
Mach. Learn.: Sci. Technol. 4 (2023) 025022 https://doi.org/10.1088/2632-2153/acd168

OPEN ACCESS

RECEIVED

14 December 2022

REVISED

13 April 2023

ACCEPTED FOR PUBLICATION

28 April 2023

PUBLISHED

18 May 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Applications of physics informed neural operators
Shawn G Rosofsky1,2,3,∗, Hani Al Majed1,3,4 and E A Huerta1,2,5,∗
1 Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
2 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
3 NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
4 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of
America

5 Department of Computer Science, The University of Chicago, Chicago, IL 60637, United States of America
∗ Authors to whom any correspondence should be addressed.

E-mail: shawngr2@illinois.edu and elihu@anl.gov

Keywords: physics informed deep learning, surrogate model, neural operators

Abstract
We present a critical analysis of physics-informed neural operators (PINOs) to solve partial
differential equations (PDEs) that are ubiquitous in the study and modeling of physics phenomena
using carefully curated datasets. Further, we provide a benchmarking suite which can be used to
evaluate PINOs in solving such problems. We first demonstrate that our methods reproduce the
accuracy and performance of other neural operators published elsewhere in the literature to learn
the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our PINOs to learn new
types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types.
Finally, we show that our approach is also applicable to learn the physics of the 2D linear and
nonlinear shallow water equations, which involve three coupled PDEs. We release our artificial
intelligence surrogates and scientific software to produce initial data and boundary conditions to
study a broad range of physically motivated scenarios. We provide the source code, an interactive
website to visualize the predictions of our PINOs, and a tutorial for their use at the Data and
Learning Hub for Science.

1. Introduction

The description of physical systems has a common set of elements, namely: the use of fields
(electromagnetic, gravitational, etc) on a given spacetime manifold, a geometrical interpretation of these
fields in terms of the spacetime manifold, partial differential equations (PDEs) on these fields that describe
the change of a system over spacetime, and an initial value formulation of these equations with suitable
boundary conditions (BCs) [1]. Given that the evolution of physical fields over spacetime may be naturally
expressed in terms of PDEs, a plethora of numerical methods have been developed to accurately and rapidly
solve these class of equations [2].

In time, and even with the advent of extreme scale computing, some physical systems have become
increasingly difficult to model, e.g. multi-scale and multi-physics systems that combine disparate time and
spatial scales, and which demand the use of subgrid-scale precision to accurately resolve the evolution of
physical fields. This is a well known problem in multiple disciplines, including general relativistic
simulations [3–5], weather forecasting [6], ab initio density functional theory simulations [7], among many
other computational grand challenges.

The realization that large scale computing resources are finite and will continue to be oversubscribed [8,
9], has compelled scientists to explore novel approaches to address computational bottlenecks in scientific
software [10]. Some approaches include rewriting modules of software stacks to leverage GPUs, leading to
significant speedups [11–13]. Other contemporary approaches have harnessed advances in machine learning
to accelerate specific computations in software modules [14], while others have developed entirely new

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/acd168
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acd168&domain=pdf&date_stamp=2023-5-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3319-576X
https://orcid.org/0000-0002-9682-3604
mailto:shawngr2@illinois.edu
mailto:elihu@anl.gov
https://github.com/shawnrosofsky/PINO_Applications/tree/main
https://shawnrosofsky.github.io/PINO_Applications/
https://www.dlhub.org
https://www.dlhub.org


Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

solutions by combining GPU-accelerated computing and novel signal processing tools that have at their core
machine learning or artificial intelligence applications [15–21].

The confluence of AI and advanced computing aims to enable breakthroughs in science and engineering
that would otherwise remain unfeasible with traditional approaches. Furthermore, AI surrogates aim to
capture known knowledge, and first principles to steer AI learning in the right direction, and then refine AI
surrogates performance and predictions by using experimental scientific data. In time, it is expected that by
exposing AI to detailed simulations, first principles and experimental data, AI surrogates will capture the
nonlinear behavior of experimental phenomena and guide the planning, automation and execution of new
experiments, leading to breakthroughs in science and engineering. These approaches exhibit great promise
when coupled with robotics labs [22].

