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Abstract

The Boussinesq abcd system arises in the modeling of long wave small amplitude water waves in a
channel, where the four parameters (a, b, c, d) satisfy one constraint. In this paper we focus on the solitary
wave solutions to such a system. In particular we work in two parameter regimes where the system does not
admit a Hamiltonian structure (corresponding to b # d). We prove via analytic global bifurcation techniques
the existence of solitary waves in such parameter regimes. Some qualitative properties of the solutions are
also derived, from which sharp results can be obtained for the global solution curves.

Specifically, we first construct solutions bifurcating from the stationary waves, and obtain a global con-
tinuous curve of solutions that exhibits a loss of ellipticity in the limit. The second family of solutions
bifurcate from the classical Boussinesq supercritical waves. We show that the curve associated to the sec-
ond class either undergoes a loss of ellipticity in the limit or becomes arbitrarily close to having a stagnation
point.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The phenomenon of solitary wave was first observed by John Scott Russel [32] almost two
centuries ago, which is later used to characterize wave that does not disperse and retains its
original identity as time evolves. Exact existence theory for solitary water waves, however, first
appeared more than a century later in the work of Lavrentiev [29], Friedrichs-Hyers [24], and
Ter-Krikorov [37] for small-amplitude irrotational waves. Construction for large-amplitude irro-
tational waves was achieved by Amick—Toland [4,5] and Benjemin—Bona—Bose [7].

Russel’s experiment also motivated the studies on the mathematical modeling of water waves.
The first works can be dated back to Boussinesq [12], Rayleigh [31], Korteweg and de Vries [28],
where simpler sets of equations were derived as asymptotic models from the free surface Euler
equations in some specific physical regimes. To be more precise, let 4 and A denote respectively
the mean elevation of the water over the bottom and the typical wavelength, and let a be a typical
wave amplitude. The parameter regime considered in the above works corresponds to

e, s="« 082

e=, <1 d=-<1 e=00,
which is called the small amplitude, shallow water regime. Physically, ¢ measures the strength of
nonlinearity while § characterizes the effect of dispersion. Thus solitary waves can be viewed as
generated from a perfect balance between nonlinear and dispersive effects. The reduced systems
within the above scaling regime couple the free surface elevation 7 to the horizontal component
of the velocity u, and include the celebrated KdV equation and the Boussinesq equation [12,22,
26,28,39].

In this paper we will consider solitary wave solutions to an asymptotic water wave model
derived by Bona—Chen-Saut [9] (generalized to include the surface tension in [23] and in higher
dimensions Bona—Colin—Lannes [10]) as an extended system of the classical Boussinesq equa-
tion. Specifically, it is a three-parameter family of Boussinesq systems for one dimensional
surfaces that takes the following form

{ Nt + ux + WnN)x + altxxx — b1xxr =0, (1.1)
Ur + 15 + %(uz)x + CNxxx — duxxe =0, ’

all of which are formally equivalent models of solutions of the Euler equations. In the above
system 7 is proportional to the deviation of the free surface from its rest position, u is proportional
to the horizontal velocity taken at the scaled height 0 <6 <1 (6 =1 at the free surface and 8 =0
at the bottom). The parameters have the following explicit form

(0?1 (971 _(1-6% (1—6?)
=(3-5)n p=(3-g)a-w =T umn a=B 00

with v and p arbitrary real numbers, and t > 0 is the normalized surface tension. These three
degrees of freedom arise from the height at which the horizontal velocity is taken and from a
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double use of the BBM trick [8]. The hydrodynamic relevance of the model was justified in
[10,14,34].
A solitary wave solution to system (1.1) is of the type

n(x, 1) =n() =nlx — ), u(x,t) =u(§) =u(x — i), (1.2)

where A € R denotes the traveling speed and § = x — At is the moving coordinate with speed A.
We are thus looking in the class of “localized” solutions to the system

cn”+n—)\u+d)\u”+%u2=0, (1.3)

au” +u—An+brnp" +nu =0, '
where /7 denotes the derivative with respect to £. The “localization” of the solutions leads to the
asymptotic condition

| llim (1, u) = (0,0). (1.4)

Note that when b = d, the system possesses a Hamiltonian structure with Hamiltonian

1
H,u) = 5/ [—cnﬁ — aui + 772 + 1+ n)uz] dx. (1.5)

The solitary waves correspond to the critical points of the action functional S, = H — AZ, where

I(n,v)= / (nu + bnyuy)dx

is called the impulse functional, and the Lagrange multiplier A gives the speed of the wave.

From (1.5) we see that the Hamiltonian # (1, ) is coercive in H! provided that a, ¢ < 0.
In this parameter regime, the existence of solitary waves can be inferred from the existence of
minimizers to a constraint minimization problem [16] under the assumptions that the surface
tension is large (v > 1/3) and ||n|| 52 is small. Later in [17] another variational formulation was
adapted in the same parameter regime to establish the existence of solitary waves for any 7 > 0,
but with a smallness restriction on the traveling speed A. Using a Nehari manifold technique, the
existence of ground state solutions (nontrivial solitary waves carrying minimum action energy
S5.) was established in [6]. In the case of large surface tension 7 > 1/3, these ground states are
shown to be depression waves which are symmetric and increasing from their unique troughs,
consistent with the results in the context of two-dimensional full gravity-capillary water waves
[1,27,33].

All the above analytical results are crucially based upon the Hamiltonian structure of the sys-
tem, i.e., b = d. Our main goal is to extend the existence result to the cases when the parameters
fall out of this regime. In particular, we will focus on pure gravity waves, corresponding to t = 0,
and allow either (i) b # d, so that the Hamiltonian structure is no longer available; (ii) a, ¢ > 0,
so that the quadratic part of the Hamiltonian (1.5) is not positive definite; or (iii) the wave speed
A is large |A| > 1, so that the action functional fails to be bounded from below. In all cases, the
standard variational method seems hard to apply.
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The main tool we are using is the bifurcation theory. For this to work we need to first choose
a good parameter s € R with which the problem (1.3) can be formulated as an abstract one-
parameter problem

F(U,s)=0

where U := (u, n). The perturbative construction of solutions relies on a good understanding
of the linearized operator .%y at some special solution (Up, so). It turns out that the translation
invariance of the problem naturally generates a nontrivial kernel of the linearized operator %, at
any solution. With some appropriate choices of the “base point solution” (U, s¢), standard ODE
techniques can be applied to ensure that the kernel is exactly one dimensional and hence can be
removed by suitable choice of the function spaces, allowing us to invoke the Implicit Function
Theorem to obtain a local curve of solutions.

