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Abstract

One of key features of intrinsically disordered regions (IDRs) is facilitation of protein–protein and protein–nucleic acids interactions.
These disordered binding regions include molecular recognition features (MoRFs), short linear motifs (SLiMs) and longer binding
domains. Vast majority of current predictors of disordered binding regions target MoRFs, with a handful of methods that predict
SLiMs and disordered protein-binding domains. A new and broader class of disordered binding regions, linear interacting peptides
(LIPs), was introduced recently and applied in the MobiDB resource. LIPs are segments in protein sequences that undergo disorder-
to-order transition upon binding to a protein or a nucleic acid, and they cover MoRFs, SLiMs and disordered protein-binding domains.
Although current predictors ofMoRFs and disordered protein-binding regions could be used to identify some LIPs, there are no dedicated
sequence-based predictors of LIPs. To this end, we introduce CLIP, a new predictor of LIPs that utilizes robust logistic regression
model to combine three complementary types of inputs: co-evolutionary information derived from multiple sequence alignments,
physicochemical profiles and disorder predictions. Ablation analysis suggests that the co-evolutionary information is particularly
useful for this prediction and that combining the three inputs provides substantial improvements when compared to using these
inputs individually. Comparative empirical assessments using low-similarity test datasets reveal that CLIP secures area under receiver
operating characteristic curve (AUC) of 0.8 and substantially improves over the results produced by the closest current tools that predict
MoRFs and disordered protein-binding regions. The webserver of CLIP is freely available at http://biomine.cs.vcu.edu/servers/CLIP/ and
the standalone code can be downloaded from http://yanglab.qd.sdu.edu.cn/download/CLIP/.

Keywords: intrinsic disorder, protein–protein interactions, protein–nucleic acids interactions, linear interacting peptides, protein
function, molecular recognition features

Introduction
Intrinsically disordered regions (IDRs) are segments in the protein
sequence that lack a stable equilibrium structure under physio-
logical conditions [1–3]. Proteins with IDRs carry out numerous
cellular functions and were shown to be prevalent in nature
[4–13]. One of their key functions is facilitation of protein–protein
and protein–nucleic acids interactions. The binding IDRs typically
undergo disorder-to-order transitions concomitant with binding
[14–20] and their structural flexibility allows them to interact
with multiple partners by folding into different conformations
[14, 21, 22]. These interactions were investigated from the protein
sequence and structural points of view, leading to the discovery of
multiple classes of binding IDRs. They include molecular recog-
nition features (MoRFs) that are defined as short disordered seg-
ments (5–25 consecutive residues) that undergo coupled binding
and folding when interacting with proteins and peptides [23–25];

short linear motifs (SLiMs), which are typically short sequence
segments that are defined by regular expressions and that include
residues directly interacting with binding partners [26–29]; pro-
tean segments (ProSs) that are specific to the IDEAL database [30,
31] and long (>30 residues in length) disordered protein-binding
domains [32]. Since propensity for disorder is intrinsic to the
underlying sequence [33, 34], it should be possible to predict disor-
dered binding regions from the protein sequences. Importance of
prediction of disordered binding regions was emphasized in the
recently completed Critical Assessment of protein Intrinsic Dis-
order (CAID) experiment, where this category of predictions was
introduced for the first time [35].Moreover, recent reviews identify
∼20 computational predictors of the disordered binding regions
[36, 37]. About 75% of them target prediction of MoRFs [36, 37].
Example MoRF predictors include (in chronological order) MoRF-
pred [38],MoRFchibi [39–41], OPAL [42], OPAL+ [43],MoRFMLP [44],
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SPOT-MoRF [45] and MoRFCNN [46]. Although being the largest
group of predictors, they are limited to the prediction of these
short protein-binding regions. SLiMs can be identified using either
databases of these motifs, such as ELM [47, 48], or using motif-
finding algorithms, such as MnM [49–51], SLiMSearch [52, 53] and
QuasiMotifFinder [54]. However, these methods may generate a
substantial number of false-positive predictions. Similarly, ProSs
can be found in the IDEAL database [31], and to the best of
our knowledge there are no predictors that are specific to these
binding IDRs. Finally, four methods predict protein-binding IDRs
that are not explicitly limited in their segment length: ANCHOR
[55], ANCHOR2 [56], DisoRDPbind [57, 58] and DeepDISObind [59].
ANCHOR and ANCHOR2 are constrained to the prediction of the
protein-binding IDRs, whereas DisoRDPbind and DeepDISObind
also predict IDRs that interact with nucleic acids. The above-
mentioned predictors of interacting IDRs rely on a wide range
of models that cover various machine learning solutions, such
as support vector machines [38, 40, 42, 43], neural networks
[44–46, 59], Bayesian learning [40, 41] and regression [58]; regular
expressions that are particularly useful to identify SLiMs [49, 52,
54]; and energy estimations based on statistical potentials [55, 56].
Among a subset of these methods that were recently evaluated in
the CAID experiment [35], ANCHOR2 [56], DisoRDPbind [58] and
MoRFchibi-light [40] secure the best performance when evaluated
on prediction of binding IDRs.

