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Hybrid zones are powerful natural laboratories for studying the mechanisms that
underlie evolutionary processes. Although many hybrid zones are relatively narrow,
they often extend across large geographic distances and occur in a variety of
ecological contexts. Despite the fact that variation in ecological context can affect
hybridization dynamics, the majority of hybrid zone studies make inferences about
hybridization and reproductive isolation from a transect across a single location of
contact. Here, we explore hybridization between two passerine taxa, the Black-crested
and Tufted titmouse, which hybridize in a region that extends from Oklahoma to
southern Texas. Previous studies indicated that the northern parts of this hybrid zone
formed no earlier than 150 years ago, while hybridization has been occurring for a few
thousand years further south. We sampled two transects across the titmouse hybrid
zone, one in the north and one in the south, and assessed hybridization dynamics
using molecular and morphological markers. We show that the southern (older) part of
the hybrid zone is three times wider than northern (younger) region of hybridization
which may be attributed to differences in the age of onset of hybridization or to the
breadth of the ecotone between titmouse habitats. Despite differences in width, both
transects demonstrate similar patterns of hybridization and introgression, suggesting
consistent hybridization dynamics. We further report that patterns in both transects fit a
scenario of a local hybrid swarm, and potentially an evolutionary collapse between the
two taxa. Nonetheless, a few lines of evidence suggest a possible role of ecological or
sexual selection against introgression, all of which warrants further investigation.
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ABSTRACT

Hybrid zones are powerful natural laboratories for studying the mechanisms that

underlie evolutionary processes. Although many hybrid zones are relatively narrow,

they often extend across large geographic distances and occur in a variety of

ecological contexts. Despite the fact that variation in ecological context can affect

hybridization dynamics, the majority of hybrid zone studies make inferences about

hybridization and reproductive isolation from a transect across a single location of

contact. Here, we explore hybridization between two passerine taxa, the Black-

crested and Tufted titmouse, which hybridize in a region that extends from

Oklahoma to southern Texas. Previous studies indicated that the northern parts of

this hybrid zone formed no earlier than 150 years ago, while hybridization has been

occurring for a few thousand years further south. We sampled two transects across

the titmouse hybrid zone, one in the north and one in the south, and assessed

hybridization dynamics using molecular and morphological markers. We show that

the southern (older) part of the hybrid zone is three times wider than northern

(younger) region of hybridization which may be attributed to differences in the age
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of onset of hybridization or to the breadth of the ecotone between titmouse

habitats. Despite differences in width, both transects demonstrate similar patterns of

hybridization and introgression, suggesting consistent hybridization dynamics. We

further report that patterns in both transects fit a scenario of a local hybrid swarm,

and potentially an evolutionary collapse between the two taxa. Nonetheless, a few

lines of evidence suggest a possible role of ecological or sexual selection against

introgression, all of which warrants further investigation.

KEYWORDS: Hybridization, introgression, reproductive isolation, Black-crested

titmouse, Tufted titmouse

LAY SUMMARY

@ We studied hybridization patterns between Black-crested and Tufted titmice in

two areas of their contact zone that differ in the age of onset of hybridization by

hundreds or thousands of years
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@ We show that northern (younger) parts of the hybrid zone have a genetic

transition three times narrower than southern (older) region, which could reflect the

differences in the hybrid zone age or be a result of differences in the breadth of the

ecotone between titmice habitats in the north and south

@ Our results suggest that Black-crested and Tufted titmice may be in the process

of evolutionary collapse, although we cannot rule out a possible role of ecological or

sexual selection in limiting gene flow outside of the hybrid zone

INTRODUCTION

Hybrid zones continue to advance our understanding of the mechanisms promoting

or reversing reproductive isolation between nascent species, and on a broader scale,

the origin of biological diversification (Hewitt, 1998; Payseur & Rieseberg, 2016;