As is common for the solitary wave problem, continuing the local curve globally by standard
global bifurcation techniques faces a serious obstruction due to the unboundedness of the domain.
One classical approach is to approximate the solitary waves by periodic ones as the period tends
to infinity. Such a method is used by Toland [38] to treat (1.3) with (a, b, c,d) = (0, 3, —%, 1).
He first obtains a global bifurcation theory for the periodic problems, and then proves a uniform
estimate. Together with an application of the Whyburn lemma, this leads to the convergence of
the global sets of periodic solutions to a global connected set of solitary wave solutions as the
period goes to infinity.

We will adapt a recently developed analytic global implicit function theorem in [20] for the
global theory, cf. Theorem 2.5. As is pointed out in [20], the global curve may not be locally
pre-compact, nor can one assume a priori that Fredholmness persists. Thus the loss of compact-
ness emerges as an alternative. The ODE nature of the problem easily rules out the failure of
Fredholmness. Therefore the theory will become useful in practice if we can rule out the loss of
properness or classify how it manifests.

More specifically, we will consider global branches of solutions emanating from two base
point solutions: the first one being the stationary solution (corresponding to A = 0), and the sec-
ond being the supercritical (A > 1) waves to the classical Boussinesq system (corresponding
to (a,b,c,d) = (0,0,0, %)). We will also assign different parameters when studying these two
types of waves. When bifurcating from the stationary waves, we use the wave speed A as the
bifurcation parameter while fixing the abcd system as in (2.5), and obtain a continuous curve
of solutions all the way into the regime where solutions are traveling with an O (1) speed. For
the other case we will fix an arbitrary supercritical speed A > 1 and design a family of abcd
systems (as in (3.3)) that can accommodate solitary waves with such a speed A. In both cases
we prove a collection of qualitative properties of the solutions that are crucial for the final global
result. In particular, using maximum principle arguments and the symmetry result for weakly
coupled cooperative elliptic systems [13] we are able to obtain local uniqueness, local mono-
tonicity, and nodal pattern of the solutions. The fact that we are always considering a system
makes the maximum arguments more delicate, and possibly more restrictive; see Section 2.2-2.3
and Section 3.1-3.2.

Regarding the ruling-out/realization of the loss of compactness alternative in the global the-
ory, as was studied in [19,20], the established monotonicity property is strong enough to assert a
“compactness or front” result stating that this possibility must manifest as a broadening phe-
nomenon, leading to a monotone front type of solution at the end of the bifurcation curve.
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When the underlying system possesses a Hamiltonian structure, a so-called conjugate flow anal-
ysis can be carried out utilizing the conserved quantities to rule out the broadening alternative
[2,19-21,25,36]. Moreover, for some particular problems such a Hamiltonian structure may also
allow one to obtain uniform bounds on solutions that can account for the realization of broaden-
ing [25]. In the cases we consider, however, the system is not Hamiltonian, and we do not have
any obvious conserved quantities that can be of much use to control the solutions. Taking advan-
tage of the monotonicity and together with delicate algebra we are able to prove the nonexistence
of monotone front solutions, cf. Lemma 2.7 and Lemma 3.2. Using this idea we can also prevent
the blowup of solutions (i, 1) in the case of bifurcation from stationary waves, which leads to
a sharp result ensuring the loss of ellipticity as the only remaining alternative cf. Theorem 2.6.
For the other case of solutions bifurcating from the classical Boussinesq waves, we are able to
winnow the alternatives down to the possibilities of either the loss of ellipticity or that the curve
continues up to the appearance of an “extreme wave” that has a stagnation point, cf. Theorem 3.4.

2. Bifurcation from stationary waves witha =c <0

We start by constructing solutions near the stationary waves corresponding to A = 0. To ensure
ellipticity we will impose the sign condition a, ¢ < 0.

2.1. Stationary solutions

Note that in the case when A = 0 the terms in system (1.3) containing b and d disappear, and
the problem becomes

2
e =ntiy @
—au” =u(l +n).

By elliptic regularity we know that any solution of (2.1) is smooth and | l‘im ', u") = (0,0).
X|— 00

Hence solitary wave solutions satisfy the ‘first integral’ property
—a@W)? = ey =L +n) + 1. (2.2)

The existence theory for (2.1) has been studied systematically in [18]. Here we collect some
results that will be important for the later bifurcation argument. For the reader’s convenience we
provide their proofs in Appendix A.

Lemma 2.1. Any solitary wave solution of (2.1) satisfies
nx) <0 onR.

Proposition 2.1 (Existence and uniqueness of stationary waves [18]). When a = ¢ = —-B2<0
we have

(i) there is a solitary wave solution such that uy (x) <0 on R. Up to translation,

ug(x)z—%ﬁsechz (%) and no(x)z—%sechz (%) 2.3)
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This solution is unique among the class of functions (u, n) where u < </2;
(1) there is a solitary wave solution such that u(")" (x) > 0 on R. Up to translation,

32 X 3 X
uar(x) = Tsech2 <ﬁ> , and no(x) = —Esech2 (ﬁ) . 24

This solution is unique among the class of functions (u, n) where u > —~/2.
Note that from elliptic regularity we easily see that (u(j)[, no) € HX(R) x H*®(R).
2.2. Local theory

Now we will construct a local curve of solutions nearby the stationary solution (uq, 179). The
parameters we are taking satisfy

1
a=c=—-d=-8%<0, b:§+,32. (2.5)
Obviously we see that b # d, and hence we are outside the Hamiltonian regime when the surface
tension is small. For simplicity we will take t = 0 in the following discussion. To fit our argument

in the framework of [20], we will consider the problem in Holder spaces.
Denote by Co(R) the set of continuous functions vanishing at infinity and

CE @) ={ € CXR): |Ifllc2se < +00] .
Define for o € (0, 1) the following Holder space
7= (CH®) N Co®)) x (CL®) N Co(R)),
W = (C&e(R) N CO(R)) X (C{;"e(R) N CO(R)) ,
where the subscript ‘e’ denotes the restriction to even functions, and The use of Cy(R) is to

realize the asymptotic condition (1.4).
Writing U = (u, 1), the system for solitary waves takes the following form

1 A
E("*(”W)”)*(W”)’*

F(U,») = =0 (2.6)

’

L(n—u)+ %uz
where
F . X >,
and £ := 1 — 8232 is an invertible operator from nga (R) N Co(R) — Cg .(R) N Co(R).
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The discussion in Section 2.1 indicates that .% (Ugt, 0) = 0 where UOi = (u(j)t, no). The lin-
earized operator at the solution (USE, 0) is

+
FyUF,0VI=LV + <;7i " ) v, 2.7)
0

where V := (v, ¢) € 2. The following lemma states that the kernel of ﬁU(UgE, 0) is only gen-
erated by the translation symmetry.