Linear interacting peptides (LIPs) are a recently introduced
class of binding IDRs that is annotated in the popular MobiDB
database [60, 61]. LIPs are segments in a protein sequence that
undergo disorder-to-order transitions upon binding to proteins
and nucleic acids. LIPs, MoRFs and SLiMs focus on different cate-
gories of disordered binding regions where LIPs are a broader class
that can be seen as a superset of MoRFs and SLiMs. For instance,
LIPs are not limited in the segment length, like MoRFs and major-
ity of SLiMs are, and may bind proteins and nucleic acids, unlike
MoRFs that interact with proteins. LIPs can be extracted from
the structures of the protein–protein and protein–nucleic acids
complexes using FLIPPER [62]. Although current predictors of
MoRFs and disordered protein-binding regions could be used to
identify some LIPs, there are no dedicated methods that predict
LIPs from protein sequences. Notably, authors of MobiDB declared
that defining LIPs ‘may drive the development of a new gener-
ation of predictors for functional intrinsic disorder regions’ [60].
Moreover, recent CAID assessment concludes that ‘disordered
binding regions remain hard to predict’ and suggests that new
and more accurate predictors are needed [35]. The development
of new predictive methods requires availability of a large amount
of experimentally annotated binding IDRs that are required to
train and test predictivemodels. Experimental annotations of LIPs
are available in several databases including PDB [63] where LIPs
can be extracted using FLIPPER, ELM [47, 48], IDEAL [31], DisProt
[64, 65], DIBS [66] and MFIB [67]. MobiDB conveniently combines
binding data from these resources, providing access to several
thousand LIPs [68]. We note that IDRs interact with other types of
molecules beyond proteins and nucleic acids, such as lipids,metal
ions and small molecules [36, 64]. However, methods for accurate
prediction of disordered lipid-binding IDRs are already available
[69, 70], whereas there are too few annotated interacting IDRs
for the other ligand types to properly train and assess predictive
models.

Given the availability of experimental data, observations from
CAID and the lack of dedicated sequence-based predictors of
LIPs, we introduce CLIP, an innovative and accurate predictor
of LIPs from protein sequences. CLIP relies on three types of

inputs that include: (i) co-evolutionary information which iden-
tifies conserved residues that co-evolve together (in our case
these residues are collectively involved in binding); (ii) sequence-
based disorder prediction that allows our model to differentiate
between structured and disordered regions and (iii) a collection
of several relevant physiochemical properties of amino acids,
such as hydrophobicity and free energy, that supports finding
binding regions among the disordered residues. The use of the
co-evolutionary data is motivated by a recent article that shows
importance of evolutionary couplings for the detection of dis-
tinct structural states of IDRs [71], which is one of hallmarks
of LIPs that fold into distinct conformations upon binding. We
empirically demonstrate that the co-evolutionary information is a
strong predictive input and that combining these inputs together
results in substantial improvements in predictive performance.
We empirically test CLIP-generated predictions on an indepen-
dent test dataset (i.e. dataset that shares low sequence similarity
with training and validation proteins) and compare them against
the results produced by the best predictors from the CAID exper-
iment and a selection of other modern predictors of MoRFs.

Materials and methods
Datasets
We use MobiDB 3.0 to collect the 2303 proteins that include
manually curated LIPs [61, 68]. Following the annotation protocol
from [72], we first cluster these 2303 sequences using CD-HIT
with 100% sequence identity [73]. We set the longest chain in a
given cluster as a representative sequence and transfer annota-
tions of LIPs in a given cluster into this chain. Altogether, this
procedure introduces 69 additional LIP residues when compared
with the annotation without the transfer, i.e. 0.19% increase in
the amount of LIP annotations; Supplementary Materials provide
further details. Second, we group the resulting 2285 sequences
into 1440 clusters by applying CD-HIT with 25% sequence identity
threshold, and select the longest sequence to represent each clus-
ter.We divide these sequences into a training dataset TR1000 and
a test dataset TE440 at random. The TR1000 dataset is composed
of 1000 proteins that have 1380 LIPs (average of 1.38 LIP per
protein) and 24 821 amino acids in the LIP regions. The remaining
440 proteins, which cover 612 LIPs (average of 1.39 LIP per protein)
and 11 994 residues in the LIP regions, constitute the TE440
dataset. Based on the second clustering, the training and test
proteins share low (<25%) similarity.

Given the large number of MoRF predictors and the fact that
MoRFs and LIPs share the disorder-to-order transition aspect,
we perform an additional test that focuses on the disordered
proteins with MoRF regions. We use the experimentally validated
EXP53 dataset, which consist of 53 sequences with 2432 MoRF
residues and was developed by Malhis et al. [41].We apply CD-HIT
[73] to cluster sequences from the TR1000 dataset together with
sequence from the EXP53 dataset. Next, we remove sequences
from EXP53 that share the same clusters with the sequences
from the TR1000 training dataset. The remaining collection of
25 MoRF-including sequences, named EXP25, is dissimilar to the
training proteins at the 25% similarity cutoff. We use this dataset
to compare CLIP against modern MoRF predictors.