Taylor and Larson, 2019). Many studies of hybrid zones sample a single transect and

make inferences about reproductive isolation or introgression from one location of

contact. In cases where multiple transects across a hybrid zone are sampled, they are
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commonly temporal replicates, rather than geographic replicates, and are used to

assess hybrid zone spatiotemporal stability or quantify changes in hybridization rates

over time (e.g., Mettler & Spellman, 2009; Taylor et al,, 2014; Wang et al., 2019;

Walsh et al., 2020). Less commonly, multiple transects are sampled across

geographically distinct parts of a hybrid zone (but see Rohwer and Wood, 1998;

Brelsford & Irwin, 2009; Scordato et al., 2020). Importantly, ecological context

matters, and species interactions can vary with geography (Harrison, 1993; Moore

and Price, 1993; Harrison and Larson, 2016). As such, comparisons of patterns of

hybridization across multiple transects in geographically distinct parts of a hybrid

zone have the potential to provide valuable insights into spatial variation of

selection regimes and associated reproductive mechanisms. Such information is also

crucial for conservation management and might be valuable for clarifying species

status for focal taxa.

The Black-crested titmouse (Baeolophus atricristatus) and Tufted titmouse (5.

bicolor) are sister lineages (Johansson et al., 2013) distributed in the southern and

eastern parts of North America (Figure 1). They are non-migratory and differ in
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several aspects of plumage, most markedly in the amount of melanin of the crest

(Figure 1; Dixon 1955), exhibit song differences (Dixon, 1955; Coldren, 1992; Curry &

Patten, 2019), and differential habitat preferences, but similar foraging microhabitats

(Dixon, 1955). The two taxa have a spatially extensive area of secondary contact,

where the presence of intermediate phenotypes (Figure 1) suggests ongoing or

historical hybridization. Southern parts of the contact zone in Texas (Dixon, 1955,

1990) are older, where the two taxa may have been interbreeding for several

thousand years (Dixon, 1978). The two taxa also co-occur farther north in a

southwestern Oklahoma contact zone (Figure 1), where evidence suggests they came

into secondary contact as a result of shrub invasion within the past century (Nice,

1931, 1943; Sutton, 1967; Arnold, 1972; Rising, 1983; Van Auken, 2000, 2009;

Seyffert, 2001; Callahan, 2002; Patten & Smith-Patten, 2008). Morphological evidence

shows the northern contact zone is geographically narrower than the southern

contact zone, which was hypothesized to be due to its more recent origin. Sixty

years of phenotypic data from the southern contact zone indicate its width and
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position are relatively stable (Dixon, 1990; Curry & Patten, 2014), suggesting its

boundaries may be maintained by natural selection

Despite long-term study of the titmouse hybrid zone, the genetics of

hybridization between Black-crested and Tufted Titmice has not yet been

characterized in detail (for characterizations of species divergence and phylogenetic

placement as sister taxa, see Braun et al.; 1984; Avise and Zink, 1988; Gill and Slikas,

1992; Sheldon et al., 1992; Gill et al., 2005; Johansson et al., 2013). In the current

study we sampled two geographically distant transects across both the southern

(older) and northern (younger) parts of the hybrid zone (Figure 1) and used a

genotyping-by-sequencing approach to develop genetic markers and characterize

patterns of hybridization. We first explore whether parental populations demonstrate

a signal of population structure and quantify admixture in our two sampled areas of

range overlap. Next, we assess whether the southern regions of the hybrid zone are

broader than the younger northern region — as suggested by previous plumage

studies — by comparing the width of ancestry-informative geographic clines and test

whether hybrid zone widths are maintained by selection. We further examine
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individual genotypes to test for the presence of distinct hybrid classes such as F1s,

advanced generation hybrids, and backcrosses, to assess the plausibility of

contrasting hybridization scenarios (e.g. hybrid swarm due to unrestricted

hybridization versus predominance of parental genotypes due to strong positive

assortative mating and/or selection against hybrids). Finally, we compare plumage,

as represented by crest and forehead color, and ancestry to evaluate the strength of

the relationship between genotype and phenotype and to test whether admixture

results in substantial decoupling between phenotypic and genetic markers as in

some other avian systems ((e.g., White Wagtail, Motacilla alba, Semenov et al., 2021);

Blue-winged and Golden-winged Warblers (Vermivora cyanoptera and V.

chrysoptera; Toews et al., 2016)).

