these correlation-based coding subspaces improve, reaching optimal limits (without an ideal
observer), as noise correlations between cortex and upstream regions are reduced. We show that this principle generalizes across
diverse sensory stimuli in the olfactory system and the visual system of awake mice. Our results demonstrate an algorithm the cortex
may use to multiplex different functions, processing sensory input in low-dimensional subspaces separate from other ongoing functions.

Significance Statement

Traditionally, primary sensory cortex was thought to have one job—processing sensory signals. As technical advances allow more
holistic measurements of the brain and body in action, it has become clear that the primary sensory cortex is involved with many
other aspects of brain function, not just dealing with sensory input. How can a single neural circuit juggle multiple jobs simultaneous-
ly? Here, we use numerical, analytical, and experimental methods to demonstrate an algorithm the brain may use to solve this prob-
lem by separating different jobs into different subspaces defined by correlations between the primary sensory cortex and the brain

regions that source the sensory input signals.

Introduction

Neurons in primary sensory cortices are involved in diverse as-
pects of brain function; their activity is not limited to encoding
sensory signals (1-4). It is becoming increasingly clear that the pri-
mary sensory cortex is a multiplex, full of cross-talk and multi-
purpose signals. For example, neuronal activity in the primary
visual cortex (V1) does not just encode physical features of visual
stimuli, but is also related to locomotion (5, 6), whisking and pupil
diameter (7), forepaw manipulations (8), decision making (8-10),
and learned consequences (rewards) of the visual stimuli (11).
Similarly, neurons in the primary olfactory cortex (piriform cor-
tex, PC) go beyond odor coding, exhibiting activity related to spa-
tial navigation (12), thirst (13), decision making (10), and working
memory (14), and can drive distinct behaviors (15). In general, in-
volvement in these diverse “nonsensory” functions will vary
across repeated trials of a sensory stimulus. Thus, itis not surpris-
ing that the responses of single cortical neurons to a repeated sen-
sory stimulus vary greatly from trial-to-trial, often making the
stimulus identity impossible to decode accurately with a single

neuron. How does the brain reliably keep track of sensory signals
when they are mixed into the complex, multipurpose dynamics of
the cortex?

Here we propose a population-level solution to this problem.
We start from the fact that at the sensory periphery, neuronal ac-
tivity is purely sensory and not mixed with other functions. As the
signal traverses the sensory hierarchy from the periphery to the
cortex, it becomes increasingly mixed with nonsensory signals
due toincreasingly recurrent interactions with other brain regions
(16-18). It stands to reason that sensory signals in thalamic nuclei
or olfactory bulb (OB) could be less noisy (closer to purely sensory)
than sensory signals in cortex. Consistent with this, the dorsal lat-
eral geniculate nucleus (LGN), which provides input to V1, exhib-
its a response to visual stimuli that has lower dimensionality than
V1 (19) and is less affected by locomotion than response in V1 (6).
Similarly, LGN firing is modulated more by sensory input and less
by behavioral context compared to V1 (16). Likewise, OB, which in-
nervates PC, is often less noisy than PC. For example, OB has more
neurons that are clearly responsive to olfactory stimuli compared
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with PC (20). (In Fig. S1, we directly show that the population-level
signal-to-noise ratiois greater in OB compared to PC and greater in
LGN compared to V1 for the data analyzed further below.) Thus,
we hypothesized that certain coding subspaces in the cortex—
those that share variability with subspaces in upstream sensory
regions (thalamus or OB)—may contain sensory signals with less
noise.

What do we mean by a coding subspace? Considering a popula-
tion, rather than single neurons (21, 22), the single-trial response
of N cortical neurons is a vector in an N-dimensional space; e.g.
the sixth component of the vector is the response of the sixth neu-
ron, and so on. The responses to many repeated trials of two dif-
ferent stimuli can be represented as two clouds of points in
N-dimensional cortical space, one point for each trial, and one
cloud for each stimulus type. The spread of each cloud of points
reflects the trial-to-trial variability (the nonsensory signals dis-
cussed above) and the overlap of the two clouds makes decoding
the stimuli difficult. However, if the response variability due to
nonsensory noise lies along different directions than the variabil-
ity due to switching the sensory signal, then decoding can be
greatly enhanced by projecting the N-dimensional response onto
a coding subspace, i.e. a lower dimensional subspace that ex-
cludes some noise. Our hypothesis here is that such coding sub-
spaces can be found by considering signal correlations and noise
correlations between the cortical population and upstream
populations.

Recent studies have adopted conceptually related approaches
demonstrating that high-dimensional neural circuits may man-
age multiple operations by performing them in different subspa-
ces. For instance, neurons in the mouse auditory cortex “rotate”
sensory representations from a sensory subspace to a memory
subspace over time (23). Neurons in rat posterior parietal cortex
use different subspaces to represent decision and movement
(24). Motor preparatory activity in monkeys contains a subspace
that does not impact movement, ie. in a “nullspace” (25).
Monkeys making a choice about motion and color of a visual
stimulus exhibited neurons in prefrontal cortex (PFC) that used
three different subspaces to encode color, motion, and choice
(26). Similarly, working memory and movement planning are sep-
arated into different subspaces within a population of PFC neu-
rons in monkeys (27). In anesthetized monkeys, signals are
transmitted between V1 and V2 in a “communication subspace”
(28). The outputs of mouse cerebellar neurons were shown to re-
present quiescent and active behavioral states in orthogonal sub-
spaces (29). Computational models together with human brain
imaging suggest that orthogonal subspaces are used to represent
different task variables in an image classification task (30).
Computational models of entorhinal cortex suggest that encoding
of spatial navigation and navigation-independent context are sep-
arated into orthogonal subspaces (31). Our work here extends
these ideas, establishing sensory subspaces in cortex and in the
sensory brain regions that provide input to cortex and an algo-
rithm for finding these subspaces.