In this article we contribute to the construction of AI surrogates by demonstrating their application to
solve a number of PDEs that are ubiquitous in physics, and which have not been presented before in the
literature. Specifically, we have three levels of applicability of these new problems. First, we performed sanity
checks with simple PDEs to verify that our model behaves as expected. Second, we tested new numerically
challenging cases to assess the applicability of physics informed neural operators (PINOs) under such
conditions, which include non-constant coefficients, coupled PDEs, and shocks. Third, we applied PINOs to
coastal and tsunami modeling with the 2D linear and nonlinear shallow water equations. Beyond these
original contributions, we also provide an end-to-end framework that unifies initial data production,
construction of BCs and their use to train, validate and test the performance and reliability of AI surrogates.
These activities aim to create FAIR findable, accessible, interoperable and reusable and AI-ready datasets and
AI models [23–26].

In the following sections we introduce key concepts and ideas that will facilitate the understanding and
use of physics-inspired neural operators (PINOs) to solve PDEs [27]. This article is organized as follows. In
section 2 we introduce the AI tools we use to learn the physics of PDEs. We describe our methods and
approaches to create PINOs in section 3. We summarize the PDEs we consider in this study in section 4, and
present a direct comparison between numerical solutions of these PDEs and predictions from our PINOs in
section 5. We describe future directions of work in section 6.

2. Modeling physics with artificial neural networks

2.1. Physics informed neural networks (PINNs)
PINNs provide a method of using known physical laws to predict the results of various physical systems at
high accuracy [28–32]. These methods estimate the results for a given physical system consisting of a PDE,
initial conditions (ICs), and BCs by minimizing constraints in the loss function. PINNs utilize the automatic
differentiation of deep learning frameworks to compute the derivatives of the PDE to compute the residual
error. Despite the success of PINNs, their inability to produce results for different ICs prevents them from
being useful surrogate models.

2.2. Neural operators
Neural operators use neural networks to learn operators rather than single physical systems. In our case,
PDEs are the operator these networks try to learn. Specifically, we provide neural operators with input fields
A that are composed of coordinates and relevant data such as coefficient fields, ICs, and BCs. Neural
operators then output the solutions of that operator at those coordinates which we will denote as U . We can
mathematically represent the neural operator Gθ as a mapping between the input fieldsA and the output
fields U as

Gθ :A→U (1)

where θ are the weights of the neural operator [33].
There are various types of neural operators that have been studied in recent works such as DeepONets,

physics informed DeepONets, low-rank neural operators, graph neural operators, multipole graph neural
operators, Fourier neural operators (FNO), and PINOs [27, 33–38]. These networks have all illustrated their
ability to reproduce the results of operators much faster than computing with the operator directly. For a
more detailed look at neural operators, we refer the reader to [33], which provides rigorous definitions of
neural operators and examines a large number of different neural operators.

2.3. PINOs
PINOs are a variation of neural operators that incorporate knowledge of physical laws into their loss
functions [27]. PINOs have been shown to reproduce the results of operators with remarkable accuracy.

2



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 1. Neural network architecture. The top panel shows the architecture of our neural operators, whereas the inset in the
bottom panel shows the structure of one of the five Fourier layers, {F1, . . . ,F5}, we use in our PINOs. The top left panel shows the
data we feed into our models, labelled as ‘Initial Condition u(x,y)’. This input data are initially lifted into a higher dimension
representation by the neural network, P1. Thereafter, we apply a series of updates that consist of non-local integral operators and
nonlinear activation functions, σ, shown in the inset labelled as ‘Fourier Layer F’. Eventually, the neural network P2 projects back
the updates, producing the output shown on the right panels, which describe the time evolution of the system. In the inset, T1

represents a linear transform, T2 a local linear transform, σ a nonlinear activation function. F and F−1 stand for Fourier
transform and inverse Fourier transform, respectively.

They employ the FNO architecture which applies a fast Fourier transform (FFT) to the data and applies its
fully connected layers in Fourier space before performing an inverse FFT back to real space [38]. Moreover,
this architecture has demonstrated the ability to perform zero-shot super-resolution, predicting on higher
resolution data having only seen low resolution data [33, 38]. Figure 1 illustrates the FNO architecture that
we use in this study.

PINOs improve upon the FNO architecture by adding physics information such as PDEs, ICs, BCs, and
other conservation laws. By including the violation of such laws into the loss function, the network can learn
these laws in addition to the data. Rather than using automatic differentiation, these networks use Fourier
derivatives to compute the derivatives for the PDE constraints as automatic differentiation is very memory
intensive for this type of architecture. This physics knowledge enables the network to learn operators faster
and with less training data [39].

