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Abstract

The Boussinesq abcd system arises in the modeling of long wave small amplitude water waves in a 
channel, where the four parameters (a, b, c, d) satisfy one constraint. In this paper we focus on the solitary 
wave solutions to such a system. In particular we work in two parameter regimes where the system does not 
admit a Hamiltonian structure (corresponding to b �= d). We prove via analytic global bifurcation techniques 
the existence of solitary waves in such parameter regimes. Some qualitative properties of the solutions are 
also derived, from which sharp results can be obtained for the global solution curves.

Specifically, we first construct solutions bifurcating from the stationary waves, and obtain a global con-
tinuous curve of solutions that exhibits a loss of ellipticity in the limit. The second family of solutions 
bifurcate from the classical Boussinesq supercritical waves. We show that the curve associated to the sec-
ond class either undergoes a loss of ellipticity in the limit or becomes arbitrarily close to having a stagnation 
point.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The phenomenon of solitary wave was first observed by John Scott Russel [32] almost two 
centuries ago, which is later used to characterize wave that does not disperse and retains its 
original identity as time evolves. Exact existence theory for solitary water waves, however, first 
appeared more than a century later in the work of Lavrentiev [29], Friedrichs-Hyers [24], and 
Ter-Krikorov [37] for small-amplitude irrotational waves. Construction for large-amplitude irro-
tational waves was achieved by Amick–Toland [4,5] and Benjemin–Bona–Bose [7].

Russel’s experiment also motivated the studies on the mathematical modeling of water waves. 
The first works can be dated back to Boussinesq [12], Rayleigh [31], Korteweg and de Vries [28], 
where simpler sets of equations were derived as asymptotic models from the free surface Euler 
equations in some specific physical regimes. To be more precise, let h and λ denote respectively 
the mean elevation of the water over the bottom and the typical wavelength, and let a be a typical 
wave amplitude. The parameter regime considered in the above works corresponds to

ε = a

h
� 1, δ = h

λ
� 1, ε = O(δ2),

which is called the small amplitude, shallow water regime. Physically, ε measures the strength of 
nonlinearity while δ characterizes the effect of dispersion. Thus solitary waves can be viewed as 
generated from a perfect balance between nonlinear and dispersive effects. The reduced systems 
within the above scaling regime couple the free surface elevation η to the horizontal component 
of the velocity u, and include the celebrated KdV equation and the Boussinesq equation [12,22,
26,28,39].

In this paper we will consider solitary wave solutions to an asymptotic water wave model 
derived by Bona–Chen–Saut [9] (generalized to include the surface tension in [23] and in higher 
dimensions Bona–Colin–Lannes [10]) as an extended system of the classical Boussinesq equa-
tion. Specifically, it is a three-parameter family of Boussinesq systems for one dimensional 
surfaces that takes the following form

{
ηt + ux + (uη)x + auxxx − bηxxt = 0,

ut + ηx + 1
2 (u2)x + cηxxx − duxxt = 0,

(1.1)

all of which are formally equivalent models of solutions of the Euler equations. In the above 
system η is proportional to the deviation of the free surface from its rest position, u is proportional 
to the horizontal velocity taken at the scaled height 0 ≤ θ ≤ 1 (θ = 1 at the free surface and θ = 0
at the bottom). The parameters have the following explicit form

a =
(

θ2

2
− 1

6

)
ν, b =

(
θ2

2
− 1

6

)
(1 − ν), c = (1 − θ2)

2
μ − τ, d = (1 − θ2)

2
(1 − μ)

with ν and μ arbitrary real numbers, and τ ≥ 0 is the normalized surface tension. These three 
degrees of freedom arise from the height at which the horizontal velocity is taken and from a 
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double use of the BBM trick [8]. The hydrodynamic relevance of the model was justified in 
[10,14,34].

A solitary wave solution to system (1.1) is of the type

η(x, t) = η(ξ) = η(x − λt), u(x, t) = u(ξ) = u(x − λt), (1.2)

where λ ∈ R denotes the traveling speed and ξ = x − λt is the moving coordinate with speed λ. 
We are thus looking in the class of “localized” solutions to the system

{
cη′′ + η − λu + dλu′′ + 1

2u2 = 0,

au′′ + u − λη + bλη′′ + ηu = 0,
(1.3)

where ′ denotes the derivative with respect to ξ . The “localization” of the solutions leads to the 
asymptotic condition

lim|x|→∞(η,u) = (0,0). (1.4)

Note that when b = d , the system possesses a Hamiltonian structure with Hamiltonian

H(η,u) = 1

2

∫ [
−cη2

x − au2
x + η2 + (1 + η)u2

]
dx. (1.5)

The solitary waves correspond to the critical points of the action functional Sλ = H− λI , where

I(η, v) =
∫

(ηu + bηxux) dx

is called the impulse functional, and the Lagrange multiplier λ gives the speed of the wave.
From (1.5) we see that the Hamiltonian H(η, u) is coercive in H 1 provided that a, c < 0. 

In this parameter regime, the existence of solitary waves can be inferred from the existence of 
minimizers to a constraint minimization problem [16] under the assumptions that the surface 
tension is large (τ > 1/3) and ‖η‖H 2 is small. Later in [17] another variational formulation was 
adapted in the same parameter regime to establish the existence of solitary waves for any τ ≥ 0, 
but with a smallness restriction on the traveling speed λ. Using a Nehari manifold technique, the 
existence of ground state solutions (nontrivial solitary waves carrying minimum action energy 
Sλ) was established in [6]. In the case of large surface tension τ > 1/3, these ground states are 
shown to be depression waves which are symmetric and increasing from their unique troughs, 
consistent with the results in the context of two-dimensional full gravity-capillary water waves 
[1,27,33].

All the above analytical results are crucially based upon the Hamiltonian structure of the sys-
tem, i.e., b = d . Our main goal is to extend the existence result to the cases when the parameters 
fall out of this regime. In particular, we will focus on pure gravity waves, corresponding to τ = 0, 
and allow either (i) b �= d , so that the Hamiltonian structure is no longer available; (ii) a, c > 0, 
so that the quadratic part of the Hamiltonian (1.5) is not positive definite; or (iii) the wave speed 
λ is large |λ| > 1, so that the action functional fails to be bounded from below. In all cases, the 
standard variational method seems hard to apply.
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The main tool we are using is the bifurcation theory. For this to work we need to first choose 
a good parameter s ∈ R with which the problem (1.3) can be formulated as an abstract one-
parameter problem

F (U, s) = 0

where U := (u, η). The perturbative construction of solutions relies on a good understanding 
of the linearized operator FU at some special solution (U0, s0). It turns out that the translation 
invariance of the problem naturally generates a nontrivial kernel of the linearized operator FU at 
any solution. With some appropriate choices of the “base point solution” (U0, s0), standard ODE 
techniques can be applied to ensure that the kernel is exactly one dimensional and hence can be 
removed by suitable choice of the function spaces, allowing us to invoke the Implicit Function 
Theorem to obtain a local curve of solutions.

As is common for the solitary wave problem, continuing the local curve globally by standard 
global bifurcation techniques faces a serious obstruction due to the unboundedness of the domain. 
One classical approach is to approximate the solitary waves by periodic ones as the period tends 
to infinity. Such a method is used by Toland [38] to treat (1.3) with (a, b, c, d) = (0, 13 , − 1

3 , 13 ). 
He first obtains a global bifurcation theory for the periodic problems, and then proves a uniform 
estimate. Together with an application of the Whyburn lemma, this leads to the convergence of 
the global sets of periodic solutions to a global connected set of solitary wave solutions as the 
period goes to infinity.

