

Ornithology

A GENETIC EXAMINATION OF HYBRIDIZATION BETWEEN BLACK-CRESTED AND TUFTED TITMICE ACROSS TWO DIFFERENTLY AGED HYBRID ZONES

--Manuscript Draft--

Manuscript Number:	
Full Title:	A GENETIC EXAMINATION OF HYBRIDIZATION BETWEEN BLACK-CRESTED AND TUFTED TITMICE ACROSS TWO DIFFERENTLY AGED HYBRID ZONES
Short Title:	HYBRIDIZATION BETWEEN BLACK-CRESTED AND TUFTED TITMICE
Article Type:	Research Article
Keywords:	Hybridization, introgression, reproductive isolation, Black-crested titmouse, Tufted titmouse
Corresponding Author:	Georgy Semenov University of Colorado Boulder, UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	University of Colorado
Corresponding Author's Secondary Institution:	
First Author:	Georgy Semenov
First Author Secondary Information:	
Order of Authors:	Georgy Semenov Claire M. Curry Michael A. Patten Jason T. Weir Scott A. Taylor
Order of Authors Secondary Information:	
Abstract:	Hybrid zones are powerful natural laboratories for studying the mechanisms that underlie evolutionary processes. Although many hybrid zones are relatively narrow, they often extend across large geographic distances and occur in a variety of ecological contexts. Despite the fact that variation in ecological context can affect hybridization dynamics, the majority of hybrid zone studies make inferences about hybridization and reproductive isolation from a transect across a single location of contact. Here, we explore hybridization between two passerine taxa, the Black-crested and Tufted titmouse, which hybridize in a region that extends from Oklahoma to southern Texas. Previous studies indicated that the northern parts of this hybrid zone formed no earlier than 150 years ago, while hybridization has been occurring for a few thousand years further south. We sampled two transects across the titmouse hybrid zone, one in the north and one in the south, and assessed hybridization dynamics using molecular and morphological markers. We show that the southern (older) part of the hybrid zone is three times wider than northern (younger) region of hybridization which may be attributed to differences in the age of onset of hybridization or to the breadth of the ecotone between titmouse habitats. Despite differences in width, both transects demonstrate similar patterns of hybridization and introgression, suggesting consistent hybridization dynamics. We further report that patterns in both transects fit a scenario of a local hybrid swarm, and potentially an evolutionary collapse between the two taxa. Nonetheless, a few lines of evidence suggest a possible role of ecological or sexual selection against introgression, all of which warrants further investigation.
Additional Information:	
Question	Response

Have you submitted this article to this journal previously?	No
All accepted Research Articles, Perspectives, Commentaries, and Reviews are published with a foreign language abstract (in addition to the English abstract). Which language would you prefer your abstract be translated into?	Spanish
If there is another language you would prefer for your abstract, choose "Other" and provide that foreign language abstract with your submission.	
Suggested Reviewers:	<p>Glaucia Del-Rio, PhD Louisiana State University glaucia.ornito@gmail.com</p> <p>Sara Lipshutz, PhD Assistant Professor, Loyola University Chicago slipshut@iu.edu</p> <p>Robb Brumfield, PhD Professor, Louisiana State University robb@lsu.edu</p>

A GENETIC EXAMINATION OF HYBRIDIZATION BETWEEN BLACK-CRESTED AND TUFTED TITMICE ACROSS TWO DIFFERENTLY AGED HYBRID ZONES

Georgy A. Semenov*, Claire M. Curry*, Michael A. Patten, Jason T. Weir, Scott A. Taylor

Corresponding author:

Georgy A. Semenov: 1900 Pleasant Street, Department of Ecology and Evolutionary Biology, University of Colorado, CO, USA, 80309. Email: georgy.semenov@colorado.edu

Authors' affiliations:

CMC: current: University Libraries, University of Oklahoma, Norman, Oklahoma, USA and at time of original work: Ecology and Evolutionary Biology Program and Oklahoma Biological Survey, University of Oklahoma, Norman, Oklahoma, USA

MAP: Ecology Research Group, Faculty of Biosciences and Aquaculture, Nord University, 7729 Steinkjer, Norway

JTW: ¹Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada

²Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada

³Department of Ornithology, Royal Ontario Museum, Toronto, Ontario, Canada

SAT: 1900 Pleasant Street, Department of Ecology and Evolutionary Biology, University of Colorado, CO, USA, 80309.

*Equal contribution

ACKNOWLEDGEMENTS

We thank R. Broughton, W. Elisens, B. Hoagland, and G. Wellborn for comments on study design and analysis; J. Kelly for help with permitting and equipment; M. Curry, J. Curry, and S. González-Pérez for field assistance; A. Harris (OU Biology Core Molecular Lab), S.H. Stuart, and A. Ainsworth for lab assistance; and A.J. Contina, E. Freitas, W.T. Honeycutt, M. Malahy, G. Shahrokhi, and F. Zhang for analysis assistance and comments, and members of the Taylor lab for feedback. The following museums kindly provided tissue samples: LSU Museum of Natural Science Collection of Genetic Resources (D.L. Dittman), University of Kansas Biodiversity Institute (M.B. Robbins), and University of Washington Burke Museum (S. Birks). The authors declare they have no conflicts of interest.

Data availability statement

Illumina short read data will be deposited in the National Center for Biotechnology Information Sequence Read Archive as a BioProject upon acceptance. All other data and R code are available on Open Science Framework repository at <https://osf.io/5ajyz/> and will be deposited to Dryad upon acceptance.

1 ABSTRACT

2 Hybrid zones are powerful natural laboratories for studying the mechanisms that
3 underlie evolutionary processes. Although many hybrid zones are relatively narrow,
4 they often extend across large geographic distances and occur in a variety of
5 ecological contexts. Despite the fact that variation in ecological context can affect
6 hybridization dynamics, the majority of hybrid zone studies make inferences about
7 hybridization and reproductive isolation from a transect across a single location of
8 contact. Here, we explore hybridization between two passerine taxa, the Black-
9 crested and Tufted titmouse, which hybridize in a region that extends from
10 Oklahoma to southern Texas. Previous studies indicated that the northern parts of
11 this hybrid zone formed no earlier than 150 years ago, while hybridization has been
12 occurring for a few thousand years further south. We sampled two transects across
13 the titmouse hybrid zone, one in the north and one in the south, and assessed
14 hybridization dynamics using molecular and morphological markers. We show that
15 the southern (older) part of the hybrid zone is three times wider than northern
16 (younger) region of hybridization which may be attributed to differences in the age

17 of onset of hybridization or to the breadth of the ecotone between titmouse
18 habitats. Despite differences in width, both transects demonstrate similar patterns of
19 hybridization and introgression, suggesting consistent hybridization dynamics. We
20 further report that patterns in both transects fit a scenario of a local hybrid swarm,
21 and potentially an evolutionary collapse between the two taxa. Nonetheless, a few
22 lines of evidence suggest a possible role of ecological or sexual selection against
23 introgression, all of which warrants further investigation.

24 **KEYWORDS:** Hybridization, introgression, reproductive isolation, Black-crested
25 titmouse, Tufted titmouse

26

27 **LAY SUMMARY**

28 ● We studied hybridization patterns between Black-crested and Tufted titmice in
29 two areas of their contact zone that differ in the age of onset of hybridization by
30 hundreds or thousands of years

31

32 ● We show that northern (younger) parts of the hybrid zone have a genetic
33 transition three times narrower than southern (older) region, which could reflect the
34 differences in the hybrid zone age or be a result of differences in the breadth of the
35 ecotone between titmice habitats in the north and south

36

37 ● Our results suggest that Black-crested and Tufted titmice may be in the process
38 of evolutionary collapse, although we cannot rule out a possible role of ecological or
39 sexual selection in limiting gene flow outside of the hybrid zone

40

41 **INTRODUCTION**

42 Hybrid zones continue to advance our understanding of the mechanisms promoting
43 or reversing reproductive isolation between nascent species, and on a broader scale,
44 the origin of biological diversification (Hewitt, 1998; Payseur & Rieseberg, 2016;
45 Taylor and Larson, 2019). Many studies of hybrid zones sample a single transect and
46 make inferences about reproductive isolation or introgression from one location of
47 contact. In cases where multiple transects across a hybrid zone are sampled, they are

48 commonly temporal replicates, rather than geographic replicates, and are used to
49 assess hybrid zone spatiotemporal stability or quantify changes in hybridization rates
50 over time (e.g., Mettler & Spellman, 2009; Taylor et al., 2014; Wang et al., 2019;
51 Walsh et al., 2020). Less commonly, multiple transects are sampled across
52 geographically distinct parts of a hybrid zone (but see Rohwer and Wood, 1998;
53 Brelsford & Irwin, 2009; Scordato et al., 2020). Importantly, ecological context
54 matters, and species interactions can vary with geography (Harrison, 1993; Moore
55 and Price, 1993; Harrison and Larson, 2016). As such, comparisons of patterns of
56 hybridization across multiple transects in geographically distinct parts of a hybrid
57 zone have the potential to provide valuable insights into spatial variation of
58 selection regimes and associated reproductive mechanisms. Such information is also
59 crucial for conservation management and might be valuable for clarifying species
60 status for focal taxa.