METHODS

Permits and site access

Our samples were obtained under Federal Bird Banding Permit 23215H (issued by

the U.S. Geological Survey Bird Banding Laboratory), Federal Fish and Wildlife Permit
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MB148195-2 (issued by the U.S. Fish and Wildlife Service); Scientific Collecting

Permits 4716, 4955, 5210, and 5507 (issued by Oklahoma Department of Wildlife

Conservation); Scientific Collecting Permit SPR-0310-019 (issued by Texas Parks and

Wildlife Department); and University of Oklahoma Institutional Animal Care and Use

Committee protocols R09-004 and R12-0009.

The following landowners and site managers provided access to their land:

private landowners (J. and M. Curry, J. and W. Erickson, L. Henard, S. Osborne), Llano

River Field Station (Texas Tech University), U.S. Fish and Wildlife Service, Texas Parks

and Wildlife Department, Texas Historical Commission, The City of Graham,

Oklahoma Department of Wildlife Conservation, Oklahoma Department of Tourism

and Recreation, Quartz Mountain Nature Park, and U.S Forest Service.

A total of 120 samples was used in this study (Table S1). Samples were

collected by <authors> (N = 77) along two geographic transects in the northern

contact zone in Oklahoma and northern Texas (northern transect, N = 41) and 200

km further south in north-central Texas (southern transect N = 36). Museum-loaned

tissue samples were used to characterize allopatric populations (N = 18) (Figure 1,
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Table S1). In addition, samples from San Antonio (Texas), adjacent to the southern

transect (N = 25), were provided by Troy Murphy. San Antonio is within the range of

Black-crested titmouse, but in 1886-1887 a few Tufted titmice arrived in winter and

stayed to breed (Dixon 1990), so the samples are of interest to determine if there is

any evidence of historical genetic admixture in the San Antonio titmouse population.

Laboratory methods

We extracted genomic DNA using Qiagen DNeasy Blood & Tissue kits (Qiagen, cat.

no. 69504) from tissue and blood samples. Reduced-representation genome libraries

were constructed using the PSTI restriction enzyme following the genotyping-by-

sequencing (GBS) method of Elshire et al.,, (2011). Single-end libraries were

sequenced to 100 bp on a single lane of lllumina HiSeq 2000 platform at the Cornell

Institute for Genomic Diversity. Each library had ~ 200 Gbp of unfiltered data with

an average of 1.7 million reads per individual. Raw data was filtered using the

process_radtags module of the Stacks 1.44 pipeline (Catchen et al., 2011, 2013)

following (Barrera-Guzman et al., 2018). Filtered reads were next aligned to the Parus
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major reference genome (Laine et a/, 2016) using Bowtie 2 2.2.6 (Langmead &

Salzberg, 2012) with the “sensitive” settings. Baeolophus diverged from Parus at

least 4 mya (Gill et al., 2005), but at the time of data generation Parus major was the

closest reference genome available. Read alignment produced 66 - 77% of reads

aligning per individual. The ref. map wrapper script of the Stacks pipeline was used

to call genotypes using default settings with the exception that we used the

bounded error SNP calling model with a maximum error rate of 0.05 allowed. We

then filtered our dataset as follows using vcftools 0.1.14 (Danecek et al,, 2011). We

filtered the data to remove sites with more than 20% missing data, with greater than

the 95™ percentile sequencing depth and with observed heterozygosity exceeding

0.75 (the latter two filters help eliminate paralogues incorrectly aligned together),

with less than 2 copies of the minor allele (only biallelic sites were retained), and

which occur less than 10,000 bp apart in the reference genome. Following filtering

we had an average per individual depth of coverage of 16.5 for retained genotype

calls. This resulted in a dataset of 315 SNPs used for downstream analyzes.
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Population structure