Lemma 2.2. For any given 8 > 0, ?U(Uoi, 0): £ — % is injective.

Proof. Let V = (v, ) € ker.Zy (U, 0). Then V satisfies

+
no Uy _
LV + (Mg 5 )V—O. 2.8)

Notice that the Green’s function for £~ ! is G(x) = ﬁe"”/ P . Therefore

+
V() =—Gx) [(L’]i 3 ) v} (x)

0
_ (o) ug )
= /G(x y)(ﬂg(y) % )V(y)dy
R
_ 1L [Ga=»GH» 1 (o) u§<y>>
- G(x)R/ Gx» GO (u?f(y) o )V
Since
’G(x—y)G(y) el Cricl s
G(x) ~ G(y) Gy |~
we conclude that V decays exponentially
G V)| S L (2.9

Expanding (2.8) into a 4 x 4 first order ODE system and checking the asymptotics we find
that there are only two bounded solution branches, and they have the asymptotic behavior

e I8 and x| 1xI/B as |x| — oo.

Together with (2.9) we know that the space of bounded solutions to (2.8) is at most one-
dimensional. Recalling from the translation invariance that

FuUSE, 0(UF1=0,
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it follows that (Uoi)’ is the only bounded solution to (2.8). Finally the parity condition yields the
desired result. O

The spectral property of F (USE, 0) given by Lemma 2.2 allows a use of the Implicit Function
Theorem. Notice that for if (u, , A) is a solution to (2.6) with A > 0, then so is (—u, n, —A). In
fact this corresponds to the same wave propagating in the opposite direction. Therefore in the
following analysis we will only consider the case A > 0.

Theorem 2.1 (Nearly stationary waves). For any € R there exists some positive Ly > 0 and a
CO solution curve

CnglOW — {(ui()u), nA),A): 0<A<i}CZ xR

ocC
to problem (2.6) with the property that

u)=ui +0M), nW)=n+0M) in Z, (2.10)
u(A) >0 and nd) <0, (2.11)

where (u(")", no) is given in (2.4).

Proof. The proof of the existence and uniqueness of the solution curves and (2.10) follows from
Lemma 2.2 and a direct application of the Implicit Function Theorem.

Applying the maximum principle to the second equation of (2.6) we see that Au > n. From
(2.6) we also have

—B? [1 — A2 (1+#)} n//+(l—k2—)»u)n+%u2=0. (2.12)

From (2.10) we know that for A sufficiently small 1 — A2 —iu > 0. Therefore, from the maximum
principle we conclude that n < 0. If there is an x; such that n(x;) = 0 = maxn, then we have
7' (xo) = 0. Substituting this into the above equation leads to n”(xg) = u(xg) = 0. Hence (n —
Au)(xg) = 0. Since n — Au < 0, we see that (n — Au)(xg) = max(n — Au), and thus u’(xg) = 0.
The uniqueness of ODE then implies that (1, ) = 0, a contradiction. Therefore we must have

n <0.

Direct calculation yields the equation for u as

—ﬁz[l—kz <1+L>i|u”+ [1—A2<1+L) 42 <1+L)u}u
32 382) " 2 32

A
+<3—ﬂ2+u>n=0.

From (2.10) and (2.4) we know that for any e > O there exist A > 0 sufficient small and Ry > 0
sufficiently large such that

(2.13)
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= ug || 2y + 11 = n0llc2gry + g otz ko) + 170/ co gy ) < & o1

u>0 for |x| < Ro.

If infu < —3A—2 < 0, then from the above equation we know that there exists some xo > Ry

such that u(xg) = infu. Continuity then yields the existence of x; with x; > Ry and u(x;) =0
such that

x1 =min{x > 0: u(x) =0}.
Rewriting (2.13) as
2 5 1 p 2 1 A 1 A
—,3 1—X 1+F u"+|1—A 1+W +7’]+§ 1+W u M+3—’8277=0,
(2.15)

we see from (2.14) that |n| < 2¢ on [x1, +00). Thus for A and ¢ sufficiently small, applying the
maximum principle on [x{, +00) yields that

u>0 on [xy,+00),

which is a contradiction.
Therefore

infu > —

W .

Substituting this into (2.13), from the maximum principle we can infer that u > 0, which is
2.11). O

To investigate further the qualitative properties of the solutions, let us first recall the following
result of [13, Theorem 2] on weakly coupled elliptic systems.

Theorem 2.2 ([13]). If (u, v) is a classical solution to the following elliptic system

Au—+g(u,v)=0 in R,
Av+ f(u,v)=0 in R™,
u, v>0 in R",

ux), v(x) =0 as |x|— oo,

where f, g € C1([0, 00) x [0, 00), R). Suppose further that

dg 0
@) a—g, a—f are non-negative on [0, 00) x [0, 00), (quasi-monotonicity)
v ou

.. 0g af
(i) —(0,0) <0and —(0,0) <O;
ou ov
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(iii) detA > 0, where

Jg  0g
du 0Jv
A= (0,0).
of of
du 0Jv

Then there exist points xo, x| € R" such that u(x) = u(|x — xg|) and v(x) = v(|x — x1|). More-
over

d d
au <0 and av <0,
drg dry

where ro := |x — xgo| and r1 ;= |x — x1].
From the above theorem we immediately obtain

Lemma 2.3 (Local monotonicity). Fix B € R. There exists Ao > 0 such that every solution

(u, 1, 1) € €3V with 0 < A < Ag is strictly monotone in that for x > 0,
loc y

u <0 and n > 0. (2.16)

Proof. We see that (u, n) satisfies equations (2.13) and (2.12). Setting v := —n and putting it
into the form as in Theorem 2.2 we find that

1 A 1 A 1 oy
g(u’v)z_ﬁu+3,343v+/32Buv_2,323 1+W us,

1-22 A 1,

fu,v)y=— 5B v+ﬂ2Buv+2ﬂ23u )
where B := |1 —22(1+ =L )| > 0 for small A. Direct computation shows that
3,32 p
dg  dg LN S SEL A b
3 o 2 et s\t 3)" 38 T B
of of A 1 1-22 &
u v 28" gB" ~ s ' p2B"

From Theorem 2.1 we know that u, v > 0 when X is small, which implies that (i)—(iii) of Theo-
rem 2.2 are satisfied. Therefore (2.16) holds. O

Another application of Theorem 2.2 to the local solution near the bifurcation point (u(J)r, 1o, 0)
is the following result on the local uniqueness of the solution curve %ﬁ)lgw In particular this result
shows that all classical solutions near (uar , 10, 0) with A > 0 must be even and monotone on the

positive axis.
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Corollary 2.3 (Local uniqueness). Denote by B, the ball of radius r > 0 in (CZ(R) N CO(R)) X
(CZ(R) N CO(R)) x R centered at (ug, 10, 0). There exists € > 0 such that for A > 0,

FZ710) N Be =6V N B... (2.17)

Proof. Consider a solution (u, 1, A) to equations (2.12)—(2.13) with

| = ug | comy + 11 = moll 2y + 141 <&

There exists an Rg > 0 large enough such that

HM - MS—HCZ(R) + ”77 - nOHCZ(]R) + A+ ||u8_”C0(|x\2R0) + lno ”CO(\xlzRo) <§é, 2.18)

u>0 n<0, u <0 n>0 for |x| < Ro.