Projecting high-dimensional activity into a lower dimensional
coding subspace is a type of dimensionality reduction. More gen-
erally, dimensionality reduction has long been recognized and
used to improve decoding of sensory signals with supervised pat-
tern classification techniques like linear discriminant analysis
(LDA) (32, 33). However, LDA and similar techniques require se-
mantic labels for the stimuli, which can be challenging to imple-
ment in a biologically plausible way (but perhaps not
impossible, see e.g. Refs. (34, 35)). Here, we identify a totally un-
supervised decoding strategy. We show that low-dimensional,

optimal coding subspaces can be found without any knowledge
of stimuli identities by considering correlations between cortex
and upstream brain areas that provide input to cortex. Using ca-
nonical correlation analysis (CCA, see Refs. (22, 36) for an intro-
duction), we define subspaces in cortex and subspaces in LGN or
OB in which responses to stimuli are most correlated across the
brain regions. We show that these cross-population correlated
subspaces can effectively separate signal from noise, often ap-
proaching the theoretical limits of optimal decoders (like LDA).
We developed an analytical approach to better understand these
coding subspaces and successfully predicted improved coding
subspaces among neurons with low cross-population noise corre-
lations. We first present the theory and then test its predictions
using spike data.

Results

A central idea underpinning our theory is that the brain can im-
prove decoding of sensory input by projecting neural activity
onto a subspace which excludes some of the “noise” that compro-
mises decoding. We hypothesized that we could identify such de-
coding subspaces based on inter-regional correlations between
cortex (V1 or PC) and upstream extracortical regions (LGN or
OB). To demonstrate how this might work, we first present a sim-
ple, instructive case based on simulated data: two neurons in cor-
tex (Fig. 1C) and two neurons in the upstream region (Fig. 1B). In
this simulated example, the responses are drawn from a multi-
variate Gaussian distribution (Materials and methods) with pa-
rameters chosen such that the two cortical neurons have strong
noise correlations and a small difference in mean response for
the two stimuli. The two extracortical neurons have noisy over-
lapping responses to the two stimuli. (In this example, there are
no cross-population noise correlations, which is important for
our approach, as we discuss further below.) All four of these neu-
rons are rather poor decoders at the single neuron level, but de-
coding improves substantially when projected onto a particular
subspace (green lines in Fig. 1B and C). The optimal subspace
can easily be found using LDA (the dashed line in Fig. 1C is the
LDA classification boundary), but LDA requires knowledge of the
stimulus identities; the brain does not have direct access to stimu-
lus identities before they are decoded. The optimal subspace can
also be found, without knowledge of stimulus identity, by per-
forming CCA, which is the key advance presented in this paper.
Before proceeding, we briefly introduce CCA for unfamiliar
readers (see also Refs. (22, 36)), comparing and contrasting with
the more commonly used principal component analysis (PCA).
Similar to PCA, CCA generates a set of basis vectors based on
the covariance matrix of multivariate data; these are the canonic-
al components (CCs) for CCA and the principal components (PCs)
for PCA. In our context, PCA would take a set of spike count re-
sponses from a single population of neurons and generate one
set of components. In contrast, two sets of spike count responses,
one from each of two different populations of neurons, are the in-
puts to CCA. Likewise, CCA generates two sets of components, one
for each population. The first canonical component (CC1) for the
first population is related to CC1 for the second population; CCA
is defined such that the correlation between the two populations
is maximized when they are projected onto their respective
CC1s. In contrast, PCA is defined such that projection onto PC1
maximizes variance. In the example in Fig. 1C, PC1 (black arrow)
is aligned with noise fluctuations in the cortical population, but
CC1 (green arrow) is aligned with the direction along which signal
varies most (orthogonal to PC1 in this case), thus identifying the
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Fig. 1. Using inter-regional correlations to find coding subspace. A) We hypothesize that correlations between primary sensory cortices (PC or V1) and
upstream populations (OB or LGN) can be used (via CCA) to identify coding subspaces with reduced noise. We test this hypothesis in awake mice using
simultaneous recordings from V1 and LGN during visual stimulation (top) or PC and OB during olfactory stimulation (bottom). B) Each point represents
the simulated response of neurons 1 and 2 to one of two hypothetical stimuli (red and blue). C) Simulated responses of neurons 3 and 4 in the cortical
population. The optimal LDA decoder achieves 94% accuracy. CCA applied to the two populations identifies a linear subspace (CC1, green) for each
population. Projection of each population’s response onto its CC1 results in maximized correlation across populations. PCA finds the linear subspace
(PC1, black) with maximal variability; in this case, the variability is due to noise. D) Response distributions for the two stimulus types overlap
substantially for neuron 3, resulting in suboptimal decoding accuracy (61%). E) When projected onto CC1, the response distributions better separate the
two stimulus types, achieving optimal decoding accuracy (94%, same as LDA). The dashed line indicates the optimal threshold used for calculating the

decoding accuracy.

optimal decoding subspace (orthogonal to the LDA classification
boundary). In general, PCA will not identify the optimal decoding
subspace.

Throughout this paper, we report various types of decoding ac-
curacy including Dipa, Dns, Dccir, and optimal D. In all of these
cases, we are working with a 1D response to two stimuli; itis 1D be-
cause it is projected onto a line or, in the case of Dy3, simply be-
cause it is the response of one single neuron. We define decoding
accuracy as the fraction of correctly predicted stimuli using the
best possible threshold to separate the responses. For example,
in Fig. 1E, the best possible threshold is marked with the dashed
line.

Is the example in Fig. 1 indicative of a more general principle?
Does CC1 always reveal the optimal decoding subspace? To answer
these questions, we next performed a more extensive analytical and
numerical study of this 2 x 2 case considering a wide variety of cor-
relations among the four neurons and signal-to-noise scenarios.
We assumed that each neuron had responses to two different stim-
uli that were drawn from multivariate Gaussian distributions. We
further assumed that the responses of the 4 neurons are governed
by 15 parameters: 8 mean responses (2 stimuli X 4 means), 4 varian-
ces, 2 within-population covariances, and 1 cross-population covari-
ance (Fig. 2A). Variances and covariances were assumed to be the
same for the two stimuli. By centering on the mean response for
one stimulus type, we reduce this to 11 parameters, without loss
of generality. We considered 50,000 different configurations of these
11 parameters, drawn randomly (Materials and methods). We note
that here we used analytical methods to compute the CC directions,
optimal D, and other quantities; these results depend only on the 11
parameters discussed above and are not limited by finite numbers of
samples (Materials and methods).

