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Abstract

Molecular recognition features (MoRFs) are a commonly occurring type of intrinsically disordered regions
(IDRs) that undergo disorder-to-order transition upon binding to parther molecules. We focus on recently
characterized and functionally important membrane-binding MoRFs (MemMoRFs). Motivated by the lack
of computational tools that predict MemMoRFs, we use a dataset of experimentally annotated Mem-
MoRFs to conceptualize, design, evaluate and release an accurate sequence-based predictor. We rely
on state-of-the-art tools that predict residues that possess key characteristics of MemMoRFs, such as
intrinsic disorder, disorder-to-order transition and lipid-binding. We identify and combine results from three
tools that include fIDPnn for the disorder prediction, DisoLipPred for the prediction of disordered lipid-
binding regions, and MoRFCHiBign; for the prediction of disorder-to-order transitioning protein binding
regions. Our empirical analysis demonstrates that combining results produced by these three methods
generates accurate predictions of MemMoRFs. We also show that use of a smoothing operator produces
predictions that closely mimic the number and sizes of the native MemMoRF regions. The resulting
CoMemMoRFPred method is available as an easy-to-use webserver at http://biomine.cs.vcu.edu/ser-
vers/CoMemMoRFPred. This tool will aid future studies of MemMoRFs in the context of exploring their
abundance, cellular functions, and roles in pathologic phenomena.

© 2023 Elsevier Ltd. All rights reserved.

ety of partner molecules that include proteins,

Introduction ( ~mole hat Inclu
peptides, nucleic acids and lipids. =" In that con-

Intrinsically disordered proteins (IDPs) contain
one or more intrinsically disordered regions
(IDRs), which are sequence segments that lack
stable structure under physiological conditions.’'
IDPs complement functional repertoire of rigid pro-
tein structures, expanding functional diversity and
cellular complexity of proteomes.® IDPs contribute
to a broad range of cellular processes, such as sig-
naling, regulation and molecular recognition, to
name just a few.'®'* One of the key functional fea-
tures of IDRs is facilitation of interactions with a vari-
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text, IDRs offer a number of advantages over struc-
tured regions. They are capable of adopting
different conformations upon binding to specific
partners, allowing for interactions with multiple part-
ners and enabling promiscuous and selective bind-
ing that depends on a cellular context®*“°. IDRs
can serve as “fuzzy” binding interfaces which lack
a well-defined structure but can dynamically adjust
and conform to an interacting partner®’. Some IDRs
possess short linear motifs that engage in specific
protein—protein and protein-nucleic acid interac-
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tions'>192831 " These motifs include Molecular

Recognition Features (MoRFs), which are short
regions embedded in longer IDRs and undergo
disorder-to-order transition upon binding to proteins
and peptides'®#%3,

Recent studies suggest that IDRs are found in
membrane-associated and transmembrane
proteins, where a number of them transition from
the disordered to the ordered state upon binding
to lipids, sharing some characteristics of
MoRFs.?%%2** These lipid-binding disorder-to-
order transitioning IDRs are named MemMoRFs.**
They are involved in regulation of apoptosis, phago-
cytosis, trafficking and shaping the cell membrane,
and are associated with pathologies including neu-
rodegeneration, viral infection, and toxicity.*> A gold
standard collection of experimentally annotated
MemMoRFs was recently released in an online
database.®® While this database is currently limited
to 107 proteins, many more MemMoRFs are
expected to be found across proteomes, motivating
the development of computational methods that
would accurately predict MemMoRFs in protein
sequences. These predictors could be used to sup-
port efforts to reduce the current MemMoRF anno-
tation gap.

Practicality of developing computational
sequence-based predictors is supported by the
fact that disorder is encoded in the underlying
sequences, i.e., disorder is intrinsic to the
sequence.” In other words, IDRs have different
sequence biases when combpared to ordered/struc-
tured sequence regions,®>*°*® making them pre-
dictable  directly from their = sequences.
Consequently, well over 100 predictors of IDRs
were developed.**™*’ Similarly, binding IDRs were
also shown to have specific sequence biases,*®
suggesting that they can be also accurately identi-
fied in protein sequences. Correspondingly, close
to 40 methods that predict particular functional sub-
types of IDRs, such as MoRFs, RNA-binding, DNA-
binding and lipid-binding IDRs, were released.*®
However, there are no methods that target predic-
tion of MemMoRFs.