Hence if supn > 0, then from continuity there exists xo := min{x > 0 : 7n(x) = 0} such that
n(xo) =0 and xo > Ry. From (2.18) we see that

1—22—2u>0 on [xp, +00).

Applying the maximum principle to (2.12) on [xg, +-00) yields that n < 0 on [x¢, +00). Together
with (2.18), this fact contradicts the assumption that supn > 0. Therefore we must have n <0.

In a similar way if infu < 0, then we may find x1 := min{x > 0: u(x) = 0} such that u(xgp) =
0 and x¢ > Rp. The maximum principle applied to (2.15) on [x1, +00) leads to the conclusion
that u > 0, contradicting to the assumption that infu < 0. Thus u# > 0.

If there exists some xg > 0 such that n(xg) = 0, then n(xo) = supn, and hence n'(xg) =0
and 1" (x¢) < 0. From (2.12) we find that u(x() = 0. This also means that u(xg) = infu, and so
u’(x9) = 0. Uniqueness of the ODE then implies that n = u = 0, which contradicts (2.18). The
same argument applies to the situation if u touches zero at some finite point.

The above argument indicates that for any small (u, , A) € .Z ~1(0) N B,,

u>0 and n <O0.

Then for A > 0 one may apply Theorem 2.2 to conclude that # and 7 are both even. Therefore
the uniqueness of ‘Klf)]é’w within .Z~1(0) N (&V X R+) gives (2.17). O

2.3. Nodal pattern

Now for each fixed 8 € R we introduce the set

1
(’)::{(u,n,)L)G%XRJF:1—A2<1+W>>0}. (2.19)

The results of Theorem 2.1 and Lemma 2.3 naturally suggest us to consider the following
“nodal properties”
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u=>0 in R, (2.20a)
n<0 in R, (2.20b)
' <0 in RT, (2.20c)
n >0 in RT. (2.20d)

Lemma 2.4 (Open property). Let (s, nx, As) € O N.Z~1(0) be given and suppose that it satis-
fies (2.20). There exists € = &(ux, Nx, Ay) > 0 such that, if u,n, 1) € O N.Z~10) and

lu — U*||C2(]R) +ln — 77*||c2(]R) + A=Al <e, (2.21)
then (u, n, 1) also satisfies (2.20).

Proof. The proof of (2.20a) and (2.20b) follows the same argument as in the proof of Corol-
lary 2.3 by replacing (uar , 10, 0) with (uy, 04, A«). The proof for (2.20c)—(2.20d) then follows
directly from the application of Theorem 2.2. O

Lemma 2.5 (Closed property). Let {(un, 1y, 1)} € O N F~H0) be given and suppose that
(Uns Nns Ap) = W, m,A) € ONZ710) in C2(R) x C2(R) x R. If each (i, Mn, An) satisfies
(2.20), then (u, n, A) also satisfies (2.20) unless u = n = 0.

Proof. First we see that

u >0, n <0, A >0, and

u' <0, n >0 in RT.

If there exists x¢ such that u(xg) = 0, then u(xo) = infu, and hence u’(xg) = 0. From the equation
(2.13) and maximum principle we see that 7(xg) = 0. Therefore n(xg) = supn. So n’(xg) = 0.
Thus from the uniqueness of ODE we know thatu =n=0. O

Lemma 2.6 (Nodal property). If K is any connected subset of © N .Z~1(0) that contains %ﬁ}é’w,
then every (u,n, A) € K exhibits (2.20).

Proof. First note that each (u(1), n(A), A) € €3V satisfies (2.20). Recall the definition of B, in

loc
Corollary 2.3. Fix 0 < A < A and take ¢ to be sufficiently small, the local uniqueness of Cglz)lgw

implies that

1
KNBe =6 N B,

and KC\ B, is the connected component containing (u#(X), (1), ). Applying Lemmas 2.4 and 2.5
completes the proof. O
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2.4. Monotone fronts

Next we define the concept of monotone fronts.

Definition 2.4. For A > 0 and A2 <l + #) < 1, we say (u, n, A) is a monotone front solution of

(2.6)if (u, n) € CZ(R) x CZ(R), and

lim (u(0),n(0))=(0.0), and u>0, n<0, <0, 720 inR, (222
X—>T00

where Cg (R) is the set of C? functions with bounded norms.

Lemma 2.7 (Nonexistence of monotone fronts). There exists some Bo > 0 such that if A > 0 and
|B] < Bo, then system (2.6) does not admit any monotone front solution in the sense of (2.22).

Proof. Suppose (u, 1) is a monotone front solution to (2.6). Then since u, n are bounded and
monotone,

(u,n) = lim (u(x),n(x))
X—>—00
exists, and u > 0, < 0. Evaluating (2.12) at —oo leads to

1—22 _ 2
s and n=———->——.
A 2(1 — A2 — Ai)

u< (2.23)
Substituting the above equation into (2.13) and evaluating the equation at —oo yields

—(2=B)i?> —ABi+2(1-1*B=0,

where B = 1—1? (1 + 3#) € (0, 1). Solving this quadratic equation together with the constraint
that u > 0 yields

VA2B2+8B(2— B)(1 —A2) —AB

B (2.24)

U=
On the other hand, multiplying (2.12) by 1’ and multiplying (2.13) by u’ and summing up, it
follows that

— A2 B A 1 1,7
N —n2+—u2+6<1+—)u3+—u2n:|

|: IBZB< N2 "2 1
W)+ 0)?) +
2 2 3p2 2
(2.25)

A
—xuny’ + —nu' =0.
nn 382 U]
We can rewrite the last two terms above as
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2 ’ + A / A 2 + A ' + A ) A ’
—Au —nu' =|—=u —nu —u'n®——nu.
e PR YL U~ 350
The definition of monotone front implies that )‘u/ n* — ﬁ2 n’u < 0, and hence we have
s —= |u —u — —Uu —u
2 ” 2" 362 R = ST T 3pn =

Recalling (2.23) and the definition of B the above inequality can be simplified to

1+B+1— PRI,
47T T e 3p2"

which further leads to

_ B+1—B_ 1_+1—B—M i <0
"“\27 e 4" Y 20—22— i) =

Solving above yields

2/4(1— B)2(1 — A2 4+ 3(7 — 4Bﬂu%1—ﬂ)—q1—3x1—x%
(7 —4B)

u =

Combining this with (2.24) and explicitly solving the resulting inequality leads to

G(\2, 1) >0, (2.26)

wheret=1+31?>land

13 3 33 2 18
G(z,t):= —20+7 7+ —60+T+32t "+ —39+7+32t z—9.