61 The Black-crested titmouse (*Baeolophus atricristatus*) and Tufted titmouse (*B.*
62 *bicolor*) are sister lineages (Johansson et al., 2013) distributed in the southern and
63 eastern parts of North America (Figure 1). They are non-migratory and differ in

64 several aspects of plumage, most markedly in the amount of melanin of the crest
65 (Figure 1; Dixon 1955), exhibit song differences (Dixon, 1955; Coldren, 1992; Curry &
66 Patten, 2019), and differential habitat preferences, but similar foraging microhabitats
67 (Dixon, 1955). The two taxa have a spatially extensive area of secondary contact,
68 where the presence of intermediate phenotypes (Figure 1) suggests ongoing or
69 historical hybridization. Southern parts of the contact zone in Texas (Dixon, 1955,
70 1990) are older, where the two taxa may have been interbreeding for several
71 thousand years (Dixon, 1978). The two taxa also co-occur farther north in a
72 southwestern Oklahoma contact zone (Figure 1), where evidence suggests they came
73 into secondary contact as a result of shrub invasion within the past century (Nice,
74 1931, 1943; Sutton, 1967; Arnold, 1972; Rising, 1983; Van Auken, 2000, 2009;
75 Seyffert, 2001; Callahan, 2002; Patten & Smith-Patten, 2008). Morphological evidence
76 shows the northern contact zone is geographically narrower than the southern
77 contact zone, which was hypothesized to be due to its more recent origin. Sixty
78 years of phenotypic data from the southern contact zone indicate its width and

79 position are relatively stable (Dixon, 1990; Curry & Patten, 2014), suggesting its

80 boundaries may be maintained by natural selection

81 Despite long-term study of the titmouse hybrid zone, the genetics of

82 hybridization between Black-crested and Tufted Titmice has not yet been

83 characterized in detail (for characterizations of species divergence and phylogenetic

84 placement as sister taxa, see Braun et al.; 1984; Avise and Zink, 1988; Gill and Slikas,

85 1992; Sheldon et al., 1992; Gill et al., 2005; Johansson et al., 2013). In the current

86 study we sampled two geographically distant transects across both the southern

87 (older) and northern (younger) parts of the hybrid zone (Figure 1) and used a

88 genotyping-by-sequencing approach to develop genetic markers and characterize

89 patterns of hybridization. We first explore whether parental populations demonstrate

90 a signal of population structure and quantify admixture in our two sampled areas of

91 range overlap. Next, we assess whether the southern regions of the hybrid zone are

92 broader than the younger northern region – as suggested by previous plumage

93 studies – by comparing the width of ancestry-informative geographic clines and test

94 whether hybrid zone widths are maintained by selection. We further examine

95 individual genotypes to test for the presence of distinct hybrid classes such as F1s,
96 advanced generation hybrids, and backcrosses, to assess the plausibility of
97 contrasting hybridization scenarios (e.g. hybrid swarm due to unrestricted
98 hybridization versus predominance of parental genotypes due to strong positive
99 assortative mating and/or selection against hybrids). Finally, we compare plumage,
100 as represented by crest and forehead color, and ancestry to evaluate the strength of
101 the relationship between genotype and phenotype and to test whether admixture
102 results in substantial decoupling between phenotypic and genetic markers as in
103 some other avian systems ((e.g., White Wagtail, *Motacilla alba*; Semenov et al., 2021);
104 Blue-winged and Golden-winged Warblers (*Vermivora cyanoptera* and *V.*
105 *chrysoptera*; Toews et al., 2016)).

106

107 **METHODS**

108 **Permits and site access**

109 Our samples were obtained under Federal Bird Banding Permit 23215H (issued by
110 the U.S. Geological Survey Bird Banding Laboratory), Federal Fish and Wildlife Permit

111 MB148195-2 (issued by the U.S. Fish and Wildlife Service); Scientific Collecting
112 Permits 4716, 4955, 5210, and 5507 (issued by Oklahoma Department of Wildlife
113 Conservation); Scientific Collecting Permit SPR-0310-019 (issued by Texas Parks and
114 Wildlife Department); and University of Oklahoma Institutional Animal Care and Use
115 Committee protocols R09-004 and R12-009.

116 The following landowners and site managers provided access to their land:
117 private landowners (J. and M. Curry, J. and W. Erickson, L. Henard, S. Osborne), Llano
118 River Field Station (Texas Tech University), U.S. Fish and Wildlife Service, Texas Parks
119 and Wildlife Department, Texas Historical Commission, The City of Graham,
120 Oklahoma Department of Wildlife Conservation, Oklahoma Department of Tourism
121 and Recreation, Quartz Mountain Nature Park, and U.S Forest Service.

122 A total of 120 samples was used in this study (Table S1). Samples were
123 collected by <authors> (N = 77) along two geographic transects in the northern
124 contact zone in Oklahoma and northern Texas (northern transect, N = 41) and 200
125 km further south in north-central Texas (southern transect N = 36). Museum-loaned
126 tissue samples were used to characterize allopatric populations (N = 18) (Figure 1,

127 Table S1). In addition, samples from San Antonio (Texas), adjacent to the southern
128 transect (N = 25), were provided by Troy Murphy. San Antonio is within the range of
129 Black-crested titmouse, but in 1886-1887 a few Tufted titmice arrived in winter and
130 stayed to breed (Dixon 1990), so the samples are of interest to determine if there is
131 any evidence of historical genetic admixture in the San Antonio titmouse population.

132

133 **Laboratory methods**

134 We extracted genomic DNA using Qiagen DNeasy Blood & Tissue kits (Qiagen, cat.
135 no. 69504) from tissue and blood samples. Reduced-representation genome libraries
136 were constructed using the PstI restriction enzyme following the genotyping-by-
137 sequencing (GBS) method of Elshire et al., (2011). Single-end libraries were
138 sequenced to 100 bp on a single lane of Illumina HiSeq 2000 platform at the Cornell
139 Institute for Genomic Diversity. Each library had ~ 200 Gbp of unfiltered data with
140 an average of 1.7 million reads per individual. Raw data was filtered using the
141 *process_radtags* module of the Stacks 1.44 pipeline (Catchen et al., 2011, 2013)
142 following (Barrera-Guzmán et al., 2018). Filtered reads were next aligned to the *Parus*

143 *major* reference genome (Laine *et al.*, 2016) using Bowtie 2 2.2.6 (Langmead &
144 Salzberg, 2012) with the “sensitive” settings. *Baeolophus* diverged from *Parus* at
145 least 4 mya (Gill *et al.*, 2005), but at the time of data generation *Parus major* was the
146 closest reference genome available. Read alignment produced 66 - 77% of reads
147 aligning per individual. The *ref_map* wrapper script of the Stacks pipeline was used
148 to call genotypes using default settings with the exception that we used the
149 bounded error SNP calling model with a maximum error rate of 0.05 allowed. We
150 then filtered our dataset as follows using vcftools 0.1.14 (Danecek *et al.*, 2011). We
151 filtered the data to remove sites with more than 20% missing data, with greater than
152 the 95th percentile sequencing depth and with observed heterozygosity exceeding
153 0.75 (the latter two filters help eliminate paralogues incorrectly aligned together),
154 with less than 2 copies of the minor allele (only biallelic sites were retained), and
155 which occur less than 10,000 bp apart in the reference genome. Following filtering
156 we had an average per individual depth of coverage of 16.5 for retained genotype
157 calls. This resulted in a dataset of 315 SNPs used for downstream analyzes.
158

159 **Population structure**

160 We used Structure 2.3.4 (Pritchard et al., 2000; Falush et al., 2003) to evaluate
161 patterns of populations structure. We ran structure analysis only with the number of
162 clusters K=2, given that we were interested in detecting individuals with ancestry
163 intermediate between Black-crested and Tufted titmice. We ran five independent
164 chains with burnin of 100,000 iterations and 500,000 iterations parameter sampling
165 using admixture model and correlated allele frequencies. The resulting Q-scores
166 were averaged between replicates. To assess population clustering without a pre-
167 defined number of clusters, we ran PCA on the mean-centered genetic covariance
168 matrix of SNP genotypes using the R v.3.6.1 (RStudio v.1.1.453) function *prcomp*.