In addition to the MoRF-specific characteristics
(i.e., intrinsic disorder and disorder-to-order
transition upon binding), MemMoRF sequences
interact with membranes. The latter characteristic
is manifested via distinct sequence bias where
MemMoRFs are enriched in positively charged
Lys residues when compared to the other MoRFs.
This enrichment can be explained by the fact that
the intracellular leaflet of a membrane bilayer
contains many lipids with negatively charged head
groups.”?*° While there are no predictors of Mem-
MoRFs, there are methods that provide accurate
predictions of residues that share some of the key
characteristics that define MemMoRFs. Corre-
spondingly, we investigate whether the current
methods that predict the intrinsic disorder, MoRFs
and disordered lipid-binding regions can be used

to accurately predict MemMoRFs. We also combine
results produced by these different types of meth-
ods to examine whether such approach would result
in a more accurate prediction of MemMoRFs. Our
overarching objective is to formulate a simple-to-
implement sequence-based MemMoRF predictor
that provides relatively high residue-level accuracy
(i.e., can accurately identify amino acids that make
up MemMoRFs) and that reproduces distribution of
MemMOoRF lengths (i.e., to ensure that the amino
acids predicted as MemMoRFs form regions in the
sequence that share similar distribution of their
length when compared to the distribution of the
length of native MemMoRF regions).

Materials and methods

Selection of relevant predictors

We identify suitable current disorder and disorder
function predictors that cover the three defining
aspects of MemMoRFs: intrinsic disorder,
similarity to MoRFs, and binding to lipids. We rely
on results from the recently completed
community-organized Critical Assessment of
Intrinsic disorder (CAID).°">? More specifically,
CAID was organized and run by independent
assessors (i.e., they did not submit methods for
assessment) and comparatively evaluated a broad
selection of predictors of IDRs and binding IDRs
by comparing their predictions to native annotations
using large blind datasets of IDPs (i.e., these pro-
teins and annotations were not available to the par-
ticipants before the assessment). This makes
results produced by CAID arguably more reliable
and less biased compared to the results of other
studies that are produced by the authors of predic-
tors and which utilize previously known ground truth
annotations.*”**°” We use the main performance
metric, the Area under the ROC curve (AUC_ROC)
to quantify and compare predictive performance
between different methods, with the underlying goal
to select the most accurate tools.

Among the 32 participating disorder predictors
and using the main DisProt dataset, CAID
assessors identified fIDPnn°® as the most accurate
tool.>" This method secures AUC_ROC of 0.814,
compared to the closest other predictors includin%
RawMSA>® (AUC_ROC of 0.780), ESpritz°
(0.774), DisoMine®’ (0.765), and SPOT-
Disorder2°? (0.760). Moreover, fIDPnn is also rela-
tively fast, allowing to efficiently predict large collec-
tions of proteins. The average fIDPnn’s runtime is
about 20 seconds per protein, compared to 250
seconds for RawMSA, 5 seconds for ESpritz, 3 sec-
onds for DisoMine, and 2,000 seconds for SPOT-
Disorder2.”' These advantages of IDPnn were also
highlighted in a commentary article for the CAID
assessment,>” further supporting our selection of
this tool as a representative method for the accurate
prediction of IDRs.
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CAID also evaluated a broad collection of 11
predictors of binding IDRs.”" The top five predictors
in this category include ANCHOR2%® (AUC_ROC of
0.742), DisoRDPbind®*©° (0.729),
MoRFCHiBiign™° (0.720), MoRFCHiBiyep’”
(0.702), and ANCHOR®® (0.694). These methods
are computationally efficient and complete predic-
tions with an average runtime below 5 seconds
per protein, except for MORFCHiBiyep that takes
about 100 seconds.”’ We select the most accurate
ANCHORZ2, which predicts IDRs that interact with
proteins, and the top-ranked predictor of MoRFs,
which is MoRFCHiBi gt

At present, there are only two methods that
predict _lipid-binding IDRs: DisoLipPred®® and
MemDis.”” Both methods were released recently
and after CAID was completed. They target differ-
ent types of regions where the former predicts
lipid-binding IDRs that exclude transmembrane
regions (i.e., MemMoRFs are not localized in the
transmembrane regions) and the later exclusively
targets prediction of IDRs in the transmembrane
proteins. While DisoLipPred is capable of making
predictions for all protein sequences, MemDis is
limited to the transmembrane proteins. Thus, Mem-
Dis cannot be used to make predictions for the
membrane-associated proteins that also include
MemMoRFs. Consequently, DisolLipPred is the
only predictor of lipid-binding IDRs that is suitable
for our study.

In summary, we selected four representative
methods that produce predictions that are relevant
to the identification of MemMoRFs: fIDPnn,
MoRFCHiBiiigh, ANCHOR2 and DisoLipPred.
These methods take protein sequence as the sole
input and generate a numeric score for each
amino acid in the input sequence that quantifies
its propensity to be disordered (fIDPnn), to be part
of a MoRF region (MoRFCHiBi_g), to be
disordered and bind proteins (ANCHOR2), and to
be disordered and bind lipids (DisoLipPred).