3. Methods

Here we describe the approach we followed to design, train, validate and test our PINOs, and then how we
quantified their accuracy by comparing our predictions with actual numerical solutions of PDEs we consider
in this study.

3.1. Initial data
The first step in this process was to generate initial data that matches the BCs of the problem. This was done
using the Gaussian random fields method in a similar fashion to [27] where the kernel was transformed into
Fourier space to match our periodic BCs. We employed a general Matern kernel, but discovered that the
PINOs performed better when the smoothness parameter was set to infinity. In this limit, this Matern kernel

becomes the radial basis function kernel as used in [34] defined as kl (x1,x2) = exp
(
−∥x1 − x2∥2 /2l2

)
,

where l is the length scale of typical spatial deviations in the data. For this work, we set l= 0.1 for all cases to
provide features at our desired spatial scale except when explicitly stated otherwise. A number of these
random fields were produced for each of the test problems described section 4.

During this work, we found that the magnitude of the training data affected the results of the training
even in linear problems. In particular, the models seem to have difficulty with higher magnitude initial data,
especially when the data had a magnitude greater than 1. We found that by reducing the magnitude of the
initial data, we could improve our results. We believe this is attributed to the highly nonlinear nature of the
neural network model. Other neural network models also experience similar effects and therefore normalize

3



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

their data to improve performance. Thus, we were careful in selecting the magnitude of our input fields
during this study.

3.2. BCs
For our BCs, we used periodic BCs in all cases. This BC is good for problems with significant symmetry over
long length scales or for cases where the boundary is sufficiently far from the region of interest. We are
particularly focused on the latter case where the BC does not significantly impact the problem. Moreover, the
neural network architecture implements periodic BCs by default via FFTs. This periodicity of a certain
dimension can be removed by zero padding for said dimension before feeding it to the neural network. We
employed this padding in the time dimension with a length of lpad = 5 for all cases except the 1D wave
equation, which is periodic in time for a time interval of t= 1.

Although we do not do so in this work, one could also use this technique for PDEs with non-periodic
BCs by zero padding the spatial dimensions of the data. We could then add an additional loss term for the BC
to the loss in equation (2) to describe our desired BC. We describe how to model similar terms in more detail
in section 3.4.

3.3. Training data generation
To generate training data, we took the random IC fields that we had previously generated and evolved them
in space and time. Specifically, we evolve each of these equations in time with RK4 time stepping starting at
t= 0 until t= 1 with the timestep δt varying depending on the problem. To compute spatial derivatives, we
employed a finite difference method with fourth order central difference for most cases. The lone exception
was the inviscid Burgers equation in 2D which required a shock capturing method. Therefore, we employed a
finite volume method (FVM) with local Lax–Friedrichs fluxes and MP5 reconstruction.

3.4. Training approach
We set up the problem as follows. We are given some space and time coordinates as well as the ICs at those
coordinates. Our objective is to compute the solution at each given space and time coordinate from the initial
data. To train the network to reproduce the simulated results, we employ multiple losses to ensure the
network properly reproduces the correct loss. These losses are the data loss Ldata, the physics loss Lphys, and
the IC loss LIC. We do not include a loss term for the BC here because the FNO architecture of the PINO
assures the desired periodic BCs as long as those dimensions are not padded.

Ldata attempts to fit the model predictions directly to the training data. This loss is computed via the
relative mean squared error (MSE) between the training data and the network outputs. This relative MSE is
computed by dividing the MSE of the predictions by the norm of the true values. For cases with multiple
equations where the outputs vary in magnitude such as the linear and nonlinear shallow water equations,
care must be taken to ensure that each of those outputs contributes equally to Ldata. Therefore, we compute
the relative MSE for each of the output fields separately before combining them together.

Lphys ensures that the PINO predictions obey known physical laws such as PDEs or more general
conservation laws such as conservation of mass, energy, or momentum. We define the loss as the MSE
between the violation of the physical law and the value of said law if it was perfectly satisfied which is 0 in
most cases. Again, one must be careful in cases like the linear and nonlinear shallow water equations with
multiple physical laws whose violations differ significantly in their magnitude. In such cases, compute the
physical violations separately and multiply each term by some weight before combining them and computing
the MSE of the combined term to obtain Lphys.