We found that CC1 is not, in general, well-aligned with the op-
timal decoding subspace, resulting in decoding D¢, that is often
suboptimal (Fig. 2B, blue). Nonetheless, for many of the 50,000
random populations, Dccy was very close to optimal. Next, we
asked what factors determine whether the subspace defined by

CC1 is near-optimal or not? We found that the most important
factor was correlated noise shared across the two populations.
This is consistent with previous work highlighting the importance
of noise correlations for decoding (37, 38). When we set these
cross-population noise correlations to zero, keeping all the other
parameters fixed, the CC1 direction was exactly optimal in all
cases (Fig. 2B, black and supplementary material [Mathematical
Results]). Thus, our theory predicts that if there were no
stimulus-independent shared variability between, say, LGN and
V1 neurons, then CCA would be a perfect algorithm for visual de-
coding, even without knowing the stimulus labels. But, of course,
it is very unlikely that LGN and V1 have zero noise correlations.
Therefore, we next asked whether near-optimal CC1 decoding
might be achieved even with small, nonzero noise correlations?
Or does sensitivity to noise correlations render the algorithm use-
less in real neural systems? To answer these questions, we exam-
ined how D¢, depends on cross-population noise correlations Cyy.
We found that nonzero, but small C,,—below about 0.4 for our
simulations—resulted in a CC1 that was very close to the optimal
subspace (Fig. 2C). Thus, the algorithm is robust to some degree of
noise correlations and could be useful for real sensory systems.
One further prediction from the theory comes from considering
the correlation coefficient Rec; of the responses across the two
populations after projection onto the two CC1 directions. Rgcy is
the quantity that is maximized by the CCA algorithm. If noise cor-
relations are small, then we expect CCA to identify a CC1 direction
that aligns with signal fluctuations and Recy should reflect the
strength of the signal. We confirmed this; for low C,, cases, we
found that if Rccy is too low, then CC1 decoding deteriorates
(Fig. 2D). In this case, the two populations are nearly independent
with no shared information about noise or signal. Thus, a more
complete prediction from our theory is as follows. If there exist
neurons in the primary sensory cortex and the upstream brain re-
gions that have sufficiently low C,, and sufficiently high Recs, then
the sensory system could identify low-noise coding subspaces
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Fig. 2. Cross-population noise correlations and CC1 correlation determine the accuracy of coding subspace. A) Example parameters for population x
(neurons 1, and 2,) and population y (neurons 1, and 2,) for two stimulus types (A and B). When stimulus-independent cross-population covariance
between populations x and yis zero (green), the first component CC1is the same as the optimal decoding dimension. Nonzero cross-population covariance
resultsin deviations from the optimal decoding dimension. B) Each point represents one of 50,000 randomly chosen parameter sets for the 2 x 2 population.
Dcc1 is perfect (same as optimal D, A = 0) if the cross-population noise correlations are zero (black points). If cross-population noise correlations are
nonzero, then CC1decodingis often suboptimal (blue points, A > 0). The highlighted set of blue pointsis studied furtherin panels Cand D. C) Decoding error
(A)is the normalized distance from optimal D (see red diagram in panel B). Dcc; is near-optimal (low A) for C,, below about 0.4. The points shown in panel C
exclude cases with Ry < 0.75 (Materials and methods). D) Achievinglow decoding error A also requires sufficiently large Rccq. Shown results exclude cases
with C,y > 0.1 (Materials and methods). Blue lines in panels C and D—moving average of points.

using CCA. Next, we set out to test this prediction in real neurons
recorded in awake mice.

Before proceeding, let us examine whatit could mean for the ex-
periments to not confirm the theory. Why might our predicted CCA
decoding subspaces not exist in reality? The most likely reason, as
already discussed, is that cross-population noise correlations (Cxy)
could be toolarge. However, the theory could also fail, because the
theory assumed (rather unrealistically) that the responses are
Gaussian-distributed and that the neural covariance structure is
the same for both stimuli (Materials and methods). In the experi-
ments, spike count responses are nearly Poisson-distributed and
many neurons will certainly have different variances for different
stimuli. Finally, itis possible that the limited number of trials in ex-
periments will preclude an effective test of the theory. This would
not contradict the theory, but like LDA and other decoding
schemes, our CCA decoding scheme when applied to real data
with small numbers of trials can, in principle, provide overesti-
mates of decodingaccuracy. We will address each of these possible
pitfalls below.

To test our predictions, we required simultaneous recordings
from at least four neurons, two in the primary sensory cortex
and two more in an upstream brain region that provides input
to cortex. However, considering that many neurons may have
substantial noise correlations across populations, our theory pre-
dicts that many neurons will be unsuitable for CCA decoding.
Therefore, we sought out recordings with far more than two neu-
rons in each region. We analyzed two datasets—one in the visual
system (V1 and LGN), generated by the Allen Institute (16), and

another in the olfactory system (PC and OB) generated by
Bolding and Franks (20, 39). In the Bolding-Franks data (n=8
mice), the number of recorded neurons per recording was 27 + 6
(mean + SD) in OB and 48 + 11 in PC. We analyzed responses to 6
different odorants (fixed concentration) with 15 trials each. In
the Allen Institute data (n =9 mice), the number of recorded neu-
rons per recording was 61 +27 in LGN and 245 +48 in V1. We an-
alyzed responses to static gratings with 6 different orientations
and 5 different spatial frequencies with 42 trials each. For both
the olfactory and visual data, we defined response as the spike
count in the 250 ms period following stimulus onset.