Test dataset

We use the MemMoRF database,”® which
includes 107 proteins, to develop a dataset of
experimentally annotated MemMOoRFs to test pre-
dictive performance of selected predictors. We
ensure that the test proteins have low, below 25%
sequence similarity to the training proteins that were
used to develop the four selected predictors. This
follows procedures used to evaluate related
sequence-based predictors, 626566697172 gng jg
motivated by the fact that sequence alignment
would not produce accurate predictions at these
low levels of similarity. To this end, we combine
the training dataset of the four methods with the pro-
teins that we collect from the MemMoRF database
and we cluster the resulting set of 17,579 proteins
using the CD-Hit program’® at 25% sequence simi-
larity. Next, we select proteins from clusters that do
not include any of the training proteins and we

exclude sequences that are <30 amino acids in
length (i.e., peptides). The resulting test dataset is
composed of 41 proteins that include 684 Mem-
MoRF residues and which share the low similarity
with the training datasets of the four predictors.

Evaluation metrics

The disorder and disorder function predictors
produce two outputs for each amino acid in the
input protein sequence: a numeric propensity
value and a binary score. The propensities
quantify likelihood for a given type of annotation
(disorder, MoRF, MemMoRF, etc.). The binary
scores are typically derived from the propensities
based on a threshold, such that residues with
propensities > threshold are labelled as having a
given annotation (i.e., positive residues) while the
remaining amino acids are labelled as not having
this annotation (i.e., negative residues). We
evaluate the binary predictions using several
popular metrics:

- e P
true positive rate (TPR) = sensitivity = TP+ EN

false positive rate (FPR) =1 — specificity = —FPZPTN

2TP

Al =T P FN

where TP, TN, FN and FP are the numbers of true
positives (correctly predicted positives), true
negatives (correctly predicted negatives), false
negatives (positives incorrectly predicted as
negatives), and false positives (negatives
incorrectly predicted as positives), respectively.
We calculate F1 at a threshold where the
maximum value of F1 is obtained (F1max). We
also compute sensitivity and F1 using the
thresholds that produce low FPRs at 5% and
10%; these metrics quantify performance for
predictions with a low rate of incorrect predictions
of annotations.

We assess predictive quality of the propensity
scores with the commonly used AUC_ROC
metric. The ROC curve plots TPR versus FPR
values when using every unique propensity value
as the threshold; this metric offers a
comprehensive evaluation across all possible
propensity values and the corresponding binary
predictions.”* The AUC values range between 0
(perfectly incorrect/inverted predictions) and 1 (all
predictions are correct), where 0.5 denotes random
predictions and the expected values span interval
between 0.5 and 1. Moreover, since the test dataset
is highly imbalanced, where about 3% of the amino
acids are MemMoRFs, we also separately evaluate
a part of the ROC curves where the FPR values are
relatively low, below 10%. This part corresponds to
the predictions where the number of the putative
MemMoRFs does not substantially exceed the rate
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of the native MemMOoRFs; the remaining parts of the
ROC curve are arguably impractical because they
correspond to significant over-predictions of Mem-
MoRFs. Since the corresponding AUC values are
small numbers that might be hard to interpret, we
calculate ratio between the AUC for the predictions
from a given tool and the AUC of a random predic-
tion. Hence, rateAUC of 1 indicate that a given tool
produces predictions that are equivalent to a ran-
dom predictor and while values > 1 quantify the rate
of improvement over a random predictor. The use of
the rateAUC value is motivated by its applications in
a number of related studies that feature similarly
imbalanced test scenarios.”>*°

Statistical tests

We performed statistical tests to investigate
whether differences in predictive performance
between the best-performing and the other
predictors are consistent across diverse datasets.
To do that, we sample 100 sets of randomly
selected 50% of the test proteins and compare the
differences across the corresponding 100
evaluations. We use the student t-test when the
corresponding data (i.e., measured values of the
AUC, rateAUC, F1, and TPR metrics) are normal,
and otherwise we apply the Wilcoxon rank-sum
test. We determine normality using the Anderson-
Darling test at p-value < 0.05.

Results

Comparative evaluation of the selected four
predictors

We assess predictive performance for the four
representative  related  predictors  (fIDPnn,
DisoLipPred, MoRFCHiBi jjnr and ANCHOR2)
when using their results to predict MemMoRFs in
the test dataset. Moreover, we compare these
results against a baseline produced by random
predictions that mimic the distribution of the native
MemMoRF regions. We setup the baseline by
producing randomly generated scores between 0
to 1 such that using the threshold of 0.5 the
number of the putative MemMoRFs matches with
the number and the size of the native MemMoRF
regions. Table 1 reports the results.