LIC allows the PINO to learn how the input IC given to the network is the value of the output at that
point at t= 0. Moreover, by minimizing LIC, Lphys more easily converges to the correct solution for cases
where the physical law is a PDE. We defined LIC as the relative MSE between the PINO prediction at t= 0
and the IC fed into the network. There were no cases where the ICs differed significantly in magnitude for
the PDEs since for the linear and nonlinear shallow water equations, the velocity fields were taken to be zero
at t= 0 and were not fed into the initial data.

To combine these terms into the total loss Ltot, we perform a weighted sum defined as

Ltotal = wdataLdata +wphysLphys +wICLIC , (2)

where wdata is the data weight, wphys is the physics weight, and wIC is the IC weight. We varied these values
between different cases and even during the training. Typically, we would set wdata to be 5 or 10, wphys to be 1
or 2, and wIC to be 5 or 10.

We emphasize that we select the weights in the loss function through a process of trial and error rather
than a sophisticated hyperparameter optimization process. This is typically the case with PINNs as well. If we

4



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

take some limits, we can understand why this is the case. If wphys is very high, the PINO will try to minimize
Lphys at the cost of the other parameters. One solution that satisfies the most PDEs is if the output field is
zero for all space and time coordinates. Therefore, we add the IC loss LIC to ensure that Lphys evolves the
correct initial data. However, if LIC is too large, the output field is correct at t= 0, but it does not evolve with
time. Thus, we used a process of trial and error to determine the correct weights.

For the training itself, we used the PyTorch framework [40]. We employed an Adam optimizer with
β1 = 0.9, β2 = 0.999 with an initial learning rate of 0.001. To fine tune the latter training steps, we employed
a multistep scheduler to reduce the learning rate at several intervals throughout the training with a gamma
value of 0.5. The specific number of epochs and the epoch decay milestones vary between the different test
cases. A common setup that was used from several of the 2D cases was to train for 150 epochs and put the
scheduler milestones at [25, 50, 75, 100, 125, 150] epochs. To further improve the performance, we would
use the checkpoints after 150 epochs of training and retrain again after for this same duration. In between
restarting from these checkpoints, we would sometimes modify the weights of the various training losses if
we observed some losses were lagging behind the others.

3.5. Model architecture
As noted in 2.3, the model uses the FNO architecture that is shown in figure 1. We used a Gaussian error
linear units for our nonlinearity for all cases [41]. We note that for physics informed deep learning, we
require the nonlinear activation function to have a non-zero second derivative, ruling some commonly used
activation functions such as the rectified linear unit [30].

The FNO architecture can be described by the widths, modes, and number of layers. The widths and
modes are given as arrays representing the width and modes for each entry. The size of the array gives the
number of layers and each entry corresponds to a different layer. We used four layers in all cases. For the 1D
cases, we used the width= [16,24,24,32] and modes= [15,12,9,9]. For the 2D cases, we used
width= [64,64,64,64] and modes= [8,8,8,8].

In addition, the network ends with a fully connected layer. We selected a width of 128 for the fully
connected layer for all cases.

3.6. Performance quantification
To quantify the performance, we ran PINO on the test dataset, then calculated the MSE of their predictions
with the test data and the MSE of the physics loss that accompanied violations of physical laws. The test
dataset is composed of approximately 10% of the simulations produced from the random initial data that
was separated from the rest of the data to ensure that the PINO did not train on it.

4. Test problems

We use PINOs to learn nine different PDEs. We consider the wave equation in 1D and 2D to demonstrate
that our methods produce accurate and reliable results. We also present results for the 1D Burgers equation,
which was used in [27] to quantify the performance of PINOs to learn PDEs. We then put our methods at
work to solve a variety of PDEs with different levels of complexity.

Specifically, many past works including [27, 33, 36–38] investigating using nonlinear neural operators
study only three cases, the 1D Burgers equation, 2D Darcy Flow, and the 2D Navier Stokes equations. While
these cases provide a good way to compare neural operators to each other, they limited the applicability of
neural operators to other problems. Moreover, the aforementioned cases fail to include various physical and
numerical phenomena such as shocks, coupled PDEs, and non-constant coefficients. Therefore, we chose a
wide array of linear and nonlinear PDEs to evaluate the PINO models and isolate the places where they may
have difficulty.