Evaluation metrics
Predictions are done at the amino acid level and include a numeric
propensity score (higher values denote higher likelihood that
residues are in a LIP region) and a binary label that categorizes
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each residue as LIP versus non-LIP. We use several popular met-
rics to assess binary predictions including Matthews correlation
coefficient (MCC) and F1,where F1 is computed from the precision
(PRE) and recall (REC) metrics:

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

PRE = TP
TP + FP

,REC = TP
TP + FN

,F1 = 2 ∗ PRE ∗ REC
PRE + REC

where TP is the number of correctly predicted LIP residues, FP is
the number of native non-LIP residues predicted as LIP residues,
TN is the number of correctly predicted non-LIP residues and
FN is the number of native LIP residues predicted as non-LIP
residues. We compute binary predictions from the propensities,
such that residues with propensities higher than a threshold p
are assumed to be located in LIPs; the remaining residues are
categorized as non-LIPs.We conduct 5-fold cross-validation on the
TR1000 dataset to tune the threshold p, whichwe use to report the
MCC and F1 values for CLIP. We select p=0.2 that results in the
maximal value of an average MCC computed over the five folds in
the cross-validation experiment.

We evaluate propensity scores using the receiver operating
characteristic (ROC) curves [74]. Specifically, we use all unique
propensity values generated by a given predictor as a set of
propensity thresholds pth. For a given threshold pi from pth, a
residue is classified as LIP if its putative propensity> pi; otherwise,
it is classified as the non-LIP residue. Next, false-positive rates
(TPR) and true positive rates (FPR) are computed using these
binary predictions:

TPR = TP
TP + FN

,FPR = FP
TP + FN

Finally, ROC curve is drawn by connecting (FPR and TPR) points
that are calculated using all thresholds from pth. We report
AUC (area under ROC curve) that quantifies the area under the
ROC curve and ranges between 0 and 1, where <0.5, ∼0.5 and
1 correspond to a reversed, a random and a perfect prediction,
respectively. Higher values of AUC, MCC and F1 imply better
predictive performance.

Overview of the CLIP predictor
As shown in Figure 1, CLIP has a hierarchical architecture where
protein sequences are first used to derive three types of predic-
tive inputs, which are subsequently combined using a logistic
regression model. We select regression since this model is fast
to train and apply to make predictions. Moreover, given its small
number of parameters (i.e. coefficient of the regression func-
tion), regression is more robust to overfitting when compared
to other popular algorithms, such as neural networks [75]. The
latter is crucial because to the low degree of similarity between
the training and test sequences. We are also motivated by the
successful use of logistic regression in related problems including
prediction of disordered linkers [76] and intrinsic disorder [77–80].
The three types of inputs include co-evolutionary information
(COEV), physiochemical characteristics of amino acids that are
relevant to binding (PHYS) and disorder prediction generated with
the popular DISOPRED3 method [81]. We produce these inputs at
the residue level, combine them together into a 3-dimensional
vector and process the resulting vector using sliding windows to
produce inputs for the logistic regression. We consider multiple
sliding window sizes of 5, 7, 9, 11, 13 and 19, use the raw values

of the three inputs, and encode several additional features that
aggregate these raw values at the window and whole sequence
levels. The aggregate features include average COEV/PHYS/disor-
der scores, avgi, which we use to represent the residue i in the
center of the window for which we make the prediction, and
difference scores, diffi, which quantify difference between these
averages and scores for remote neighbors (residues at both ends
of the window):

avgi = 1
ws

∑i+ ws−1
2

j=i− ws−1
2

sj,diff i

=avgi − 1
ws − 1

[∑i− ws+1
2

j=i−ws+1
sj +

∑i+ws−1

j=i+ ws+1
2

sj

]

where ws is the window size=5, 7, 9, 11, 13 and 19, sj is the COEV,
PHYS or disorder score for the jth residue in the window. We set
sj =0 for the residues in parts of the windows that are outside
of the sequence (i.e. when making predictions near a sequence
terminus). Moreover, we compute the sequence-level disorder
content (i.e. fraction of disordered residues in a given sequence),
since this feature was proven to be useful in the prediction of
disordered flexible linkers [82]. We feed the resulting feature set
into the logistic regressionmodel that outputs putative propensity
for LIPs for the residue in the middle of the window. We note
that this predictive architecture is similar to the topology of the
MoRFchibi system that also combines three types of inputs using
a relatively simple predictive model [40]. However, CLIP relies on
co-evolutionary information rather than sequence conservation
that is used by MoRFchibi, utilizes a different disorder predictor,
and aggregates inputs using a single regressionmodel rather than
multiple Bayesian predictors. Next, we describe calculation of the
three predictive inputs.

COEV input
Co-evolutionary computation identifies pairs/groups of residues
that change simultaneously, presumably being important to
maintain the structure and/or biological functions of proteins.
Co-evolutionary data are derived from a multiple sequence
alignment (MSA; [83]). This information was successfully used
to accurately predict key aspects of protein structure, such as
residue–residue contacts [84, 85], and to investigate structural
states of IDRs [71]. The latter article reveals that co-evolutionary
data can be used to identify formation of distinct structural
states (e.g. secondary structures) in IDRs [71]. This is relevant to
our prediction since LIPs fold upon binding. Correspondingly, co-
evolutionary analysis can be used to detect ability of these regions
to attain distinct folded states in order to differentiate them from
other IDRs that do not fold into distinct conformations.