The baseline predictor obtains AUC = 0.52,
rateAUC = 1.6 and F1,,x = 0.07, which as
expected is near a random performance level.
Interestingly, the four representative methods
produce predictions with a broad range of
predictive quality. Three of the four selected
methods outperform the baseline while ANCHOR2
performs rather poorly with AUC = 0.52,
rattAUC = 0.8 and Fi1,.,c = 0.09. The
ANCHORZ2’s results can be explained by the fact
that this tool focuses on predicting disordered
protein-binding regions that share little in common
with MemMoRFs. fIDPnn produces the best and

accurate predictons with AUC = 0.76,
rateAUC = 2.7 and F1,,.x = 0.15. The other two
methods offer comparatively modest predictive
quality, MoRFCHiBi_ g,y with AUC = 0.69,
rateAUC = 3.1 and F1,,ax = 0.14, and DisoLipPred
with AUC = 0.65, rateAUC = 2.7 and
F1,.ax = 0.12. The ROC curves provide further
details (Figure 1). The curve of fIDPnn is
noticeably above the curves of the other three
methods and the baseline for FPR > 0.1. The
best option for the lower PFR values is
MoRFCHiBiig,; Statistical analysis based on the
AUC values reveals that fIDPnn significantly
outperforms DisoLipPred, MoRFCHIiBiignt,
ANCHOR2 and the baseline (p-value < 0.01).
Altogether, we find that three of the selected tools,
fIDPnn, DisoLipPred, and MoRFCHiBiyign;, provide
predictions that can be wused to relatively
accurately identify MemMoRFs. They target
prediction of different key characteristics of
MemMOoRFs including intrinsic disorder (fIDPnn),
MoRFs  (MoRFCHiBi_ig) and lipid-binding
(DisoLipPred), which can explain their relatively
good performance.

Selection of combination method

The fact that the three selected and well-
performing predictors focus on different aspects of
MemMoRFs suggests that combining their results
might provide a more holistc and accurate
MemMoRF prediction. We test this hypothesis by
implementing and empirically evaluating all possible
permutations of subsets of the four individual
methods, i.e., we also include ANCHOR2 for
completeness and to check whether combining it
with the other tools could be helpful. There are total
of ten permutations that include six pairs of
methods, three combinations of three methods, and
all four methods combined together. We implement
the combinations in two steps. First, we standardize
the numeric propensities generated by each tool
into the wunit range wusing the min—-max
normalization. In the second step we combine the
normalized scores of the selected subset of
methods and lastly, we normalize the resulting
combined score to the unit range using the min—
max approach. We combine the scores using five
techniques: (1) SimpleProduct where we multiply
the scores; (2) SimpleAverage where we average
scores when each score is given equal importance;
(3) WeightedAverage where score for a given
method is multiplied by this method’s AUC (weight)
before calculating the average; 4) SimpleAverage
*Minimum where we multiply the average by the
minimal score selected among the considered
methods; and (5) WeightedAverage *Minimum
where we multiply the weighted average by the
minimal score. The SimpleProduct implements an
approach where the resulting prediction has high
scores (i.e., predicts MemMoRFs) only when all
contributing methods have high scores. The
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Table 1 Predictive performance on the test dataset. Methods are sorted in the descending order by their AUC values. We
use bold font to identify the best individual predictor and the best combined method based on their AUC values. We
report medians of the metrics that we calculated over the 100 sampled test sets (see “Statistical test” section for details).
We summarize results of the statistical significance analysis in the x/y format next to the reported median value, where x
is for comparison against the best overall/combined method (CoMemMoRFpred) and y against the best single method
(fIDPnn), where ** and * denote statistically significant differences with p-values < 0.01 and <0.05, respectively, and =
denotes differences that are not statistically significant (p-value > 0.05).

Predictors AUC rateAUC F1_max F1_FPR5% F1_FPR10% TPR_FPR5% TPR_FPR10%
CoMemMoRFpred 0.785*/ 3.8*/ 0.182*/ 0.135* 0.160 **/ 0.19 **/ 0.36 **/
fIDPnn + DisoLipPred + MoRFCHiBi gy 0.778 */= 3.6 **/= 0.178 **/= 0.115 **/** 0.158 **/= 0.16 **/** 0.33 **/**
fIDPnn 0.761 /* 2.7 I 0.155 /**  0.095 /** 0.114 /** 0.12 /** 0.23 /**
MoRFCHiBiign 0.689 **/** 3.1 **/** 0.135**/** 0.119 **/** 0.127 =/** 0.16 **/** 0.27 **/**
DisoLipPred 0.650 **/** 2.7 =/** 0.118 **/** 0.115 **/** 0.103 =/** 0.14 **/** 0.22 =/**
Baseline 0.523 **/** 1.6 **/** 0.073 **/** 0.065 **/** 0.660 **/** 0.06 **/** 0.06 **/**
ANCHOR2 0.515**/** 0.8 **/** 0.086 **/** 0.028 **/** 0.057 **/** 0.03 **/** 0.12 **/**

SimpleAverage predicts MemMoRFs when multiple
but not necessarily all of the input scores are high.
The WeightedAverage is a similar approach but it
weights the scores by the overall predictive
performance of the corresponding methods. The
SimpleAverage*Minimum and
WeightedAverage*Minimum techniques compute
scores that hybridize averaging and multiplying, i.e.,
not all inputs scores must be high for the resulting
score to be high (i.e., predict MemMoRF) but the
lowest input score cannot be low.

