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Intrinsic disorder is instrumental for awide range of protein functions,

and its analysis, using computational predictions from primary structures,
complements secondary and tertiary structure-based approaches. In this
Tutorial, we provide an overview and comparison of 23 publicly available
computational tools with complementary parameters useful for intrinsic
disorder prediction, partly relying on results from the Critical Assessment of
protein Intrinsic Disorder prediction experiment. We consider factors such
as accuracy, runtime, availability and the need for functional insights. The
selected tools are available as web servers and downloadable programs, offer
state-of-the-art predictions and can be used in a high-throughput manner.
We provide examples and instructions for the selected tools toillustrate
practical aspects related to the submission, collection and interpretation

of predictions, as well as the timing and their limitations. We highlight two
predictors for intrinsically disordered proteins, fIDPnn as accurate and fast
and IUPred as very fast and moderately accurate, while suggesting ANCHOR2
and MoRFchibi as two of the best-performing predictors for intrinsically
disordered region binding. We link these tools to additional resources,
including databases of predictions and web servers that integrate multiple
predictive methods. Altogether, this Tutorial provides a hands-on guide to
comparatively evaluating multiple predictors, submitting and collecting
their own predictions, and reading and interpreting results. It is suitable

for experimentalists and computational biologists interested in accurately
and conveniently identifying intrinsic disorder, facilitating the functional
characterization of the rapidly growing collections of protein sequences.

For along time, protein function was considered within the protein However, more recent discoveries demonstrate that many cellular
sequence-structure—-function paradigm'. According to this para-  functions are conducted by proteins and protein regions that do not
digm, a specific function of a protein is determined by its unique  have uniquetertiary structures. These intrinsically disordered proteins
three-dimensional structure encoded in its amino acid sequence.  and regions (IDPs and IDRs, respectively)* are relatively common
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across all taxonomic domains’”. Intrinsic disorder underlies the excep-
tional structural heterogeneity of proteins, which can be composed
of multiple parts/segments that are folded or disordered to different
degrees'. Disorder facilitates many key aspects of protein functions,
thereby complementing functions of ordered proteins and regions™" .
Severalillustrative examples of disorder-driven functions follow:

1. Enabling moonlighting (ability to carry out multiple functions)”
and facilitating the formation of hubs in protein-protein inter-
action networks ™, including in a cell- and tissue-specific
manner*

2. Contributing to cellular signaling™*** and regulation*2

3. Acting as scaffolds?*° and being an essential part of proteina-
ceous machinary*

4. Facilitating alternative splicing and posttranslational modifi-
cations that are linked to the increased functional diversity in
multicellular organisms®*

5. Driving liquid-liquid phase separation and related potential
to control and regulate biogenesis of various membrane-less
organelles®?*

Theinterlinked and complementary presence of structured and dis-
orderedregionsin protein sequences serves as afoundation foramore
general protein structure-function continuum model where ‘a given
protein exists as adynamic conformational ensemble containing mul-
tiple proteoforms characterized by abroad spectrum of structural fea-
tures and possessing various functional potentials™. This suggests that
deciphering protein functions should rely on combining computational
and biophysical studies of both structured regions and IDRs.

The sequence-structure-function paradigm dictates that an
amino acid sequence folds into a unique structure under the physi-
ological conditions®. To this end, sequences of ordered proteins are
characterized by the presence of a ‘folding code™®, which can be poten-
tially used for sequence-based prediction of protein structure. Recent
advancesindeep learning, including AlphaFold*"*®, confirm the utility
of this code and enable accurate and high-throughput predictions of
protein structures®, with some notable exceptions*>*, Similarly, the
lack of unique structures for IDPs/IDRs under physiological conditions
isalsoencoded inspecific features of their amino acid sequences. Early
studies suggest that this ‘nonfolding code’ includes a low content of
hydrophobic amino acids combined with elevated levels of charged
residues, giving rise to the high net charges of these proteins at neutral
pH***.Subsequent computational analyses of the sequences of IDPs/
IDRs revealed that they are depleted in order-promoting residues,
suchas Trp, Tyr, Phe, lle, Leu, Val, Cys and Asn, while being enriched in
disorder-promotingAla, Arg, Gly, GIn, Ser, Glu, Lys and Pro residues™ .
There are also other sequence-derived features, such as sequence
complexity, that are different between the sequences of ordered pro-
teins/domains and IDPs/IDRs"***#*° These characteristics have fueled
the development of numerous computational methods that predict
intrinsic disorder from sequences® >,

The most comprehensive database of experimentally verified
IDRsand IDPsis the DisProt database***, This database is curated from
literature by acommunity of experts and providesinformation on dis-
order status and its functional annotations. DisProt is the key source
ofthe ground truth for design and assessment of methods that predict
disorder and specific functions of IDRs. Whileitis regularly updated, as
ofthe end 0f2022 it contained annotations for less than 2,500 proteins.
Thelimited number of experimentally verified proteins highlights the
importance of predictive methods for the characterization of IDPs
and IDRs. This tutorial recommends and explains useful methods and
resources for the prediction of disorder and disorder functions from
protein sequences. We consider multiple relevant factors, including
predictive accuracy, availability/convenience and runtime efficiency.
We discuss availability and current location of the implementations
and web servers for the selected tools. We also provide instructions

for how to submit predictions and insights into how to read, interact
withand interpret the results. Finally, we estimate overall runtime and
runtime for specific steps of the prediction process.

Prediction of intrinsic disorder

Several surveys provide historical perspectives, categorize and describe
sequence-based disorder predictors, and discuss theirimpact®**>°3°6¢,
Thefirst disorder predictor was published in 1979 (ref. 63). Since then,
many different approaches have been employed for the prediction of
proteindisorder, ranging fromamino acid scales, simplified biophysical
models to more sophisticated machine learning approaches. The latest
efforts focus on designing methods that rely on deep learning models,
which are multilayer neural networks that typically utilize advanced
network architectures (e.g., recurrent and convolutional), with an
underlying objective to continue improving predictive performance™.
The first deep learning-based disorder predictor dates back to 2013
(ref. 64), and these efforts have intensified in the last few years. More
specifically, arecent review reveals that the majority of methods pub-
lished since 2019 (7 out of 12) utilize deep learning models®. Several
large-scale studies were carried out to comparatively evaluate predic-
tive quality ofintrinsic disorder predictors and to assess progress®* .
These studiesinclude community-driven assessments where predictive
methods are evaluated on blind test datasets (i.e., proteins that were not
available tothe authors of predictors) by assessors who do not take part
in the competitions. These assessments include Critical Assessment
of Structure Prediction (CASP) between CASP5 to CASP10 (refs. 71-76)
and Critical Assessment of Intrinsic protein Disorder (CAID) that was
published in 2021 (ref. 70). The CAID experiment was the largest to
date, involved 32 methods, and evaluated their predictive accuracy and
runtime. It found that the best performing methods’*”’, whichinclude
fIDPnn’®, SPOT-Disorder2 (ref.79), RawMSA®® and AUCpred®, rely exclu-
sively on deep neural networks. Interestingly, these methods utilize a
variety of neural network architectures, such as feed-forward (flIDPnn),
convolutional (AUCpred), recurrent (SPOT-Disorder2) and a hybrid of
convolutional and recurrent (RawMSA). A recent study echoes these
results and empirically demonstrates that the deep learning-based
predictors statistically outperform other types of predictors®, which
partly explains the focus on this predictive model.