We use the fast HHblits program [86] with coverage ≥50% and
e-value <0.001 to search for the homologues of an input sequence
against the Uniclust30 database. We apply the resulting MSA to
derive the symmetric covariance (scov) matrix:

scov
(
ix, jy

) =
{

cov
(
ix, jy

)
, if x = y

cov
(
ix, jy

) + cov
(
iy, jx

)
, if x �= y

cov
(
ix, jy

) = p
(
ixjy

) − p
(
ix

) ∗ p (
jy

)

where i or j represents the ith or jth column in the MSA, the ix is
a gap or a given type of 20 standard amino acids, and p(.) denotes
frequency of a residue or a pair of residues. For each position i, we
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Figure 1. Architecture of the CLIP method. The number of features used by a given predictive input, which is denoted by a rectangle, is shown inside
the round brackets.

transform the resulting 231 scov values into 21 tcov values that
quantify co-evolution:

tcov
(
ix, j

) =
∑

y>x
scov

(
ix, jy

)
, x, y = 1, · · · · · ·, 21; j = 1, · · · · · ·, L; j �= i

Using this approach, each position i in the input protein
sequence is represented by 21∗(L − 1) tcov values, which quantify
the co-evolution between the positions i and j=1, 2, . . . . L where
L is the input sequence length. We select the top k tcov values
to build the COEV model by using random forest algorithm. We
tune parameters for this model using the 5-fold cross-validation
on TR1000. The COVE model generates a COVE score for each
residue in the sequence, which we use to compute inputs for the
regression model.

PHYS input
Our design of the input based on the physicochemical properties
of amino acids is directly inspired by a recent MoRFchibi methods
that accurately predictsMoRFs [39].Themain difference is thatwe
apply their approach to predict a more generic set of LIP regions.
First, we borrow the list of the amino acid indices that quantify
physicochemical properties, such as propensity for secondary
structure, hydrophobicity and free energy, which were shown to
be relevant to the MoRF prediction [39]. We also mimic their
approach to encode features based on averaging the index values
in a small window centered on the predicted residue (LIP region) in
comparison with flanking regions [39]; see Supplementary Mate-
rials for details. Consequently, we compute LIP-related averages
avglipm and flanking regions-based averages avgflankn as follows:

avgmlip = 1
len (LIP)

∑
i∈LIPAA

m
i ,avg

n
flank = 1

len
(
flanks

)∑
i∈flanksAA

n
i

wherem,n=1, 2, . . . , 7, len (∗) denote the length of a LIP and its two
flanking regions, and AAm

j and the AAn
j are the selected amino

acid indices. Moreover, since our data is similarly unbalanced to
the MoRF data used in ref. [39] (i.e. there are 28 times more non-
LIP residues compared with the LIP residues), we reproduce their
sampling procedure for our TR1000 training dataset. The resulting
14 features (7 indices, each encoded using avgm

lipand avgn
flank) are

input into a support vector machine (SVM) algorithm to develop
the PHYSmodel. SVMwas also used to implement MoRFchibi [39].
We tune the SVMmodel (C=50) that relies on the Gaussian kernel
(gamma=0.0007) by maximizing the average AUC derived from 5-
fold cross-validation on the sampled TR1000 dataset. Predictions
from the tuned SVM model constitute the PHYS input to the
regression model.

Disorder prediction input
Although the PHYS and COEV inputs focus on identifying LIP
residues among IDRs, CLIP also needs to separate disordered from
structured regions. In other words, we have to ensure that PHYS
and COEV inputs are not used by the regression to identify struc-
tured binding residues. Correspondingly, we add the third input
that identifies putative disorder in an input sequence. We inves-
tigate several recent surveys of disorder predictors to rationally
select a high-quality method [87–89].We select the popular DISO-
PRED3 method [81], which was shown to produce highly accurate
predictions in several recent comparative studies [88, 90–92].
We use the author-provided standalone DISOPRED3 software with
default parameters to generate the disorder prediction for an
input protein sequence. We use the resulting residue-level puta-
tive disorder propensities to encode the avgi and diffi features and
we apply the putative binary disorder predictions to compute the
sequence-level disorder content.

Parametrization of the logistic regression model
We use logistic regression to combine the COEV, PHYS and dis-
order prediction inputs. We parametrize this model by identi-
fying a favorable value of the ridge parameter based on the
5-fold cross-validation on the TR1000 dataset. More specifically,
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Figure 2. Results for the ablation study computed based on the 5-fold
cross-validation on the TR1000 dataset.AUC values are listed in the figure
legend. The predictions are generated by models that rely on each of the
three major input used individually, the best COEV input combined with
each of the other two inputs and the three inputs combined together; the
latter option corresponds to the complete CLIP predictor. The evaluation
is computed over the combined collection of the five cross-validation test
folds.

we consider ridge=10n where n=−5, −4, . . . . . . 4, 5 and select the
ridge value=0.1 that produces the highest average AUC that we
calculate over the five AUC scores from the five test folds in the
cross-validation experiment.

Results
Ablation study
CLIP relies on the three types of inputs: the co-evolutionary data
generated by the COEV model, the physiochemical properties-
based data produced by the PHYSmodel and the putative disorder
output by DISOPRED3. We quantify predictive value of these
inputs and investigate whether combining them together leads
to improvements when compared to using them individually in
the context of the LIP predictions. We quantify predictive perfor-
mance using AUC values computed for the combined set of the
five test folds from the 5-fold cross-validation on the training set
TR1000 (Figure 2).