169

170 **Geographic clines and individual admixture patterns**

171 We summarized genomic variation using PCA as described above and used PC1
172 scores as a proxy for ancestry. We fit empirical data to five geographic cline models
173 as described in (Semenov et al., 2021) using Metropolis–Hastings MCMC algorithm
174 implemented in *hzar* (Derryberry et al., 2014) v.0.2-5 package in R. To determine

175 whether the hybrid zone is tension zone (i.e. a hybrid zone maintained by the
176 balance between selection and dispersal), we compared the observed zone widths
177 with estimates expected under a scenario of unrestricted hybridization and neutral
178 diffusion following Barton & Hewitt, (1985) and using the formula $w=2.51\sigma\sqrt{t}$, where
179 σ is the post-natal dispersal distance and t is the number of generations since
180 secondary contact. We used a dispersal distance from Rylander et al., (2020) for
181 Black-crested Titmouse of 0.248 km. Although this estimate may appear
182 unreasonably small given typical distances in other Passerines, it is similar to
183 estimates of 0.091–1.097 km (average of 0.343 km) from a sister group (Gill et al.,
184 2005), the Juniper / Oak titmouse complex (*B. ridgwayi* and *B. inornatus*) (Cicero,
185 2000). For generation time, we assumed a length of one year typical for most
186 Passerines (Ehrlich et al., 1988). Previous work suggests that the southern contact
187 zone formed no later than 4,000 years ago based on climatic data (Dixon, 1978),
188 following initial divergence in allopatry with an estimated split around 250,000 years
189 ago (Dixon, 1978; Klicka and Zink, 1997; Patten and Smith-Patten, 2008). For the
190 northern zone we used a range of estimates between 60 and 150 years. The earliest

191 date for habitat changes in Van Auken, (2000) is the 1870s, therefore we assumed
192 150 years as an upper limit. For the lower limit, Sutton, (1967) lists 1963 as the first
193 Black-crested titmouse record in Oklahoma, and Nice, (1931, 1943) did not report
194 Black-crested titmouse in Oklahoma; hence we assumed the most recent date as 60
195 years ago.

196 To evaluate plausibility of contrasting hybridization scenarios, we compared
197 hybrid index and observed heterozygosity of individual genotypes. This analysis
198 requires loci that are fixed or nearly fixed to alternative allelic states in allopatric
199 populations, so we first used vcftools (Danecek et al., 2011) to calculate Weir &
200 Cockerham F_{st} (Weir and Cockerham, 1984) between allopatric samples. We then
201 selected loci with $Fst > 0.8$ ($n=8$) to perform the analysis. We chose this approach
202 over using STRUCTURE Q-scores or PC1 scores from Principal Component Analysis
203 as the most assumption-free method (Gompert and Buerkle, 2016). We used custom
204 R code to generate hybrid index scores (0 = Tufted titmouse, 1 = Black-crested
205 titmouse) and then plot hybrid index against heterozygosity.

206 For plumage variation, individuals were categorized via Dixon's hybrid index
207 (Dixon, 1955) (which we further refer to as phenotypic index to avoid confusion with
208 our genetic hybrid index) and correlated with colorimeter data on the same birds
209 from which blood samples were taken (for details about colorimeter measurements,
210 see Curry & Patten, 2014). Tufted Titmice have a gray crest and black forehead,
211 which is a phenotypic index score of 0. Male Black-crested titmice have a black crest
212 and pale forehead, which is an index score of 6. Hybrids show intermediate
213 combinations, often with a chestnut forehead (Figure 1) (Curry & Patten, 2014). We
214 assumed indices to be 0 (Tufted) and 6 (Black-crested) for museum tissue samples
215 which were not located in the known hybrid zone (Figure 1, Dixon, 1955, 1990; Curry
216 & Patten, 2014).

217

218 **RESULTS**

219 STRUCTURE analysis assigned allopatric Black-crested and Tufted titmice to distinct
220 genetic clusters (Figure 2). The first principal component of the PCA explained 83%
221 of variance and, similar to STRUCTURE, clearly separated allopatric populations

222 (Figure 2). Individuals spanning both the northern and southern transects possessed
223 a broad range of admixture proportion values as revealed by STRUCTURE and PCA,
224 confirming genetic admixture between the two taxa. Despite apparent hybridization,
225 areas adjacent to the hybrid zone (e.g., San Antonio sampling location, samples
226 within 66-78 km and 29-57 km from geographic cline center in southern and
227 northern transects respectively, Figure 2) consisted of individuals with predominantly
228 parental ancestry scores.

229 For both transects, the best geographic cline model of *hzar* was a symmetrical
230 sigmoid cline, with no difference in introgression tails. Geographic cline analysis
231 revealed that the northern (younger) hybrid zone is nearly three times narrower
232 (width= 47.1 km, 2 log likelihood limits = 1-74.4 km) compared to the southern
233 (older) hybrid zone (width=149.2 km, 2 log likelihood limits = 109.3-183.2 km)
234 (Figure 3). The expected width of clines under a scenario of unrestricted
235 hybridization and neutral diffusion was 39.4 km in the southern transect, and 4.8-7.6
236 km in the northern, both narrower than the observed cline widths.

237 We found very few genotypes that could be classified as first-generation
238 hybrids (Figure 3), except 1-4 individuals with heterozygosity close to or above 0.75
239 and hybrid indices close to 0.5. Note that because we used loci that are not
240 completely segregated between allopatric populations, the maximum possible
241 heterozygosity estimate is expected to shift downwards, which creates uncertainty in
242 F1 assignment. Further, there was no single location in the hybrid zones where both
243 parental genotypes were present together, and the spatial transition of ancestry
244 scores was continuous (Figure 3), consistent with a "unimodal" model of
245 hybridization. Therefore, it appears that in both transects hybridization patterns are
246 following a scenario of a local hybrid swarm. There was a strong correlation between
247 ancestry and the plumage index (Figure 4), which can be potentially interpreted as
248 whole genomes, and not only loci associated with plumage, are resistant to
249 introgression.
250

251 **DISCUSSION**

252 We examined patterns of population structure and hybridization between Black-
253 crested and Tufted titmice. Using data from multiple transects across hybrid zones -
254 instead of only a single transect – can provide important insights into the dynamics
255 of hybridization and the consistency of clinal patterns. In the titmouse hybrid zone,
256 the southern transect ($w = 149$ km) was three times wider than the northern ($w = 47$
257 km). However, along both transects we documented advanced-generation hybrids
258 and backcrosses, with no apparent difference between the transects of a specific
259 hybrid class (Figure 3). Further, both transects demonstrated a unimodal distribution
260 of ancestry scores and continuous spatial transition from one ancestry type to the
261 another (Figure 3), sometimes referred to as unimodal model of hybridization (Gay
262 et al., 2008). These findings suggest that hybridization dynamics are similar between
263 the southern and northern transects and that admixture has been ongoing for many
264 generations. Further, we found no evidence of natural selection maintaining the
265 hybrid zone width based on our comparison between the observed and expected
266 width of geographic clines. Interestingly, locations on the edge and adjacent to the

267 hybrid zone (Figures 2 and 3) are composed predominantly of individuals with non-
268 admixed ancestry – a finding that was not straightforward to interpret. Furthermore,
269 there was strong correlation between ancestry scores and plumage coloration
270 (Figure 4), that could be interpreted in favor of some degree of selection on
271 plumage (e.g., due to assortative mating), as well as an intermediate stage of
272 collapse between two taxa, wherein phenotypic differences have not yet completely
273 homogenized.