Thedeep learning-based method that recently shook the protein
structure prediction field, AlphaFold2 (ref. 37), also provides results
that canbe used toidentify intrinsic disorder. Forinstance, low values
of the predicted local distance difference test scores, which estimate
reliability of the AlphaFold2’s structure predictions at the residue level,
and window-based averaging of the predicted relative solvent acces-
sible surface have been shownto predict IDRs relatively accurately on
the DisProt datasets®>**. Moreover, AlphaFold2 was combined with
Rosetta ResidueDisorder®* to produce a disorder prediction®. How-
ever, recent studies show that these results take much more time to
produce and are not as accurate as the predictions produced by other
disorder predictors®®,

We compiled results generated on the DisProt dataset from the
CAID experiment’® and a subsequent study that assesses newer meth-
ods on the same dataset® to analyze predictive performance in the
context of when these methods were released, their predictive models
and runtime. We focus on methods that are publicly available as either
standalone code and/or aweb server, which ensures that the end users
can relatively easily collect their results. We use the recently released
large benchmark dataset from the CAID experiment that includes
646 proteins and excludes proteins with ambiguous disorder annota-
tions. The results in CAID were measured using bootstrapping with
1,000 repetitions and the assessment was blind (i.e., disorder annota-
tionswerenot publicly available at the time) and so predictors could not
betrained onthese data. The runtime was evaluated on the same equip-
mentthatincludes Intel 8 core processors with16 GB of random access
memory and the Ubuntu16.04 operating system. We quantify predictive
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Fig.1|Predictive performance of disorder predictors available to end users.
The results are computed based on the benchmark dataset from CAID” that was
also used in a subsequent study®’. The methods are divided into two groups:
those that rely on deep learning models (blue markers) versus those that utilize
other types of models (orange markers). a, The AUC values. b, The MCC values.
Methods identified using markers with black border are fast, i.e., on average they
complete prediction for a single proteininunder 1s. The predictors are encoded
as follows: (1) DisEMBL-465 (ref. 148), (2) DisEMBL-HL'**, (3) FoldUnfold™",
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(4) PONDR VSL2B"?, (5) IsUnstruct'®?, (6) Espritz-DisProt'”, (7) Espritz-NMR'",

(8) Espritz-XRay'*, (9) DISOPRED3 (ref. 183), (10) DisPredict'**, (11) MobiDB-
lite'”?, (12) SPOT-Disorder', (13) IUpred-long'? (v2), (14) IUpred-short'? (v2),

(15) pyHCA, (16) SPOT-Disorder-Single'*®, (17) RawMSA®°, (18) SPOT-Disorder2
(ref. 79), (19) IDP-Seq2Seq™’, (20) fIDPnn’®, (21) Metapredict'®, (22) RFPR-IDP™’
and (23) DisoMine'®. Additional details for these predictions are in Supplementary
Tablel.

Predictive quality measured with MCC

performance withtwo popular metrics: the area under receiver operat-
ing characteristic curve (AUC) and Matthew’s correlation coefficient
(MCC), which we define in Supplementary Information.

Figure 1summarizes the results for 23 publicly available disorder
predictors that were tested on the CAID dataset®’°, We find a clear
upward trend in predictive performance relative to the publication
time. This confirms observations from recent studies that point to
a steady progress in improving predictive quality as newer tools are
released’™®’. We also observe that deep learning-based tools produce
more accurate predictions, which agrees with recent studies®”°. As it
was observed in CAID”’, some of the more recent methods produce
relatively accurate results, with AUC values >0.75 and MCC values >0.3.
Figurelidentifies several accurate methods, including fIDPnn, RawMSA
and SPOT-Disorder2. Runtime data published in CAID reveal that they
on average take about 20 s, 250 s and 2,000 s to predict one protein,
respectively’®. Moreover, RawMSA is available only as source code,
while the other two tools have both source code and web server options.
Altogether, when considering predictive performance, runtime and
availability, the currently best option is fIDPnn.

We separately consider very fast predictors. This aspect is par-
ticularly relevant for applications where disorder predictions are
generated for large collections of proteins. Numerous examples of
such large-scale studies are available, including recent analysis of
RNA-binding proteins inahuman proteome’, investigation of distribu-
tion of intrinsic disorder across subcellular compartments”, analysis
of coronaviruses®’**>and other viral proteomes®*, and identification of
cancer driver genes®. Five methods are capable of predicting agiven
proteininunder1s: DisSEMBL-465, DisEMBL-HL, FoldUnfold, IsUnstruct,
IUPred-long and IUPred-short. Thefirst three tools offer relatively low
levels of predictive performance (Fig. 1), and IsUnstructis available as
only aweb server. Consequently, the best option to quickly generate
disorder predictionsis IlUPred.

The two methods that we recommend provide a good trade-off
between predictive performance and runtime, with fIDPnn being
about one order of magnitude slower but producing more accurate
predictions, while [UPred is extremely fast and reasonably accurate.
Moreover, bothtools are available as source code that canbe installed

and run on user’s computers, and as user-friendly web servers. In the
latter case, predictions are done on the server side and the results are
returned to the user in two complementary formats: a text file that can
be downloaded and parsed to collect the predictions and a graphical
file that visualizes the predictions.

Prediction of disordered binding regions

One of the key functional mechanisms of IDPs is molecular recognition,
whichinvolvesavariety of bindingmodes. Some IDRs contain molecular
recognition features (MoRFs), short regions capable of binding-induced
folding that are implicated in signaling and regulation® %", Plasticity
of IDRs also enables them to fold differently when interacting with
different partners'®% This can give rise to binding promiscuity in the
form of one-to-many or many-to-one interactions'°>'>, Some IDRs form
dynamic complexes'”, including ‘fuzzy’ assemblies with high levels of
disorderinthe bound state'®'””. Moreover, individual binding IDRs may
overlap and form molecular switches'®. Interestingly, binding IDRs are
also characterized by unique biases of their amino acid sequences?”,
making them predictable from sequence.