We will adapt a recently developed analytic global implicit function theorem in [20] for the 
global theory, cf. Theorem 2.5. As is pointed out in [20], the global curve may not be locally 
pre-compact, nor can one assume a priori that Fredholmness persists. Thus the loss of compact-
ness emerges as an alternative. The ODE nature of the problem easily rules out the failure of 
Fredholmness. Therefore the theory will become useful in practice if we can rule out the loss of 
properness or classify how it manifests.

More specifically, we will consider global branches of solutions emanating from two base 
point solutions: the first one being the stationary solution (corresponding to λ = 0), and the sec-
ond being the supercritical (λ > 1) waves to the classical Boussinesq system (corresponding 
to (a, b, c, d) = (0, 0, 0, 13 )). We will also assign different parameters when studying these two 
types of waves. When bifurcating from the stationary waves, we use the wave speed λ as the 
bifurcation parameter while fixing the abcd system as in (2.5), and obtain a continuous curve 
of solutions all the way into the regime where solutions are traveling with an O(1) speed. For 
the other case we will fix an arbitrary supercritical speed λ > 1 and design a family of abcd

systems (as in (3.3)) that can accommodate solitary waves with such a speed λ. In both cases 
we prove a collection of qualitative properties of the solutions that are crucial for the final global 
result. In particular, using maximum principle arguments and the symmetry result for weakly 
coupled cooperative elliptic systems [13] we are able to obtain local uniqueness, local mono-
tonicity, and nodal pattern of the solutions. The fact that we are always considering a system
makes the maximum arguments more delicate, and possibly more restrictive; see Section 2.2–2.3
and Section 3.1–3.2.

Regarding the ruling-out/realization of the loss of compactness alternative in the global the-
ory, as was studied in [19,20], the established monotonicity property is strong enough to assert a 
“compactness or front” result stating that this possibility must manifest as a broadening phe-
nomenon, leading to a monotone front type of solution at the end of the bifurcation curve. 
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When the underlying system possesses a Hamiltonian structure, a so-called conjugate flow anal-
ysis can be carried out utilizing the conserved quantities to rule out the broadening alternative 
[2,19–21,25,36]. Moreover, for some particular problems such a Hamiltonian structure may also 
allow one to obtain uniform bounds on solutions that can account for the realization of broaden-
ing [25]. In the cases we consider, however, the system is not Hamiltonian, and we do not have 
any obvious conserved quantities that can be of much use to control the solutions. Taking advan-
tage of the monotonicity and together with delicate algebra we are able to prove the nonexistence 
of monotone front solutions, cf. Lemma 2.7 and Lemma 3.2. Using this idea we can also prevent 
the blowup of solutions (u, η) in the case of bifurcation from stationary waves, which leads to 
a sharp result ensuring the loss of ellipticity as the only remaining alternative cf. Theorem 2.6. 
For the other case of solutions bifurcating from the classical Boussinesq waves, we are able to 
winnow the alternatives down to the possibilities of either the loss of ellipticity or that the curve 
continues up to the appearance of an “extreme wave” that has a stagnation point, cf. Theorem 3.4.

2. Bifurcation from stationary waves with a = c < 0

We start by constructing solutions near the stationary waves corresponding to λ = 0. To ensure 
ellipticity we will impose the sign condition a, c < 0.

2.1. Stationary solutions

Note that in the case when λ = 0 the terms in system (1.3) containing b and d disappear, and 
the problem becomes {

−cη′′ = η + u2

2 ,

−au′′ = u(1 + η).
(2.1)

By elliptic regularity we know that any solution of (2.1) is smooth and lim|x|→∞(η′, u′) = (0, 0). 

Hence solitary wave solutions satisfy the ‘first integral’ property

−a(u′)2 − c(η′)2 = u2(1 + η) + η2. (2.2)

The existence theory for (2.1) has been studied systematically in [18]. Here we collect some 
results that will be important for the later bifurcation argument. For the reader’s convenience we 
provide their proofs in Appendix A.

Lemma 2.1. Any solitary wave solution of (2.1) satisfies

η(x) < 0 on R.

Proposition 2.1 (Existence and uniqueness of stationary waves [18]). When a = c = −β2 < 0
we have

(i) there is a solitary wave solution such that u−
0 (x) < 0 on R. Up to translation,

u−
0 (x) = −3

√
2

sech2
(

x
)

, and η0(x) = −3
sech2

(
x
)

. (2.3)

2 2β 2 2β
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This solution is unique among the class of functions (u, η) where u <
√

2;
(ii) there is a solitary wave solution such that u+

0 (x) > 0 on R. Up to translation,

u+
0 (x) = 3

√
2

2
sech2

(
x

2β

)
, and η0(x) = −3

2
sech2

(
x

2β

)
. (2.4)

This solution is unique among the class of functions (u, η) where u > −√
2.

Note that from elliptic regularity we easily see that (u±
0 , η0) ∈ H∞(R) × H∞(R).

2.2. Local theory

Now we will construct a local curve of solutions nearby the stationary solution (u0, η0). The 
parameters we are taking satisfy

a = c = −d = −β2 < 0, b = 1

3
+ β2. (2.5)

Obviously we see that b �= d , and hence we are outside the Hamiltonian regime when the surface 
tension is small. For simplicity we will take τ = 0 in the following discussion. To fit our argument 
in the framework of [20], we will consider the problem in Hölder spaces.

Denote by C0(R) the set of continuous functions vanishing at infinity and

C2+α
b (R) =

{
f ∈ C2(R) : ‖f ‖C2+α < +∞

}
.

Define for α ∈ (0, 1) the following Hölder space

X :=
(
C2+α

b,e (R) ∩ C0(R)
)

×
(
C2+α

b,e (R) ∩ C0(R)
)

,

Y := (
Cα

b,e(R) ∩ C0(R)
)× (

Cα
b,e(R) ∩ C0(R)

)
,

where the subscript ‘e’ denotes the restriction to even functions, and The use of C0(R) is to 
realize the asymptotic condition (1.4).

Writing U = (u, η), the system for solitary waves takes the following form

F (U,λ) :=

⎛
⎜⎜⎜⎝
L
(

u − λ

(
1 + 1

3β2

)
η

)
+
(

λ

3β2 + u

)
η,

L (η − λu) + 1

2
u2

⎞
⎟⎟⎟⎠= 0, (2.6)

where

F : X → Y ,

and L := 1 − β2∂2 is an invertible operator from C2+α(R) ∩ C0(R) → Cα (R) ∩ C0(R).
x b,e b,e
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The discussion in Section 2.1 indicates that F (U±
0 , 0) = 0 where U±

0 := (u±
0 , η0). The lin-

earized operator at the solution (U±
0 , 0) is

FU(U±
0 ,0)[V ] = LV +

(
η0 u±

0
u±

0 0

)
V, (2.7)

where V := (v, ζ ) ∈ X . The following lemma states that the kernel of FU(U±
0 , 0) is only gen-

erated by the translation symmetry.

Lemma 2.2. For any given β > 0, FU(U±
0 , 0) : X → Y is injective.

Proof. Let V = (v, ζ ) ∈ kerFU(U±
0 , 0). Then V satisfies

LV +
(

η0 u±
0

u±
0 0

)
V = 0. (2.8)

Notice that the Green’s function for L−1 is G(x) = 1
2β

e−|x|/β . Therefore

V (x) = −G(x) ∗
[(

η0 u±
0

u±
0 0

)
V

]
(x)

= −
∫
R

G(x − y)

(
η0(y) u±

0 (y)

u±
0 (y) 0

)
V (y)dy

= − 1

G(x)

∫
R

G(x − y)G(y)

G(x)

1

G(y)

(
η0(y) u±

0 (y)

u±
0 (y) 0

)
V (y)dy.