274

275 **Interpreting conflicting signals of titmouse hybridization**

276 Our finding that observed hybrid zone widths were not narrower than expected
277 under the scenario of neutral diffusion suggest that the titmouse hybrid zone is not
278 acting as a tension zone (i.e. a hybrid zone maintained by the balance between
279 dispersal and selection, Barton and Hewitt, 1985). Such a finding is relatively rare in
280 the literature (but see Baldassare et al., 2014; Wang et al., 2019; Del-Rio et al., 2022)
281 as the vast majority of hybrid zones (particularly in birds), are consistent with the
282 tension zone model. In light of this, an observation of prominent population

283 structure outside of the titmouse hybrid zone was intriguing. This pattern could be
284 explained by introgression outside of the hybrid zone being strongly restricted due
285 to some form of selection limiting dispersal of admixed individuals into parental
286 populations. An alternative explanation could be the unusually short dispersal
287 distances of 0.2-0.4 km observed among titmouse species (Cicero, 2000; Gill et al.,
288 2005; Rylander et al. 2020). The effects of small dispersal distances on shaping
289 admixture and patterns of introgression at range boundaries have not been explicitly
290 studied to our best knowledge. However, it is plausible that short dispersal
291 distances, which are about an order of magnitude smaller in titmice compared to
292 the majority of other Passerines (Price, 2008), could potentially create a sharp
293 transition in ancestry at the expanding front of a hybrid zone, even in the absence
294 of selection. As we discuss below, footprints of these alternative processes are likely
295 hard to distinguish.

296 In many taxa, particularly birds, hybridization sometimes results in nearly
297 complete homogenization of genomes with the exception of a few (often very
298 narrow) genomic regions wherein divergent genotypes are maintained by selection

299 (e.g., Poelstra et al., 2014; Mason and Taylor, 2015; Toews et al., 2016; Semenov et
300 al., 2021; Funk et al., 2021). In such instances, selectively neutral genotypes across
301 the majority of the genome will show little to no association with phenotypes and,
302 hence, demonstrate no correlation between genome-wide ancestry scores and
303 plumage (see Semenov at al., (2021) for an example). Unlike in the above examples,
304 we found a strong correlation between phenotype and genotype in titmice, despite
305 a small genetic dataset compared to other recent studies (Figure 4; note that we
306 only used samples from within or near the hybrid zone for this analysis). This finding
307 could suggest substantial genome-wide restriction of introgression, rather than
308 genomically localized selection on plumage genes. Alternatively, given the evidence
309 for rampant hybridization, the observed genotype-phenotype association may be
310 due to polygenic nature of plumage coupled with a selectively neutral hybridization
311 dynamic. If this is the case, we can expect that hybridization will ultimately lead to
312 the homogenization of plumage and genetic differences between Tufted and Black-
313 crested Titmice, but perhaps on a longer timescale than other avian examples due to
314 their small dispersal distances.

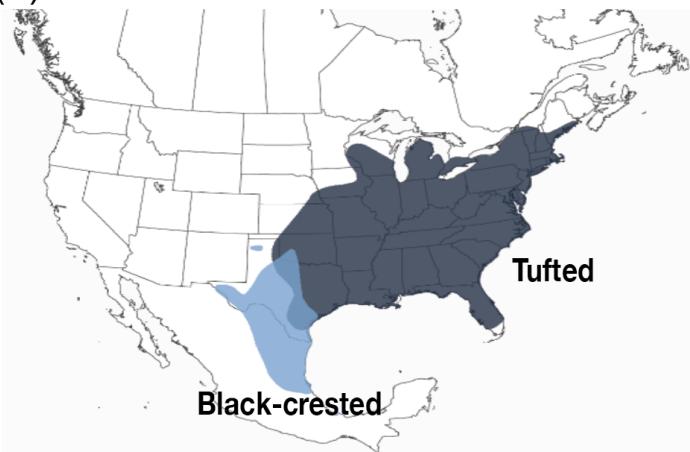
315 Multiple lines of evidence suggest that Black-crested and Tufted Titmice taxa
316 have seemingly unrestricted hybridization. Local patterns of admixture in the hybrid
317 zone center were consistent with a scenario of hybrid swarms. We did not find any
318 first-generation hybrids, individuals with heterozygosity of 1 and hybrid index of 0.5
319 (Figure 3), although our dataset included loci with incomplete segregation between
320 allopatric populations, which likely biased heterozygosity estimates downwards. With
321 this caveat, the observation that parental genotypes never meet in the hybrid zone
322 is likely indicating it has collapsed into a broad cline in which F1 hybrids are now
323 unlikely to commonly be generated. These results suggest that strong selection due
324 to divergent mate choice is unlikely. However, this does not exclude the possibility
325 that hybrids experience reduced fitness due to selection outside of the hybrid zone.
326 Ecological selection appears to be a plausible candidate, as both allopatric
327 populations inhabit different habitats (Dixon, 1955). Both transects we studied are
328 located in an area of habitat transition, where individuals with intermediate
329 genotype or phenotype may not experience reduced fitness, or even have
330 comparatively increased fitness, according to the model of bounded hybrid

331 superiority (Moore, 1977). It is commonly recognized (Price, 2008) that sharp
332 ecological boundaries, as observed in titmice, can act as barriers to gene flow and
333 hence prevent introgression into allopatric populations. We suggest that mark-
334 recapture experiments at the hybrid zone edges and replicate sampling of the
335 hybrid zone over time are needed to disentangle between scenarios of neutral
336 diffusion and sharp ecotone with strong selection for habitat (Pyron et al., 2015;
337 Patten et al. 2021) in the case of Black-crested and Tufted Titmice. While the
338 observed differences in hybrid zone width between the southern and northern
339 transects may reflect differences in the age of onset of secondary contact – as was
340 previously hypothesized – another possibility could be differences in the extent of
341 intermediate habitat, although there is currently no support for this latter hypothesis
342 (Curry & Patten, 2019).

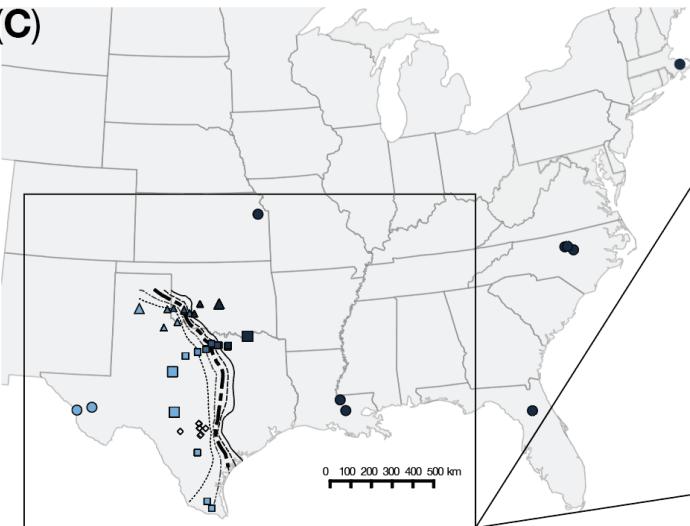
343 Black-crested and Tufted Titmice have marked differences in plumage and
344 some differences in song. Despite not finding a detectable signal of this in our
345 genetic data, there is evidence that the intensity of hybridization may vary between
346 northern and southern parts of the hybrid zone, given that males in the southern

347 zone respond more strongly to their own song types compared to males in the
348 northern zone (Curry & Patten, 2016), and song structure correlates with
349 environment only in the northern zone (Curry & Patten, 2019). Along with the
350 possibility of divergent mate choice, and particularly female mate choice, female-
351 female or male-male signaling could act as selective agent (Murphy et al., 2009a,
352 2009b; Tarvin & Murphy, 2012). At least male Black-crested titmice use their crests
353 for signaling (Dixon 1955, 1978; Queller & Murphy, 2017; Borger et al., 2020).
354 Whether female Black-crested and male or female Tufted titmouse use of crests for
355 signaling is, to the best of our knowledge, as yet unstudied. Thus, hybrid crest color
356 could be linked to either intrasexual signaling alone or additionally linked to the
357 environmental selection due to contrast (Davis et al., 2022) with background
358 vegetation (Dixon, 1978; Curry and Patten, 2016) or differences in competition
359 (Queller & Murphy, 2017) at different regions in the hybrid zone. Juvenile size also
360 affects dispersal distance in the Black-crested titmouse (Rylander et al., 2020), and
361 Black-crested titmice are, on average, smaller than Tufted titmice (Patten & Smith-
362 Patten, 2008). Thus, while strong effects of behavioral isolating factors in the hybrid

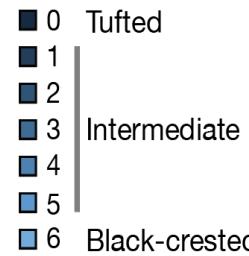
363 zone itself are unlikely as we discuss above, they could still play a role in limiting
364 introgression into the allopatric populations and warrant further investigation.