4.1. Wave equation 1D
Our first test was the wave equation in 1D with periodic BCs. This is a computationally simple PDE that is
second order in time and models a variety of different physics phenomena. The equation for the evolved field
u(x, t) takes the form

utt + c2uxx = 0,

u(x,0) = u0 (x) ,

x ∈ [0,1) , t ∈ [0,1] , (3)

where c= 1 is the speed of the wave.

5



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

4.2. Wave equation 2D
We extend the wave equation in 2D with periodic BCs to explore the requirements for adding the additional
spatial dimension. The equation for the evolved field u(x,y, t) is given by

utt + c2
(
uxx + uyy

)
= 0

u(x,y,0) = u0 (x,y) ,

x,y ∈ [0,1) , t ∈ [0,1] , (4)

where as before the speed of the wave is set to c= 1.

4.3. Wave equation 2D non-constant coefficients
By adding a spatially variable wave speed, we study the performance of PINOs in problems with
non-constant coefficients. This variable wave speed c(x,y) was incorporated into the PINO by treating it as
another randomly generated input field. To produce smoother training data, we set the spatial scale l= 0.5
parameter for the wave speed input field c(x,y), though we still used l= 0.1 for the initial data. The equation
for the evolved field u(x,y, t) is now given by

utt + c(x,y)2
(
uxx + uyy

)
= 0

u(x,y,0) = u0 (x,y) ,

x,y ∈ [0,1) , t ∈ [0,1] . (5)

4.4. Burgers equation 1D
The 1D Burgers equation with periodic BCs serves as a nonlinear test case with for a variety of numerical
methods. This allowed us to verify that our PINOs can learn and reconstruct nonlinear phenomena. The
equation for the field u(x,y, t) is given in conservative form by

ut + ∂x
(
u2/2

)
= νuxx,

u(x,0) = u0(x) ,

x ∈ [0,1), t ∈ [0,1] , (6)

where the viscosity ν= 0.01.

4.5. Burgers equation 2D scalar
To verify our model can handle nonlinear phenomena in 2D, we extend the Burgers equation into 2D by
assuming the field u(x,y, t) is a scalar. The equations take the form

ut + ∂x
(
u2/2

)
+ ∂y

(
u2/2

)
= ν

(
uxx + uyy

)
,

u(x,y,0) = u0(x,y) ,

x,y ∈ [0,1), t ∈ [0,1] , (7)

where the viscosity ν= 0.01.

4.6. Burgers equation 2D inviscid
We also looked at cases involving the inviscid Burgers equation in 2D in which we set the viscosity ν= 0. This
setup is known to produce shocks that can result in numerical instabilities if not handled correctly. We used a
FVM to generate this data to ensure stability in the presence of shocks. In turn, this allowed us to investigate
the network’s performance when processing shocks. The equations are given by

ut + ∂x
(
u2/2

)
+ ∂y

(
u2/2

)
= 0 ,

x,y ∈ [0,1), t ∈ [0,1] ,

u(x,y,0) = u0(x,y). (8)

We observed that the presence of the shock prevented our Fourier derivative method from producing
accurate residuals when we included the full equation in our physics loss term. Instead, for our physics loss,
we used the conserved quantity,

ˆ
Ω

u(x,y, t) dx dy=

ˆ
Ω

u(x,y,0) dx dy= C , (9)

where C is a constant and Ω is the domain. In other words, we ensured that the total u at every time instance
is equal to the total u at t= 0.

6



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

4.7. Burgers equation 2D vector
We then looked at a vectorized form of the 2D Burgers equation with periodic BCs. This allowed us to test
how well the model handles the coupled fields u(x,y, t) and v(x,y, t) that parameterize the system. The
equations take the form

ut + uux + vuy = ν
(
uxx + uyy

)
,

vt + uvx + vvy = ν
(
vxx + vyy

)
,

u(x,y,0) = u0(x,y), v(x,y,0) = v0(x,y),

x,y ∈ [0,1), t ∈ [0,1] (10)

where the viscosity ν= 0.01. We note that this system of equations does not have a conservative form as there
is not a continuity equation in this system.