Since

∣∣∣∣G(x − y)G(y)

G(x)

∣∣∣∣� 1,

∣∣∣∣η0(y)

G(y)

∣∣∣∣+
∣∣∣∣∣u

±
0 (y)

G(y)

∣∣∣∣∣� 1,

we conclude that V decays exponentially

|G(x)V (x)| � 1. (2.9)

Expanding (2.8) into a 4 × 4 first order ODE system and checking the asymptotics we find 
that there are only two bounded solution branches, and they have the asymptotic behavior

e−|x|/β and |x|e−|x|/β as |x| → ∞.

Together with (2.9) we know that the space of bounded solutions to (2.8) is at most one-
dimensional. Recalling from the translation invariance that

FU(U±,0)[(U±)′] = 0,
0 0
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it follows that (U±
0 )′ is the only bounded solution to (2.8). Finally the parity condition yields the 

desired result. �
The spectral property of FU(U±

0 , 0) given by Lemma 2.2 allows a use of the Implicit Function 
Theorem. Notice that for if (u, η, λ) is a solution to (2.6) with λ > 0, then so is (−u, η, −λ). In 
fact this corresponds to the same wave propagating in the opposite direction. Therefore in the 
following analysis we will only consider the case λ > 0.

Theorem 2.1 (Nearly stationary waves). For any β ∈ R there exists some positive λ0 > 0 and a 
C0 solution curve

C slow
loc = {(u±(λ), η(λ),λ) : 0 ≤ λ < λ0} ⊂ X ×R

to problem (2.6) with the property that

u(λ) = u+
0 + O(λ), η(λ) = η0 + O(λ) in X , (2.10)

u(λ) > 0 and η(λ) < 0, (2.11)

where (u+
0 , η0) is given in (2.4).

Proof. The proof of the existence and uniqueness of the solution curves and (2.10) follows from 
Lemma 2.2 and a direct application of the Implicit Function Theorem.

Applying the maximum principle to the second equation of (2.6) we see that λu ≥ η. From 
(2.6) we also have

−β2
[

1 − λ2
(

1 + 1

3β2

)]
η′′ + (1 − λ2 − λu)η + 1

2
u2 = 0. (2.12)

From (2.10) we know that for λ sufficiently small 1 −λ2 −λu > 0. Therefore, from the maximum 
principle we conclude that η ≤ 0. If there is an x1 such that η(x1) = 0 = maxη, then we have 
η′(x0) = 0. Substituting this into the above equation leads to η′′(x0) = u(x0) = 0. Hence (η −
λu)(x0) = 0. Since η − λu ≤ 0, we see that (η − λu)(x0) = max(η − λu), and thus u′(x0) = 0. 
The uniqueness of ODE then implies that (η, u) ≡ 0, a contradiction. Therefore we must have

η < 0.

Direct calculation yields the equation for u as

−β2
[

1 − λ2
(

1 + 1

3β2

)]
u′′ +

[
1 − λ2

(
1 + 1

3β2

)
+ λ

2

(
1 + 1

3β2

)
u

]
u

+
(

λ

3β2 + u

)
η = 0.

(2.13)

From (2.10) and (2.4) we know that for any ε > 0 there exist λ > 0 sufficient small and R0 > 0
sufficiently large such that
242
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∥∥u − u+
0

∥∥
C2(R)

+ ‖η − η0‖C2(R) + ∥∥u+
0 ‖C0(|x|≥R0)

+ ‖η0
∥∥

C0(|x|≥R0)
< ε,

u > 0 for |x| < R0.
(2.14)

If infu < − λ
3β2 < 0, then from the above equation we know that there exists some x0 > R0

such that u(x0) = infu. Continuity then yields the existence of x1 with x1 > R0 and u(x1) = 0
such that

x1 = min{x > 0 : u(x) = 0}.

Rewriting (2.13) as

−β2
[

1 − λ2
(

1 + 1

3β2

)]
u′′ +

[
1 − λ2

(
1 + 1

3β2

)
+ η + λ

2

(
1 + 1

3β2

)
u

]
u + λ

3β2 η = 0,

(2.15)
we see from (2.14) that |η| < 2ε on [x1, +∞). Thus for λ and ε sufficiently small, applying the 
maximum principle on [x1, +∞) yields that

u ≥ 0 on [x1,+∞),

which is a contradiction.
Therefore

infu ≥ − λ

3β2 .

Substituting this into (2.13), from the maximum principle we can infer that u > 0, which is 
(2.11). �

To investigate further the qualitative properties of the solutions, let us first recall the following 
result of [13, Theorem 2] on weakly coupled elliptic systems.

Theorem 2.2 ([13]). If (u, v) is a classical solution to the following elliptic system

⎧⎪⎪⎨
⎪⎪⎩

�u + g(u, v) = 0 in Rn,

�v + f (u, v) = 0 in Rn,

u, v > 0 in Rn,

u(x), v(x) → 0 as |x| → ∞,

where f, g ∈ C1([0, ∞) × [0, ∞), R). Suppose further that

(i)
∂g

∂v
, 
∂f

∂u
are non-negative on [0, ∞) × [0, ∞); (quasi-monotonicity)

(ii)
∂g

∂u
(0, 0) < 0 and

∂f

∂v
(0, 0) < 0;
243
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(iii) detA > 0, where

A :=

⎛
⎜⎜⎜⎝

∂g

∂u

∂g

∂v

∂f

∂u

∂f

∂v

⎞
⎟⎟⎟⎠ (0,0).

Then there exist points x0, x1 ∈ Rn such that u(x) = u(|x − x0|) and v(x) = v(|x − x1|). More-
over

du

dr0
< 0 and

dv

dr1
< 0,

where r0 := |x − x0| and r1 := |x − x1|.

From the above theorem we immediately obtain

Lemma 2.3 (Local monotonicity). Fix β ∈ R. There exists λ0 > 0 such that every solution 
(u, η, λ) ∈ C slow

loc with 0 ≤ λ < λ0 is strictly monotone in that for x > 0,

u′ < 0 and η′ > 0. (2.16)

Proof. We see that (u, η) satisfies equations (2.13) and (2.12). Setting v := −η and putting it 
into the form as in Theorem 2.2 we find that

g(u, v) = − 1

β2 u + λ

3β4B
v + 1

β2B
uv − λ

2β2B

(
1 + 1

3β2

)
u2,

f (u, v) = −1 − λ2

β2B
v + λ

β2B
uv + 1

2β2B
u2,

where B :=
[
1 − λ2

(
1 + 1

3β2

)]
> 0 for small λ. Direct computation shows that

⎛
⎜⎜⎜⎝

∂g

∂u

∂g

∂v

∂f

∂u

∂f

∂v

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

− 1

β2 + 1

β2B
v − λ

β2B

(
1 + 1

3β2

)
u

λ

3β4B
+ 1

β2B
u

λ

β2B
v + 1

β2B
u −1 − λ2

β2B
+ λ

β2B
u

⎞
⎟⎟⎟⎟⎠ .

From Theorem 2.1 we know that u, v > 0 when λ is small, which implies that (i)–(iii) of Theo-
rem 2.2 are satisfied. Therefore (2.16) holds. �

Another application of Theorem 2.2 to the local solution near the bifurcation point (u+
0 , η0, 0)

is the following result on the local uniqueness of the solution curve C slow
loc . In particular this result 

shows that all classical solutions near (u+
0 , η0, 0) with λ > 0 must be even and monotone on the 

positive axis.
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Corollary 2.3 (Local uniqueness). Denote by Br the ball of radius r > 0 in 
(
C2(R) ∩ C0(R)

)×(
C2(R) ∩ C0(R)

)×R centered at (u+
0 , η0, 0). There exists ε > 0 such that for λ > 0,

F−1(0) ∩Bε = C slow
loc ∩Bε. (2.17)

Proof. Consider a solution (u, η, λ) to equations (2.12)–(2.13) with

∥∥u − u+
0

∥∥
C2(R)

+ ‖η − η0‖C2(R) + |λ| < ε.