365

366 **Conclusions**


367 Our study highlights that using multiple geographically distant transects across
368 hybrid zones is an essential component of characterizing evolutionary relationships
369 between a pair of species. While studies of temporal changes in hybrid zone
370 structure commonly document movement of hybrid zones over time, it is almost
371 always unknown whether patterns of local hybrid zone movement are consistent
372 across a broader spatial scale. This question becomes particularly important because
373 of the influence of anthropogenic habitat disturbance observed in many species, and
374 potential localized impact on cross-species admixture due to the disappearance of
375 ecological barriers to hybridization (Grabenstein & Taylor, 2018). Black-crested and
376 Tufted titmice may be one such example, where the initial contact between taxa in
377 Oklahoma potentially resulted from shrub invasion due to cattle grazing in the 20th
378 century. We found that extensive hybridization between the two titmouse species

379 has resulted in localized hybrid swarms. Furthermore, the observed width of
380 geographic clines in both transects was wider than expected under neutral diffusion,
381 potentially supporting the hypothesis of evolutionary collapse between the taxa.
382 However, the two titmouse populations have prominent population structure on a
383 broader geographic scale and demonstrate an abrupt transition in ancestry outside
384 of their hybrid zone. This pattern might be a direct result of the unusually short
385 post-natal dispersal distances that have been documented in titmice, which are also
386 non-migratory. The propensity of migratory avian taxa to occasionally engage in
387 long-distance dispersal that can enhance gene flow far outside of hybrid zones
388 might explain why this pattern has not been documented in other avian hybrid
389 zones in North America. Alternatively, this pattern might be indicative of restricted
390 introgression due to ecological or sexual selection which requires further
391 investigation.


(A)

(C)

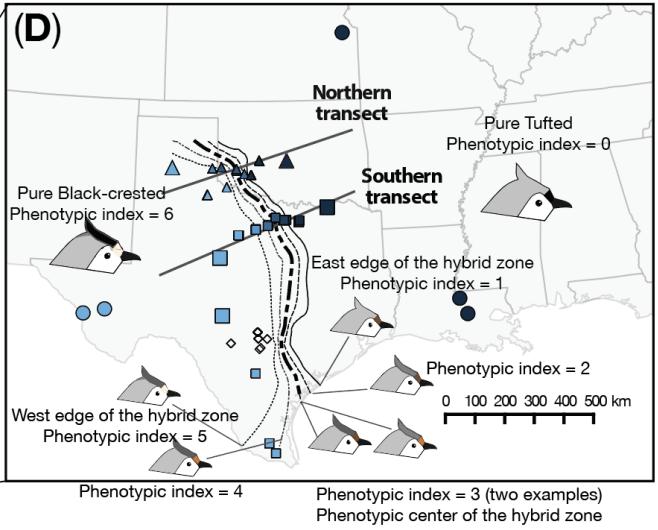
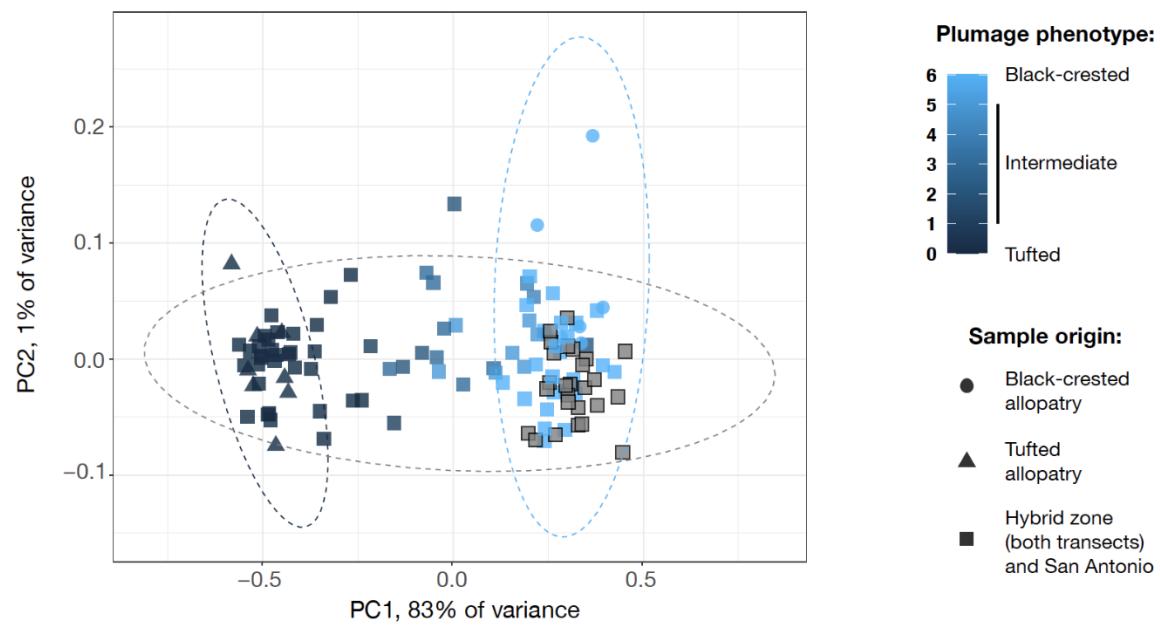
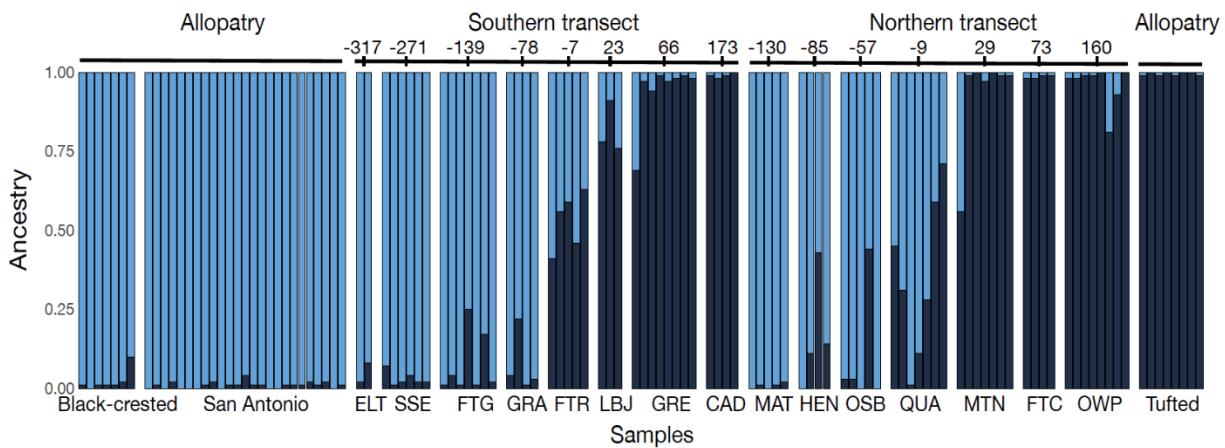
(B) Plumage phenotype