Although coupled equations might seem like a trivial case, there are actually a number of complexities
that arise when changing the number of fields. First, having multiple inputs and outputs results in an
expanded parameter space for the PINO. Thus, one would expect the network to require a larger volume of
training data to produce accurate results. Moreover, PINOs must solve multiple equations simultaneously in
the coupled case. In turn, the models must not only solve for single fields, but also compute the contribution
of those fields on the other fields. Therefore, it is important to understand how PINOs can resolve coupled
fields in this relatively simple 2D vectorized Burgers equation.

4.8. Linear shallow water equations 2D
To examine the properties of PINOs with three coupled equations, we examined the ability of the networks
to reproduce the linear shallow water equations with periodic BCs. We assumed that the height of the
perturbed surface h(x,y, t) is initially perturbed, but the initial velocity fields u(x,y, t) and v(x,y, t) are
initially zero. These equations can be expressed as

∂h

∂t
+H

(
∂u

∂x
+

∂v

∂y

)
= 0 , (11)

∂u

∂t
− f v=−g

∂h

∂x
, (12)

∂v

∂t
+ fu=−g

∂h

∂y
, (13)

with h(x,y,0) = h0(x,y), u(x,y,0) = 0, v(x,y,0) = 0, x,y ∈ [0,1), t ∈ [0,1], where the gravitational constant
g= 1, the mean fluid height H= 100, and we considered two cases for the Coriolis coefficient f = {0,1}.

The challenge in this case is that we have three coupled fields with one of them, the perturbed surface
height h having a very different physical meaning than the others. Moreover, h is typically of much larger
magnitude than either of the velocity fields. By simplifying to a linear problem, we assess the ability of PINOs
to reproduce the results of magnitude varying fields without complicated nonlinear terms. We note that
coupled equations with terms of varying magnitude are known to be difficult for traditional PINNs as one
needs to carefully weight and normalize the equations.

4.9. Nonlinear shallow water equations 2D
Finally, we examined the network performance on the nonlinear shallow water equations. We assumed a
similar setup as in the linear case where we assumed the total fluid column height η(x,y, t), was given by a
mean value of 1 plus some initial perturbation. We again assumed the initial velocity fields u(x,y, t) and
v(x,y, t) were zero. These equations are given by

∂(η)

∂t
+

∂(ηu)

∂x
+

∂(ηv)

∂y
= 0 , (14)

∂(ηu)

∂t
+

∂

∂x

(
ηu2 +

1

2
gη2

)
+

∂(ηuv)

∂y
= ν

(
uxx + uyy

)
, (15)

∂(ηv)

∂t
+

∂(ηuv)

∂x
+

∂

∂y

(
ηv2 +

1

2
gη2

)
= ν

(
vxx + vyy

)
, (16)

with η(x,y,0) = η0(x,y), u(x,y,0) = 0, v(x,y,0) = 0, x,y ∈ [0,1), t ∈ [0,1], where the gravitational
coefficient g= 1 and the viscosity coefficient ν= 0.002 to prevent the formation of shocks.

7



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 2. The training loss curves for the first 150 epochs of training for the nonlinear shallow water equations. Here we compare
the different losses from the data, PDE, and ICs as well as their weighted total training loss.

Table 1. Summary of PINO results The first column describes the modeled equation. The second and third columns describe the spatial
and temporal resolution, respectively. The fifth and sixth columns display the number of training and testing samples used. The final
column provides the relative mean squared error (MSE) of our physics informed neural operators on the test set. To showcase the
enhanced performance of PINOs to solve these equations, we also present FNO results for five different equations.