There exists an R0 > 0 large enough such that

∥∥u − u+
0

∥∥
C2(R)

+ ‖η − η0‖C2(R) + |λ| + ∥∥u+
0 ‖C0(|x|≥R0)

+ ‖η0
∥∥

C0(|x|≥R0)
< ε,

u > 0, η < 0, u′ < 0, η′ > 0 for |x| < R0.
(2.18)

Hence if supη > 0, then from continuity there exists x0 := min{x > 0 : η(x) = 0} such that 
η(x0) = 0 and x0 > R0. From (2.18) we see that

1 − λ2 − λu > 0 on [x0,+∞).

Applying the maximum principle to (2.12) on [x0, +∞) yields that η ≤ 0 on [x0, +∞). Together 
with (2.18), this fact contradicts the assumption that supη > 0. Therefore we must have η ≤ 0.

In a similar way if infu < 0, then we may find x1 := min{x > 0 : u(x) = 0} such that u(x0) =
0 and x0 > R0. The maximum principle applied to (2.15) on [x1, +∞) leads to the conclusion 
that u ≥ 0, contradicting to the assumption that infu < 0. Thus u ≥ 0.

If there exists some x0 ≥ 0 such that η(x0) = 0, then η(x0) = supη, and hence η′(x0) = 0
and η′′(x0) ≤ 0. From (2.12) we find that u(x0) = 0. This also means that u(x0) = infu, and so 
u′(x0) = 0. Uniqueness of the ODE then implies that η = u ≡ 0, which contradicts (2.18). The 
same argument applies to the situation if u touches zero at some finite point.

The above argument indicates that for any small (u, η, λ) ∈ F−1(0) ∩Bε ,

u > 0 and η < 0.

Then for λ > 0 one may apply Theorem 2.2 to conclude that u and η are both even. Therefore 
the uniqueness of C slow

loc within F−1(0) ∩ (X ×R+) gives (2.17). �
2.3. Nodal pattern

Now for each fixed β ∈ R we introduce the set

O :=
{
(u, η,λ) ∈ X ×R+ : 1 − λ2

(
1 + 1

3β2

)
> 0

}
. (2.19)

The results of Theorem 2.1 and Lemma 2.3 naturally suggest us to consider the following 
“nodal properties”
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u > 0 in R, (2.20a)

η < 0 in R, (2.20b)

u′ < 0 in R+, (2.20c)

η′ > 0 in R+. (2.20d)

Lemma 2.4 (Open property). Let (u∗, η∗, λ∗) ∈ O ∩ F−1(0) be given and suppose that it satis-
fies (2.20). There exists ε = ε(u∗, η∗, λ∗) > 0 such that, if (u, η, λ) ∈O ∩ F−1(0) and

‖u − u∗‖C2(R) + ‖η − η∗‖C2(R) + |λ − λ∗| < ε, (2.21)

then (u, η, λ) also satisfies (2.20).

Proof. The proof of (2.20a) and (2.20b) follows the same argument as in the proof of Corol-
lary 2.3 by replacing (u+

0 , η0, 0) with (u∗, η∗, λ∗). The proof for (2.20c)–(2.20d) then follows 
directly from the application of Theorem 2.2. �
Lemma 2.5 (Closed property). Let {(un, ηn, λn)} ⊂ O ∩ F−1(0) be given and suppose that 
(un, ηn, λn) → (u, η, λ) ∈ O ∩ F−1(0) in C2(R) × C2(R) × R. If each (un, ηn, λn) satisfies 
(2.20), then (u, η, λ) also satisfies (2.20) unless u = η ≡ 0.

Proof. First we see that

u ≥ 0, η ≤ 0, λ ≥ 0, and

u′ ≤ 0, η′ ≥ 0 in R+.

If there exists x0 such that u(x0) = 0, then u(x0) = infu, and hence u′(x0) = 0. From the equation 
(2.13) and maximum principle we see that η(x0) = 0. Therefore η(x0) = supη. So η′(x0) = 0. 
Thus from the uniqueness of ODE we know that u = η ≡ 0. �
Lemma 2.6 (Nodal property). If K is any connected subset of O ∩ F−1(0) that contains C slow

loc , 
then every (u, η, λ) ∈K exhibits (2.20).

Proof. First note that each (u(λ), η(λ), λ) ∈ C slow
loc satisfies (2.20). Recall the definition of Br in 

Corollary 2.3. Fix 0 < λ < λ0 and take ε to be sufficiently small, the local uniqueness of C slow
loc

implies that

K ∩Bε = C slow
loc ∩Bε,

and K\Bε is the connected component containing (u(λ), η(λ), λ). Applying Lemmas 2.4 and 2.5
completes the proof. �
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2.4. Monotone fronts

Next we define the concept of monotone fronts.

Definition 2.4. For λ > 0 and λ2
(

1 + 1
3β2

)
< 1, we say (u, η, λ) is a monotone front solution of 

(2.6) if (u, η) ∈ C2
b(R) × C2

b(R), and

lim
x→+∞(u(x), η(x)) = (0,0), and u > 0, η < 0, u′ ≤ 0, η′ ≥ 0 in R, (2.22)

where C2
b(R) is the set of C2 functions with bounded norms.

Lemma 2.7 (Nonexistence of monotone fronts). There exists some β0 > 0 such that if λ > 0 and 
|β| < β0, then system (2.6) does not admit any monotone front solution in the sense of (2.22).

Proof. Suppose (u, η) is a monotone front solution to (2.6). Then since u, η are bounded and 
monotone,

(ū, η̄) := lim
x→−∞(u(x), η(x))

exists, and ū > 0, η̄ < 0. Evaluating (2.12) at −∞ leads to

ū <
1 − λ2

λ
, and η̄ = − ū2

2(1 − λ2 − λū)
. (2.23)

Substituting the above equation into (2.13) and evaluating the equation at −∞ yields

− (2 − B) ū2 − λBū + 2(1 − λ2)B = 0,

where B = 1 −λ2
(

1 + 1
3β2

)
∈ (0, 1). Solving this quadratic equation together with the constraint 

that ū > 0 yields

ū =
√

λ2B2 + 8B(2 − B)(1 − λ2) − λB

2(2 − B)
. (2.24)

On the other hand, multiplying (2.12) by η′ and multiplying (2.13) by u′ and summing up, it 
follows that

[
−β2B

2

(
(u′)2 + (η′)2

)
+ 1 − λ2

2
η2 + B

2
u2 + λ

6

(
1 + 1

3β2

)
u3 + 1

2
u2η

]′

− λuηη′ + λ

3β2 ηu′ = 0.

(2.25)

We can rewrite the last two terms above as
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−λuηη′ + λ

3β2 ηu′ =
(

−λ

2
uη2 + λ

3β2 ηu

)′
+ λ

2
u′η2 − λ

3β2 η′u.

The definition of monotone front implies that λ2u′η2 − λ
3β2 η′u ≤ 0, and hence we have

1 − λ2

2
η̄2 + B

2
ū2 + λ

6

(
1 + 1

3β2

)
ū3 + 1

2
ū2η̄ − λ

2
ūη̄2 + λ

3β2 ūη̄ ≤ 0.

Recalling (2.23) and the definition of B the above inequality can be simplified to

ū

(
1

4
η̄ + B

2
+ 1 − B

6λ
ū

)
+ λ

3β2 η̄ ≤ 0,

which further leads to

ū

(
B

2
+ 1 − B

6λ
ū

)
−
(

1

4
ū + 1 − B − λ2

λ

)
ū2

2(1 − λ2 − λū)
≤ 0.