Recall from Definition 2.4 that we are only interested in the interval z € (0, 1/%). It is easy to
see that

G:(0,1), G;;(0,1) > 0. (2.27)

Looking at G(z, t), we find that for ¢ > | sufficiently large, say #; &~ 2.264, we have

1
G([_27t> <0.

For a fixed ¢ > 1, solving a quartic inequality it follows that

1
GZZ <t—2,t> >0
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when ¢ > 1, for some large enough #, (for example #, & 1.68). This together with (2.27) and the
fact that G;(z, t) is linear in z implies that for t > 2, G;;(z,t) > 0for0 < z < [Lz Therefore we
have

1
G.(z,t) > G;(0,t) >0 for O<z< 7

So for t > max{t;, 1}, corresponding to ,32 < ,83 with

;32 = min : :
0 3—1"3n—1]"
it yields that

1

G(z,t) <0 for 0<z<t—2,

which contradicts (2.26). This completes the proof of the lemma. O
Remark 2.1. Taking #; ~ 2.264 and t, ~ 1.68, we may choose S ~ 0.5.
2.5. Global continuation

Now that we have obtained the local bifurcation result, we will extend the local solution
curves constructed in Section 2.2 to the non-perturbative regime using a global implicit function
theorem developed in [20].

Theorem 2.5. There exists a curve €Y containing (flf‘)lgw which admits a global C°
parametrization

TV = {U(s), 1(). 1)+ 5 € (0,00} CONFT(0)
with limg\ o (u(s), n(s), A(s)) = (uar, 10, O) and satisfies the following.
(a) At each s € (0, 00), the linearized operator F ;) (u(s),n(s),A(s)): Z x Rt — & is

Fredholm index 0.
(b) One of the following alternatives holds as s — oo.

(A1) (Blowup) The quantity

1
N(s) = [[(u(s), n(sHll2- + A(s) + TGO e 6. 30) ~ > (2.28)

(A2) (Loss of compactness) There exists a sequence s, — o0 with sup, N(s,) < 0o, but
Wt (sn), n(sn), A(s,)) has no convergent subsequence in % x RT.

(A3) (Loss of Fredholmness) There exists a sequence s, — oo with sup, N(s,) < oo and
50 that (u(sy), (sn), A(Sn)) = (s, s, Ay) in X x RT, however Fu,y) U, M, As) 1S
not Fredholm index 0.
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(A4) (Closed loop) There exists T > 0 such that (u(s + T),n(s + T),A(s + T)) =
(u(s), n(s), A(s)) for all s € (0, 00).

(¢) Near each point (u(s0), 7(50), A(s0)) € €%, we can locally reparameterize €5°% so that
s (u(s), n(s), A(s)) is real analytic.

Proof. The proof follows from [20, Theorem B.1] and [19, Theorem 6.1], since from Lemma 2.2
we know that .F(, ») (4o, 10, Ao) 1 £~ X R+ — % is an isomorphism. O

Given a (u,n, ) € Z x R, direct computation yields that the linearized operator

A
Fum W, 1) = £t (1+3ﬂ2)£+<3ﬁ2+”) A8
—AL+u L

Since (u, n) € 4, the limiting operator as |x| — oo is

C (1+ )£+3ﬂ2

ju, (u,n,A) =
(u,m) Y, E

):5&”—)@.

Lemma 2.8. For (u, n, A) € O, the limiting operator ﬁ\(u),,)(u, n, A) is invertible.

Proof. If V = (v, ¢) € 2 such that ﬁ(u,n) (u, n, A)[V] =0, then a row elimination yields

52 RS 22
[1 x (1+3ﬂ2>]£4+ S =0.

Thus ¢ = 0, which also implies that Lv = 0, and hence v = 0. This shows that j(u,,]) (u,n, A) is
injective.

Now for any f = (f1, f2) € %, consider solving ﬁ‘(u,,])(u, n,M[V]=fforVeZ. Bya
similar argument as before, we can perform a row elimination to solve for { from

1
[1 -2 <1+W)}£€ + ﬂzz M+ fa

and then plug this back to the system to solve for v. This way we verify that ﬁ‘(u,n)(u, n,A) is
also surjective. Therefore the conclusion follows. O

With the help of Lemma 2.8, we may follow the argument in [40,19] to prove that
FumW,n, 1) X — % is locally proper. Finally we have

Lemma 2.9. For (1, n, A) € O, the linearized operator F, yy(u, n, 1) is Fredholm with index 0.

Proof. The lemma can be proved by a homotopy argument. Consider the operator L; :=
t Ty 1, )+ (1—1) (ﬁ(u,n)(u, 0.3 — P (. 1, )\)) for 7 € [0, 1]. Thus forany 7 € [0, 1]
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the limiting operator of L, is j\(u,n)(u, n, ). The previous argument proves that L, is locally
proper, and thus Fredholm. Hence by continuity of the index we see that

indZ, nu,n,A)=indL| = indﬁ(u,n)(u, n,A) =0,
which completes the proof. O

Now we have all needed properties to further winnow down the alternatives in Theorem 2.5.
By Lemma 2.9, for any (u(s), n(s), A(s)) € €%, FunW(s),n(s),r(s)): X — ¥ is Fred-
holm index 0. Thus we know that (A3) does not occur.

The loop alternative (A4) can also be ruled out by the nodal property Lemma 2.6 combined
with the uniqueness results Proposition 2.1 and Corollary 2.3.

As for (A2), we may adapt [19, Lemma 6.3] in our current setting to give the following

Lemma 2.10 (Compactness or front). Suppose that {(iy, n,, An)} C F~1(0) N O satisfies

1
su Uy, + — < o0,
et (”( N2 Gt e s, 30))

and each (uy, ny,) is strictly monotone in that oxu, <0, 9yn, > 0 for x > 0. Then, either

(i) (Compactness) {(uy, Ny, An)} has a convergent subsequence in & x R; or
(i) (Monotone front) there exists a sequence of translations x,, — 400 so that we can extract
a convergent subsequence

(ttns ) (- +x0) —> (u,m) € CTTYR) in CL.(R), Ay —> A,

with (u,n, \) € O. The limit is a monotone front solution of (2.6) in the sense of Defini-
tion 2.4.