Comparison of results produced by the COEV model, the PHYS
model, and the putative disorder shows that by far the best results
are produced by the co-evolutionary input, with AUC=0.715 com-
pared with AUC=0.574 for the second-best PHYS model. This
stems from the observations that LIPs fold into unique struc-
tures upon binding and that co-evolutionary couplings reflect
formation of distinct structural states in IDRs [71]. Interestingly,
the putative disorder used alone is not a strong predictor of LIPs
(AUC=0.501). This can be explained by the fact that many IDRs
carry out other functions, such as entropic chains, disordered
linkers and lipid, ion and small ligand binding. In other words,
DISOPRED3’s prediction cannot effectively separate LIP residues
from the other types of disordered residues.

Next, we investigate predictive performance of designs
that combine the best COEV input with one of the other

two inputs. The COEV+DISOPRED3 and COEV+ PHYS models
improve over the COEV model, which suggests that the disorder
prediction and physicochemical-based input complement the
co-evolutionary information. Moreover, the COEV+DISOPRED3
model provides slightly better predictive performance compared
to the COEV+PHYSmodel (AUC=0.771 versus 0.762, respectively).
Interestingly, adding the disorder prediction, which by itself
does not provide useful predictive input, provides a strong
boost (AUC=0.715 for COEV versus 0.771 for COEV+DISOPRED3),
suggesting that this prediction allows to effectively identify
intrinsic disorder among binding residues that are predicted by
the COEV model.

Finally, we compare the use of two inputs to the CLIP model
that combines three inputs. We observe that adding PHYS input
to the COEV+DISOPRED3 model generates a modest increase in
predictive performance (AUC=0.783 versus 0.771). However, we
still combine the three inputs to implement CLIP since the com-
putational cost of adding PHYS model is negligible, particularly
when compared with the computation of the co-evolutionary
input. Altogether, we find that the co-evolutionary information is
useful for the prediction of LIP residues and that combining the
three inputs provides substantial improvements when compared
to using these inputs individually.

Comparative assessment on the TE440 dataset
We compare CLIP with a selection of relevant published tools.
The recently completed CAID experiment finds that ANCHOR2
[55, 56] and DisoRDPbind [58] are the two best predictors of
binding IDRs [35]. Moreover, ANCHOR2 is used to predict protein-
binding IDRs in the popular MobiDB database [61, 68, 93]. LIPs
can be seen as a superset of MoRFs since they both share certain
aspects, such as concomitant binding and folding when inter-
acting with proteins and peptides. This combined with the fact
that majority of the current predictors of binding IDRs target
prediction of MoRFs [36, 37],motivates us to compare CLIP against
a selection of modern MoRF predictors. The evaluation of the
prediction of binding IDRs in the CAID experiment finds that the
two top-performing MoRF predictors are MoRFchibi-light [40] and
MoRFchibi-web [41]; they are ranked 3rd and 4th after ANCHOR2
and DisoRDPbind [35]. These two MoRF predictors are part of the
MoRFchibi system that also includes MoRFchibi predictor [40].
Moreover, we consider one of the latest MoRF predictors, SPOT-
MoRF [45]. SPOT-MoRF is limited to prediction of proteins that
have up to 750 residues. Based on advice from peer reviewers, we
split longer test proteins into segments that are 750 residues long
and combine these predictions together to derive results for SPOT-
MoRF. Altogether, we compare CLIP to six tools, which include
ANCHOR2, DisoRDPbind, MoRFchibi, MoRFchibi-light, MoRFchibi-
web and SPOT-MoRF, using the independent TE440 dataset (i.e.
dataset that shares <25% similarity to the training proteins). We
assess robustness of the predictive performance measured over
different test sets by quantifying results over 20 disjoint protein
sets obtained by randomly splitting the TE440 dataset into 20
subsets of 22 proteins. This experiment allows us to measure
statistical significance of the differences in predictive quality
between CLIP and the other two predictors over these 20 datasets.
For normal measurements (which we verify with the Anderson–
Darling test at the 0.05 P-value) we apply the t-test; otherwise
we use the non-parametric Wilcoxon rank sum test. We assume
that differences are statistically significant if the resulting P-value
<0.05. We apply this analysis to the AUC, MCC and F1 metrics.

Results that we summarize in Figure 3 show that CLIP secures
the best predictive performance with AUC=0.806, MCC=0.343
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Figure 3. Predictive quality of CLIP, MoRFchibi-light, MoRFchibi-web, MoRFchibi, SPOT-MoRF, ANCHOR2 and DisoRDPbind on the TE440 dataset. The
predictors of MoRF regions (MoRFchibi-light,MoRFchibi-web,MoRFchibi and SPOT-MoRF) are denoted using blue color while the predictors of disordered
protein-binding regions (ANCHOR2 and DisoRDPbind) are shown using gray. Panel A shows the ROC curves and the corresponding AUC values. Panel B
gives the MCC and F1 scores. ‘-’ next to a given AUC, MCC and F1 value indicates that the corresponding result/method is significantly worse than the
result from CLIP (P-value <0.05).