We begin with an example population from the visual system
(two LGN neurons + two V1 neurons, Fig. 3A) and another example
from the olfactory system (two OB neurons+two PC neurons,
Fig. 3F). For both these examples, projecting the response onto
CC1 results in optimal decoding for the cortex population. Here,
optimal decoding is determined with a brute-force algorithm;
we try all possible lines (with /200 angular resolution), project re-
sponses onto each line, and pick the one with the highest decoding
accuracy (Materials and methods). However, considering the
same cortical population and choosing a different pair of neurons
from LGN (Fig. 3B) or a different pair from OB (Fig. 3G) can resultin
a CC1 direction that is far from optimal. Going beyond these ex-
ample cases, for each mouse and each pair of stimulus types,
we considered 10,000 randomly chosen populations, each with 2
neurons in cortex and 2 neurons in the upstream region. For
each such 2 x 2 population, we computed the decoding accuracy
Dcc1 for responses projected onto CC1. For the visual system
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Fig. 3. Dual-region neural populations achieve optimal CCA decoding of visual and olfactory stimuli. A) Spike count responses from two example
neurons in LGN (left) and two in V1 (right), recorded from an awake mouse viewing two static gratings (90° and 30° orientations, 42 trials of each).
Projection onto CC1 results in excellent (optimal) decoding in this example. B) Same as panel A, except with a different pair of LGN neurons. For this LGN
population, the CC1 subspace in the cortex becomes suboptimal for decoding. C) Summary of CC1 decoding accuracy vs. optimal decoding for 10,000
randomly chosen 2 x 2 populations. Purple and cyan points indicate the examples shown in A and B, respectively. D) The fraction of all 10,000 populations
with Dcc; above 0.7 is greatest when the angle difference between the two gratings is greatest. Each line represents a different mouse. E) Comparing all
10,000 populations, the maximum D¢, was above 85% for 7 of 9 mice and typically for gratings with large angle differences. F-H) Same as panels A-C, but
for a different awake mouse breathing two odorants (1-hexanol and ethyl tiglate, 15 trials of each). Note that the discrete values of D in panels C and H are
determined by the number of stimulus trials; many points overlap at the same D value.

data, Dccr tended to be higher when decoding gratings with a
greater angle difference; up to 15% of populations had D¢y > 0.7
(Fig. 3D) and the maximum values of Dcc; exceeded 85% for
most mice (Fig. 3E). When we compared Dcc; to optimal decoding
(Fig. 3C and H), we found it was close to optimal for some popula-
tions, but more typically was far from optimal. Our theory sug-
gests that the populations deviate from optimal for two reasons.
First, they may have large cross-population noise correlations
(Cxy). Second, if Cyy is not large, low Reca could cause deviation
from optimal (Fig. 2). Before testing these predictions, we first veri-
fied that our measured values of Dcc4 are statistically robust (i.e.
not artificially high due to overfitting finite numbers of trials) us-
ing a 10-fold cross-validation method (Fig. S2).

To test whether our observed differences between Dccq and op-
timal decoding were due to high C,, or low Rec1, we performed an
additional analysis of the populations with high optimal decoding.
Our rationale was that these cases can have the largest range of
different possible deviations from optimal, and, thus, would be
good candidates for studying the source of such deviations. For
each mouse and stimulus pair, we selected the 50 populations
(out of the 10,000 randomly chosen populations) with the greatest
optimal decoding for the 2 cortical neurons. For each of these, we
asked how D¢c; for the cortical population varied due to changing
the upstream population. We tried 200 randomly chosen up-
stream populations for each cortical population. In this way, we
kept optimal decoding accuracy fixed while varying Dcci, Cuy,
and Reeca.
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Motivated by our theory (Fig. 2B-D), our working hypothesis
for how Cyy, and Re¢ci impact Dec; is illustrated conceptually in
Fig. 4A. We consider that multiple (at least two) channels of
interaction exist between, say V1 and LGN. For simplicity, we
call one channel “signal,” which carries the sensory signals we
wish to decode, and call the other channel “noise,” which has
nothing to do with the sensory signals. Then, our working hy-
pothesis is that Dccy deviates from optimal when the “noise”
channel dominates the inter-regional correlations. In this case
Cyy, will be large and CCA will, by definition, identify a CC1 dir-
ection that aligns with those noise fluctuations, Dccy will be far
from optimal, and Rccy will indicate the strength of noise, not
the strength of signal. In the opposite scenario (small C,y),
when the signal channel is responsible for the largest inter-
regional correlations, then CC1 will be well-aligned to reveal
changes in signal, Dccq Will approach optimal, and Recq will indi-
cate the strength of the signal. Note that the interpretation of
Reer depends on the strength of C,y.

In agreement with our theory and this working hypothesis, we
found that the amount that D¢, deviates from optimal decoding
increased as C,y increased for both the visual system (Fig. 4B and
C) and olfactory system (Fig. 4F and G). For this result, we excluded
cases with low Recq (Materials and methods), because our theory
predicts that very low Rgcy precludes high-quality CC1 decoding
as discussed above. As a more direct test of the predicted depend-
ence on Rees (Fig. 2D), we showed that CC1 decoding deviates fur-
ther from optimal as Rcc; decreases (Fig. 4D, E, H, and I). Here, we
excluded cases with high C,, (Materials and methods), because
high C,, precludes high-quality CC1 decoding. We also performed
a multivariate linear regression to predict deviation from optimal
decoding using C,, and Rcci. The regression coefficients for Cyy
were positive and significant; the coefficients for Rec; were nega-
tive and significant (Fig. S3). Thus, we conclude that, for diverse
types of sensory stimulation in multiple mice, there are many
neural populations that exhibit near-optimal CC1 decoding.
Moreover, the populations that deviate from optimal CC1 decod-
ing are consistent with our theory; they behave as if they are in-
volved in other interactions between cortex and upstream
sensory regions that are unrelated to the sensory signals we are
decoding.

What about larger neural populations and canonical compo-
nents beyond the first component? Indeed, our theory holds for
arbitrarily large populations; our choice to work with 2 x 2 popula-
tions in Fig. 2 was primarily for simplicity and convenience of visu-
alization. We repeated some of our analyses for 3x3 and 4 x4
populations. In both cases, we found strong evidence that CC1 de-
coding stands up to 10-fold cross-validation and even reaches de-
coding accuracies slightly higher than those found in the 2x2
populations (Fig. S2). To find 3x 3 and 4 x4 populations with ef-
fective CC1 decoding, we selected neurons that performed well
at the 2 x 2 level (those with Dccy > 0.7). This mathematically en-
sures that the lower bound on optimal decoding accuracy for
these larger populations was 0.7 because the optimal decoder
could always project responses onto the same line that was opti-
mal for the 2 x 2 case. However, in line with our theory and the hy-
pothesis sketched in Fig. 4A, CC1 decoding did not always reach
this optimal decoding level. As shown in Fig. 4J-L, deviations
from optimal for 3x3 populations in the visual system were
well explained by the same considerations of C,, and Rec: that
we described above for 2 x2 populations. Finally, we note that
we did not find any signs of effective CC2 decoding for the 3x 3
case (Fig. 4J-L). Additional studies are needed to fully explore
possibilities of decoding using higher canonical components, but

our initial steps in this direction suggest that, at least for simple
stimuli like static gratings, CC1 represents the best decoding
subspace.