Model
Spatial
resolution

Time
steps

Training
samples

Testing
samples

Relative
MSE

Wave equation 1D 128 101 900 100 1.22× 10−03

Wave equation 2D 128× 128 101 45 25 6.60×10−03

Wave equation 2D non-constant coefficients 128× 128 101 175 25 4.86×10−02

Burgers equation 1D 128 101 90 10 1.25× 10−03

Burgers equation 1D FNO 128 101 90 10 3.86×10−03

Burgers equation 2D scalar 128× 128 101 45 25 3.56×10−03

Burgers equation 2D scalar FNO 128× 128 101 45 25 6.29×10−03

Burgers equation 2D inviscid 128× 128 101 90 10 3.56×10−02

Burgers equation 2D vector 128× 128 101 475 25 8.49×10−03

Linear shallow water equations 2D f = 0 128× 128 101 45 25 6.86×10−03

Linear shallow water equations 2D f = 0 FNO 128× 128 101 45 25 8.13×10−03

Linear shallow water equations 2D f = 1 128× 128 101 45 25 6.28×10−03

Linear shallow water equations 2D f = 1 FNO 128× 128 101 45 25 6.52×10−03

Nonlinear shallow water equations 2D 128× 128 101 45 25 1.50×10−02

Nonlinear shallow water equations 2D FNO 128× 128 101 45 25 4.40×10−02

This case combines the difficulty of having three coupled fields with complicated nonlinear governing
equations. This case provides a very useful and physically interesting benchmark for PINOs as these
equations model tsunamis. Moreover, these equations take a similar form to the equations of compressible
flow, but without an additional equation for energy that is dependent on the equation of state.

All these different PDEs serve the purpose of establishing the accuracy and reliability of our PINOs, and
then explore their application for more interesting scenarios for the 2D Burgers equation, and 2D linear and
nonlinear shallow waters equations, which involve several coupled equations.

5. Results

We now quantify the ability of our PINOs to learn the physics described by the PDEs described above. In
figures 3–12 we present qualitative and quantitative results that illustrate the performance of our PINOs. We
use two types of quantitative metrics, namely, absolute error (shown in each figure) and MSE (summarized
in table 1) between PINO predictions and ground truth simulations. While the figures below provide
snapshots of the performance of our PINOs at a given time, t, we also provide interactive visualizations of
these results at this website. We also provide a tutorial to use our PINOs and reproduce our results in the
Data and Learning Hub for Science [42, 43].

Before discussing specific results, we also present the training curves of the nonlinear shallow water
equations over its first 150 epochs in figure 2.

In terms of benchmarks, and assuming a single NVIDIA A100 GPU in the ThetaGPU supercomputer at
the Argonne Leadership Supercomputing Facility (ThetaGPU is an NVIDIA DGX A100-based system. The
DGX A100 comprises eight NVIDIA A100 GPUs that provide a total of 320 GB of memory for training AI
datasets, as well as high-speed NVIDIA Mellanox ConnectX-6 network interfaces), we found that:

8

https://shawnrosofsky.github.io/PINO_Applications/
https://www.dlhub.org


Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 3. PINO for 1D wave equation test set initial conditions (left column) fed into our neural networks. The center left column
displays the ground truth value of utrue(x, t) as produced by our simulations. The center right column shows the value of upred(x, t)
predicted by our PINO. The right column illustrates the error between the PINO predictions and the ground truth, upred − utrue.

Figure 4. PINO for 2D wave equation. As figure 3, but now in 2D. The left column represents the test set initial conditions that we
feed into our PINOs. We evolved the systems until t= 1 and present ground truth solutions (center left) and PINO predictions
(center right). Even after evolving these simulations until the end of the time domain under consideration, our PINOs predict
with excellent accuracy the evolution of the system, as shown in the right column which shown at t= 1, upred − utrue.

• training the 1D Burgers takes 55 s (500 epochs) and a single run takes 0.1 s
• training the 2D linear shallow water equations takes 26 min (150 epochs) and a single run takes 1.79 s
• training the 2D nonlinear shallow water equations takes 26 min (150 epochs) and a single run
takes 2.45 s.

5.1. Wave equation 1D results
Figure 3 shows that our PINO for the 1D wave equation learns and describes the physics of this PDE with
remarkable accuracy. These results serve the purpose of validating our methods with a simple PDE. We
found that the MSE in this case was 1.22× 10−3 on the test dataset. We note that for this case, we
experimented with using a very high resolution of 4096 grid points to generate the training data, but
downsampled by a factor of 32 to a final resolution of 128 grid points that were fed into the network. This
simulates having available less data to reproduce a result than was required to compute it.

5.2. Wave equation 2D results
Next we consider the 2D wave equation. Figure 4 summarizes our results. As in the 1D scenario, our PINOs
have learned the physics of the 2D wave equations with excellent accuracy. Specifically, we found the MSE on
the test dataset for this case to be 6.70× 10−3.