While there are over 100 disorder predictors available and many
of them continue to be frequently used*, recent research has shifted
to building methods that predict specific functional types of IDR, in
particular those that interact with ligands. A few surveys summarize
recently developed predictors of disordered binding regions®*'0%10%-111,
With over three dozen of these methods', the majority of them focus
on predicting MoRFs® ', Several methods also target prediction of
amore generic class of disordered protein-binding regions, which
are not limited to shorter segments'’. The impact and value of these
methods arereflected by the inclusion of their evaluationin the CAID
experiment’. Disordered binding regions were defined according
to the DisProt database as regions that were shown to be involved in
binding based on experiments. CAID evaluated 11 predictors of dis-
ordered binding regions and found that five of them perform above
abaseline level: ANCHOR2 (ref. 112), DisoRDPbind"”, MoRFchibiy
(ref.114), MoRFchibiy, (ref.115) and OPAL"®. The best method that tar-
gets prediction of disordered protein-binding regionsis ANCHOR?2; it
securesan AUC 0of 0.742 and MCC 0f 0.199 in CAID°. The highest scoring
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Fig.2| Computational analysis of human cellular tumor antigen p53
(UniProt*®ID: P04637) using disorder and disorder function predictors.
a, Color-coded native annotations of disorder (brown) and domains (blue)
collected from the DisProt database. For the domain annotations: light blue
denotes annotations sourced from either Pfam or Gene3D versus dark blue for

annotations where both sources overlap. b, Disorder prediction by fIDPnn’®.

¢, Putative disorder profile generated by IUPred (v3)'*. d, Prediction of binding IDRs
generated by ANCHOR2. e, MoRF prediction profile generated by MoRFchibiy g,
(ref.114).

predictor of MoRFs is MoRFchibi,,,, which obtains an AUC of 0.720
and MCC of 0.161 in CAID”°. Both methods are fast and conveniently
available to the end users as source code that can be installed locally
and web servers that can be used remotely. CAID also reports that
ANCHOR2is very fast with runtime <1s per protein while MoRFchibiy .,
takes on average -3 s per protein’®. Given their favorable predictive
performance, availability and short runtime, we recommend ANCHOR2
and MoRFchibi,, for the prediction of disorder functions. In general,
ANCHOR2 predicts binding regions that are longer while MoRFchibi, g,
predicts shorter MoRF regions.

Examples

We first demonstrate the usefulness of computational predictors
of disorder and disordered binding regions for the human cellular
tumor antigen p53, which aptly illustrates the structure-function
continuum model". This protein has multiple domains (Fig. 2a): the
intrinsically disordered N-terminal region that hosts translational acti-
vation domains (residues 1-93), the structured central DNA-binding
domain (100-288), ashortIDR (291-312) followed by the tetrameriza-
tion domain (319-357) and disordered C-terminal region and regulatory
domain (359-393). We collect these domain and disorder annota-
tions from the DisProt database’, where the domain annotations are
extracted from Pfam"® and Gene3D'"”. Note that Pfam annotations
correspond to sequence families that are not necessarily ordered.
Furthermore, the tetramerizationdomain canalso undergo an order-to-
disorder transition and expose nuclear export signal'’. Figure 2 shows
predictions of disorder and binding regions generated solely from
the p53 sequence by popular and relatively accurate methods that
we selected for this tutorial, fIDPnn’, IUPred'*, ANCHOR?2 (ref. 112)
and MoRF ;s (ref. 114). Each prediction consists of numeric propen-
sities and binary scores for each amino acid from the input protein
sequence. Higher values of propensities indicate higher likelihood that
the corresponding amino acidisintrinsically disordered or belongs to

adisordered binding region. The binary scores categorize each amino
acidaseither disordered versus ordered (for disorder predictions from
IUPred and fIDPnn) or binding versus nonbinding (for predictions from
ANCHOR2 and MoRF,;;z). Binary predictions are typically produced
fromthe propensities using athreshold, i.e., residues with propensities
exceeding threshold are marked as disordered/disordered binding.
Results from fIDPnninclude the black line for propensities, hori-
zontal dotted line for the threshold of 0.3 and gray-shaded vertical
bands for the binary prediction of disorder, where the propensity
exceedsthe threshold (Fig. 2b). They suggest presence of anIDR at the
N-terminus (residues 1-100), a short IDR in the middle (181-187) and
two IDRs close to the C-terminus (279-327 and 357-393). Predictions
from IUPred'” are composed of the red line for propensities, thresh-
old line at 0.5 and the gray-shaded bands for the binary prediction of
disorder (Fig. 2c). Similar to fIDPnn, the IUPred’s predictions imply
presence of IDRs at both termini and an ordered region in the middle.
Wenote thatboth disorder predictions arein good agreementwitheach
other and with the native annotations, closely overlapping with the
experimentally confirmed IDRs (Fig. 2a). However, some predictions
areincorrect. Forinstance, fIDPnn misses a fragment of the N-terminus
IDRs near position40 and incorrectly predicts ashort IDR near position
185. These predictions are associated with the putative propensities
near the threshold value (dotted horizontal line in Fig. 2b). We note
a similar pattern for the IUPred’s predictions, where the incorrect
predictions near positions 30, 160 and 220 have propensities that
are also close to the threshold. More generally, disorder predictions
associated with high and low values of propensities are more likely to
correctly identify disordered and structured regions, respectively,
while predictions with propensity scores near the threshold should
be considered as less certain. Another way to increase confidence in
agiven predictionis to cross-check it against another prediction. For
instance, sequence regions where predictions of fIDPnn and [UPred
agree, i.e.,both predictdisorder or both predict order, tend to identify
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Fig. 3| Computational analysis of human BRCA1 (UniProt'*® ID: P38398)
using disorder and disorder function predictors. a, Color-coded native
annotations of disorder (brown) and domains (blue) collected from the
DisProt database. For the domain annotations: light blue denotes annotations

sourced from either Pfam or Gene3D versus dark blue for annotations where
both sources overlap. b, Disorder prediction by fIDPnn’®. ¢, Putative disorder
profile generated by IUPred (v3)'*. d, Prediction of binding IDRs generated by
ANCHOR2. ¢, MoRF prediction profile generated by MoRFchibi, g, (ref. 114).

regions that are predicted more accurately. This underlies the design of
tools thatimplement a consensus of results from multiple disorder pre-
dictors, which areshown to be onaverage better when compared with
the correspondingresults generated by the corresponding individual
predictors'? %,