We used Structure 2.3.4 (Pritchard et al., 2000; Falush et al., 2003) to evaluate

patterns of populations structure. We ran structure analysis only with the number of

clusters K=2, given that we were interested in detecting individuals with ancestry

intermediate between Black-crested and Tufted titmice. We ran five independent

chains with burnin of 100,000 iterations and 500,000 iterations parameter sampling

using admixture model and correlated allele frequencies. The resulting Q-scores

were averaged between replicates. To assess population clustering without a pre-

defined number of clusters, we ran PCA on the mean-centered genetic covariance

matrix of SNP genotypes using the R v.3.6.1 (RStudio v.1.1.453) function prcomp.

Geographic clines and individual admixture patterns

We summarized genomic variation using PCA as described above and used PC1

scores as a proxy for ancestry. We fit empirical data to five geographic cline models

as described in (Semenov et al.,, 2021) using Metropolis—Hastings MCMC algorithm

implemented in hzar (Derryberry et al., 2014) v.0.2-5 package in R. To determine
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whether the hybrid zone is tension zone (i.e. a hybrid zone maintained by the
balance between selection and dispersal), we compared the observed zone widths
with estimates expected under a scenario of unrestricted hybridization and neutral
diffusion following Barton & Hewitt, (1985) and using the formula w=257cvt where
o is the post-natal dispersal distance and ¢is the number of generations since
secondary contact. We used a dispersal distance from Rylander et al., (2020) for
Black-crested Titmouse of 0.248 km. Although this estimate may appear
unreasonably small given typical distances in other Passerines, it is similar to
estimates of 0.091-1.097 km (average of 0.343 km) from a sister group (Gill et al.,
2005), the Juniper / Oak titmouse complex (B. ridgwayi and B. inornatus) (Cicero,
2000). For generation time, we assumed a length of one year typical for most
Passerines (Ehrlich et al., 1988). Previous work suggests that the southern contact
zone formed no later than 4,000 years ago based on climatic data (Dixon, 1978),
following initial divergence in allopatry with an estimated split around 250,000 years
ago (Dixon, 1978; Klicka and Zink, 1997; Patten and Smith-Patten, 2008). For the

northern zone we used a range of estimates between 60 and 150 years. The earliest
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date for habitat changes in Van Auken, (2000) is the 1870s, therefore we assumed

150 years as an upper limit. For the lower limit, Sutton, (1967) lists 1963 as the first

Black-crested titmouse record in Oklahoma, and Nice, (1931, 1943) did not report

Black-crested titmouse in Oklahoma; hence we assumed the most recent date as 60

years ago.

To evaluate plausibility of contrasting hybridization scenarios, we compared

hybrid index and observed heterozygosity of individual genotypes. This analysis

requires loci that are fixed or nearly fixed to alternative allelic states in allopatric

populations, so we first used vcftools (Danecek et al., 2011) to calculate Weir &

Cockerham Fg (Weir and Cockerham, 1984) between allopatric samples. We then

selected loci with Fst>0.8 (n=8) to perform the analysis. We chose this approach

over using STRUCTURE Q-scores or PC1 scores from Principal Component Analysis

as the most assumption-free method (Gompert and Buerkle, 2016). We used custom

R code to generate hybrid index scores (0 = Tufted titmouse, 1 = Black-crested

titmouse) and then plot hybrid index against heterozygosity.
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For plumage variation, individuals were categorized via Dixon's hybrid index

(Dixon, 1955) (which we further refer to as phenotypic index to avoid confusion with

our genetic hybrid index) and correlated with colorimeter data on the same birds

from which blood samples were taken (for details about colorimeter measurements,

see Curry & Patten, 2014). Tufted Titmice have a gray crest and black forehead,

which is a phenotypic index score of 0. Male Black-crested titmice have a black crest

and pale forehead, which is an index score of 6. Hybrids show intermediate

combinations, often with a chestnut forehead (Figure 1) (Curry & Patten, 2014). We

assumed indices to be 0 (Tufted) and 6 (Black-crested) for museum tissue samples

which were not located in the known hybrid zone (Figure 1, Dixon, 1955, 1990; Curry

& Patten, 2014).