Discussion

We have described an algorithm—CC1 decoding—that may be
used by neural circuits in the primary sensory cortex to improve
the accuracy of sensory decoding, in an “unsupervised” way, i.e.
without “ideal observer” knowledge of stimulus labels. The
algorithm achieves this decoding improvement by projecting high-
dimensional population responses onto a 1D subspace with
reduced noise (the first CC1). This subspace is readily found by
CCA, provided that noise correlations between cortex and up-
stream brain regions are not too large and the signals are not too
weak. We demonstrated that many real neurons measured in
awake mice, in visual and olfactory systems (LGN and V1, OB
and PC), meet the conditions required for CC1 decoding. We
demonstrated these findings using populations of 4, 6, and 8
neurons from cortex and upstream brain regions. However, we
emphasize that our theory predicts that CC1 decoding should
work well with larger populations as well.

Before discussing further CC1 decoding, we note that there
are alternatives to our interpretation of noise correlations as det-
rimental to coding. For example, one recent study showed that
neurons in task-related neurons in V1 and middle temporal re-
gion exhibit more shared variability than task-independent neu-
rons (40). The authors proposed that this shared variability could
be useful for “tagging” which neurons are encoding task infor-
mation and could aid in decoding sensory signals involved in
the task. It remains unclear if this scheme might also be present
for LGN and V1 or for OB and PC, but nonetheless, it stands as an
interesting alternative to the age-old view of shared noise im-
peding encoding.

How might real neurons implement the CC1 decoding algo-
rithm we describe here? Assuming that there are some neurons
with sufficiently small cross-region noise correlations (as we
found in our experimental data), such an implementation re-
quires three operations. First, the CC1 subspace must be identi-
fied. Second, neural activity must be projected onto CC1. Third,
the projected activity must be thresholded to “decide” which
type of stimulus was present. The latter two operations are quite
naturally performed by neurons. Neurons sum up their inputs,
weighted by synapse strength, which performs projections onto
subspaces. For instance, in the cartoon in Fig. 5, neurons 3 and 4
together generate a 2D input signal to neuron 5, but when added
up and weighted by w3 and w4, their input becomes 1D; it is pro-
jected onto a line determined by the relative weights of w3 and w4.
Moreover, if neuron 5 also receives input from the upstream popu-
lation (neurons 1 and 2 in Fig. 5), then its input could sum up two
projections, one onto CC1 for the upstream population, and the
other onto CC1 for the cortical population. Recalling that these
two projections are maximally correlated, their sum would be
an excellent 1D signal for decoding the stimuli. After this projec-
tion, the spiking mechanism of neurons naturally thresholds the
1D input. How might neurons identify CC1? In other words, how
might they tune the synaptic weights so that they implement
the specific projections onto CC1? A line of theoretical research
has addressed this possibility directly (41-43) culminating recent-
ly (42) in a model with biologically plausible synaptic plasticity
mechanisms. According to this theory, a network of reciprocally
connected excitatory and inhibitory neurons that receive input
like that received by neuron 5 in Fig. 5 can perform precisely the
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Fig. 4. Explaining deviations from optimal CC1 decoding of visual and olfactory stimuli. A) CC1 decoding should perform poorly if the largest correlations
between V1 and LGN, for example, are due to “noise,” i.e. not related to the sensory signal we want to decode. In this “bad CC1 decoding” case (left), CCA
will identify a CC1 direction that is due to the noise correlation and Rcc; will reveal the strength of that noise correlation. When C,, is small enough, Recr
will reflect the strength of signal, and CC1 will decode well (right). B) As predicted, the difference (error A) between optimal decoding and Dcc; was often
strongly correlated with cross-population noise correlation Cyy. Each line represents an average of over 200 different pairs of LGN neurons and one pair of
V1 neurons (excluding those with small Rec1, see Materials and methods). C) Each distribution summarizes the correlations between error A and C,, for
200 populations in one mouse and one pair of stimuli (the color code for specific mouse/stimulus is shown in Fig. S1). Notice that most of these
correlations are positive, like the examples in panel A. D) As predicted, error A is negatively correlated with Rccq. Each point represents one 2 x 2
population (excluding cases with large C,,, see Materials and methods). E) Each distribution summarizes the anticorrelations between error A and Rec; for
one mouse and stimulus pair (same cases as panel B). F-I) Same as panels A-D, but for OB + PC populations in different mice with olfactory stimulation.
J) For 3 x 3 populations with high optimal decoding (Materials and methods), we show how Rccp, decreases for canonical components beyond the first.

K) Only CC1 has a significant relationship between C,, and decoding error A. L) Only CC1 has a significant relationship between Rccy and A.

sum of two CC1 projectionsillustrated in Fig. 5. This operation can
be performed “on-the-fly”; it does not require a “memory” of previ-
ous observations to be stored for later use. The synaptic plasticity
rules are based solely on information available locally to each
synapse—information about the pre- and postsynaptic neurons’
activity. Moreover, the plasticity rules are based on non-Hebbian
mechanisms involving Ca** plateau potentials (44) which are con-
sistent with evidence from the cortex. Taken together with our
work here, we conclude that CC1 decoding not only can reach op-
timal limits of decoding butis also plausibly performed by cortical
circuits.

Here, we focused on sensory coding subspaces, but our findings
suggest a more general principle for multiplexing many functions
within the same neural circuit. Any two brain regions that cooper-
ate to execute a particular function are likely to exhibit some cor-
related activity. But this shared signal is likely mixed in with other
activity (“noise”) that is involved in other ongoing functions. Our
results suggest that the common, correlated activity between

the two regions can define a CC1 subspace which effectively
separates the function of interest from other ongoing functions,
thus allowing the same circuits to execute many functions
simultaneously.