Solving above yields

ū ≥ 2
√

4(1 − B)2(1 − λ2)2 + 3(7 − 4B)Bλ2(1 − λ2) − 4(1 − B)(1 − λ2)

λ(7 − 4B)
.

Combining this with (2.24) and explicitly solving the resulting inequality leads to

G(λ2, t) ≥ 0, (2.26)

where t = 1 + 1
3β2 > 1 and

G(z, t) :=
(

−20 + 13

t

)
z3 +

(
−60 + 33

t
+ 32t

)
z2 +

(
−39 + 18

t
+ 32t

)
z − 9.

Recall from Definition 2.4 that we are only interested in the interval z ∈ (0, 1/t2). It is easy to 
see that

Gz(0, t), Gzz(0, t) > 0. (2.27)

Looking at G(z, t), we find that for t > t1 sufficiently large, say t1 ≈ 2.264, we have

G

(
1

t2 , t

)
< 0.

For a fixed t > 1, solving a quartic inequality it follows that

Gzz

(
1
2 , t

)
> 0
t

248



R.M. Chen and J. Jin Journal of Differential Equations 310 (2022) 235–263
when t > t2 for some large enough t2 (for example t2 ≈ 1.68). This together with (2.27) and the 
fact that Gzz(z, t) is linear in z implies that for t > t2, Gzz(z, t) > 0 for 0 < z < 1

t2 . Therefore we 
have

Gz(z, t) > Gz(0, t) > 0 for 0 < z <
1

t2 .

So for t > max{t1, t2}, corresponding to β2 < β2
0 with

β2
0 = min

{
1

3t1 − 1
,

1

3t2 − 1

}
,

it yields that

G(z, t) < 0 for 0 < z <
1

t2 ,

which contradicts (2.26). This completes the proof of the lemma. �
Remark 2.1. Taking t1 ≈ 2.264 and t2 ≈ 1.68, we may choose β0 ≈ 0.5.

2.5. Global continuation

Now that we have obtained the local bifurcation result, we will extend the local solution 
curves constructed in Section 2.2 to the non-perturbative regime using a global implicit function 
theorem developed in [20].

Theorem 2.5. There exists a curve C slow containing C slow
loc , which admits a global C0

parametrization

C slow := {(u(s), η(s), λ(s)) : s ∈ (0,∞)} ⊂ O ∩ F−1(0)

with lims↘0 (u(s), η(s), λ(s)) = (
u+

0 , η0,0
)

and satisfies the following.

(a) At each s ∈ (0, ∞), the linearized operator F(u,η)(u(s), η(s), λ(s)) : X × R+ → Y is 
Fredholm index 0.

(b) One of the following alternatives holds as s → ∞.

(A1) (Blowup) The quantity

N(s) := ‖(u(s), η(s))‖X + λ(s) + 1

dist((u(s), η(s), λ(s)), ∂O)
→ ∞. (2.28)

(A2) (Loss of compactness) There exists a sequence sn → ∞ with supn N(sn) < ∞, but 
(u+(sn), η(sn), λ(sn)) has no convergent subsequence in X ×R+.

(A3) (Loss of Fredholmness) There exists a sequence sn → ∞ with supn N(sn) < ∞ and 
so that (u(sn), η(sn), λ(sn)) → (u∗, η∗, λ∗) in X ×R+, however F(u,η)(u∗, η∗, λ∗) is 
not Fredholm index 0.
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(A4) (Closed loop) There exists T > 0 such that (u(s + T ), η(s + T ), λ(s + T )) =
(u(s), η(s), λ(s)) for all s ∈ (0, ∞).

(c) Near each point (u(s0), η(s0), λ(s0)) ∈ C slow, we can locally reparameterize C slow so that 
s �→ (u(s), η(s), λ(s)) is real analytic.

Proof. The proof follows from [20, Theorem B.1] and [19, Theorem 6.1], since from Lemma 2.2
we know that F(u,η)(u0, η0, λ0) : X ×R+ → Y is an isomorphism. �

Given a (u, η, λ) ∈ X ×R, direct computation yields that the linearized operator

F(u,η)(u, η,λ) =
(

L+ η −λ
(

1 + 1
3β2

)
L+

(
λ

3β2 + u
)

−λL+ u L

)
: X → Y .

Since (u, η) ∈ X , the limiting operator as |x| → ∞ is

F̃(u,η)(u, η,λ) :=
(

L −λ
(

1 + 1
3β2

)
L+ λ

3β2

−λL L

)
: X → Y .

Lemma 2.8. For (u, η, λ) ∈O, the limiting operator F̃(u,η)(u, η, λ) is invertible.

Proof. If V = (v, ζ ) ∈ X such that F̃(u,η)(u, η, λ)[V ] = 0, then a row elimination yields

[
1 − λ2

(
1 + 1

3β2

)]
Lζ + λ2

3β2 ζ = 0.

Thus ζ = 0, which also implies that Lv = 0, and hence v = 0. This shows that F̃(u,η)(u, η, λ) is 
injective.

Now for any f = (f1, f2) ∈ Y , consider solving F̃(u,η)(u, η, λ)[V ] = f for V ∈ X . By a 
similar argument as before, we can perform a row elimination to solve for ζ from

[
1 − λ2

(
1 + 1

3β2

)]
Lζ + λ2

3β2 ζ = λf1 + f2,

and then plug this back to the system to solve for v. This way we verify that F̃(u,η)(u, η, λ) is 
also surjective. Therefore the conclusion follows. �

With the help of Lemma 2.8, we may follow the argument in [40,19] to prove that 
F(u,η)(u, η, λ) : X → Y is locally proper. Finally we have

Lemma 2.9. For (u, η, λ) ∈ O, the linearized operator F(u,η)(u, η, λ) is Fredholm with index 0.

Proof. The lemma can be proved by a homotopy argument. Consider the operator Lt :=
tF̃(u,η)(u, η, λ) +(1 − t) 

(
F(u,η)(u, η,λ) − F̃(u,η)(u, η,λ)

)
for t ∈ [0, 1]. Thus for any t ∈ [0, 1]
250



R.M. Chen and J. Jin Journal of Differential Equations 310 (2022) 235–263
the limiting operator of Lt is F̃(u,η)(u, η, λ). The previous argument proves that Lt is locally 
proper, and thus Fredholm. Hence by continuity of the index we see that

indF(u,η)(u, η,λ) = indL1 = indF̃(u,η)(u, η,λ) = 0,

which completes the proof. �
Now we have all needed properties to further winnow down the alternatives in Theorem 2.5. 

By Lemma 2.9, for any (u(s), η(s), λ(s)) ∈ C slow, F(u,η)(u(s), η(s), λ(s)) : X → Y is Fred-
holm index 0. Thus we know that (A3) does not occur.

The loop alternative (A4) can also be ruled out by the nodal property Lemma 2.6 combined 
with the uniqueness results Proposition 2.1 and Corollary 2.3.

As for (A2), we may adapt [19, Lemma 6.3] in our current setting to give the following

Lemma 2.10 (Compactness or front). Suppose that {(un, ηn, λn)} ⊂ F−1(0) ∩O satisfies

sup
n≥1

(
‖(un, ηn)‖X + 1

dist((un, ηn,λn), ∂O)

)
< ∞,

and each (un, ηn) is strictly monotone in that ∂xun < 0, ∂xηn > 0 for x > 0. Then, either

(i) (Compactness) {(un, ηn, λn)} has a convergent subsequence in X ×R; or
(ii) (Monotone front) there exists a sequence of translations xn → +∞ so that we can extract 

a convergent subsequence

(un, ηn)( · + xn) −→ (u, η) ∈ C2+α
b (R) in C2

loc(R), λn −→ λ,

with (u, η, λ) ∈ O. The limit is a monotone front solution of (2.6) in the sense of Defini-
tion 2.4.