At the disordered transactivation regions at the N-terminus, p53
interacts with TFIID, TFIIH, Mdm2, RPA, CBP/p300 and CSN5/Jab1l
among many other proteins'”, whereas its C-terminal domain acts
as abinding hub for GSK3[3, PARP-1, TAF1, TRRAP, hGcnS, TAF, 14-3-3,
S100B(BP) and many other proteins'®. These lists of p53 interactors
represents a small subset of almost 1,000 known partners of this
protein'”. In effect, the corresponding binding regions overlap and
coveralarge portion of the native IDRs. In agreement with these anno-
tations, ANCHOR2’s prediction (Fig. 2d; the blue line for propensities,
threshold line at 0.5 and the gray-shaded bands for the binary predic-
tion of protein-binding IDRs), accurately suggests that IDRs interact
with proteins. Predictions from MoRF;; (Fig. 2e; the green line for
propensities, threshold line at 0.725 and the gray-shaded bands for
thebinary predictions) identify three putative MoRF regions: residues
11-31, 40-57 and 362-392. Importantly, these regions coincide with
validated binding sites and functional motifs of p53. For example, the
disordered transactivation domains I and I (TAD I and TAD Il motif's)
arelocated at regions 6-30 and 35-59, respectively (Fig. 2a).

The second example considers the breast cancer type 1susceptibil-
ity protein (BRCA1), which is much longer than p53 (1,863 versus 393
amino acids), has along IDR in the middle and no IDRs at the termini
(Fig.3). This protein has only two relatively small structured domains,
the N-terminal zinc finger RING (Really Interesting New Gene) domain
(residues 1-109) and two C-terminally located tandem copies of the
BRCA1C-terminal domain (BRCT1and BRCT2, residues1,642-1,736 and
1,756-1,855, respectively)'?®. Thelong IDR (residues 100-1,649) contains
theserine-richdomainassociated with BRCT (residues 345-508), two
nuclear localization sequences (NLS, 503-508 and 607-614), a serine
cluster domain (1,280-1,524) and a coiled-coil domain (1,367-1,437)'%".

Figure 3shows thatinagreement with the aforementioned experimen-
tal data, the central BRCAlregionis predicted to have very high levels
of intrinsic disorder. For example, as per fIDPnn, most of the residues
withinthe 182-400,496-932,1,012-1,243and 1,272-1,634 regions are
predicted as disordered (Fig. 3b). IUPred mostly agrees with these
observations and shows high disorder content for the region that
coincides with the experimentally validated IDR (Fig. 3c).
Importantly, this central region of BRCA1 was experimentally
shown to act as an intrinsically disordered scaffold for multiple
protein-protein and protein-DNA interactions'®, In fact, as per
DisProt annotations, human BRCA1 was shown to possess several
disorder-based protein binding regions, such as residues 175-394,
433-511, 740-1,083 and 1,343-1,440 (DisProt ID: DP00238). Further-
more, other subregions of this central IDR were shown to interact
with various proteins; e.g., 341-748 interacts with the growth arrest
and DNA damage-inducible protein GADD45 alpha and DNA damage
repair protein RADSO (refs. 127,129), whereas the C-terminal part of
this central region together with the BRCT domains are engaged in
interactions with BRCA2 (1,314-1,863), histone deacetylase complex
(HDAC1 and HDAC2, 1,536-1,863), RNA helicase A (1,560-1,863) and
CtBP-interacting protein (1,561-1,863)"*"?° Figure 3d shows that these
experimentally validated binding regions align with the predictions
from ANCHOR?2. For example, 175-394 and 740-1,083 regions are
predicted to contain eight putative binding regions each, with the
longest regions being 199-234, 246-305, 743-786 and 1,026-1,046.
Moreover, the entire experimentally validated region 1,343-1,440
is predicted as protein binding (binary prediction at 1,310-1,482 in
Fig.3d).Similarly, Fig. 3e shows that, as per MoRFchibi, ., the central
region of BRCA1 contains eight MoRFs (residues 385, 502-508, 609,
613-620, 650-655,1,428-1,433,1,504-1,510 and 1,554-1,567). Three
of those MoRFs (502-508, 609 and 613-620) coincide or overlap with
the two known NLSs of BRCA1 (503-508 and 607-614). These data,
taken together, indicate that ANCHOR2 and MoRFchibi,, are capable
of predicting disorder-based protein binding sites and NLS motifs in
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BRCAL. As expected, MoRF,;; focuses on finding shorter binding
regions that fold upon binding (MoRFs) while ANCHOR2 predicts
longer IDRs involved in binding.

Selected methods

In the following, we provide details on the methodology, availability,
details of the web server access, and practical aspects related to limita-
tions and use of the selected four methods.

Accurate prediction of intrinsic disorder with fIDPnn
We recommend fIDPnn’® for projects that analyze individual proteins
orrelatively small protein sets. This method relies on acomprehensive
sequence-derived input feature space and arelatively simple deep fully
connected feed-forward neural network. The major types of inputs
include initial disorder prediction generated by IUPred (v1)"*° that is
refined and improved by fIDPnn, disorder function predictions pro-
duced by DisoRDPbind™***!, DFLpred'**and fMoRFpred’, putative sec-
ondary structure produced by single-sequence version of PSIPRED',
and evolutionary information generated by PSI-BLAST"* using a small
Swiss-Prot database. These inputs provide abroad coverage of informa-
tionrelevantto disorder prediction and are generated quickly from the
sequence (e.g., PSI-BLAST uses asmall database). The two innovations
that underly fIDPnn are the use of predicted disorder functions and
the formulation of the protein-level features that quantify bias of the
whole protein to be disordered’. Ablation analysis shows that versions
ofthe fIDPnn model that exclude one of the typical inputs (e.g., model
withoutevolutionaryinput or without disorder prediction from IUPred)
produce similarly high levels of predictive performance as the original
fIDPnn, while exclusion of the novel inputs resultsin amore substantial
drop in performance’.

There are three options to use this tool, all available for free for
academic use:

« Webserverversionat http:/biomine.cs.vcu.edu/servers/fIDPnn/.
This version makes predictions on the online server side, without
the need to install any software, and is arguably the most con-
venient to use. Box 1 and Fig. 4 describe details how to perform
predictions and analyze the corresponding results when using
the web server

+ Source code available at https://gitlab.com/sina.ghadermarzi/
fldpnn. The code canberunonauser’scomputer systemwith Linux
operating system (Ubuntu x64 20.04.2 or newer preferred) with
tcshshell (6.21.00-1or newer),Java Runtime Environment (open-
jdk1.0.8 or newer) and Python 3 (3.8.5 or newer) thatincludes the
following packages: plotly (4.14.3 or newer), scikit-learn (0.23.1
or newer), keras (2.4.3 or newer), tensorflow (2.4.1 or newer) and
pandas (1.2.2 or newer). As described in a README.md file, users
need to download the code, unzip it and run the following com-
mand: python3run_fldpnn.py protein.fasta where protein.fastais
aFASTA-formatted file that contains sequences of input proteins.
The output consists of two files: results.csv and results.html, which
areinthe same format as the results generated by the web server
(Box 1). These files should be copied or renamed because the
subsequent predictions overwrite them. In contrast to the web
server, thereis nolimit to the number of sequencesin theinput file

« Docker versionof'the source code available at https://gitlab.com/
sina.ghadermarzi/fldpnn_docker. This option also runs in the
Linux-based environments, requires the use of the docker applica-
tion and it is arguably easier to install compared with the source
code option

High-throughput prediction of intrinsic disorder with IlUPred

We recommend the IUPred predictor'? to secure quick disorder pre-
diction or to analyze large protein sets. The newest version 3 of the
popular IUPred algorithms' offers improved visualization options and
additional smoothing function compared with the previous version'?