Materials and methods

Experiments

The olfactory dataset was recorded and first reported by Bolding and
Franks (45). Their methods were approved by Duke University
Institutional Animal Care and Use Committee. Their methods for ol-
factory stimulation, head-fixation, respiration monitoring, electro-
physiology, and spike-sorting were also described in detail
previously (45). Here studied the following recordings: 170,608,
170,609, 170,613, 170,615, 170,618,170,619, 170,621, 170,622. The vis-
ual dataset was first reported by Siegle et al. (16) recorded by the
Allen Institute for Brain Science. The visual stimulation, head-
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Fig. 5. Biophysical implementation of CC1 decoding. Synaptically weighted summation of inputs naturally performs projections of high-dimensional
input onto 1D subspace. The spike threshold © naturally imposes a “decision boundary” for classifying stimulus type of input. Synaptic plasticity
mechanisms can tune the synaptic weights so that the projections are aligned with CC1 (38).

fixation, electrophysiology, and spike-sorting are described and the
datais available for public download Animal use protocols were ap-
proved by the Allen Institute’s Institutional Animal Care and Use
Committee. Here we analyzed experiments with the following ses-
sion IDs: 754312389, 715093703, 750749662, 754829445, 757970808,
759883607, 761418226, 763673393, 799864342.

CCA with Matlab

To perform CCA on experimental data, we used the Matlab func-
tion “canoncorr,” e.g. (A, B, ~, U, V, ~) = canoncorr(Region1Data,
Region2Data). Here, each set of responses (e.g. Region1Data and
Region2Data) is a Tx N matrix (T trials, N neurons). The ith trial
from Regionl1Data projected onto the jth CC is stored as U(i, j),
and the vector that defines the direction of the jth CC in Region1
is stored as the jth column of A. Note that for the analytical study
(Figs. 1 and 2), CCA was not done with Matlab; the CC directions
were computed through the associated eigenvalue problem (see
below and supplementary material).

Optimal decoding

For 2D Poisson-distributed spike count responses, like the experi-
mental data we studied here, typical supervised machine learning
algorithms (e.g. LDA and support vector machines) often do not
find the optimal decoding accuracy. Thus, we made a brute-force
algorithm that projects the responses onto a line and evaluates
decoding accuracy (as described in next subsection), trying
many possible angles of projection between 0 and # rad (in steps
of 7/200 rad). Optimal decoding accuracy is that of the projection
with the maximum decoding accuracy of all these projections.

Decoding accuracy

The decoding accuracy of various linear projections is reported in
the main text (optimal D, Dccy, Dy3). After responses were pro-
jected down to one dimension, the decoding accuracy was deter-
mined by trying every possible threshold between the minimum
and maximum projected response. The fraction of correct classi-
fications for the best threshold was reported as decoding accur-
acy. For the analytical study of 2x2 populations a different
approach (independent of a number of trials) was taken (see below
and supplementary material).

Cxy and Rcc;: definitions and details

Rcci is defined as the Pearson correlation coefficient of responses
1 2 i
réc; and rgc,, where 1, is the 1D vector of responses from

population i after projection onto its CC1 direction. By definition,
CCA chooses the CC1 directions to maximize Reci. Cyy is the aver-
age pairwise noise correlation between the two populations. For
each neuron, we calculate the mean response to all trials of type
A and subtract it from each response to trials of type A. We repeat
this for type B responses and for all neurons. After subtracting
these stimulus-specific mean responses from each neuron, we
then calculate the pairwise Pearson correlation coefficient for all
neurons. C,, is defined as the average pairwise correlation of all
cross-population pairs.

In Fig. 2C and D, we showed that Dccq approaches optimal de-
coding for small C,, and large Rcc1. To better separate the effects
of these two quantities, we excluded cases with low Rcc; in Fig. 2C
and excluded cases with high C,, for Fig. 2D. These cutoffs were
Ree1>0.75 and Cyy <0.1. We did a similar cutoff for the results
in Fig. 4, showing that D¢c; deviated from optimal for large Cy,
or small Recy. For Fig. 4, the cutoffs were set as follows: for
LGN-V1 data, Reer > 0.3 and Cyy < 0.06; for OB-PC data, Reci> 0.4
and C,, <0.1.

For the regression mentioned in the Results and summarized in
Fig. S3, we employed a generalized least squares (GLS) method
from the Python library statsmodels to fit the following regression
equation: y=p1x; +Boxo +¢, where, y represents the dependent
variable A, and x; and x, correspond to the independent variables
Cxy and Recy, respectively. The GLS method estimates the coeffi-
cients, 1, and A2 that minimize the sum of squared residuals, ac-
counting for potential heteroscedasticity in the error term e.

Selecting 2 x 2, 3 x 3, and 4 x 4 populations

The majority of our results are demonstrated with four neuron
populations (two from cortex and two from upstream region).
Ten thousand of these 2 x 2 populations were chosen at random
to generate the results in Fig. 3C and H. In Fig. 4, the 10,000 popu-
lations were winnowed down to include only those with top 50 val-
ues of optimal decoding. In Figs. 3 and S2, we present results from
~700 3 x 3 populations and 400 4 x 4 populations. These popula-
tions were selected from among neurons that performed well at
the 2 x 2 level (the top 1,000 values of Decq from all 10,000 popula-
tions, considering only decoding of 0° vs. 90° gratings).

Analytical 2 x 2 study

In Figs. 1 and 2, we consider the case of two populations (X and Y)
of simulated neurons whose responses to two stimuli, A and B, are
correlated both within and across populations. We assume the re-
sponses ( rx and ry) to each stimulus can be described by a
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multivariate Gaussian

P(rx, rv|S) = N([Zii] Es),

where S={A, B}, uxs €R", uys€R", and s is a symmetric,
positive-definite matrix of size (m + n) x (m + n). Here populations
X and Y contain m and n neurons, respectively (m =2 andn =2
for the simulated results in Figs. 1 and 2); for example, Y may be
a cortical region and X may represent OB or LGN. Without loss
of generality, we simplify notation by shifting the mean responses
so that uy 4 =0, uy 4 = 0; thus, we can drop the stimulus subscript
on the mean vectors and use uy = uix g, 4y = pyy. We further as-
sume that the stimulus-conditioned noise covariance matrix is
the same for each stimulus: i.e. that £, =Xz =: =. For simplicity,
we assume that noise correlations cxy were equal for any pair of
cells across the two populations.