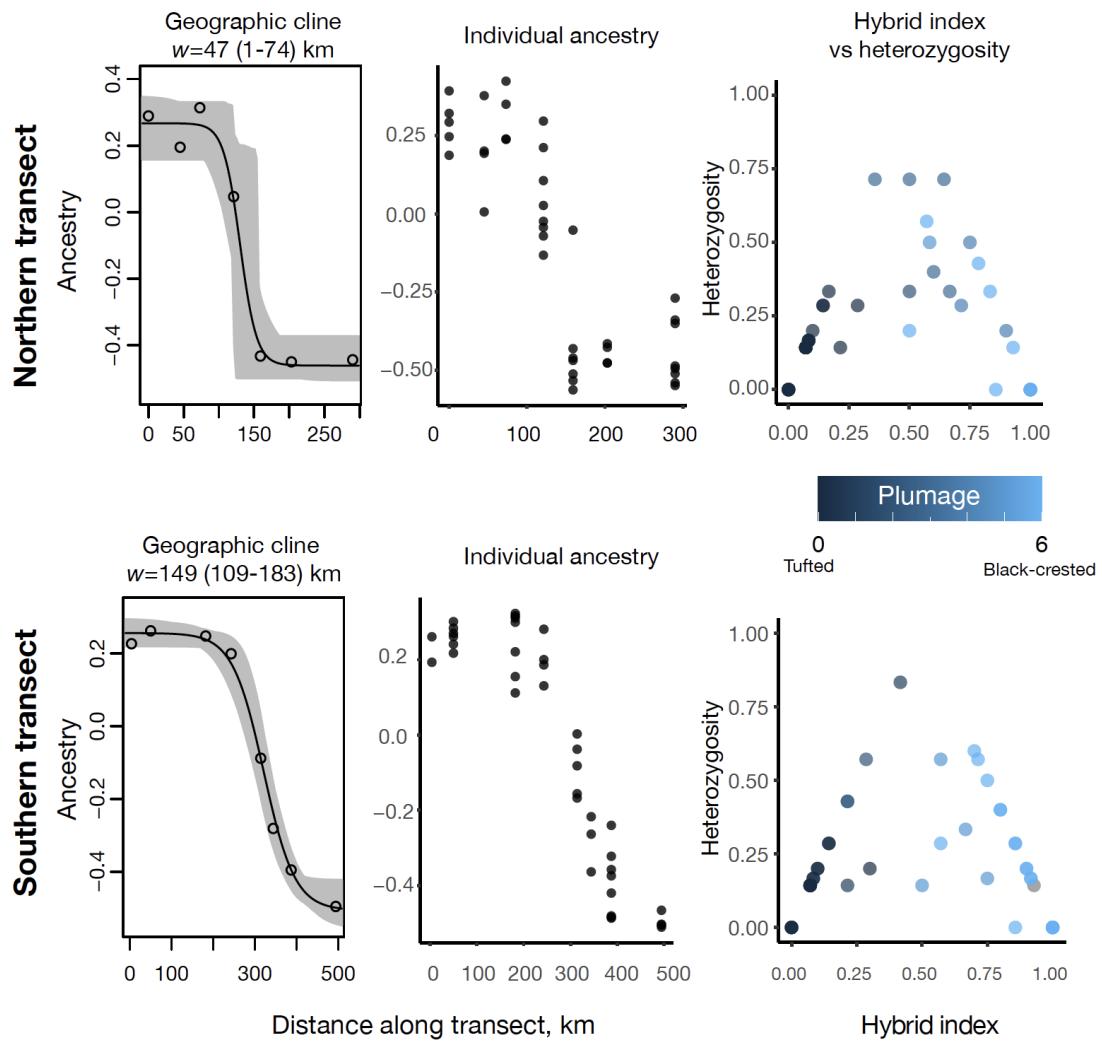
◊ Phenotypic information not available (San Antonio)

Samples used in transect analysis

△ Northern □ Southern ○ Both

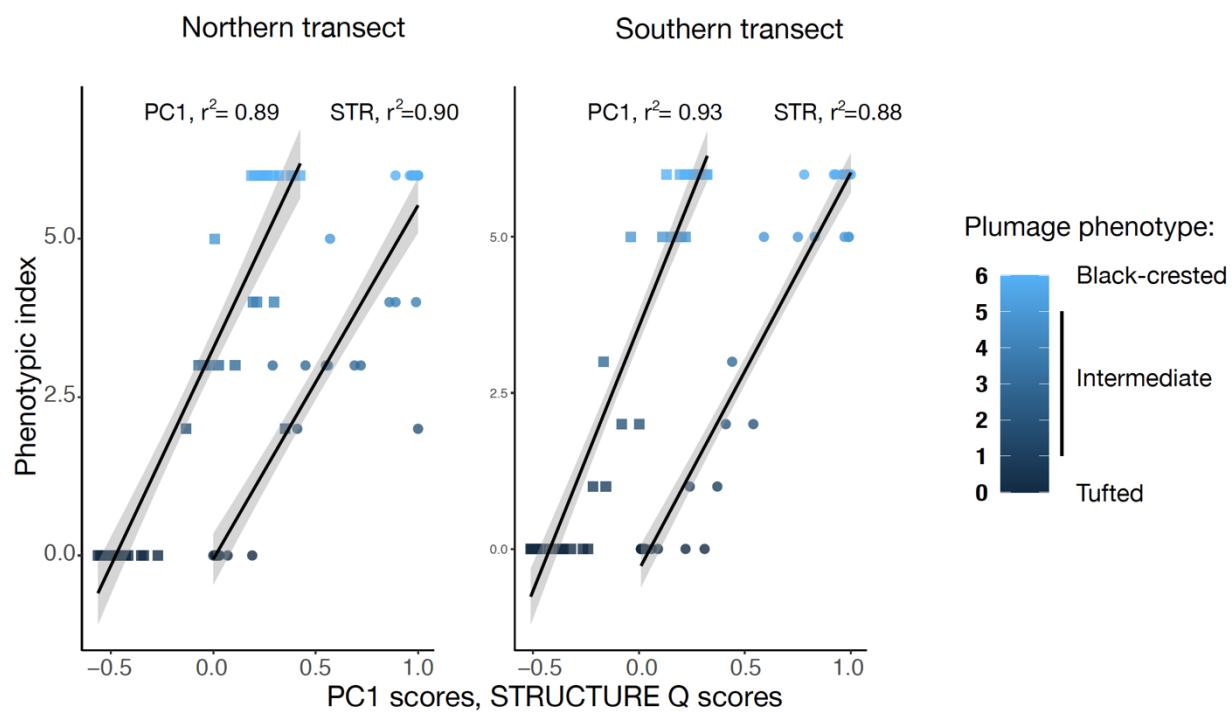
(D)


Figure 1. Distribution, population sampling, transects across hybrid zones and variation in crest color in Black-crested and Tufted titmice. (A) Approximate distributions of Black-crested and Tufted titmice in North America (redrawn from <https://www.allaboutbirds.org>). (B) Plumage index color scheme used throughout this study. (C) and (D) Population sampling and examples of plumage phenotypes and corresponding phenotypic indices. In (D), predominant phenotypes are shown for some key areas. Larger and smaller symbols (squares for southern transect, triangles for northern transect) represent parental samples from remote allopatric populations and parental samples adjacent to the hybrid zone respectively. Circles indicate samples of both taxa used as allopatric in both northern and southern transect analyses. Solid lines indicate transect directions.

403

Figure 2. Population structure in Black-crested and Tufted titmice. Top: Results of STRUCTURE analysis with the number of clusters K=2. Individuals are arranged by sampling location (see supplementary Table S1 for location codes). Locations follow the direction of transects across hybrid zones with distances from geographic cline center indicated on the top. Bottom: Results of Principal Component Analysis performed on mean-centered covariance matrix of genotypes. Gray symbols with black outline are individuals from San Antonio (allopatric Black-crested titmouse adjacent to southern hybrid zone) with missing phenotypic data. Dashed lines indicate then 95% confidence interval. Note that both methods clearly separate allopatric populations of the two taxa and indicate a range of intermediate ancestries in areas of hybridization. Note that while San Antonio is within the range of allopatric Black-crested titmouse, a few Tufted titmice arrived in winter and stayed to breed in 1886-1887 (Dixon 1990), so the samples are of interest to see if any traces of genetic admixture remain.