We compare AUCs generated by each of the ten
combinations and using the five techniques (total of
50 options) in Figure 2. We find that the best
AUC = 0778 is secured by the
SimpleAverage*Minimum and
WeightedAverage*Minimum  techniques  that
combine predictions from fIDPnn, MoRFCHIBiy g,
and DisolLipPred, closely followed by the
SimpleProduct of the same three methods with
AUC = 0.776. The highest AUCs for the
SimpleAverage (AUC = 0.754) and
WeightedAverage (AUC = 0.757) that are based
on combining fIDPnn and MoRFCHiBi g, are
similar and substantially lower than the AUCs of
the other three techniques. The finding that
SimpleAverage and WeightedAverage produce
similar quality of predictions suggests that weights
are not helpful. Moreover, the observation that
techniques that use multiplications are better than
those that rely on average suggests that
MemMoRFs are more accurately predicted when
all contributing methods are required to produce
high scores. This can be explained by the fact that
the individual predictors cover somehow
orthogonal characteristics of MemMoRFs (i.e.,
intrinsic disorder, lipid binding and MoRF) and
only combing them all together reflect the
“complete” nature of MemMoRFs. Moreover, our
results reveal that combinations that involve
ANCHOR2 are outperformed by those that
exclude ANCHOR2, which is in line with the
results for the individual predictors in Table 1.

Along with the AUC values in Figure 2, we
compare the ROC curves of the ten combination
methods obtained using the overall best-
performing SimpleAverage*Minimum technique in
Figure 1. The top-three combination methods
including fIDPnn + DisoLipPred + MoRFCHiBiygnt,
fIDPnn  + MoRFCHiBij g, and fIDPnn + Diso
LipPred secure relatively similar AUCs (0.778,
0.773 and 0.767, respectively). Their ROC curves
are better (i.e., positioned above) than the ROC
curve of the best individual method, fIDPnn,
particularly for the low FPR region (Figure 1). This
suggests that combining the disorder prediction
with the prediction of MoRFs and/or lipid-binding
regions results in a more accurate identification of
putative MemMoRFs, confirming the validity of our
hypothesis. Among the top three
SimpleAverage*Minimum-based combinations,
fIDPnn + DisoLipPred + MoRFCHiBij g is the
best since it obtains the highest AUC value
(Figure 2) and higher ROC curve in the low FPR
region (Figure 1).

CoMemMoRFPred

While the analysis based on Figures 1 and 2
shows that the fIDPnn + DisoLipPred + MoRFCHi
Biight combination  that relies on the
SimpleAverage*Minimum approach predicts
MemMoRF residues with relatively high accuracy,
we further investigate whether these residues
compose sequence regions that mimic the
distribution (i.e., number and sizes/lengths) of the
native MemMoRF regions. Figure 3 reveals that
the distribution of the predicted regions (WS 1,
light-yellow line) is very different than the
distribution for the native MemMoRFs (Native,
dashed green line).

The predicted regions are much shorter and there
are many of them, thus the difference between the
two distributions is statistically significant (p-value
<0.01). This issue can be fixed with window-
based smoothing, i.e., the predicted propensity
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Figure 1. ROC curves computed on the test dataset. We include the baseline, the four selected predictors and ten
combinations of these predictors that rely on the Simple Average*Minimum technique. Methods in the legend box are
arranged in the descending order of their AUC values. The individual methods are shown using solid lines while the

combination methods are in dashed lines.

values are averaged over a sliding sequence
window to produce a new propensity for the
residue located in the middle of the window.
Smoothing was used in several related studies for
the prediction of disorder and MoRFs.%"2 We opti-
mize the window size (WS) by comparing results for
sizes = {3, 5, 7, 9, 11, 13, 15}, shown in Figure 3,
where WS = 1 corresponds to predictions without
smoothing. Distributions of the predicted Mem-
MoRF regions with WS = 3, 13, and 15 are signifi-
cantly different from the distribution for the native
MemMOoRFs (p-value < 0.05). The differences are
not statistically significant for WS =5, 7, 9, and 11
(p-value > 0.05). Among these four window sizes,
MemMoRFs generated using smoothing with
WS = 9 (red colored line in Figure 3) are the closest
to the native MemMoRFs (green colored line in Fig-
ure 3) in terms of size and number of MemMoRFs,
i.e., this result converges to the distribution of the
native MemMoRFs for longer region sizes.
Correspondingly, we formulate a new predictor of
MemMoRFs based on combining fIDPnn,
DisoLipPred and MoRFCHiBiiign; methods with
smoothing using WS of 9. One of these tools