1 cop Cxvy Cxv ox 0
5= Al Cos 1 coxy Cxy A A= 0 o, 0O O
cxy &y 1 e 0 0

Cxy Cxy Cpc 1 0

As noted earlier, mean response to stimulus A was 0, and mean
response to stimulus B was:

T
=iy, mx, By, dy, ]

Each of the 11 parameters uy,, iy, tix,, tty,, 0X,, 0%,, 0v,, 0y, COB,
cec, Cxy was chosen randomly from the following distributions:

O0X1y 0Xy, OY1, OY, ™~ NF(O, 2)
Hxys By, ™~ N(O, 1);#x2,ﬂy2 ~Nr(0, 1)

Cos, Cpc, C~ U<0, 1); Cxy =max (E - 0.01, O)

Here, Nr is the folded normal distribution (if X ~ N(g, o),
then |X| ~ Ng(u,0)), and U is the uniform distribution.
Parameters are defined so that—without loss of generality—
Hx,» iy, 20, all noise correlation parameters are non-negative,
and cxy has about a 1% chance of being 0. For a single simulation,
each parameter was chosen independently from the above
distributions; the covariance matrix was then checked for positive

definiteness (equivalently, cxy < /(T + cop)(1 + cpc))/2): if it failed,
a new set of parameters was chosen. This was then repeated
50,000 times, allowing a robust and wide-ranging survey of pos-
sible signal and noise correlation structures.

We next explored decoding under different assumptions. First,
we sought to determine how well the stimulus can be decoded
from responses within each population. In this simplified setting
(responses are Gaussian, and the noise covariance is stimulus in-
dependent), the optimal decoder is linear and can be determined
by a simple analytical formula (see supplementary material,
Materials and methods). That is, we decode the stimulus by pro-
jecting the population response onto a single vector and then
compare that value with a threshold. Next, we use the principal
direction from CCA, or CC1, as a linear decoder. Finally, we artifi-
cially remove cross-population noise correlations by setting
cxy=0, and recompute the CCA with the revised
stimulus-unconditioned covariance. We show that in this setting,
the most correlated direction CC1 is in fact equal to the optimal
projection vector (see supplementary material, Materials and
methods). These three decoding vectors—optimal, CC1, and CC1
with cxy =0—are demonstrated in Fig. 5A as black, yellow, and
green, respectively.

We computed the single-population optimal decoding direc-
tions vy, vy using Eq. S1 and found the decoding accuracy by

integrating the resulting 1D Gaussians (see Eqg. S2). Similarly, we
calculated the CC1 for each population using Eq. S4, and found
the decoding accuracy using vxcci, Uycc1 @S projection vectors.
To compute single-cell decoding accuracy, we integrated under
the marginal distributions given by projecting onto the coordinate

directions e; = {é] ey = [ﬂ

Supplementary Material

Supplementary material is available at PNAS Nexus online.
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Fig. S1. Signal-to-noise ratio is lower in cortex than upstream regions. In the main text, it was suggested that signal-to-noise is lower in primary sensory cortex compared
with the upstream regions, closer to the sensory periphery, that provide sensory input to cortex. Here we show quantitatively that this is true for the visual system and olfactory
system data that we analyzed. [Left] Each solid line is a distribution of SNR values for the 10000 randomly chosen pairs of V1 neurons analyzed in the main text. Each dashed

line is a SNR distribution for the corresponding 10000 pairs of LGN neurons. Here we took the 2x2-population-level SNR to be

A/ pTE~1pu, where p is a two-element vector

of response differences (response to stimulus type A minus response to stimulus type B) and X is the response covariance matrix for the two neurons. Each color represents
an example from a different mouse and a different pair of stimuli. The ’stim type’ number in the legend refers to a specific pair of grating orientations or spatial frequencies as
labeled in the black grids. [Right] Same as the left, but based on the olfactory system. Note that for both the visual and the olfactory systems, the solid distributions indicate a
lower typical SNR in cortex compared to the upstream regions (dashed). Also note that this set of example mice and stimulus types is the same as those shown in Fig 4B,D,F

and H, with the same color code.
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Fig. S2. Cross-validation of DCC1. Like many other decoding algorithms, our proposed CC1 decoding can generate artificially high values of decoding accuracy if there are
too few stimulus trials or if response dimensionality is too high. In the context of our work, response dimensionality is simply the number of neurons from each population. To
account for this possibility, we did a 10-fold cross validation to verify that our measured values of DCC1 were reliable. For a given 2x2 population, we used 9/10 of the stimulus
trials to calculate CC1 directions and determine the optimal decoding threshold on the CC1-projected responses. Then, we used the same projection and threshold to calculate
decoding accuracy for the held out 1/10 of trials. We repeated this for the 10 unique folds of training and hold-out trials and finally averaged the 10 decoding accuracy values
across the 10 folds. These averaged decoding accuracies are reported here compared to the original decoding accuracies reported in the main text. Note that the cross
validated DCC1 values are strongly correlated with the original values, which means they are reliable. However, it is clear that for the olfactory data (right), which had only 15
trials per stimulus type, original DCC1 is more prone to over estimation compared the cross validated DCC1. The visual system data (left) included 42 trials per stimulus type,
which resulted in less bias, i.e. a better match between original and cross validated DCC1. The dashed line (slope unity) marks equality between original and cross validated
DCC1. Each point represents one of 10000 randomly chosen populations. The dark line and shaded area indicates the median and quartiles of the points, respectively. Points
are displayed with 20% opacity, so that density of points is clearer. [Bottom panel] Finally, we performed a similar 10-fold cross-validation for 3x3 and 4x4 populations from the
visual system (see Methods in main manuscript) and found reliable results like the 2x2 case.
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2x2 populations
B B2 R-square
4.9+-0.7 -0.7+-0.2 0.6+-0.03

3x3 populations
1 B2 R-square
6.1+-0.5 -0.7+-0.1 0.71+-0.02

Fig. S3. Regression results. For the regression mentioned in the Results, we employed a generalized least squares (GLS) method to fit the following regression equation:
y = Bi1x1 + B2x2 + €, where, y represents the normalized deviation from optimal decoding (A in the main text), and x1 and 2 correspond to the independent variables
Cxy and RCC1, respectively. Here we report the mean =+ standard deviation across animals.
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Mathematical Results

Introduction. We consider the case of two populations of neurons whose responses to two stimuli, A and B, are correlated both
within and across populations. We assume the responses to each stimulus can be described by a multivariate Gaussian, i.e.