Proof. Given the assumptions of the lemma, we know that up to a subsequence λn → λ with 

1 − λ2
(

1 + 1
3β2

)
> 0. If (un, ηn) is equi-decaying in the sense that for any ε > 0 there exists 

some R > 0 such that

sup
n

‖(un, ηn)‖C2((R,∞)) < ε,

then obviously (un, ηn) has a convergent subsequence in X , and hence leads to (i).
If (un, ηn) is not equi-decaying, then there exists some ε0 > 0 and a sequence {xn} with 

xn → +∞ such that for all n ≥ 1,

sup
0≤i≤2

∣∣∣∂i
x(un, ηn)(xn)

∣∣∣≥ ε0.

Set (vn, ζn) := (un, ηn)( · + xn). Since (vn, ζn) is uniformly bounded in X , there is a subse-
quence, still denoted by the same labeling, (vn, ζn) → (u, η) ∈ X in C2

loc(R). Local convergence 
is enough to ensure that (u+, η) solves (2.6). The monotonicity of (un, ηn) confirms that
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∂xu ≤ 0, ∂xη ≥ 0.

By definition of (vn, ζn) we see that∣∣∣∂i
x(u, η)(0)

∣∣∣≥ ε0 for some i ≤ 2.

Thus (u, η) �≡ (0, 0). The maximum principle then implies that u > 0 and η < 0. �
Putting all of the above together, we finally arrive at our main result of this section.

Theorem 2.6 (Slow waves). For any β with |β| < β0 where β0 is given in Lemma 2.7, the global 
curve C slow constructed in Theorem 2.5 enjoys the following properties.

(a) (Symmetry and monotonicity) Each solution on C slow is even and

η(s) < 0 u(s) > 0 on R,

∂xη(s) > 0 ∂xu(s) < 0 on R+.
(2.29)

(b) (Loss of ellipticity) Following C slow to its extreme, the system loses ellipticity in that

lim
s→∞λ(s) =

(
1 + 1

3β2

)−1/2

. (2.30)

Proof. Note that property (a) follows from the nodal properties Lemma 2.6. From the previous 
discussion, at the extreme of the solution curve, (A3) and (A4) cannot occur. Lemma 2.10 to-
gether with Lemma 2.7 rules out (A2). Therefore we are only left with blowup alternative. Since 
λ is always bounded in O, one can remove λ(s) from the blowup quantity in (2.28).

From the local uniqueness and the nodal properties we know that lims→∞ λ(s) > 0. So if 
(2.30) is false, then there exists a sequence {sn}, sn → ∞ with the corresponding solutions 
(un, ηn, λn) := (u, η, λ)(sn) ∈ O ∩ F−1(0) such that

λn → λ∗ <

(
1 + 1

3β2

)−1/2

, ‖(un, ηn)‖X → ∞. (2.31)

Moreover λ∗ > 0. Since the system (2.6) is semi-linear, weakly coupled and has no first-order 
derivatives, elliptic regularity implies that ‖(un, ηn)‖C0 → ∞. From (a), this is equivalent to

un(0) − ηn(0) → ∞.

From the second equation in (2.6) and the fact that (ηn − λnun)(0) = min(ηn − λnun), it follows 
that

1

2
u2

n(0) + (ηn − λnun)(0) = β2(ηn − λnun)
′′(0) ≥ 0.

From this it must hold that
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un(0) → ∞.

Similarly, evaluating (2.13) at x = 0 and using that u′′
n(0) ≤ 0 we find that

ηn(0) ≤ −
1 − λ2

n

(
1 + 1

3β2

)
+ λn

2

(
1 + 1

3β2

)
un(0)

λn

3β2 + un(0)
un(0).

For n sufficiently large, from the above inequality, we have that

ηn(0) ≤ −2λn

5

(
1 + 1

3β2

)
un(0). (2.32)

Recall (2.25). Integrating the equation over (0, ∞) we find that

1 − λ2
n

2
η2

n(0) + 1

2
u2

n(0)

[
B + λn

3

(
1 + 1

3β2

)
un(0) + ηn(0)

]
> 0.

From (2.32) we obtain

1 − λ2
n

2
η2

n(0) + 1

2
u2

n(0)

[
B − λn

15

(
1 + 1

3β2

)
un(0)

]
> 0. (2.33)

Further using (2.6) we have that for any δ > 0,

L
{
δλn

(
1 + 1

3β2

)
ηn +

[
1 − (1 + δ)λ2

n

(
1 + 1

3β2

)]
un

}

+
(

λn

3β2 + un

)
ηn + 1

2
(1 + δ)λn

(
1 + 1

3β2

)
u2

n = 0.

(2.34)

From (2.31) there exists δ0 > 0 such that for n sufficiently large,

1 − (1 + δ)λ2
n

(
1 + 1

3β2

)
> 0 for all 0 < δ < δ0.

From (2.33) we see that

|ηn(0)| = O(|un(0)|3/2) as n → ∞.

Therefore for any 0 < δ < δ0 there exists some n0 large enough such that for n ≥ n0

δλn

(
1 + 1

3β2

)
ηn(0) +

[
1 − (1 + δ)λ2

n

(
1 + 1

3β2

)]
un(0) < 0.

Denote by xn ∈ [0, ∞) the point where δλn

(
1 + 1

3β2

)
ηn +

[
1 − (1 + δ)λ2

n

(
1 + 1

3β2

)]
un

achieves its minimum. Then it holds that ηn(0) ≤ ηn(xn) < 0, and
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δλn

(
1 + 1

3β2

)
ηn(xn) ≤ δλn

(
1 + 1

3β2

)
ηn(0)

+
[

1 − (1 + δ)λ2
n

(
1 + 1

3β2

)]
[un(0) − un(xn)] .

From this we conclude that

|ηn(xn)| = O(|un(0)|3/2) as n → ∞. (2.35)

Evaluating equation (2.34) at xn indicates that

(
λn

3β2 + un(xn)

)
ηn(xn) + 1

2
(1 + δ)λn

(
1 + 1

3β2

)
u2

n(xn) > 0,

which contradicts the asymptotics (2.35). �
3. Bifurcation from classical Boussinesq supercritical waves

In this section we focus on fast traveling solitary waves with wave speed λ > 1. Different 
from the previous section, here we will consider the wave speed as given, and restrict the four 
parameters (a, b, c, d) on a one-parameter curve to perform the bifurcation. The base point of 
the bifurcation corresponds to the solution to the classical Boussinesq system which has a = b =
c = 0 and d = 1

3 in (1.1) (see, for example, [3,11,30,35]). As is discussed in [15], the solitary 
waves (uf , ηf ) satisfy

⎧⎪⎪⎨
⎪⎪⎩

(u′
f )2 = 1

λ

(
−u3

f + 3λu2
f + 6uf + 6λ log

∣∣∣∣λ − uf

λ

∣∣∣∣
)

,

ηf = uf

λ − uf

.

(3.1)

From classical ODE techniques one obtains that for any λ > 1 there exists a unique solution 
(uf , ηf ) ∈ X such that

⎧⎪⎨
⎪⎩

uf ,ηf are both monotonically decreasing from their crests at x = 0, and

1

2

(
3λ −

√
λ2 + 8

)
< max

x∈R
|uf | < λ.