BOX1

Prediction of disorder with the
fIDPnn web server

Submission of query sequence(s)

O TIMING 2 min

Navigate to the http://biomine.cs.vcu.edu/servers/fIDPnn/ website
(Fig. 4a). Provide the query amino acid sequences in the FASTA
format (label 1in Fig. 4a). Up to 20 sequences can be submitted
for a single prediction job. Optionally, input an email address in
the text box to receive email with a link to the results when the job
is completed (label 2 in Fig. 4a). Click ‘Run flDPnn’ to submit the
prediction job.

Job monitoring

O TIMING 30sto1h

Once the job is submitted, it is put into a queue of jobs submitted

to the biomine.cs.vcu.edu server and the browser redirects to a
page that displays a confirmation, a job ID number (label 1in Fig. 4b)
and a location where the results will be produced (label 2 in Fig. 4b).
The server processes several jobs in parallel and limits their sizes

so they do not block access to other users. Thus, since fIDPnn's
prediction takes on average 15 s per sequence, the number of input
sequences is limited to 20. When the prediction is completed, an
email notification with the link to the results page is sent and the
browser window is redirected to the page that provides links to the
results (Fig. 4c). The results are available in two formats: (1) an html
page that provides graphical view of the results (label 1in Fig. 4c)
and (2) a text file that provides raw predictions (label 2 in Fig. 4c).

Accessing and reading results
@ TIMING 3 min per submitted protein sequence
The text-formatted file (linked at label 1in Fig. 4d) includes a header
with formatting instructions followed by the raw predictions in the
comma-separable format. This file can be used to parse and retrieve
the raw data for further processing and use.

The results page has interactive panels that provide graphical
view of the predictions for each submitted protein (labels 2 and 3
in Fig. 4d). These panels show putative propensities for disorder
using the black lines at the top, the binary disorder prediction using
black horizontal bars and propensities to bind proteins, bind DNA,
bind RNA and be linkers for the predicted intrinsically disordered
residues that are represented using color-coded horizontal bars.
The binding and linker propensities are encoded such that higher
propensity values are denoted by darker shades of colors. The
panels are interactive and allow for zooming in on a specific
fragment of a given sequence by holding the left mouse button
(double left-button click restores full sequence view) and reading
the predicted propensity values and amino acids in the sequence
by hovering over the corresponding lines and bars. Users can turn
on and off each of the predictions by clicking on the corresponding
entries in the legend (label 4 in Fig. 4d). They can also take a
screenshot of the graphical panel, as well as pan, auto-scale and
reset the axes of the panel using the menu in the top-right corner
(label 5 in Fig. 4d).

that was evaluated in CAID; the predictive performance was shown to
be slightly better for the newest version'?. IlUPred estimates whether
aresiduein the input sequence is able to form favorable interaction
with its local environment, where this estimate serves as a proxy for
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(putative function- and linker based Disorder Prediction using deep neural network)

3. Predict

Click button to launch prediction.

Run fIDPnn

b fDPnn processing page
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Use this link to download the results as a CSV file:
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Click on legend to show/hide

¢ fDPn diorder propensity

Fig. 4 | Example of fIDPnn web server pages. a, The interface/input page where
users submit their protein sequences. b, The processing page thatindicates
the status of the submitted prediction job. ¢, The ready page that indicates that

prediction was completed and provides location of the results. d, The graphical
page with examples results/outputs.

disorder prediction. The energy estimationis achieved by a statistical
potential-based force field. Residues that exhibit favorable estimated
energiestend toreside in ordered regions, whereas amino acids lacking
sufficientinteraction energies are prone to be intrinsically disordered.
Thisrelatively simple approach effectively captures basic biophysical
principles underlying order and disorder in proteins while being fast
to compute, allowing for predicting whole proteomes in minutesona
desktop computer. Users can choose different prediction modes. The
default optionis ‘lUPred long disorder’, which focuses on the iden-
tification of longer IDRs with likely biological relevance. Additional
options focus on identifying disorder defined by missing residues in
Protein Data Bank (PDB) structures (‘1UPred short disorder’), finding
structured domains (‘1UPred structural domains’) or predicting regions
that might undergo a disorder to order transition upon the change in
environmental redox potential (‘Redox state’), Fig. 5a. Users can also
choose between different smoothing options. Currently there arethree
ways to use IlUPred:

« Webserverathttps://iupred.elte.hu/,which generates predictions
on the server side, without the necessity to install any software,
andsendsthe results to the user. Box 2 providesinformation about
generating and analyzing predictions using the web server

« RESTFUL APl version, which allows for the programmatic use of
the web server

 Standalone package downloadable from https://iupred.elte.hu/
download_new. The package is free for academic use. IUPred
requires the Python3 interpreter and the ‘scipy’ package' to be
installed. The software contains an executable Python script that
allows users to analyze the FASTA-formatted sequences, as well
asanimportable Python3 library, which facilitates integration of
IUPred into bioinformatics workflows