and F1=0.325. These results are statistically higher than the
corresponding AUC, MCC and F1 scores of the other methods
(P-value <0.05), with the second-best MoRFchibi-light securing
AUC=0.763, MCC=0.165 and F1=0.176. The ROC curve of CLIP
(black line in Figure 3A) is consistently better than the curves
of the other tools. The part of the curve where MoRFchibi-
light, MoRFchibi-web and SPOT-MoRF outperform CLIP is for FPR
scores> 0.7, which is where LIPs are significantly over-predicted.
We observe that MoRFchibi-web and MoRFchibi-light provide
similar predictive quality, which agrees with the results in CAID
[35]. The lower predictive performance offered by the other
six methods can be explained by the fact that they predict a
specific subtype of LIPs (MoRFs, disordered protein-binding IDRs,
etc.), whereas CLIP provides a more holistic solution that targets
interactions with nucleic acids and proteins that undergo coupled
binding and folding.

We also investigate whether combining CLIP results with state-
of-the-art predictors of intrinsic disorder and protein structure
would further improve predictive performance. The underlying
idea is to utilize other tools to accurately identify disordered
regions, which may help improve CLIP’s ability to find the dis-
ordered LIPs. We consider the most accurate disorder predictor
based on the results from the CAID assessment [35, 94], flDPnn
[95] and the well-known AlphaFold2 for the structure prediction
[96, 97]. We note that the pLDDT scores output by AlphaFold2 are
used to identify disorder [98]. We apply the pLDDT scores from
AlphaFold2 and the putative disorder propensities generated by
flDPnn to refine the putative propensities generated by CLIP as
follows:

p∗
i = pi ∗ p1i

pi + p1i

where pi and p1i are the propensities output by CLIP and
AlphaFold2/flDPnn, respectively. This results in new propensity
scores pi∗ that are higher than the original CLIP propensities when
the scores from either AlphaFold2 or flDPnn are high, i.e. either
of these two methods predicts disorder. Since AlphaFold2 takes

about 3 h to predict a single protein structure, we select 10%
of proteins from the TE440 dataset at random for this analysis.
We compare results from CLIP, flDPnn, AlphaFold2 and the
combinations of CLIP with flDPnn and CLIP with AlphaFold2.
We evaluate statistical significance of differences by using the
procedure described earlier in this section, except for relying
on 20 repetitions of randomized sampling of 20 proteins, given
the relatively small size of this dataset. The results, which we
summarize in Supplementary Figure S2 (see Supplementary
Data available online), reveal that the quality of the CLIP’s
predictions is consistent with the test on the entire TE440 dataset
(AUC=0.803 versus 0.806),which suggests that the estimates from
this analysis should be robust. We find that AlphaFold2 by itself
cannot be used to accurately identify LIPs (AUC=0.529). Similarly,
predictions from flDPnn have statistically lower AUC than the
AUC of CLIP (AUC=0.767; P-value<0.05). Our observation that
flDPnn produces better results compared to AlphaFold2 when
predicting disordered regions (i.e. LIPs are intrinsically disordered)
aligns with a recent study that similarly shows that modern
disorder predictors, such as flDPnn, outperform AlphaFold2 in
the context of disorder prediction [98]. Moreover, combining CLIP
with either AlphaFold2 (AUC=0.806) or with flDPnn (AUC=0.804),
leads to only marginal gains that are not statistically significant
when compared with using CLIP by itself; P-value=0.36 for
CLIP+AlphaFold2 and P-value=0.47 for CLIP+flDPnn. This means
that CLIP captures characteristics of intrinsic disorder sufficiently
well to provide accurate predictions of LIPs.

Altogether, our analysis suggests that CLIP provides relatively
accurate predictions of LIPs that are statistically better than the
predictions of the currently available methods and that can be
used without the need to apply secondary disorder predictors.

Comparative assessment on proteins with SLiMs
in the TE440 dataset
LIPs cover multiple types of binding IDRs, including SLiMs. We
map SLiMs from the ELM database [47, 48] into the test proteins
from the TE440 dataset. We find that 95.5% of these SLiMs are
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Figure 4. Predictive quality of CLIP, MoRFchibi-light, MoRFchibi-web and MoRFchibi on the EXP25 dataset. Panel A shows the ROC curves and the
corresponding AUC values. Panel B gives theMCC and F1 scores. ‘-’ next to a given AUC,MCC and F1 value indicates that the corresponding result/method
is significantly worse than the result from CLIP (P-value <0.05).