(3.2)

3.1. Local solutions

Now for any fixed k > 0 with k < λ, consider the parameter curve

a = c = ks, b = s, d = 1

3
− (2k + 1)s. (3.3)

Thus b = d only when 2(k + 1)s = 1
3 . So in particular b �= d when s is small. Moreover we also 

allow a, c to be negative.
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Similar as before, in this parameter regime we can rewrite (1.3) as

F (U, s) :=

⎛
⎜⎜⎝

ksu′′ + λsη′′ + u − λη + ηu,

[
1

3
− (2k + 1)s

]
λu′′ + ksη′′ − λu + η + 1

2
u2

⎞
⎟⎟⎠= 0, (3.4)

with F : X ×R → Y .
The existence of solitary waves in the parameter regime (3.3) is stated as follows

Theorem 3.1 (Fast waves near the Boussinesq solutions). For any λ > 1, let k be such that 
0 < k < λ. Suppose that the parameters of (1.3) satisfy (3.3). Then there exist some positive 
δ > 0 and a unique C0 solution curve

C fast
loc = {(us, ηs, s) : |s| < δ} ⊂ X ×R

to problem (3.4) with the property that

(us, ηs) = (uf , ηf ) + O(s) in X , (3.5)

us, ηs > 0 for s ≥ 0, (3.6)

where (uf , ηf ) is the unique solution to (3.1) satisfying (3.2).

Proof. Denote Uf := (uf , ηf ). Working with even functions, direct computation yields that

FU(Uf ,0) =
(

1 + ηf uf − λ
λ

3
∂2
x + uf − λ 1

)
: X → Y .

Suppose that FU(Uf , 0)[V ] = 0 for some V = (v, ζ ) ∈ X . Writing out the equations we 
have

(1 + ηf )v + (uf − λ)ζ = 0,

λ

3
v′′ + (uf − λ)v + ζ = 0.

We can then solve for ζ in the first equation to obtain a single ODE for v

λ

3
v′′ +

[
λ

(λ − uf )2 − (λ − uf )

]
v = 0. (3.7)

Since λ > 1 and uf satisfies (3.2), from classical ODE theory we know that there is only one 
bounded nontrivial solution to the above equation. On the other hand from the translation in-
variance of (3.4) we see that u′

f solves (3.7). From the fact that uf is even, it follows that 
kerFU(Uf , 0) is trivial in X .

The surjectivity of FU(Uf , 0) can be easily verified since one can effectively solve ζ in terms 
of v through an algebraic equation, and then solve an ODE for v. Therefore we further conclude 
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that FU(Uf , 0) is invertible. Thus the existence of the local solution curve and (3.5) follows 
from the Implicit Function Theorem.

Next let’s turn to the sign property. For any ε > 0 we can find an R0 > 0 such that

|uf (x)|, |ηf (x)| < ε for |x| > R0.

From (3.5) we know that by choosing s sufficiently small,

{
us(x), ηs(x) > 0 for |x| ≤ R0,

|us(x)|, |ηs(x)| < ε + O(s) for |x| > R0.
(3.8)

From (3.4) we have

([
1

3
− (2k + 1)s

]
λ2 − k2s

)
u′′

s −
[
(k + λ2) − λ

2
us

]
us + [λ + k(λ − us)]ηs = 0. (3.9)

So if infus = us(x0) < 0, then from (3.8) |x0| > R0. For small s, the maximum principle implies 
that ηs(x0) < 0 and

us(x0) ≥ λ + k(λ − us(x0))

k + λ2 − λus(x0)/2
ηs(x0) > ηs(x0),

since

0 <
λ + k(λ − us(x0))

k + λ2 − λus(x0)/2
< 1

for sufficiently small ε and s.
Since ηs(x0) < 0, we know that infηs = ηs(x1) ≤ ηs(x0) < 0 for |x1| > R0. Looking at the 

equation for ηs([
1

3
− (2k + 1)s

]
λ2s − k2s2

)
η′′

s −
([

1

3
− (2k + 1)s

]
λ2 + ks −

[
1

3
− (2k + 1)s

]
λus

)
ηs

+
([

1

3
− (2k + 1)s

]
λ + λks − ks

2
us

)
us = 0, (3.10)

it follows that for s > 0 small, at x1 we have us(x1) < 0, and

ηs(x1) ≥
[ 1

3 − (2k + 1)s
]
λ + λks − ks

2 us(x1)[ 1
3 − (2k + 1)s

]
λ2 + ks − [ 1

3 − (2k + 1)s
]
λus(x1)

us(x1) > us(x1).

The last estimate holds because for ε, s sufficiently small the fraction can be made between 0 
and 1. However this would lead to a contradiction since

infus = us(x0) ≥ ηs(x0) ≥ infηs = ηs(x1) > us(x1).

Therefore we have proved that for s > 0 sufficiently small, us ≥ 0. A similar argument yields 
that ηs ≥ 0 as well.
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If there is a point x∗ where us(x∗) = 0, then the above argument shows that ηs(x∗) = 0, 
and hence x∗ is a minimum point for us and ηs , indicating that u′

s(x∗) = η′
s(x∗) = 0. Thus from 

uniqueness of ODE it must hold that us = ηs ≡ 0, which is a contradiction. This proves (3.6). �
Similar to Section 2, we have the following result establishing the local monotonicity and 

local uniqueness.

Corollary 3.2 (Local monotonicity and local uniqueness). Denote by Br the ball of radius r > 0
in 
(
C2(R) ∩ C0(R)

)× (
C2(R) ∩ C0(R)

)× R centered at (uf , ηf , 0). There exists ε > 0 such 
that for s > 0,

F−1(0) ∩Bε = C fast
loc ∩Bε (3.11)

In addition, every solution (u, η, s) ∈F−1(0) ∩Bε is strictly monotone in that for x > 0,

u′ < 0 and η′ < 0. (3.12)

Proof. Similarly as the proof of the sign property in Theorem 3.1, for (u, η, s) ∈ F−1(0) ∩ Bε , 
we have u, η > 0. Thus it suffices to check conditions (i)–(iii) of Theorem 2.2. Writing (3.9) and 
(3.10) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

([
1

3
− (2k + 1)s

]
λ2s − k2s2

)
u′′ + g(u,η) = 0,

([
1

3
− (2k + 1)s

]
λ2s − k2s2

)
η′′ + f (u,η) = 0,

direct computation yields that:

∂g

∂η
= λ + λk − ku,

∂f

∂u
=
[

1

3
− (2k + 1)s

]
(λ + η) + ks(λ − u),

∂g

∂u
(0,0) = −(λ2 + k),

∂f

∂η
(0,0) = −

[
1

3
− (2k + 1)s

]
λ2 − ks.

(3.13)

When ε is chosen sufficiently small, conditions (i)–(iii) of Theorem 2.2 are satisfied. �
Remark 3.1. In the proof above we used a relaxed version of condition (i) which only requires 

that 
∂g

∂v
(uα, v), 

∂f

∂u
(u, vα) are non-negative for (u, v) ∈ [0, ∞) × [0, ∞) where (uα, vα), where 

(uα, vα) are reflection of the solution of the elliptic system with respect to the line x = α.

3.2. Nodal pattern and monotone fronts

Now for each fixed λ, k ∈R+ we introduce the set

O := {
(u, η, s) ∈ X ×R+ : s ∈ �1, u ∈ �2

}
, (3.14)
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where

�1 :=
{
s ∈ R+ : λ2

3
−
[
(2k + 1)λ2 + k2

]
s > 0

}
, �2 := {

u : ‖u‖C0(R) < λ
}
.

The intuition for the choice of O is that �1 is needed for the ellipticity, and �2 provides a 
sufficient condition to ensure conditions (i)–(iii) in Theorem 2.2, in particular the condition (i)
for (strict) quasi-monotonicity. Indeed from (3.13) we see that ∂ηg, ∂uf > 0 when

u < λ + λ

k
and u < λ +

1
3 − (2k + 1)s

ks
(λ + η).