(MoRFCHiBijign) was authored by another
research group and we incorporate it into our
solution with their permission. Table 1 compares
this new computational tool, CoMemMoRFPred
(Combined MemMoRF Predictor), with the other
methods. CoMemMoRFPred secures the highest
AUC = 0.785, rateAUC = 3.8 and F1,,, = 0.182.
Its sensitivity at FPR = 0.05 is 0.19, which means
that CoMemMoRFPred predicts the true positives
at 0.19/0.05 = 3.8 higher rate than the false
positives. These results are statistically better than
the predictions of the best individual predictor,
flDPnn (AUC = 0.761, rateAUC = 2.7 and
F1nax = 0.155; p-value < 0.01). Moreover, the
ROC curve of CoMemMoRFPred has the steepest
slope for low FPR values (Figure 1), which
suggests that it outperforms the other solutions
where the amount of the predicted MemMoRFs
does not substantially over-estimate the amount of
native MemMoRFs. This is why
CoMemMoRFPred obtains the highest rateAUC
value in Table 1.

We further contrast predictions generated by a
selected group of representative approaches that
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Figure 2. Comparison of the AUC values on the test dataset for the ten combinations of the four methods that are
computed by using SimpleAverage (red bar with black border), WeightedAverage (green bar with black border),
SimpleProduct (blue bar with black border), SimpleAverage*Minimum (light pink bar), and WeightedAverage*Min-
imum (light green bar) techniques. Results from the five techniques are grouped per specific combination, and they
are sorted in descending order of their highest AUC value, which are shown at the top of the bars.

include the baseline, the best individual predictor
fIDPnn, the best combined fIDPnn + DisoLipPred +
MoRFCHIiBiigh: approach, and CoMemMoRFPred.
In Figure 4, we compare distributions of propensity
values produced by these approaches between the
native MemMoRFs residues (in red) and the non-
MemMoRF residues (in blue) from the test
dataset. The results produced by the baseline
predictor show no significant difference (p-
value 0.33). The progressively improved
solutions, from the single predictor through the
combination of methods to the inclusion of
smoothing, register correspondingly smaller and
smaller p-values. The overall best
CoMemMOoRFPred obtains p-value = 2.6 x 10~ 14°.
These observations are in line with the results from
Table 1 and demonstrate that CoMemMoRFPred
offers accurate predictions of MemMoRFs. We
conclude that this new tool provides high-quality
residue-level propensities and also generates
putative MemMoRF regions that closely replicate
the number and sizes of the native MemMoRFs in
the test dataset. This was accomplished by
utilizing an innovative design that synergistically
combines results from three existing tools that
address predictions of different biophysical
aspects of MemMoRFs and the application of the
smoothing operator.

CoMemMoRFPred web server

We provide CoMemMoRFPred as a freely
available and easy to use web server at htip://

biomine.cs.vcu.edu/servers/CoMemMoRFPred. We
implemented the front-end using HTML and
JavaScript, while the back-end is based on PHP,
Java, Python and the MySQL database. Users do
not need to install any software beside a web
browser.

Our web server features an easy to navigate input
interface (Figure 5), where users need to provide a
FASTA-formatted protein sequence as the input.
While it is not mandatory, we encourage users to
provide an email address where link to the results
is emailed after the prediction is completed.
Otherwise, the browser window must stay open
during the prediction in order to access the web
page with the results. Prediction is launched by
clicking on the ‘Run’ button, which redirects to the
processing page, followed by the results’ page.
The entire prediction process, which takes about 4
minutes for an average size protein sequence
(about 300 residues long), runs automatically on
the server side. The processing page provides
updates on the process, including the current
status (acceptance of the job, position in the
queue of job, and processing the prediction) and
completion.

The server provides results in two complementary
formats including a text file, in which the data are in
an easy-to-parse comma-separated format, and an
interactive graphical output. The text file contains
the raw scores and normalized (using the min—
max approach) scores produced by
CoMemMoRFPred, fIDPnn, MoRFCHiBi_g, and
DisoLipPred, and the binary predictions from
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Figure 3. Distribution of MemMoRF region sizes for the native MemMoRFs and the putative MemMoRFs predicted
by the fIDPnn + DisoLipPred + MoRFCHiBiign combination that relies on the SimpleAverage*Minimum approach that
applies smoothing with variable window size (WS) values. The x-axis shows the MemMoRF size that we quantify with
the number of residues. The y-axis is the cumulative count of MemMoRF regions with size that is defined by the x-axis
value. Window sizes are shown in the figure legend and they vary between 1 (no window; light yellow) and 15 (gray).
Statistical significance of differences between the distribution for the native MemMoRF regions and each of the
predictions is given in the figure legend, where * and ** denote that the differences is statistically significant with p-
value < 0.01 and <0.05, respectively, and where = denotes differences that are not statistically significant (p-

value > 0.05).