P(rx, ry|S)=N <[#x,s} ,Es> ,
Wy,s

where S = {A,B},ux,s € R™ uys €R" and Xg is a symmetric, positive-definite matrix of size (m + n) x (m + n). Here X
and Y refer to two populations of neurons which are both responsive to A and B, containing m and n neurons respectively; for
example, Y may be a cortical region and X a pre-cortical region which supplies afferent input to Y. Without loss of generality,
we simplify notation by shifting the mean responses so that px 4 = 0, py,a = 0; thus, we can drop the stimulus subscript on
the mean vectors and use pux = px,p and py = py g.

We next consider how to decode the stimulus, using only the responses within each population. We assume that the
covariance matrix is the same for both stimuli: i.e. ¥4 = Xp =: X. In this case the optimal decision boundary is given by a
hyperplane in R™ or R"; equivalently, by a one-dimensional projection of the response vector. The decision boundary is given
by (for example) u € R™ such that uTE;(l,uX = %p}}E}lux + log %, (Here, X x and Xy are the marginal covariances in
populations X and Y respectively.) Therefore, the projection vector must be the normal vector to this plane; i.e.:

vx =X ux, vy =53 py (1]
in populations X and Y respectively. Alternatively, observing that v” rx|S is a one-dimensional Gaussian with
E[v"rx|S] = v ux,s, Varfp'rx|S] =v" o, 2]

VoTSv

we can derive the same outcome by maximizing the signal-to-noise ratio; i.e. vx = argmin ( T
X

of linear discriminant analysis, this maximizes between-class (where “class”=stimulus identity) variability while minimizing
within-class variability (1).

), From the perspective

When cross-region noise correlations are absent, CC1 is a perfect decoder. We now compute the projection directions associ-
ated with canonical correlation analysis (CCA). Given two sets of zero-mean observations from X and Y, the goal of CCA is to
find the linear projections of the observations that are maximally correlated (2). This technique uses the full stimulus-averaged
population response; however, we will show that under certain conditions, the maximally correlated direction from CCA
coincides with the optimal decoder. Assuming P (A) = P(B), the covariance structure within each population is

1 1
Yxx = Z'uX'u§ +3x; Yyy = Z,uyu;Tz + Xy

while the stimulus-averaged covariance matrix between populations X and Y is

1
Yxy = ZILXILZ: + ¢ 3]
Here X x, Yy, and ¢ are the covariances within and across-populations: i.e.
_|1EZx Ze
==[5 5

We now seek to find the directions which maximize correlation across the population; that is
Rceo1 = max a’Sxvb
ab /aTYxxavbTZyyb
We denote the vectors that achieve this maximum as vx,cc1 and vy,cc1 respectively; i.e.
a’Yxyb
vaTYxxavbTSyyb
The vectors vx,cc1 and vy,cc1 can be obtained by finding the principal eigenvectors of Dx and Dy respectively:

Vx,cCc1,Vy,cCc1 = argmaxa’b

_ _ _ -1
Dx = ZXIXEXYEY%/E§Y; Dy = EY;E?(YEXXEXY 4]
and the corresponding eigenvalue is the correlation (Rcc1) squared: that is,
Dxvx,co1 = Mx,cc1 < Roor = VA

We note that the cross-covariance matrix ¥ xy has two contributions, one reflecting signal correlations (% pxpd) and the
other noise correlations (X¢). The latter reflects trial-to-trial correlations which are not reflected in the mean response. We will
now show that when noise correlations are absent (X = 0), the principal CCA direction coincides with the optimal decoding
direction. Without loss of generality, we focus on Dx; parallel statements hold for Dy .

Lemma 1: If ¥¢ =0, then Dx is a rank 1 matrix.
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Proof. It is well known that the rank of a matrix product is bounded above by the minimum rank of the matrices; i.e.
rank(AB) < min(rank(A), rank(B)). From Eq. (3) Xxvy is the sum of two matrices, the first of which is rank 1; if ¥¢ = 0,
therefore, the sum is rank 1 as well. Therefore any matrix product that includes ¥ xy has rank at most 1. O

Theorem 1: If 3¢ = 0, then the correlated (non-zero) eigenvector of Dx coincides with the projection direction which is
optimal for decoding.

Proof. Recall that Eq. (1) shows that vx oc £ px. We will show that vx is also an eigenvector of Dx.
Consider the formula for Dx:
Dx =S¢k TxvTyy Sy

The cross-population correlation matrix ¥ xy is rank 1 and range(Xxy) = Span {ux }. Therefore, range(Dx) = Span {E;(lx X }
Next, we write $% ' in terms of ¥3'. Using the matrix determinant lemma, and noting that

Yxx =Zx +uu’

where u = px /2,

—1 —
P S I T T e o
Ty —1
1 1 u X
= - () °

The second term already maps into Span {Eglu X}, regardless of what vector is multiplied on the right. In conclusion,
range(Dx) = Span {Z}lux}; i.e. Dxvx < vx. O

By using Eq. (6) (and the analogous simplification for Z;%,L one can confirm that the corresponding eigenvalue is

2 2
A: SX2 SY2 [7}
4+ s% 4+ 53

where sx = \/p% Zglpx and sy = \/pu¥ E;luy are the signal-to-noise ratios for the X and Y populations respectively.

Theorem 2: If ¥c = 0, then any other eigenvector of Dx gives chance-level decoding.
Proof. If vipux =0, then %y v = 0 and therefore Dxv = 0. Therefore v is an eigenvector of Dx with eigenvalue 0. But then
E[VTTX|A] = E[VTTX|B] =0

i.e. the stimuli A and B cannot be discriminated. O
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