An alternative to making the disorder predictions is to collect
precomputed predictions from one of three available databases: the
Database of Disorder Protein Predictions (D*P?)™® at https://d2p2.pro/,
MobiDB""*? at https://mobidb.bio.unipd.it/ and DatabasE of StruC-
tuRe and functlon residue-Based prEdictions of PROTeins (Describe-
PROT)" at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/. These
resources cover large collections of proteins ranging from 2.26 million
proteins from 273 proteomesin DescribePROT, 10.43 million proteins
from 1,765 proteomes in D?P?, to 219.74 million proteins in MobiDB.
Their key advantage is the ability to instantaneously retrieve already
precomputed and stored predictions. They also reduce waste-
ful replication of predictions where the same method is tasked to
make predictions for the same protein submitted by different users.
DescribePROT provides predictions generated by an older PONDR
VSL2B predictor'*. D*P? delivers predictions from nine, also mostly
older methods that were published in 2012 or earlier: PONDR VL-XT'*,
IUPred-short'*,IUPred-long'**, PONDR VSL2B'*?, PrDOS", PV2 (ref.146),
ESpritz-NMR’, ESpritz-Xray'"” and ESpritz-DisProt'"’. MobiDB simi-
larly relies on nine tools published in 2012 or earlier: DisEMBL-HL'*,
DisEMBL-465 (ref. 148), GlobPlot'*’, IUPred-short'**, IUPred-long'**,
PONDR VSL2B"?, ESpritz-NMR', ESpritz-Xray'* and ESpritz-DisProt'".
Given that MobiDB and D*P?store multiple disorder predictions, they
also produce a consensus prediction to provide asingle, ultimate result.
MobiDB computes the consensus using the MobiDB-lite algorithm'
and D?P? applies a 75% consensus approach, i.e., an amino acid is pre-
dicted asdisordered ifatleast 75% of methods predictit as disordered.
We note that D?P? has not been updated since 2015 and is no longer
actively maintained. DescribePROT covers a relatively small number
of proteins since its focus is to provide access to multiple and diverse
types of predictions, which besides intrinsic disorder include binding
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a
Prediction of Intrinsically Unstructured Proteins
Intrinsically disordered proteins (IDPs) have no single well-defined tertiary structure under native conditions. I[UPred3 is a combined
L4 Predictions web interface that allows to identify disordered protein regions using IUPred2 and disordered binding regions using ANCHOR2.
IUPred3 is also capable of identifying protein regions that do or do not adopt a stable structure depending on the redox state of their
? Howtouse environment. [UPred3 supersedes the previous |UPred and ANCHOR servers. For new features included in [UPred3, see the New
features section. The I[UPred3 web server can be accessed for free.
B Examples
For a detailed description of how to run IUPred3 using various features and how to interpret the output, see the How to use and
+ New features Examples sections. For a simple demonstration of how to input data, see the example 1 or example 2.
| Statistics In order to see an example or our novel Disorder conservation tool click here!
& Related links g
o Prediction
&, Download
Enter SWISS-PROT/TrEMBL identifier or accession number or provide your email address and upload a (multi)FASTA file (max
2 Changelog 1MB)
example@email.com
or paste the amino acid sequence
or provide a FASTA formatted alignment file for custom disorder conservation analysis @
Choose file Browse
Analysis type Advanced options
@® |UPred3 long disorder O ANCHOR2 O No smoothing
O IUPred3 short disorder O Redox state @® Medium smoothing
(experimental) O Strong smoothing
O |UPred3 structural domains
O |UPred3 disorder conservation (NEW!)
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Fig. 5| Example of IUPred web server pages. a, Home page interface of the web
server. b, Graphical representation of the predictions for the human p53 protein
(UniProt ID: PO4637) with additional annotations. Regions with experimental

status are highlighted by red line. This can be toggled using the ‘Masking’ button
onthe topright corner.

residues, secondary structure, signal peptides, linkers, solvent acces-
sibility and sequence conservation. More detailed comparisons of
theseresources are available in arecent survey article®’.

Out of the three choices, we recommend the largest MobiDB
database. MobiDB facilitates collection of predictions for individ-
ual proteins, which are provided in several parsable text formats
(json, tsv, fasta) and in an interactive graphical format, as well as for

user-defined datasets of proteins. The dataset can be extracted in a
variety of ways, including selecting whole proteomes, sequences of
given length range, preclustered protein sets and others. MobiDB is
cross-linked and includes experimental data from ten external sources:
CoDNaS"™°, DIBS', DisProt"!, ELM', FuzDB"?, IDEAL"*, MFIB',
PDBe™*, PhasePro™’ and UniProt™®, These data provide useful func-
tional and structural context for the disorder predictions. One of the
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BOX2

Prediction of disorder and disorder functions with the

IUPred/ANCHOR2 web server

Submission of query sequence(s)

O TIMING 2min

Navigate to the website of the current version of IUPred at https://
iupred.elte.hu (Fig. 5a). This is a rolling web domain, meaning that this
address provides access to the latest version of IUPred (currently v3).
To analyze a single protein, use either the ‘Enter SWISS-PROT/TrEMBL
identifier or accession number’ input box with a UniProt™® accession,
or provide an amino acid sequence in the ‘or paste the amino acid
sequence’ box. The sequence can be formatted as either plain text or in
the FASTA format. To analyze multiple proteins, upload a multi-FASTA
formatted file using the ‘provide a FASTA formatted alignment file

for custom disorder conservation analysis’ input box. If this option is
selected, an email address must be supplied in the respective box.
Select a specific type of the requested analysis using the ‘Analysis
type’ box, or optionally select a prediction of a conditional/functional
disorder type. Users can also select from smoothing options for the
disorder prediction. ‘No smoothing’ is equivalent to IUPred v2. Click
the ‘Submit’ button to start the prediction.

Job monitoring
O TIMING 5s
Job monitoring step is not needed because IUPred is a very fast method.

Accessing and reading results

@® TIMING 3 min per submitted protein sequence

The graphical representation of the results consists of two main parts
(Fig. 5b): an interactive line plot of the disorder prediction at the top

key limitations of MobiDB and the other two databases is that they are
limited to protein sequences thatareincluded in these resources. This
means that users mustrely ondisorder predictors for novel sequences

of the page and a panel at the bottom of the page with additional
information for the submitted protein. This additional information
can guide the interpretation of the prediction. The first line (EXP DIS,
red horizontal bar) provides experimental disorder data derived from
the DisProt database®. The second line (ELM, purple horizontal bar)
gives known linear motifs collected from the ELM database™. The
third and fourth lines (PTM, color-coded lollipop representation)
show posttranslational modification sites from the PhosphoSitePlus
database'’. The fifth line (PFAM, color-coded horizontal boxes)
provides annotations from the PFAM database'®, where colors
identify different types of annotation (domains, families, repeats, etc.).
The last line (PDB, green horizontal bar) displays combined coverage
by available PDB structures’™. The ‘Show structures’ checkbox
expands this section to show structures individually.

If the ‘IUPred structural domains’ option was selected, then a text
box will appear below the graphical interface. This box includes the
number of predicted globular domains and their locations alongside
a string representation of the protein sequence, where capital letters
represent structured domains.

If the ‘Redox state (experimental)’ option was selected, then a
different prediction plot will be shown. This plot contains two lines
(redox plus and redox minus) that correspond to the oxidative and
reductive environments. Regions predicted for the redox sensitive
conditional disorder are marked with a red background.