CoMemMoRFPred. The threshold we use to
binarize the predictions corresponds to a low
FPR = 0.05 (i.e., specificity = 0.95). The text file
contains a header explaining the data format. The
server generates the graphical output directly in
the web browser window. This graphical panel
visualizes the predicted MemMoRF regions based
on the binary predictions from CoMemMoRFPred
together with the corresponding normalized
putative propensity values, which are shown along
the input protein sequence. We also plot the
propensity  values generated by fIDPnn,
DisoLipPred and MoRFCHiBi gn. The graphical
panel is interactive with zoom-in and zoom-out
features, panning along the horizontal axis
(protein sequence), and ability to reset to the
default view. Users can obtain details, such as
numeric values of propensities and location of the
putative MemMoRF regions, on the mouse hover.
Moreover, we include an option to generate and
download an image of the graphical panel.

Case study

We explain CoMemMoRFPred's predictions
using an example test protein, the cell division
topological specificity factor MinE (UniProt
accession number: POA734). The Min protein
system is crucial for cell division in E. coli and
consists of the MinC, MinD and MInE proteins.®®

Briefly, dynamic oscillations of these proteins from
one pole of the bacterial cell to the other pole deter-
mines placement of the central division septum dur-
ing the E. colf's cell division process.®* As part of
this process, a MemMoRF region at the N-
terminus of the MIinE sequence (positions 2-9)
binds to the cell membrane inducing changes in
the membrane topology and facilitating detachment
of MinD from membranes during disassembly stage
of the oscillation cycle.?* Upon binding the mem-
brane, this MemMoRF undergoes a conformational
change by folding into an amphipathic helix which
drives the deformation of the membrane.®®

We use the MInE sequence to generate
prediction of MemMoRF with CoMemMoRFPred
(Figure 6), which predicts a MemMoRF region at
the N-terminus (positions 4 and 15). This
prediction cIose!gy matches the native MemMoRF
(positions 2-9).%° While the region predicted by
CoMemMoRFPred extends beyond the native
MemMoRF region, three basic amino acids that
are part of this extension (R10, K11 and K12) were
reported to undergo folding upon binding to the
membrane.®® This observation suggests that our
prediction might be in fact correct. The MemMoRF
predictions by CoMemMoRFPred are facilitated by
the scores of the three methods that it combines:
fIDPnn, DisoLipPred and MoRFCHiBijgn. The
putative propensities produced by each of the three
methods (gray lines in Figure 6) are relatively high
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Figure 4. Boxplots that compare distributions of the predicted propensity values for the native MemMoRFs residues
(in red) and the non-MemMoRF residues (in blue) from the test dataset. We compare the results produced by
CoMemMoRFPred, the best combined method that does not apply smoothing (fIDPnn + DisoLipPred + MoRFCHiBiy g
that relies on the SimpleAverage*Minimum technique), the best individual method (fIDPnn) and a random baseline.
The whiskers denote 1st and 99th percentiles and the solid lines inside the boxes correspond to the median. We
evaluate the statistical significance of differences between the two corresponding distributions using the Wilcoxon-
rank sum test since all distributions are non-normal, as tested with the Anderson-Darling test at p-value of 0.05. The
corresponding p-values are placed above each pair of box plots.

for the putative MemMOoRF region (green horizontal
bar in Figure 6). This observation reveals that the
prediction of this regions is supported by high puta-
tive propensities for disorder (flIDPnn), for MoRF
(MoRFCHiBi jgny) and for lipid binding (Diso-
LipPred). Having high values for only two or one
of these putative propensities is insufficient to pre-
dict MemMoRFs. These observations illustrate
why the SimpleAverage*Minimum technique that
we use to combine predictors provides strong
results. Comparison of the red and green line plots
in Figure 6 explains the smoothing performed by
CoMemMoRFPred. The output of the CoMem-
MoRFPred (green line) is based on averaging and
produces a smoother curve when compared to the
red line produced by the fIDPnn + DisoLipPred +
MoRFCHIiBiign: combination. Moreover, smoothing
also potentially eliminates spurious predictions of
very short MemMoRFs that might be generated by
the fIDPnn + DisoLipPred + MoRFCHiBiyig,: combi-
nation. We note that this combination generates
such spurious prediction near the C-terminus (resi-
dues 83 and 84) where the propensities exceed the
value of the threshold. Smoothing lowers the values
of propensities in that region. More generally, pre-
dictions from CoMemMoRFPred for residues that
have either high or low putative propensities (i.e.,
propensities that are substantially higher or lower

than the threshold used by CoMemMoRFPred;
green dotted line in Figure 6), should be considered
as more accurate than the predictions associated
with propensities near the threshold value. Our
example demonstrates how to understand and
interpret results produced by CoMemMoRFPred,
and how these predictions are generated from the
results output by fIDPnn, DisolLipPred, and
MORFCHiBiLight.