Proof. Given the assumptions of the lemma, we know that up to a subsequence A, — A with
1—A2 (1 + #) > 0. If (u,, n,) is equi-decaying in the sense that for any & > 0 there exists
some R > 0 such that

sup || (un, 1) ||C2((R,oo)) <&,
n

then obviously (u,, n,) has a convergent subsequence in 2, and hence leads to (i).
If (un, ny) is not equi-decaying, then there exists some &9 > 0 and a sequence {x,} with
X, — +oo such that forall n > 1,

sup ayic(unv M) (Xn)| = €o0.
0<i<2

Set (vy, &n) := (Up, Ny) (- + x,). Since (v,, ¢y) is uniformly bounded in 2", there is a subse-
quence, still denoted by the same labeling, (v,, ¢;,) = (4, n) € Z in C12OC (R). Local convergence
is enough to ensure that (1™, 1) solves (2.6). The monotonicity of (u,, ,) confirms that
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oxu <0, dxn > 0.

By definition of (vy, &) we see that

8)’;(14, n)(O)‘ > o for some i <2.
Thus (u, n) # (0, 0). The maximum principle then implies that u >0 and n <0. O
Putting all of the above together, we finally arrive at our main result of this section.

Theorem 2.6 (Slow waves). For any 8 with |B| < Bo where By is given in Lemma 2.7, the global
curve €% constructed in Theorem 2.5 enjoys the following properties.

(a) (Symmetry and monotonicity) Each solution on €°'°% is even and

n(s) <0 u(s) >0 onR,

(2.29)
3:n(s) >0 d,u(s) <0  onRT.

(b) (Loss of ellipticity) Following €*'°Y to its extreme, the system loses ellipticity in that

—1/2
xli)rrolo)\(s) = (1 + 3—“32) . (2.30)

Proof. Note that property (a) follows from the nodal properties Lemma 2.6. From the previous
discussion, at the extreme of the solution curve, (A3) and (A4) cannot occur. Lemma 2.10 to-
gether with Lemma 2.7 rules out (A2). Therefore we are only left with blowup alternative. Since
A is always bounded in O, one can remove A(s) from the blowup quantity in (2.28).

From the local uniqueness and the nodal properties we know that lim;_, 5o A(s) > 0. So if
(2.30) is false, then there exists a sequence {s,}, s, — 0o with the corresponding solutions
(Uns Ny M) 2= (u, 1, L) (sp) € O N.Z~1(0) such that

—12
Ap = Ay < (1 + W) > | @tn, n)ll. 27 — oo. (2.31)

Moreover A, > 0. Since the system (2.6) is semi-linear, weakly coupled and has no first-order
derivatives, elliptic regularity implies that || (u,, 1,)||co — oo. From (a), this is equivalent to

1, (0) — 1, (0) — 0.

From the second equation in (2.6) and the fact that (1, — A,u,)(0) = min(n, — A,u,), it follows
that

1
5“5(0) + (1 = Anttn)(0) = B2 — nt)"(0) > 0.
From this it must hold that
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u, (0) - oo.
Similarly, evaluating (2.13) at x = 0 and using that u/,(0) < 0 we find that

1 -2 (1 ¥ wz) +h (1 n gﬁz)un(O)

n(0) < —

un(0).

/32

For n sufficiently large, from the above inequality, we have that

2\ 1
M (0) < — 5 (1 + 3,32)un(0)~ (2.32)

Recall (2.25). Integrating the equation over (0, co) we find that

“ha o
2

(0)+1u (O)[B+—< b )un(0>+nn<0>}

382
From (2.32) we obtain

- ’\320 0)| B A 1+ 0 233
5 )+ = u()[ _E< 3}32)14;1()} (2.33)

Further using (2.6) we have that for any 6 > 0,

clom (1 gz ) [ 1= 0002 (14 355 [

An 1
+<3132 +un)nn+§(1+8))\n( > =0.

From (2.31) there exists dg > 0 such that for n sufficiently large,

(2.34)

1
1— (14822 (1+3—;32> 0 forall 0 <& < d.

From (2.33) we see that
11.(0)] = O(lun (0¥ as n— oo.

Therefore for any 0 < § < §p there exists some nq large enough such that for n > ng
1
In (1 + 3ﬂ ) 12 (0) + |:1 —( +5))¥% (1 + W)jl uy (0) <O0.

Denote by x, € [0,00) the point where A, (1 + #) Nn + [1 -1+ 8))»% (1 + #)] Uy

achieves its minimum. Then it holds that 7, (0) < n,(x,) <0, and
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1 1
S (1 + ﬁ) Nn(Xp) < 8Ay (1 + ﬁ) 1, (0)
1

+ |:1 -1+ 8))»% (1 + W)il [ (0) — up(xn)].

From this we conclude that
11 )| = O(lun (0] as n— oo. (2.35)

Evaluating equation (2.34) at x,, indicates that

A 1 1
(3—[32 + Mn(xn)> Nn(Xn) + 5(1 +8)An <1 + W) uﬁ(x") >0,

which contradicts the asymptotics (2.35). O
3. Bifurcation from classical Boussinesq supercritical waves

In this section we focus on fast traveling solitary waves with wave speed A > 1. Different
from the previous section, here we will consider the wave speed as given, and restrict the four
parameters (a, b, ¢, d) on a one-parameter curve to perform the bifurcation. The base point of
the bifurcation corresponds to the solution to the classical Boussinesq system which hasa =b =
c=0and d = % in (1.1) (see, for example, [3,11,30,35]). As is discussed in [15], the solitary
waves (u g, ny) satisfy

1 A=
(u(’f)2 = . (—M?} + 3)»u3p + 6u s 46X log )LMf D 7
3.1
np= ot
f )»—uf’

From classical ODE techniques one obtains that for any A > 1 there exists a unique solution
(uyg,ny) € Z such that

u ¢, n ¢ are both monotonically decreasing from their crests at x =0, and

1 (3.2)
- (3A—VA2+8) <max|us| < A.
2 xeR
3.1. Local solutions
Now for any fixed k£ > 0 with k < A, consider the parameter curve
1
a=c=ks, b=s, d:§—(2k+1)s. 3.3)

Thus b = d only when 2(k + 1)s = % So in particular b # d when s is small. Moreover we also
allow a, c to be negative.
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Similar as before, in this parameter regime we can rewrite (1.3) as

ksu” +isn” +u — An + nu,

F(U,s):= =0, (3.4)

1 1
|:§ — 2k + l)s:| " ks —ru+n+ Euz

with % : 2 xR —> %.
The existence of solitary waves in the parameter regime (3.3) is stated as follows

Theorem 3.1 (Fast waves near the Boussinesq solutions). For any A > 1, let k be such that
0 < k < A. Suppose that the parameters of (1.3) satisfy (3.3). Then there exist some positive
8 > 0 and a unique C° solution curve

G = {(ug, 0y, 8) 1 Is| <8} C 2 xR

oC

to problem (3.4) with the property that

(s, mg) = (ug,ng)+ O(s) in X, (3.5)
ug, ng >0 for s >0, 3.6)

where (u g, 1) is the unique solution to (3.1) satisfying (3.2).