RESULTS

STRUCTURE analysis assigned allopatric Black-crested and Tufted titmice to distinct

genetic clusters (Figure 2). The first principal component of the PCA explained 83%

of variance and, similar to STRUCTURE, clearly separated allopatric populations
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(Figure 2). Individuals spanning both the northern and southern transects possessed

a broad range of admixture proportion values as revealed by STRUCTURE and PCA,

confirming genetic admixture between the two taxa. Despite apparent hybridization,

areas adjacent to the hybrid zone (e.g., San Antonio sampling location, samples

within 66-78 km and 29-57 km from geographic cline center in southern and

northern transects respectively, Figure 2) consisted of individuals with predominantly

parental ancestry scores.

For both transects, the best geographic cline model of Azar was a symmetrical

sigmoid cline, with no difference in introgression tails. Geographic cline analysis

revealed that the northern (younger) hybrid zone is nearly three times narrower

(width= 47.1 km, 2 log likelihood limits = 1-74.4 km) compared to the southern

(older) hybrid zone (width=149.2 km, 2 log likelihood limits = 109.3-183.2 km)

(Figure 3). The expected width of clines under a scenario of unrestricted

hybridization and neutral diffusion was 39.4 km in the southern transect, and 4.8-7.6

km in the northern, both narrower than the observed cline widths.
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We found very few genotypes that could be classified as first-generation

hybrids (Figure 3), except 1-4 individuals with heterozygosity close to or above 0.75

and hybrid indices close to 0.5. Note that because we used loci that are not

completely segregated between allopatric populations, the maximum possible

heterozygosity estimate is expected to shift downwards, which creates uncertainty in

F1 assignment. Further, there was no single location in the hybrid zones where both

parental genotypes were present together, and the spatial transition of ancestry

scores was continuous (Figure 3), consistent with a “unimodal” model of

hybridization. Therefore, it appears that in both transects hybridization patterns are

following a scenario of a local hybrid swarm. There was a strong correlation between

ancestry and the plumage index (Figure 4), which can be potentially interpreted as

whole genomes, and not only loci associated with plumage, are resistant to

introgression.
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DISCUSSION

We examined patterns of population structure and hybridization between Black-

crested and Tufted titmice. Using data from multiple transects across hybrid zones -

instead of only a single transect — can provide important insights into the dynamics

of hybridization and the consistency of clinal patterns. In the titmouse hybrid zone,

the southern transect (w = 149 km) was three times wider than the northern (w = 47

km). However, along both transects we documented advanced-generation hybrids

and backcrosses, with no apparent difference between the transects of a specific

hybrid class (Figure 3). Further, both transects demonstrated a unimodal distribution

of ancestry scores and continuous spatial transition from one ancestry type to the

another (Figure 3), sometimes referred to as unimodal model of hybridization (Gay

et al., 2008). These findings suggest that hybridization dynamics are similar between

the southern and northern transects and that admixture has been ongoing for many

generations. Further, we found no evidence of natural selection maintaining the

hybrid zone width based on our comparison between the observed and expected

width of geographic clines. Interestingly, locations on the edge and adjacent to the
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hybrid zone (Figures 2 and 3) are composed predominantly of individuals with non-

admixed ancestry — a finding that was not straightforward to interpret. Furthermore,

there was strong correlation between ancestry scores and plumage coloration

(Figure 4), that could be interpreted in favor of some degree of selection on

plumage (e.g., due to assortative mating), as well as an intermediate stage of

collapse between two taxa, wherein phenotypic differences have not yet completely

homogenized.