Moreover, this constraint also allows one to deduce from (3.10) an upper bound for η

ηs(0) ≤
[ 1

3 − (2k + 1)s
]
λ +

(
λ − us(0)

2

)
ks[ 1

3 − (2k + 1)s
]
λ
(
λ − us(0)

)+ ks
us(0). (3.15)

Constraint �2 can also be understood as a “no stagnation” condition and indicates that the parti-
cles travel behind the wave.

From Theorem 3.1 and Corollary 3.2 we are led to consider the following nodal property:

u > 0, η > 0 in R, (3.16a)

u′ < 0, η′ < 0 in R+, (3.16b)

Similarly to the previous section, we can prove that the above nodal property persists on the 
solution curve. The proof follows along the same line as the one in Lemma 2.6, and hence we 
omit it.

Lemma 3.1 (Nodal property). If K is any connected subset of O ∩ F−1(0) that contains C fast
loc , 

then every (u, η, λ) ∈K exhibits (3.16).

The next step regards the nonexistence of monotone fronts, which will provide useful infor-
mation for the global theory. As in Section 2.4, we define the concept of monotone fronts as 
follows.

Definition 3.3. Let s ∈ �1, u ∈ �2, we say (u, η, λ) is a monotone front solution of (3.4) if 
(u, η) ∈ C2

b(R) × C2
b(R), and

lim
x→+∞(u(x), η(x)) = (0,0), and u > 0, η > 0, u′ ≤ 0, η′ ≤ 0 in R. (3.17)

Lemma 3.2 (Nonexistence of monotone fronts). If s ∈ �1, u ∈ �2 then system (3.4) does not admit 
any monotone front solution in the sense of (3.17).

Proof. The proof is similar to Lemma 2.7 but the algebra is simpler. Suppose (u, η) is a mono-
tone front solution to (3.4). Let
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(ū, η̄) := lim
x→−∞(u(x), η(x)).

So ū, η̄ > 0. Evaluating (3.4) at x → −∞ implies that

ū = 3λ − √
λ2 + 8

2
(3.18)

and

η̄ = ū

λ − ū
. (3.19)

Multiplying the first equation in (3.4) by η′, the second equation by u′, and then summing them 
gives

[( 1
3 − (2k + 1)s

)
λ

2
(u′)2 + λs

2
(η′)2 + ksu′η′ + uη − λ

2
u2 − λ

2
η2 + 1

6
u3

]′

+ uηη′ = 0

(3.20)

Write uηη′ = ( 1
2uη2

)′ − 1
2u′η2, by definition of monotone front, we have u′η2 ≤ 0 and thus

ūη̄ − λ

2
ū2 − λ

2
η̄2 + 1

6
ū3 + 1

2
ūη̄2 ≥ 0 (3.21)

From (3.19), this can be reduced to

(λ − ū)

(
ū

3
− λ

)
+ 1 ≥ 0

and from (3.18) we finally have

1

12

(
−λ +

√
λ2 + 8

)(
−3λ −

√
λ2 + 8

)
+ 1 ≥ 0

the above inequality holds only when λ ≤ 1, which contradicts the fact that λ > 1. �
3.3. Global continuation

As in Section 2.5, with Lemma 3.1 and 3.2, we obtain the following global solution curve:

Theorem 3.4. There exists a curve C fast containing C fast
loc , which admits a global C0 parametriza-

tion

C fast := {(u(t), η(t), s(t)) : t ∈ (0,∞)} ⊂ O ∩ F−1(0)

with limt↘0 (u(t), η(t), s(t)) = (
uf ,ηf ,0

)
and satisfies the following property:
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(a) (Symmetry and monotonicity) Each solution on C fast is even and

u(t) > 0 η(t) > 0 on R,

∂xu(t) < 0 ∂xη(t) < 0 on R+.

(b) (Loss of ellipticity or stagnation limit) Following C fast to its extreme, either the system loses 
ellipticity in that

lim
t→∞ s(t) = λ2

3
(
(2k + 1)λ2 + k2

) , (3.22)

or we encounter waves that are arbitrarily close to having a stagnation point

lim
t→∞ inf

x∈R
(λ − u(t)) = 0. (3.23)

Proof. We will only focus on proving (b). Since limt→∞ s(t) > 0, so if (3.22) is false, we 
can find a sequence {tn} → ∞ with the corresponding solutions denoted by (un, ηn, sn) ∈
O ∩ F−1(0) such that as n → ∞,

sn → s∗ <
λ2

3
(
(2k + 1)λ2 + k2

) , either ‖(un, ηn)‖X → ∞ or ‖un‖C0 → λ.

Recall from (3.15) the upper bound for ηn

η̄n ≤
s̄nλ +

(
λ − ūn

2

)
ksn

s̄nλ(λ − ūn) + ksn
ūn ≤ 2s̄nλ + λksn

2ksn
λ,

where s̄n := 1
3 − (2k + 1)sn. Elliptic regularity then asserts that the latter alternative can be 

replaced by

‖un‖C0 → λ,

proving (3.23). �
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Appendix A. Proofs from Section 2.1

In this appendix we provide the proofs of the properties for the stationary wave problem (2.1)
stated in Section 2.1.
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Proof of Lemma 2.1. If there is an x1 such that η(x1) ≥ 0. This property, and the fact that 
η(x) → 0 as x → ±∞, imply that η has a non-negative maximum on R. Suppose that this 
maximum is at x0. Then from (2.1), either η (x0) = u (x0) = 0 or η′′ (x0) > 0. The latter being 
impossible at a maximum, we conclude the former two equalities. Also, η′ (x0) = 0, and from 
(2.2), u′ (x0) = 0. But then, since η, η′, u, and u′ all vanish at x0, the uniqueness theorem for 
ODE’s implies that η (x) = u (x) = 0 for all x, contradicting the definition of a solitary wave, 
which must be non-constant. This completes the proof of Lemma 2.1. �

A quick application of the maximum principle also yields

Lemma A.1. Let (u, η) be a solitary wave solution. Then

(a) (−u, η) is also a solitary wave solution.
(b) If u ≥ 0 then u(x) > 0.
(c) If u ≤ 0 then u(x) < 0.

Proof. Part (a) follows directly from (2.1). For (b), suppose that u(x) ≥ 0 and that u(x1) = 0 for 
some x1. Since u is non-negative it must be the case that u′(x1) = 0. Thus, by uniqueness of the 
constant solution (u, u′) = (0, 0) of

−au′′ = u(1 + η),

we conclude that u(x) ≡ 0. In this case, η′′ = η on R. But since the orbit is homoclinic, η must 
be bounded, which implies that η (x) = 0 for all x as well, and this contradicts the definition of 
solitary waves and Lemma 2.1. Part (c) follows by a similar argument. �
Proof of Proposition 2.1. The proof part (i) makes use of function

h = u − √
2η,

which satisfies

β2h′′ =
(

1 − u√
2

)
h. (A.1)

If (u, η) is a solitary wave solution with u <
√

2, then 1 − u/
√

2 > 0. Then from maximum 
principle we know that h ≡ 0.

Substituting h = u − √
2η = 0 into (2.2) we get

β2(η′)2 = η2 + 2

3
η3,

which is the classical steady KdV equation. The solution is given by

η0(x) = −3
sech2

(
x
)

, and hence u−
0 (x) = −3

√
2

sech2
(

x
)

.

2 2β 2 2β
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The proof of (ii) makes use of the functional w = u + √
2η, which satisfies

β2w′′ =
(

1 + u√
2

)
w.

The remainder of the proof follows the same argument as before, with w replacing h. �
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