Proof. Denote Uy := (ur, ny). Working with even functions, direct computation yields that

I+ny up—»x

FyUy,0) = (A 5

A ):3&”—>@.
3.X

Fur—»a 1

Suppose that Fy (Uy,0)[V] =0 for some V = (v, ) € £ . Writing out the equations we
have

A+npv+ @y -1 =0,

A /" _
Ev +@r—Mv+¢=0.

We can then solve for ¢ in the first equation to obtain a single ODE for v

a 4)L A : =0 3.7
3" +|:()»—Mf)2_( _”'f)}v_ ' o

Since A > 1 and u s satisfies (3.2), from classical ODE theory we know that there is only one
bounded nontrivial solution to the above equation. On the other hand from the translation in-
variance of (3.4) we see that u/f solves (3.7). From the fact that u s is even, it follows that
kerZy (Uy,0) is trivial in 2.

The surjectivity of Z#y (U, 0) can be easily verified since one can effectively solve ¢ in terms
of v through an algebraic equation, and then solve an ODE for v. Therefore we further conclude
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that .#y (Uy, 0) is invertible. Thus the existence of the local solution curve and (3.5) follows
from the Implicit Function Theorem.
Next let’s turn to the sign property. For any ¢ > 0 we can find an Ry > 0 such that

lup Ol Ing(x)l <e  for |x| > Ro.
From (3.5) we know that by choosing s sufficiently small,

{ us(x), ns(x) >0 for |x| < Ro, 3.8)

lus (I, [ns(x)] <&+ O(s) for |x| > Ro.

From (3.4) we have

1 2 2 " 2 A
<|:§ — Qk + 1)si|)» —k s) Uy — [(k—l—k ) — Eus]us + A+ k(A —us)ln, =0. 3.9

Soif infug; = us(xp) < 0, then from (3.8) |xg| > Rp. For small s, the maximum principle implies
that n;(xg) < 0 and

_ KO s (x0))
T kA% — Aug(xg)/2

us(xg) s (x0) > Ny (x0),

since

- A+ k(A — ug(xo))
k422 = hug(xo)/2

for sufficiently small ¢ and s.
Since 715(xg) < 0, we know that infn; = ny(x1) < ns(xp) < 0 for |x1| > Rp. Looking at the
equation for n;

1 2 2.2 " 1 2 1
g—(2k+1)s ATs — k%57 ) ng — g—(2k+1)s A+ ks — 5—(2k+1)s Aug | ng
1 ks
+ 5—(2k+1)s )\—I—Aks—?uS ug =0, (3.10)
it follows that for s > 0 small, at x; we have uy(x1) <0, and

[ — @k + D)s]h+ dks — Eug(xy)
[L — @k + Ds] A2 +ks — [T — 2k + s hus(xr)

ns(x1) > ug(x1) > ug(xy).

The last estimate holds because for ¢, s sufficiently small the fraction can be made between 0
and 1. However this would lead to a contradiction since

infug = u;(xp) > ny(xo) > infny =ns(x1) > ug(x1).

Therefore we have proved that for s > 0 sufficiently small, ug; > 0. A similar argument yields
that n; > 0 as well.
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If there is a point x, where us(x,) = 0, then the above argument shows that n;(xy) = 0,
and hence x, is a minimum point for u, and n;, indicating that u’, (x,) = 1} (x,) = 0. Thus from
uniqueness of ODE it must hold that uy = n; = 0, which is a contradiction. This proves (3.6). O

Similar to Section 2, we have the following result establishing the local monotonicity and
local uniqueness.

Corollary 3.2 (Local monotonicity and local uniqueness). Denote by B, the ball of radius r > 0

in (CZ(]R{) N CO(JR{)) X (CZ(R) N Co(]Ri)) x R centered at (uy,nyr,0). There exists ¢ > 0 such
that for s > 0,

FH0)NB: =6 N B, (3.11)
In addition, every solution (u,n,s) € F -1 (0) N B, is strictly monotone in that for x > 0,

u' <0 and n <0. (3.12)

Proof. Similarly as the proof of the sign property in Theorem 3.1, for (u, n,s) € F~1(0) N B,
we have u, n > 0. Thus it suffices to check conditions (i)—(iii) of Theorem 2.2. Writing (3.9) and
(3.10) as

1
([5 — 2k + 1)s] A2s — k2s2> u” +g(u,n) =0,

([% — 2k + 1)s] A — k2s2) "+ fu,n =0,

direct computation yields that:

a—g=A+Ak—ku, %z|:l—(2k+1)s:|(k+n)+ks(k—u),

on du 3

) of | (3.13)
280,00 =—02+k)., Z©0.0)=— [— — 2k + l)s] A2 —ks.

ou on 3

When ¢ is chosen sufficiently small, conditions (i)—(iii) of Theorem 2.2 are satisfied. O

Remark 3.1. In the proof above we used a relaxed version of condition (i) which only requires
0 0
that 8—g(ua, v), —f(u, vy ) are non-negative for (u, v) € [0, 0c0) x [0, oo) where (uy, vy), Where
v

(uq, vy) are reflection of the solution of the elliptic system with respect to the line x = .
3.2. Nodal pattern and monotone fronts
Now for each fixed A, k € RT we introduce the set
O:={(u,n,5) e Z xR :seT,uel,}, (3.14)
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where

)\42
T = {s eRV: T - [(2k+ 1)A2+k2]s > 0}, o= {u: ullcog) <2} -

The intuition for the choice of O is that I'; is needed for the ellipticity, and I'; provides a
sufficient condition to ensure conditions (i)—(iii) in Theorem 2.2, in particular the condition (i)
for (strict) quasi-monotonicity. Indeed from (3.13) we see that 9, g, d, f > 0 when

I —@Qk+1Ds

= A +n).