Interpreting conflicting signals of titmouse hybridization

Our finding that observed hybrid zone widths were not narrower than expected

under the scenario of neutral diffusion suggest that the titmouse hybrid zone is not

acting as a tension zone (i.e. a hybrid zone maintained by the balance between

dispersal and selection, Barton and Hewitt, 1985). Such a finding is relatively rare in

the literature (but see Baldassare et al., 2014; Wang et al., 2019; Del-Rio et al., 2022)

as the vast majority of hybrid zones (particularly in birds), are consistent with the

tension zone model. In light of this, an observation of prominent population



283  structure outside of the titmouse hybrid zone was intriguing. This pattern could be

284  explained by introgression outside of the hybrid zone being strongly restricted due

285 to some form of selection limiting dispersal of admixed individuals into parental

286  populations. An alternative explanation could be the unusually short dispersal

287  distances of 0.2-0.4 km observed among titmouse species (Cicero, 2000; Gill et al,,

288  2005; Rylander et al. 2020). The effects of small dispersal distances on shaping

289 admixture and patterns of introgression at range boundaries have not been explicitly

290 studied to our best knowledge. However, it is plausible that short dispersal

291 distances, which are about an order of magnitude smaller in titmice compared to

292  the majority of other Passerines (Price, 2008), could potentially create a sharp

293  transition in ancestry at the expanding front of a hybrid zone, even in the absence

294  of selection. As we discuss below, footprints of these alternative processes are likely

295  hard to distinguish.

296 In many taxa, particularly birds, hybridization sometimes results in nearly

297 complete homogenization of genomes with the exception of a few (often very

298 narrow) genomic regions wherein divergent genotypes are maintained by selection



299 (e.g., Poelstra et al., 2014; Mason and Taylor, 2015; Toews et al., 2016; Semenov et

300 al, 2021; Funk et al., 2021). In such instances, selectively neutral genotypes across

301 the majority of the genome will show little to no association with phenotypes and,

302 hence, demonstrate no correlation between genome-wide ancestry scores and

303 plumage (see Semenov at al.,, (2021) for an example). Unlike in the above examples,

304 we found a strong correlation between phenotype and genotype in titmice, despite

305 a small genetic dataset compared to other recent studies (Figure 4; note that we

306 only used samples from within or near the hybrid zone for this analysis). This finding

307 could suggest substantial genome-wide restriction of introgression, rather than

308 genomically localized selection on plumage genes. Alternatively, given the evidence

309 for rampant hybridization, the observed genotype-phenotype association may be

310 due to polygenic nature of plumage coupled with a selectively neutral hybridization

311 dynamic. If this is the case, we can expect that hybridization will ultimately lead to

312 the homogenization of plumage and genetic differences between Tufted and Black-

313  crested Titmice, but perhaps on a longer timescale than other avian examples due to

314  their small dispersal distances.
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Multiple lines of evidence suggest that Black-crested and Tufted Titmice taxa

have seemingly unrestricted hybridization. Local patterns of admixture in the hybrid

zone center were consistent with a scenario of hybrid swarms. We did not find any

first-generation hybrids, individuals with heterozygosity of 1 and hybrid index of 0.5

(Figure 3), although our dataset included loci with incomplete segregation between

allopatric populations, which likely biased heterozygosity estimates downwards. With

this caveat, the observation that parental genotypes never meet in the hybrid zone

is likely indicating it has collapsed into a broad cline in which F1 hybrids are now

unlikely to commonly be generated. These results suggest that strong selection due

to divergent mate choice is unlikely. However, this does not exclude the possibility

that hybrids experience reduced fitness due to selection outside of the hybrid zone.