located in the LIP regions and that the corresponding 3849 SLiM
residues constitute 3849/11 994=32.1% of the LIP residues in the
TE440 dataset. This reveals that SLiMs comprise a large fraction
of LIPs. The missing 4.5% of SLiMs can be explained by the fact
that we collect SLiMs at a later time compared with when the
annotations fromMobiDB that we use to mark LIPs in TE440 were
processed. We re-evaluate CLIP and the other four methods that
predict short protein-binding regions (SPOT-MoRF, MoRFCHiBi-
light, MoRFCHiBi-web and MoRFCHiBi) on 268 proteins from
TE440 that have only SLiMs and no other LIPs. This allows us
to directly compare performance of these tools on SLiMs with
the results from Figure 3 that consider a broader class of LIPs.
We summarize these results in Supplementary Figure S3 (see
Supplementary Data available online) and perform statistical
analysis that applies the procedure from section ‘Comparative
assessment on the TE440 datase’. We find that CLIP generates
the highest AUC=0.760, however, SPOT-MoRF and MoRFchibi-
web produce similarly accurate results with AUCs of 0.756 and
0.741, respectively. Moreover, CLIP’s AUC for the dataset of 268
test proteins with SLiMs is statistically higher than AUC=0.714
secured by MoRFchibi-light (P-value <0.05) and AUC=0.650
by MoRFchibi (P-value <0.05). Interestingly, CLIP’s ROC curve
(Supplementary Figure S3, see Supplementary Data available
online) is better by a substantial margin than the ROC curves
of the other methods for FPRs<0.3, while being comparable to
the MoRFchibi predictors and slightly worse to SPOT-MoRF for
larger FPRs. We argue that the results for the low FPR range
are more practical since SLiMs constitute a small fraction of
residues and therefore high FPRs correspond to significant over-
predictions. Finally, relative to the results on the TE440 dataset,
CLIP, MoRFchibi-light and MoRFchibi-web register a notable drop
in predictive quality, with AUC=0.806 on TE440 versus 0.760 on
the 268 SLiMs-containing proteins for CLIP, 0.763 versus 0.714 for
MoRFchibi-light and 0.761 versus 0.741 for MoRFchibi-web. On
the other hand, SPOT-MoRF and MoRFchibi provide similar levels
of predictive quality, with AUC=0.745 for TE440 versus 0.756
for the SLiMs for SPOT-MoRF and AUC=0.656 versus 0.650 for
MoRFchibi.

Comparative assessment of MoRF predictions
using the EXP25 dataset
Besides testing on the datasets of LIPs and SLiMs,we also compare
predictions generated by CLIP and a selection of top MoRF pre-
dictors on the EXP25 test dataset that exclusively covers MoRFs,
which are a subtype of LIP regions. We compare CLIP against
MoRFchibi-light and MoRFchibi-web, which are the top-ranked
MoRF predictors in CAID [35]. We also include MoRFchibi that is
a part of the MoRFchibi system [40]. We note that EXP25 shares
low-similarity with the training data of CLIP and the MoRFchibi
predictors. We could not include SPOT-MoRF in this comparison
since its training dataset partly overlaps with EXP25. We sum-
marize results in Figure 4. CLIP obtains AUC=0.848, MCC=0.331
and F1=0.318, which are consistent with its performance on
the TE440 dataset (Figure 3) and suggests that it can be used
to accurately identify MoRFs. The best of the considered MoRF
predictors, MoRFchibi-web, obtains AUC=0.819, MCC=0.215 and
F1=0.252. Statistical analysis, which follows the procedure from
section ‘Comparative assessment on the TE440 datase’ (except
for relying on 20 repetitions of randomized sampling of 70% of
proteins, which is motivated by the relatively small size of EXP25),
reveals that CLIP’s results are statistically better (P-value <0.05).
However, we observe a lower magnitude of improvements when
compared to the improvements for the LIP predictions on TE440.
This is because EXP25 includes binding regions that are directly
targeted by theMoRF predictors, resulting in a better performance
of these methods on this dataset. Overall, we find that CLIP
generates accurate predictions of MoRF at the levels that are
consistent with the predictions for a more generic class of LIP
regions.

Case study
We illustrate and explain predictions generated by CLIP and the
top three other methods selected based on results on the TE440
dataset (SPOT-MoRF, MoRFchibi-web and MoRFchibi-light) for
an example protein from this test dataset, the human STAM-
binding protein (MobiDB ID: C9JK83). The STAM-binding protein is

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac502/6858950 by VC

U
 Libraries, Tom

pkins-M
cC

aw
 Library user on 09 February 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac502#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac502#supplementary-data


8 | Peng et al.

Figure 5. Visualization of the predicted propensity scores and the three main inputs to the CLIP model (i.e. COEV, PHYS and predicted disorder that are
shown using dashed and dotted red lines) for an example protein from the TE440 dataset, the STAM-binding protein from human (MobiDB ID: C9JK83).
The putative propensities were produced using CLIP (red solid line) and the top three othermethods that we tested on the TE440 dataset,MoRFchibi-light
(dark blue solid line), MoRFchibi-web (light blue solid line) and SPOT-MoRF (green solid line). The location of the native LIP region (positions 228–241) is
shown with the horizontal red bar at the bottom of the plot.