A
u<)»+z and U<+

Moreover, this constraint also allows one to deduce from (3.10) an upper bound for n

[4 = @k+ D)ot (= 0 ) ks
1

s(0). 3.15
[3—(2k~|—1)s]k(k—u5(0))+ks 4s(0) ©-15)

Constraint I'; can also be understood as a “no stagnation” condition and indicates that the parti-
cles travel behind the wave.
From Theorem 3.1 and Corollary 3.2 we are led to consider the following nodal property:
u>0, n>0 in R, (3.16a)
u' <0, n'<0 in RT, (3.16b)
Similarly to the previous section, we can prove that the above nodal property persists on the

solution curve. The proof follows along the same line as the one in Lemma 2.6, and hence we
omit it.

Lemma 3.1 (Nodal property). If K is any connected subset of O N .F~1(0) that contains Cglg‘lc‘t,
then every (u, n, A) € KC exhibits (3.16).

The next step regards the nonexistence of monotone fronts, which will provide useful infor-
mation for the global theory. As in Section 2.4, we define the concept of monotone fronts as

follows.

Definition 3.3. Let s € I',u € I'2, we say (u,7n,A) is a monotone front solution of (3.4) if
(u,n) € CE(R) x CZ(R), and

HIE @), n(x))=(0,0), and x>0 >0 u'<0, n <0 in R. (3.17)
X—>1+00

Lemma 3.2 (Nonexistence of monotone fronts). If s € I'1, u € I'; then system (3.4) does not admit
any monotone front solution in the sense of (3.17).

Proof. The proof is similar to Lemma 2.7 but the algebra is simpler. Suppose (i, 1) is a mono-
tone front solution to (3.4). Let
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@)= _lim_(u(x), n().

So i, n > 0. Evaluating (3.4) at x — —oo implies that

3r—A/A2 48
Gk NS (3.18)
2
and
T (3.19)
L '

Multiplying the first equation in (3.4) by n’, the second equation by u’, and then summing them
gives

AS A A 1
(u/)Z + 7()7/)2 —I—ksu/n/ +un — _u2 _ _772 + _u3

2" 2 6} (3.20)

P%—Qk+n@x
2

+unn' =0
: r_ (1, 2\ 1.2 e 12
Write uny’ = (5un®) — su’n?, by definition of monotone front, we have u'n* < 0 and thus

I _ 1_ 1__
un — 5142 - §n2+ 8u3+ 514772 >0 (3.21)

From (3.19), this can be reduced to
_[(u
(A—u)<§—k>+120
and from (3.18) we finally have

(VI 8) (-3 Vi 18) 4120

the above inequality holds only when A < 1, which contradicts the fact that A > 1. O
3.3. Global continuation
As in Section 2.5, with Lemma 3.1 and 3.2, we obtain the following global solution curve:

Theorem 3.4. There exists a curve €™ containing Cflff‘gt, which admits a global C° parametriza-
tion

EC = (), n(1),s(t)): t € (0,00} CcONF0)
with limy o (u(t), n(), s(t)) = (uf, urs O) and satisfies the following property:
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(a) (Symmetry and monotonicity) Each solution on €' is even and

u() >0 n)>0 on R,
() <0  nit)<0  onRT.

(b) (Loss of ellipticity or stagnation limit) Following €™ to its extreme, either the system loses
ellipticity in that

)»2
lim s(¢) = , 3.22
AL, ) 3((k + DA% +k?) 622
or we encounter waves that are arbitrarily close to having a stagnation point
lim inf (X —u(z)) =0. (3.23)
l‘—)OOxeR

Proof. We will only focus on proving (b). Since lim,_, o s(¢) > 0, so if (3.22) is false, we
can find a sequence {f,} — oo with the corresponding solutions denoted by (uy, n,, sn) €
O N .Z~1(0) such that as n — oo,

)\,2
S 3(@k+ DA+ K2

Sn = Sx either || (un, n)ll2- — oo or [lunlco — 2.

Recall from (3.15) the upper bound for 7,

Snh + (X - ”7) ksn 25,0 + Aks,
o N
SaA(—ip) + ks, T 2ksy

NMn =

)

where §, 1= % — (2k + 1)s,,. Elliptic regularity then asserts that the latter alternative can be
replaced by

lunllco— A,
proving (3.23). O
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Appendix A. Proofs from Section 2.1

In this appendix we provide the proofs of the properties for the stationary wave problem (2.1)
stated in Section 2.1.
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Proof of Lemma 2.1. If there is an x; such that n(x;) > 0. This property, and the fact that
n(x) - 0 as x — oo, imply that n has a non-negative maximum on R. Suppose that this
maximum is at xg. Then from (2.1), either  (xg) = u (x9) = 0 or n” (xg) > 0. The latter being
impossible at a maximum, we conclude the former two equalities. Also, 1’ (xg) = 0, and from
(2.2), u’ (x¢p) = 0. But then, since 1, 1/, u, and u’ all vanish at xg, the uniqueness theorem for
ODE’s implies that 1 (x) = u (x) = 0 for all x, contradicting the definition of a solitary wave,
which must be non-constant. This completes the proof of Lemma2.1. O

A quick application of the maximum principle also yields
Lemma A.1. Let (4, n) be a solitary wave solution. Then
(@) (—u, n) is also a solitary wave solution.
®) Ifu >0 then u(x) > 0.
(©) Ifu <0 thenu(x) <O.
Proof. Part (a) follows directly from (2.1). For (b), suppose that u(x) > 0 and that u(x1) = 0 for

some x1. Since u is non-negative it must be the case that u’(x;) = 0. Thus, by uniqueness of the
constant solution (u, u’) = (0, 0) of

—au” =u(l +1n),

we conclude that u(x) = 0. In this case, n” = on R. But since the orbit is homoclinic, n must
be bounded, which implies that 1 (x) = 0 for all x as well, and this contradicts the definition of
solitary waves and Lemma 2.1. Part (c) follows by a similar argument. O

Proof of Proposition 2.1. The proof part (i) makes use of function

h=u—x/§n,

which satisfies

2 = (1 - i) h. Al
B 7 (A1)

If (u,n) is a solitary wave solution with u < /2, then 1 — u/+/2 > 0. Then from maximum
principle we know that 7 = 0.
Substituting & = u — +/2n = 0 into (2.2) we get

2
BRI =n+ 3w,
which is the classical steady KdV equation. The solution is given by
3 32
no(x) = — Zsech? X , and hence u, (x) = —isech2 X .
2 28 2 28
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The proof of (ii) makes use of the functional w = u + /21, which satisfies

2.1 u
w =(14+—7)w.
g ( ﬁ)
The remainder of the proof follows the same argument as before, with w replacing 2. O
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