The selected prediction can be downloaded in the text and json
formats.

and proteins that are not yet included in a given database. Moreover,
MobiDB utilizes MobiDB-lite’s predictions, which offer predictive accu-
racy thatis similar to the results from IUPred (Fig. 1), and provides only

a
Analysis type
@ |UPred3 long disorder ANCHOR2
IUPred3 short disorder Redox state (experimental)
IUPred3 structural domains
IUPred3 disorder conservation (NEW!)
= ANCHOR2 — |UPred3 (long)
b - |
0.8 \
] JAN
I}
O
@ 04 \
0.2 4
(0] t t t
o 50 100 150 200
Position

Fig. 6| Example of ANCHOR2 web server pages. a, Selection of ANCHOR2 in
the ‘Analysis type’ window. b, Graphical representation of the predictions for the
human T-cell surface glycoprotein CD3 epsilon chain (UniProt ID: P07766). The

blueline shows the disordered binding region prediction by ANCHOR2, the red line
isthedisorder prediction output by IUPred (v3). This protein contains binding site
at the C-terminal region whichis correctly captured by ANCHOR2's predictions.
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BOX3

Prediction of disorder functions with the MoRFchibi SYSTEM

Submission of query sequence(s)

O TIMING 2 min

Navigate to the MoRFchibi SYSTEM website at https://morf.msl.ubc.
ca/index.xhtml (Fig. 7a) and provide the query amino acid sequences
in the FASTA format. Click ‘Submit job’. The optional specification

of the user email address allows the server, once the prediction is
completed, to send a ‘results ready’ email with a link to the results
page, which makes it safe to disconnect after submitting the job.
MoRFchibi SYSTEM utilizes a separate private queue for each user.
Only two sequences per user are inserted into the server queue at a
time. This two-tier queue adopted by the MoRFchibi server prevents
one or a few jobs from dominating the server, and thus no explicit
limit is placed on the number of input sequences.

Job monitoring

@ TIMING 20 sto40 min

Once query sequences are submitted, they appear in the jobs table.
Each line in the jobs table represents a single query sequence and
includes seven fields: (1) id: job ID that is system-generated; (2) label:
the FASTA header; (3) size: the number of amino acids in the query
sequence; (4) submitted: the date and time the query sequence
entered the server queue; (5) status: job status that can have one

of the following values (Fig. 7a): pending (query is in the user’s
private queue), position x (query is at position x in the server queue),
processing (query sequence is being processed), completed in x s
(time used to complete the prediction), error (errors occur for short
sequences with 25 amino acids or less, and those with nonstandard
amino acids. Errors are identified in an error report); (6) results: after a
query is submitted, an icon ‘Not Ready’ appears in this field. Clicking
on this icon opens the ‘Job Info’ box, which includes information
about the query sequence, a link to the query results page, and an
option to set a specific email address for that query; (7) saved-for:

binary predictions, excluding arguably more informative real-valued
propensities. Thus, we recommend fIDPnn in scenarios when more
accurate predictions are needed for small collections of proteins and
IUPred when putative disorder propensities are needed for larger
protein sets.

Prediction of disorder functions with ANCHOR2 and
MoRFchibi

ANCHOR2 (ref. 112) offers reliable and fast prediction of IDRs that
undergo disorder-to-order transition uponbinding to a partner protein
by relying on similar biophysical principles to IlUPred'*. AsANCHOR2
isavailable as an optiononthe [lUPred web server site, the instructions
aresimilar to the details in Box 2. The two main differences are to select
‘ANCHOR?2’ from the ‘Analysis type’ box when submitting the query
sequence (Fig. 6a), and the graphical panel for theresults thatincludes
two plots which represent the propensity values for the disordered
binding generated by ANCHOR2 (in blue) and for disorder produced by
IUPred (inred), Fig. 6b. The downloadable IUPred package contains the
ANCHOR2 software, which can be executed as an optional flag without
any further requirements.

MoRFchibig, (ref. 114) is our recommended choice for the pre-
diction of short disordered protein-binding regions. The predictions
of MoRFchibi;,, are assembled hierarchically using the Bayes rule
in a stepwise fashion. First, a MoRFchibi prediction is generated by
combining outputs of two support vector machine models that predict

a countdown indicates the number of hours the query will be stored
in the server. It can be reset to 48 h by clicking the refresh icon next
toit.

Note that in addition to MoRFchibiyg;,, the MoRFchibi server also
computes MoRFchibiy,,, which relies on PSSM files generated by
PSI-BLAST. The generation of PSSM files substantially increases the
server processing time.

Accessing and reading results

@ TIMING 3 min per submitted protein sequence

Once ajob is completed, its runtime in seconds is shown in the status
column, and the ‘Not Ready’ icon in the results field is replaced by
two icons: ‘Ready’ and ‘Graph’ (Fig. 7b). The ‘Ready’ icon opens the
‘Job Info’ box, which at this point includes two extra icons, one to
download the result in a text format and the other to open the graph
window. The ‘Graph’ icon opens the graph window where the x axis
is the amino acid index, and the y axis corresponds to the propensity
scores of MoRFchibi, 4, (MCL) and its subcomponents, MoRFchibi
(MC) and disorder prediction by Espritz-D (IDP) (Fig. 7b). Scores for
MoRFchibiy,, (MCW), MoRFy. (MDC) and the conservation scores
(ICS) derived from PSSM files can also be visualized. The y axis is
automatically bound to cover the range of predicted scores; however,
users can change that range to (O, 1) by selecting the ‘Toggle Y-axis
Bound’ checkbox. Moreover, the ‘Toggle MoRF Bands’ checkbox can
be used to visualize the binary prediction of MoRFs. Users can select
which scores to visualize by clicking on the corresponding name in
the legend. They can also drag the mouse to select a region to zoom
in, and the ‘Reset zoom’ can be used to zoom out. The graph can be
downloaded in several formats from the print chart menu at the top
right corner of the graph window. A text table with the results can be
downloaded from three locations: the ‘job Info’ box, the results page,
and the attachment of the ‘results ready’ email.

protein binding regions. Next, this result is combined with protein
disorder prediction from Espritz'*’ to separate binding segments in
IDRs from those in structured regions. There are two ways to use this
method, viathe web server or as a downloadable software suite (both
free for academic use):

« Thewebserverversionisat https://morf.msl.ubc.ca/index.xhtml.
This version performs the entire prediction process on the MoR-
Fchibi SYSTEM online server side, without the necessity to install
any software. Box 3 and Fig. 7 describe the details of how to per-
form predictions and analyze the corresponding results using
this web server