318-residues long and includes LIP in positions 228–241. The two
versions of MoRFchibi produce relatively similar propensities that
register a local spike in values around the native LIP region; see
blue lines in Figure 5. However, these tools also predict other
regions with similarly high propensities, suggesting that they
might be over-predicting MoRF residues for this protein. SPOT–
MoRF produces relatively higher propensities between positions
140 and 240, and at the C-terminus; see green line in Figure 5.
This prediction partly overlaps with the location of the native
LIP, although SPOT–MoRF’s propensities suggest that the most
likely spot for a putative MoRF region is between positions 166
and 186. CLIP predicts high propensities for positions 197–235,
and for a couple of short regions at both termini; see solid red
line in Figure 5. The prediction in the middle of the sequence
substantially overlaps with the native LIP, and arguably could
be used to identify this region. We explain CLIP’s predictions
by showing how the CLIP-generated propensities relate to the
inputs for our model. We show the three inputs in Figure 5
using the dotted red line (COEV input), dashed red line (disorder
prediction) and long dashed red line (PHYS input).We observe that
high propensities produced by CLIP coincide with high values
of the three inputs. The native LIP region has relatively high
propensities for the evolutionary couplings and intrinsic disorder
and favorable values of the physicochemical properties at the
amino acid level. Moreover, while other regions in this protein are
also predicted as disordered, i.e. dashed red line suggests high
likelihood of disorder between positions 124 and 250, positions
124–196 have relatively lower COEV and PHYS values, and the
236–150 segment has lower COEV values. This suggests that it is
crucial to combine these three factors tomake correct predictions.

Conclusions
LIPs are a recently introduced category of disordered binding
regions that generalize previously defined classes, such as MoRFs,
SLiMs and disordered binding domains [60, 61]. Motivated by the

lack of dedicated predictors of LIPs, availability of a large quantity
of training data, and the documented need to improve predictions
of binding IDRs [35], we design, implement and comparatively
evaluate CLIP, a newpredictor of LIPs fromprotein sequences.CLIP
combines three types of inputs to predict LIPs: co-evolutionary
information, putative disorder and literature-inspired approach
to quantify relevant physiochemical properties of amino acids
[39]. Ablation analysis shows that co-evolutionary information is
a strong marker of LIPs. This can be explained by the fact that
evolutionary couplings detect structural states of IDRs, which are
among the key hallmarks of LIPs that undergo disorder-to-order
transitions upon binding [71]. We also empirically demonstrate
that combining the three inputs provides a large increase in
the predictive quality when compared with using these inputs
individually.

Comparative tests based on two independent datasets, TE440
and EXP25, show that CLIP secures favorable predictive perfor-
mance when compared with a representative selection of clos-
est current methods that predict MoRFs and disordered protein-
binding regions. The defining differences between CLIP and the
other methods is the use of the co-evolutionary information
and the fact that CLIP was designed using a training dataset
annotated with a broader class of LIP regions. Altogether, our
analysis suggests that CLIP provides accurate predictions of LIPs.
We provide a convenient webserver that implements CLIP at
http://biomine.cs.vcu.edu/servers/CLIP/. The webserver takes up
to three amino acid sequences in the FASTA format as the input,
with an option to provide email address where a notification of
completed prediction is delivered. It takes ∼10 min to complete
prediction for an average length sequencewith∼300 residues.The
prediction is automated and performed entirely on the server side.
Users do not need to install any software. The webserver outputs
propensities and binary predictions for each residue in the input
sequence and these values are provided in an easily parsable text
file. Users can also download standalone code for CLIP at http://
yanglab.qd.sdu.edu.cn/download/CLIP/.
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The most likely reason why the considered here predictors
of binding IDRs provide lower quality results when compared
with CLIP is that they were designed for more specific types of
interacting IDRs, i.e. MoRFs and protein-binding domains versus
LIPs. We also note that results for the other tools that we present
differ from observations in the CAID study. For instance, CAID
shows that ANCHOR2 and DisoRDPbind improve over othermeth-
ods, including the family of MoRFchibi tools, in the prediction of
binding IDRs [35]. Our results (Figure 3) show that MoRFchibi tools
and SPOT-MoRF provide more accurate results than ANCHOR2
and DisoRDPbind. The most likely reason for this difference is the
fact that CAID evaluates predictors on IDRs that bind a variety of
ligand types (Supplementary Figure S51 in [35] lists these ligands),
whereas we focus specifically on LIPs. Ultimately, one of the key
aspects that affects predictive performance is the fit between the
type of interaction that a given predictor addresses and the type
of interactions that are considered in a given assessments.

One interesting option to expand this work is to consider
context of an interacting partner molecule, i.e. predict whether
a given protein sequences (i.e. putative binding IDR in that
sequence) interacts with a given sequence of the partner
molecule (protein or nucleic acid) at the residue level (i.e.
identify binding residues in both sequences). To the best of our
knowledge, the residue-level predictions of disordered partner-
specific interactions were not yet pursued while similar attempts
for the partner-specific prediction of protein–RNA interactions
have not been successful so far. In fact, performance of RNA
partner-specific predictors was shown to be equivalent to the
performance of partner-agnostic methods [99]. Moreover, the
currently available amount of annotated data for interacting IDRs
is insufficient to design and assess partner-specific predictors. A
significant majority of binding annotations for IDRs in DisProt
and MobiDB do not have information about the sequence of the
binding regions for the interacting partner(s). We plan to address
this challenging topic in the future work, once the amount of the
partner-annotated interaction data becomes sufficient large, by
taking advantage of accurate predictions of LIPs that are produced
by CLIP.

Key Points

• Linear interacting peptides (LIPs) are a new and broad
class of disordered binding regions.

• Current predictors of disordered binding regions offer
modest levels of performance.

• CLIP is a new and accurate sequence-based predictor
of LIPs.

• Co-evolutionary information is useful to predicts disor-
dered binding regions.

• CLIP’s webserver is available at http://biomine.cs.vcu.
edu/servers/CLIP/.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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