Ecological selection appears to be a plausible candidate, as both allopatric

populations inhabit different habitats (Dixon, 1955). Both transects we studied are

located in an area of habitat transition, where individuals with intermediate

genotype or phenotype may not experience reduced fitness, or even have

comparatively increased fitness, according to the model of bounded hybrid
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superiority (Moore, 1977). It is commonly recognized (Price, 2008) that sharp

ecological boundaries, as observed in titmice, can act as barriers to gene flow and

hence prevent introgression into allopatric populations. We suggest that mark-

recapture experiments at the hybrid zone edges and replicate sampling of the

hybrid zone over time are needed to disentangle between scenarios of neutral

diffusion and sharp ecotone with strong selection for habitat (Pyron et al., 2015;

Patten et al. 2021) in the case of Black-crested and Tufted Titmice. While the

observed differences in hybrid zone width between the southern and northern

transects may reflect differences in the age of onset of secondary contact — as was

previously hypothesized — another possibility could be differences in the extent of

intermediate habitat, although there is currently no support for this latter hypothesis

(Curry & Patten, 2019).

Black-crested and Tufted Titmice have marked differences in plumage and

some differences in song. Despite not finding a detectable signal of this in our

genetic data, there is evidence that the intensity of hybridization may vary between

northern and southern parts of the hybrid zone, given that males in the southern
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zone respond more strongly to their own song types compared to males in the

northern zone (Curry & Patten, 2016), and song structure correlates with

environment only in the northern zone (Curry & Patten, 2019). Along with the

possibility of divergent mate choice, and particularly female mate choice, female-

female or male-male signaling could act as selective agent (Murphy et al., 2009a,

2009b; Tarvin & Murphy, 2012). At least male Black-crested titmice use their crests

for signaling (Dixon 1955, 1978; Queller & Murphy, 2017; Borger et al., 2020).

Whether female Black-crested and male or female Tufted titmouse use of crests for

signaling is, to the best of our knowledge, as yet unstudied. Thus, hybrid crest color

could be linked to either intrasexual signaling alone or additionally linked to the

environmental selection due to contrast (Davis et al., 2022) with background

vegetation (Dixon, 1978; Curry and Patten, 2016) or differences in competition

(Queller & Murphy, 2017) at different regions in the hybrid zone. Juvenile size also

affects dispersal distance in the Black-crested titmouse (Rylander et al., 2020), and

Black-crested titmice are, on average, smaller than Tufted titmice (Patten & Smith-

Patten, 2008). Thus, while strong effects of behavioral isolating factors in the hybrid
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zone itself are unlikely as we discuss above, they could still play a role in limiting

introgression into the allopatric populations and warrant further investigation.

Conclusions

Our study highlights that using multiple geographically distant transects across

hybrid zones is an essential component of characterizing evolutionary relationships

between a pair of species. While studies of temporal changes in hybrid zone

structure commonly document movement of hybrid zones over time, it is almost

always unknown whether patterns of local hybrid zone movement are consistent

across a broader spatial scale. This question becomes particularly important because

of the influence of anthropogenic habitat disturbance observed in many species, and

potential localized impact on cross-species admixture due to the disappearance of

ecological barriers to hybridization (Grabenstein & Taylor, 2018). Black-crested and

Tufted titmice may be one such example, where the initial contact between taxa in

Oklahoma potentially resulted from shrub invasion due to cattle grazing in the 20th

century. We found that extensive hybridization between the two titmouse species
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has resulted in localized hybrid swarms. Furthermore, the observed width of

geographic clines in both transects was wider than expected under neutral diffusion,

potentially supporting the hypothesis of evolutionary collapse between the taxa.

However, the two titmouse populations have prominent population structure on a

broader geographic scale and demonstrate an abrupt transition in ancestry outside

of their hybrid zone. This pattern might be a direct result of the unusually short

post-natal dispersal distances that have been documented in titmice, which are also

non-migratory. The propensity of migratory avian taxa to occasionally engage in

long-distance dispersal that can enhance gene flow far outside of hybrid zones

might explain why this pattern has not been documented in other avian hybrid

zones in North America. Alternatively, this pattern might be indicative of restricted

introgression due to ecological or sexual selection which requires further

investigation.
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