415
416
417
418
419

4

Figure 3. Patterns of hybridization in Black-crested and Tufted titmice in the northern (top) and southern (bottom) transects. Left: Results of geographic cline analysis. Note that scale is different between north and south, and that the geographic cline for the southern transect is about three times wider than the northern transect. Middle: distribution of individual ancestries across transects. Right: Heterozygosity plotted against hybrid index. The individuals with hybrid index of 0 and 1, and low heterozygosity correspond to parental Tufted and Black-crested genotypes respectively. Recent-generation hybrids have hybrid index close to 0.5 and heterozygosity close to 1, while later-generation hybrids have lower levels of heterozygosity and variable hybrid indices due to recombination and segregation of alleles. Backcrosses have hybrid indices closer to parental genotypes but higher heterozygosity (sides of the "triangle"). Note that there are various types of hybrids and backcrosses found in both transects, suggesting that hybridization and introgression are ongoing. Also note that there is no single location where both parental genotypes are present together, consistent with a "unimodal" model of hybridization (i.e. a local hybrid swarm).

427
428
429
430
431
432
433

434

Figure 4. Association between plumage phenotype (crest color) and ancestry (PC1 and STRUCTURE Q-scores) for the northern and southern transect.

438
439
440
441

LITERATURE CITED

1. Arnold KA. 1972. Crested titmice in Cottle and Foard counties. Bull. Tex. Ornithol. Soc. 5, 23.

- 444 2. Avise JC and Zink RM. 1988. Molecular genetic divergence between avian
- 445 sibling species: King and Clapper Rails, Long-billed and Short-billed
- 446 Dowitchers, Boat-tailed and Great-tailed Grackles, and Tufted and Black-
- 447 crested Titmice. *Auk* 105, 516–528.
- 448 3. Baldassarre D T, White TA, Karubian J, Webster MS. 2014. Genomic and
- 449 morphological analysis of a semipermeable avian hybrid zone suggests
- 450 asymmetrical introgression of a sexual signal. *Evolution* 68, 2644–2657.
- 451 4. Barrera-Guzmán AO, Aleixo A, Shawkey MD, Weir JT. 2018. Hybrid speciation
- 452 leads to novel male secondary sexual ornamentation of an Amazonian bird.
- 453 *Proc. Natl. Acad. Sci.* 115, E218–E225.
- 454 5. Barton N H, Hewitt GM. 1985. Analysis of hybrid zones. *Annual Review of*
- 455 *Ecology and Systematics* 16, 113–148.
- 456 6. Borger MJ, Murphy G. 2020. The influence of social-grouping on territorial
- 457 defense behavior in the Black-crested Titmouse (*Baeolophus atricristatus*).
- 458 *Behavioral Ecology and Sociobiology* 74 (11), 141.
- 459 <https://doi.org/10.1007/s00265-020-02925-x>.

- 460 7. Braun D, Kitto GB, Braun JM. 1984. Molecular population genetics of Tufted
461 and Black-crested forms of *Parus bicolor*. *Auk* 101, 170–173.
- 462 8. Brelsford A, Irwin DE. 2009. Incipient speciation despite little assortative
463 mating: the yellow-rumped warbler hybrid zone. *Mol Ecol* 63(12), 3050-3060.
- 464 9. Callahan PH. 2002. Progress from grassland to shrubland: woody
465 encroachment in North American grasslands. University of Oklahoma,
466 Norman.
- 467 10. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks :
468 Building and Genotyping Loci De Novo From Short-Read Sequences. *G3*
469 *GenesGenomesGenetics* 1, 171–182.
- 470
- 471 11. Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks:
472 an analysis tool set for population genomics. *Mol. Ecol.* 22, 3124–3140.
- 473 12. Cicero C. 2000. Oak titmouse (*Baeolophus inornatus*) and juniper titmouse
474 (*Baeolophus ridgwayi*). In: *The Birds of North America*, No. 485 (A. Poole and
475 F. Gill, eds). *The Birds of North America*, Inc., Philadelphia, PA. 2 p.

- 476 13. Coldren CL. 1992. A comparison of the songs of the Tufted and Black-crested
477 Titmice in Texas. M.S. Thesis, College Station: Texas A&M University.
- 478 14. Curry CM, Patten MA. 2014. Current and historical extent of phenotypic
479 variation in the Tufted and Black-crested Titmouse (Paridae) hybrid zone in
480 the southern Great Plains. *Am. Midl. Nat.* 171, 271–300.
- 481 15. Curry CM, Patten MA. 2016. Shadow of a doubt: premating and postmating
482 isolating barriers in a temporally complex songbird (Passeriformes: Paridae)
483 hybrid zone. *Behav. Ecol. Sociobiol.* 70, 1171–1186.
- 484 16. Curry CM, Patten MA. 2019. Complex spatiotemporal variation in processes
485 shaping song variation. *Behavior* 156(10), 1057-1082. doi:
486 <https://doi.org/10.1163/1568539X-00003556>.
- 487 17. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, ... 2011.
488 The variant call format and VCFtools. *Bioinformatics* 27(15), 2156–2158.
- 489 18. Davis A, Zipple MN, Diaz D, Peters S, Nowicki S, Johnsen S. 2022. Influence of
490 visual background on discrimination of signal-relevant colours in Zebra

- 491 Finches (*Taeniopygia Guttata*). Proceedings of the Royal Society B: Biological
492 Sciences 289 (1976): 20220756. <https://doi.org/10.1098/rspb.2022.0756>.
- 493
- 494 19. Del-Rio, G., M. A. Rego, B. M. Whitney, F. Schunck., L. F. Silveira, B. C. Faircloth,
495 and R. T. Brumfield. 2022. Displaced clines in an avian hybrid zone
496 (Thamnophilidae: Rhegmatorhina) within an Amazonian interfluve. Evolution
497 76:455–475.
- 498 20. Derryberry EP, Derryberry GE, Maley JM, Brumfield RT. 2014. HZAR : hybrid
499 zone analysis using an R software package. Mol. Ecol. Resour. 14, 652–663.
- 500 21. Dixon KL. 1955. An ecological analysis of the inter-breeding of crested titmice
501 in Texas. Univ. Calif. Publ. Zool. 54, 125–206.
- 502 22. Dixon KL. 1978. A distributional history of the Black-crested Titmouse. Am.
503 Midl. Nat. 100, 29.
- 504 23. Dixon KL. 1990. Constancy of margins of the hybrid zone in titmice of the
505 *Parus bicolor* complex in coastal Texas. Auk 107, 184–188.
- 506 24. Ehrlich P, Dobkin DS, Wheye D. 1988. Birder's Handbook. Touchstone. 816 p.

- 507 25. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, . 2011. A
508 robust, simple genotyping-by-sequencing (GBS) approach for high diversity
509 species. *PLoS One* 6, e19379.
- 510 26. Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure
511 using multilocus genotype data: linked loci and correlated allele frequencies.
512 *Genetics* 164, 1567–1587.
- 513 27. Funk ER, Mason NA, Pálsson S, Albrecht T, Johnson J, Taylor SA. 2021. A
514 supergene underlies linked variation in color and morphology in a Holarctic
515 songbird. *Nature Communications* 12(6833).
- 516
- 517 28. Gay L, Crochet P-A, Bell DA, Lenormand T. 2008. Comparing clines on
518 molecular and phenotypic traits in hybrid zones: a window on tension zone
519 models. *Evolution* 62, 2789–2806.
- 520 29. Gill FB, Slikas B. 1992. Patterns of mitochondrial DNA divergence in North
521 American crested titmice. *Condor* 94 (1), 20-28.

- 522 30. Gill FB, Slika, B, Sheldon FH, Fleischer RC. 2005. Phylogeny of titmice (Paridae):
- 523 II. Species relationships based on sequences of the mitochondrial cytochrome-
- 524 b gene. *Auk* 122, 121–143.
- 525 31. Gompert Z, Buerkle CA. 2016. What, if anything, are hybrids: enduring truths
- 526 and challenges associated with population structure and gene flow.
- 527 *Evolutionary applications* 9(7), 909-923.
- 528 32. Grabenstein KC, Taylor SA. 2018. Breaking Barriers: Causes, Consequences, and
- 529 Experimental Utility of Human-Mediated Hybridization. *Trends in Ecology and*
- 530 *Evolution*, 33(3), 198–212. doi.org/10.1016/J.TREE.2017.12.008
- 531 33. Harrison RG. 1993. Hybrids and hybrid zones: historical perspective. In: *Hybrid*
- 532 *zones and the evolutionary process*. 3-13.
- 533 34. Harrison RG, Larson EL. 2016. Heterogeneous genome divergence, differential
- 534 introgression, and the origin and structure of hybrid zones. *Mol Ecol* 25(11),
- 535 2454-2466.
- 536 35. Hewitt GM. 1988. Hybrid zones-natural laboratories for evolutionary studies.
- 537 *Trends in Ecology & Evolution* 3 (7), 158-167.