« Source code can be downloaded at https://gsponerlab.msl.ubc.
ca/software/morf chibi/downloads/. This versionis available for
Linux-based environments and mustbeinstalled and run onusers’
computers and requires the installation of Espritz'*’ for disorder
predictions. The input file ‘input.fasta’ can contain any number
of sequences in a fasta format, and the result is saved in ‘output.
txt’, which contains a table with the scores of MoRFchibi_light,
MoRFchibi and rescaled ESpritz-D IDR predictions (for details,
seeref.114)

IDRs may interact with avariety of other ligands besides proteins
and peptides that are covered by the predictions from MoRFchibiand
ANCHOR2. Theseligandsinclude RNA, DNA, lipids, metals, ions, carbo-
hydrates and small molecules®**°'>, There are relatively few methods
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Fig.7 | Example of MoRFchibi SYSTEM web server pages. a, The interface/input
page where users submit their protein sequences. The page includes the jobs
table where sequences that are waiting to be processed are highlighted in yellow
and those that are completed are in green. The Q9Y258 sequence at the top of
the server queue is being processed while Q9Y296 is fourth in the server queue.
Thelast three sequences (Q9Y3D6, Q9Y3M2 and PO7766) are in the user’s private
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queue. b, The ‘Graph’window for protein P07766 with scores of MORFchibi g,
(MCLinlight green), basic MoRFchibi (MCindark green) and disorder prediction
by Espritz-D rescaled to fit anormal distribution (IDP in blue). Residues

with higher values for MCL, MC or IDP imply a higher probability of being

MOoREFs, protein binding or disordered residues, respectively. Viewing of the
MoRFchibiy,, (MCW), MoRF,. (MDC) and conservation scores (ICS) is disabled.

thataddress predictions of these types of disordered binding regions
and their performance was not yet tested in a community-driven
experiment. While this precludes us from recommending specific
tools, we highlight the availability of the DisorderEd Predictlon
CenTER (DEPICTER) web server (http://biomine.cs.vcu.edu/servers/
DEPICTER/) that integrates predictions of several types of disor-
dered binding regions'’. DEPICTER predicts disordered regions that
interact with proteins using ANCHOR2 (ref. 112) and DisoRDPbind™”,
regions that bind RNA and DNA using DisoRDPbind'”, and MoRFs using
fMoRFpred®. Italso predicts disordered linkers with DFLpred"*. DisoR-
DPbind’s model for the prediction of protein-binding regions secures
an AUC of 0.729 and MCC of 0.198 with runtime <1, according to the
CAID’s results”. fMoRFpred is an older method that is only modestly
accurate (AUC of 0.547 and MCC of 0.05in CAID) but it generates results
very quickly, with runtime <1 s per protein. Given the modest predic-
tive performance of f/MoRFpred, we suggest replacing its results with
the predictions from MoRFchibi when using the DEPICTER resource.

Summary and future outlook

This guide for computational prediction of intrinsic disorder and
disorder functions from protein sequences covers several predictive
tools chosen for their accuracy, runtime, availability and their ability

to predict disorder functions. We use results of the recently completed
CAID experiment’® to select methods that provide state-of-the-art and
fast predictions. We also ensure that they are available to the end users
inmultiple modes, such as web servers and standalone code. We rec-
ommend two disorder predictors: fIDPnn thatisaccurate and fast and
IUPred thatis very fast and moderately accurate. We also suggest two
relatively accurate predictors of disordered binding IDRs: ANCHOR2,
avery fast predictor of disordered binding regions, and MoRFchibi, a
moderately fast method that predicts shorter MoRF regions. These
methods provide complementary ways to conveniently obtain fast,
state-of-the art predictions of intrinsic disorder and its functions. We
describe how to find these methods, submit and collect their predic-
tions, and read and interpret results that they generate. These details
are provided by the authors of these tools, ensuring that the informa-
tion is comprehensive. This covers several practical and often over-
looked aspects, including limitations, options, timing and peculiarities
of inputs and processing of predictions. We believe that this tutorial
will help the end users in the selection of the right tools and will ease
the learning curve on how to use and apply these methods.
Although current best-in-class disorder predictors, including
those that we highlight, offer predictions thatare accurate enough to be
usedinapractical context, their results should be considered with some
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caution. Arecent analysis that focuses on a predictive performance at
the protein level, rather than typical evaluations that aggregate over
datasets of proteins, reveals that while the majority of proteins are pre-
dicted accurately, up to 30% (depending on the predictor used) suffer
relatively poor predictions'®*. These proteins typically have relatively
high amounts of disorder. This finding is in line with other studies
showing that disorder predictors produce less accurate results when
predicting long IDRs™ and have difficulty predicting fully disordered
proteins’™. Moreover, results from CAID reveal that predictors of dis-
ordered binding regions provide modest levels of predictive quality,
suggesting that there is a lot of room for further improvements. One
reason could be that the underlying binding annotations thatare used
to train and test these tools are fraught with more ambiguity than the
disorder annotations. To be more specific, the exact position of bind-
ing regions is often inaccurate and binding annotations are typically
extended into an entire IDR”. Another potential factor is that none of
thebinding predictors that participated in CAID utilize deep learning,
while currently most accurate disorder predictors nearly exclusively
depend on deep learning®. These disorder predictorsrely onavariety
of deep network architectures, including convolutional (AUCpred®),
recurrent (SPOT-Disorder'®, IDP-Seq2Seq'*® and MetaPredict'®),
hybrids of convolutional and recurrent (SPOT-Disorder-Single'®s,
rawMSA®?, SPOT-Disorder2 (ref. 79) and RFPR-IDP'°), and feed for-
ward (fIDPnn’®). One option that is yet to be used to predict disor-
der or disorder function are transformer networks, which arguably
improve over the above network types by applying attention mecha-
nism and positional embeddings. The transformer networks were
recently applied with successinrelated problems, including prediction
of contact maps"°, protein—protein interactions"”" and protein-drug
interactions'?. Another relevant development are embeddings gen-
erated by the protein language models, which encode amino acids
using numeric vectors that describe their surrounding sequence'”> ',
These embeddings were applied to a broad range of protein predic-
tion problems, including a just-released disorder predictor, SETH"®.
Combining advanced network architectures, such as transformers,
with modern sequence embeddings should lead to the development
of more accurate disorder and disorder function predictors.

While IDRs interact with a broad range of partner molecules, cur-
rent binding predictors are primarily focused on protein-binding
IDRs'°*"°, Only a handful of methods target the prediction of nucleic
acid binding IDRs (DeepDISObind”” and DisoRDPbind"*'”®) and
lipid-binding IDRs (DisoLipPred"”’ and MemDis'®°). The development
of tools for the prediction of interactions with other partner types,
such as carbohydrates and metals, is currently infeasible due to an
insufficient amount of ground truth data. However, as DisProt accu-
mulates additional functional data, new predictors that address these
functional types of IDRs are likely to be developed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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