Summary

IDRs interact with a variety of partner molecules,
such as peptides, proteins, nucleic acids and lipids,
by adopting partner-specific conformations upon
binding. We focus on recently introduced
MemMoRF regions, which are lipid-binding
MoRFs that were found in the membrane-
associated and transmembrane  proteins.
Motivated by functional importance and a
relatively small number of the experimentally
annotated MemMoRFs and the lack of
computational tools for prediction of these regions,
we apply an empirical approach to develop an
accurate sequence-based predictor of these
regions. We use an experimentally validated
collection of low similarity proteins with
MemMoRFs to select and combine results
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CoMemMoRFPred
( Combined tool for MemMoRF Prediction )

Help | Materials | Acknowledgments | Disclaimer| Biomine

CoMemMoRFPred is a method that predicts disordered regions of membrane associated proteins which undergo
disorder to order transition upon binding with lipds.

Please follow the three steps below to make predictions:
1. Copy and paste protein sequence into text area

The server accepts only one FASTA formatted protein sequence with minimum length of 21 residues. Please enter
the protein sequence in the following text field.

>POA734
MALLDFFLSRKKNTANIAKERLQIIVAERRRSDAEPHYLPQLRKDILEVICKYVQIDPEMVTVQLEQKDGDISILELNVTLPEAEELK

[ Example} [ Reset sequence

2. Provide your email address (optional)

Please enter your email address in the following text area or leave it blank. A link to prediction results will be sent to
your email address once they are ready.

Ikurgan@vcu.edu

3. Predict

Click Run button to launch prediction.

Figure 5. Input interface for the CoMemMoRFPred webserver at http://biomine.cs.vcu.edu/servers/
CoMemMoRFPred.

Region: 2 -9
=]

Native MemMoRF regions
Region: 4 - 15

W native MemMoRF residues
B Predicted MemMoRF residues
1 7

. —— fiDPnn-Score

..... MoRFchibi_Light-Score

Predicted MemMoRF regions

DisoLipPred-Score
—— fIDPnn X DisoLipPred X MoRFchibi_Light-Score
w— CoMemMoRFPred Score

Figure 6. MemMoRF predictions for the MIinE protein from E. coli (UniProt: POA734). We show the native
MemMoRF region (MemMoRF database ID: 9247) and the putative MemMoRF generated by CoMemMoRFPred as
the black and green horizontal bars, respectively. The line plots show putative propensities from CoMemMoRFPred
(solid green line), fIDPnn + DisoLipPred + MoRFCHIiBiign; combination that relies on the SimpleAverage*Minimum
technique (solid red line), fIDPnn (solid gray line), MoRFCHiBI_g (dotted dark gray line) and DisoLipPred (dotted light
gray line). We visualize the thresholds that we use to generate the binary predictions for CoMemMoRFpred and
fIDPnn + DisoLipPred + MoRFCHiBi gn; combinations as dotted horizontal lines in green and red color, respectively.
Both thresholds correspond to the correct prediction rate computed on the test dataset (i.e., the number of putative
MemMoRFs is set to be the same as the number of native MemMoRFs).

produced by a representative group of relevant  The resulting CoMemMoRFPred method
state-of-the-art predictors of the intrinsic disorder = generates accurate predictions of MemMoRF
(IDPNN), MoRFs (MoRFCHiBiigh), and residues, with AUC_ROC = 0.785,
disordered lipid-binding regions (DisoLipPred). F1_max = 0.182 and TPR = 0.36 at FPR of 10%.
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Moreover, we show that the inclusion of the
smoothing operator in CoMemMoRFPred results
in the prediction of MemMoRF regions that closely
resemble the distribution of the length of the
natve  MemMoRF regions. We release
CoMemMoRFPred as a convenient and freely
available web server at http://biomine.cs.vcu.edu/
servers/CoMemMoRFPred. This resource
automates and performs the entire prediction
process on the server side, and can be used
without the need to install any software. It
provides predictions in two complementary
formats, text files that can be easily parsed to
acquire the underlying raw predictions and an
interactive graphical interface that visualizes the
predictions directly in the web browser window.
We also introduce a case study that demonstrates
how to interpret and use the CoMemMoRFPred’s
predictions. Similar to the existing predictors that
target other types of disordered binding regions,*®
our tool can be used to support efforts to identify
MemMoRFs in a time and resource-efficient man-
ner. We note that the currently characterized Mem-
MoRF regions were found in the a-helical
transmembrane proteins.®® As part of our future
work we plan to collect data on MemMoRFs in the
B-barrel membrane proteins, expand our Mem-
MoRF database,®® and evaluate CoMem-
MoRFPred on these proteins. Ultimately, we
believe that this work will aid exploration of the func-
tional roles of MemMOoRFs in cellular processes and
pathologic phenomena related to membrane bilayer
interactions.
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