538

539 36. Johansson US, Ekman J, Bowie RC, Halvarsson P, Ohlson JI, Price TD, Ericson

540 PG. 2013. A complete multilocus species phylogeny of the tits and chickadees

541 (Aves: Paridae). *Molecular Phylogenetics and Evolution* 69, 852-860.

542 37. Klicka J, Zink RM. 1997. Pleistocene effects on North American songbird

543 evolution. *Proceedings of the Royal Society B*. 266(1420), 695-700.

544 38. Laine VN, Gossman TI, Schachtschneider KM, Garroway CJ, Madsen O,

545 Verhoeven KJF... 2016. Evolutionary signals of selection on cognition from the

546 great tit genome and methylome. *Nat. Commun.* 7, 10474.

547 39. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2.

548 *Nat. Methods* 9, 357–359.

549 40. Mason NA, Taylor SA. 2015. Differentially expressed genes match morphology

550 and plumage despite largely homogeneous genomes in a Holarctic songbird.

551 *Molecular Ecology* 24, 3009 – 3025.

552 41. Mettler RD, Spellman GM. 2009. A hybrid zone revisited: molecular and

553 morphological analysis of the maintenance, movement, and evolution of a

- 554 Great Plains avian (Cardinalidae: *Pheucticus*) hybrid zone. *Mol Ecol* 18(15),
- 555 3256–3267.
- 556 42. Moore WS. 1977. An evaluation of narrow hybrid zones in vertebrates.
- 557 *Quarterly Review of Biology* 52, 263–277.
- 558 43. Moor WS, Price JT. 1993. Nature of selection in the Northern Flicker hybrid
- 559 zone and its implication for speciation theory. In: *Hybrid zones and the*
- 560 *evolutionary process*. 196–226.
- 561
- 562 44. Murphy TG, Hernandez-Mucino D, Osorio-Beristain M, Montgomerie R,
- 563 Omland KE. 2009. Carotenoid-based status signaling by females in the tropical
- 564 streak-backed oriole. *Behavioral Ecology* 20 (5), 1000–1006.
- 565 <https://doi.org/10.1093/beheco/arp089>.
- 566 45. Murphy TG, Rosenthal MF, Montgomerie R, Tarvin KA. 2009. Female American
- 567 Goldfinches use carotenoid-based bill coloration to signal status. *Behavioral*
- 568 *Ecology* 20 (6), 1348–55. <https://doi.org/10.1093/beheco/arp140>.
- 569 46. Nice MM. 1931. The Birds of Oklahoma. *Publ. Okla. Biol. Surv.* 3, 1–224.

- 570 47. Nice MM. 1943. New bird species recorded for Oklahoma since 1931. In:
- 571 Proceedings of the Oklahoma Academy of Science, 14–16.
- 572 48. Patten MA, Smith-Patten BD. 2008. Black-crested Titmouse (*Baeolophus*
- 573 *atricristatus*). In: The Birds of North America, no. 717 (A. Poole, ed). Cornell
- 574 Lab of Ornithology, Ithaca.
- 575 49. Patten MA, Barnard AA, Curry CM, Dang H, Loraamm RW. 2021. Forging a
- 576 Bayesian link between habitat selection and avoidance behavior in a grassland
- 577 grouse. *Scientific Reports* 11:2791.
- 578 50. Payseur BA, Rieseberg LH. 2016. A genomic perspective on hybridization and
- 579 speciation. *Mol Ecol* 25(11), 2337-2360.
- 580 51. Poelstra JM, Vijay N, Bossu CM, Lantz H, Ryll B, Müller I, Baglione V, Unneberg
- 581 P,... 2014. The genomic landscape underlying phenotypic integrity in the face
- 582 of gene flow in crows. *Science* 344(6190), 1410-1414.
- 583 52. Price T. 2008. *Speciation in birds*. WH Freeman. 470p.
- 584

- 585 53. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure
586 using multilocus genotype data. *Genetics* 155, 945–959.
- 587 54. Pyron RA, Costa GC, Patten MA, Burbrink FT. 2015. Phylogenetic niche
588 conservatism and the evolutionary basis of ecological speciation. *Biol Rev Camb Philos Soc* 90(4), 1248-1262.
- 589 55. Queller PS, Murphy TG. 2017. Seasonal variation in the utility of a status
590 signaling system: plumage ornament predicts foraging success only during
591 periods of high competition. *PLOS ONE* 12 (10), e0185584.
- 592 56. Rising JD. 1983. The Great Plains hybrid zones. *Curr. Ornithol.* 1, 131–157.
- 593 57. Rohwer S, Wood C. 1998. Three hybrid zones between Hermit and Townsends
594 warblers if Washington and Oregon. *The Auk(2)*, 284-310.
- 595 58. RStudio Team. 2020. RStudio: Integrated Development for R. RStudio, PBC,
596 Boston, MA URL <http://www.rstudio.com/>.
- 597 59. Rylander RJ, Fritts SR, Aspbury AS. 2020. Limited dispersal by large juvenile
598 males leads to kin-structured neighborhoods in the Black-crested Titmouse
599 (*Baeolophus atricristatus*). *Behavioral Ecology and Sociobiology* 74, 65.
- 600

- 601 60. Scordato ESC, Smith CCR, Semenov GA, Liu YU, Wilkins MR, Liang W ... 2020.
- 602 Migratory divides coincide with reproductive barriers across replicated avian
- 603 hybrid zones above the Tibetan Plateau. *Ecology Letters* 23 (2), 231-241.
- 604 61. Semenov GA, Linck E, Enbody ED, Harris RB, Khaydarov DR, Alström P, ... 2021.
- 605 Asymmetric introgression reveals the genetic architecture of a plumage trait.
- 606 *Nature communications* 12 (1), 1-9.
- 607
- 608 62. Seyffert KD. 2001. Birds of the Texas Panhandle: Their status, distribution, and
- 609 history. Texas A&M University Press, College Station.
- 610 63. Sheldon FH, Slikas B, Kinnarney M, Gill FB, Zhao E, Silverin B. 1992. DNA-DNA
- 611 hybridization evidence of phylogenetic relationships among major lineages of
- 612 *Parus*. *Auk* 109, 173–185.
- 613 64. Sutton GM. 1967. Oklahoma birds. University of Oklahoma Press, Norman, OK.
- 614 65. Tarvin KA, Murphy TG. 2012. It isn't always sexy when both are bright and
- 615 shiny: considering alternatives to sexual selection in elaborate monomorphic
- 616 species. *Ibis* 154 (3), 439–43.

- 617 66. Taylor SA, Larson EL. 2019. Insights from genomes into the evolutionary
618 importance and prevalence of hybridization in nature. *Nature Ecology and
619 Evolution* 3, 170-177.
- 620 67. Taylor SA, White TA, Hochachka WM, Ferretti V, Curry RL, Lovette IJ. 2014.
621 Climate Mediated Movement of an Avian Hybrid Zone. *Current Biology* 24,
622 671-676.
- 623 68. Toews DPL, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, ...
624 2016. Plumage genes and little else distinguish the genomes of hybridizing
625 warblers. *Current Biology* 26 (17), 2313-2318.
- 626 69. Van Auken OW. 2000. Shrub invasions of North American semiarid grasslands.
627 *Annu. Rev. Ecol. Syst.* 31, 197–215.
- 628 70. Van Auken OW. 2009. Causes and consequences of woody plant
629 encroachment into western North American grasslands. *J. Environ. Manage.*
630 90, 2931–2942.
- 631

- 632 71. Walsh J, Billerman SM, Rohwer VG, Butcher BG, Lovette IJ. 2020. Genomic and
- 633 plumage variation across the controversial Baltimore and Bullock's oriole
- 634 hybrid zone. *The Auk* 137(4), ukaa044.
- 635 72. Wang S, Rohwer S, Delmore K, Irwin DE. 2019. Cross-decades stability of an
- 636 avian hybrid zone. *Journal of Evolutionary Biology* 32(11), 1242-1251.
- 637 73. Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of
- 638 populations structure. *Evolution* 38(6), 1358-1370.