9



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 5. PINO for 2D non-constant coefficients wave equation Similar to figure 4, but here we have a non-constant wave speed.
The top row depicts the input fields into the ANN, which are the initial condition u, the wave speed coefficient c, and the wave
speed coefficient squared c2 from left to right respectively. As in the constant coefficient case, we evolved the systems until t= 1.
On the bottom row, we present the values at t= 1 for the ground truth solutions (left), the PINO predictions (center), the error
upred − utrue.

Figure 6. PINO for 1D Burgers equation. The left column shows the test set initial conditions fed into our PINOs. The center left
column shows the ground truth value, utrue(x, t), produced by our simulations. The center right column presents the predicted
values upred(x, t) by our PINOs. The right column shows the discrepancy between PINO and ground truth predictions,
upred − utrue.

5.3. Wave equation 2D non-constant coefficients results
Next we consider the variation of the 2D wave equation with non-constant coefficients. Figure 5 illustrates
the results for this problem. As this scenario is considerably more difficult than the uniform coefficient wave
equation, the PINO performance is slightly worse, with an MSE of on the test dataset of 0.0486.

5.4. Burgers equation 1D results
We now turn our attention to the Burgers equation, and begin this analysis with a simple and illustrative
case, namely the 1D Burgers equation, shown in figure 6. These results show that our PINOs have accurately
learned the physics described by this PDE with an excellent level of accuracy. Quantitatively, the MSE on the
test dataset was 1.25× 10−3. These results furnish evidence that our methods can reproduce results
published elsewhere in the literature [27].

10



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 7. PINO for 2D scalar Burgers equation. Displays the results of the PINO model for this equation. The left column shows a
sample of test set initial conditions fed into our models. The center left column displays the ground truth value, utrue(x,y), of our
simulations once they have evolved up to t= 1. The center right column shows model predictions for this PDE at t= 1. We have
selected this time to quantify the accuracy of our model once the system has evolved sufficient time to accumulate errors. The
right column illustrates the discrepancy between model predictions and the ground truth, upred − utrue, at t= 1.

Figure 8. PINO for 2D inviscid Burgers equation. As figure 7 but now in the inviscid case given by equation (8).

5.5. Burgers equation 2D scalar results
This PDE is given by equation (7). As shown in figure 7 our PINOs can learn and describe the physics of this
PDE accurately. Note that we present results for this PDE once the system has been evolved throughout the
time domain under consideration, i.e. t ∈ [0,1]. By presenting results at t= 1 we gain a good understanding
of the actual performance of our PINOs once they have evolved in time and accumulated numerical errors
that may depart from ground truth values. For this case, we compared the results to a FNO which was
trained with the same architecture, but without a physics informed loss component. In figure 7 we present
the results of the PINO and the FNO for the same IC. We found that the MSE for the full test dataset was
3.56× 10−3 for the PINO and was 6.29× 10−3 for the FNO.

5.6. Burgers equation 2D inviscid results
This PDE is given by equation (8). As we mentioned before, shocks are a common occurrence for this PDEs,
and may lead to numerical instabilities if we do not use shock capturing schemes. We have quantified the
ability of our PINOs to handle shocks. We found the PINO to have an MSE of 0.0356 on the test dataset. In
figure 8 we notice that our PINOs are able to describe the physics of this PDE with excellent accuracy.
However, we observe a significant discrepancy between ground truth and AI predictions right at the regions
where shocks occur. These findings indicate that further work is needed to better handle PDEs that involve
shocks. This is a specific area of work that we will pursue in the future.

Specifically, such work would look at improvements to the way the model and loss function handle
discontinuities in the data. For example, Fourier transforms, which are employed in the neural network and
to represent derivatives in the loss function, are known to be highly sensitive to discontinuities. Thus,
potential improvements may encompass the use of Galerkin neural networks [44] to better handle
discontinuities, and loss functions that incorporate particle number conservation. These improvements
should be considered in future work.

11



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 9. PINO for 2D vector Burgers equation. The top and bottom rows show the u and v fields, respectively. The left column
shows test set initial conditions for (u, v). The center left column shows ground truth values for the (u, v) fields once this PDE has
been evolved up to t= 1. The center right column shows PINO results for the (u, v) fields at t= 1. The right column show the
discrepancy between PINO and ground truth values at t= 1.

5.7. Burgers equation 2D vector results
This is the most complex PDE of the Burgers family we consider in this study, see equation (10). The novel
feature of this PDE is that we now need to treat two different fields (u, v). In figure 9 we present a sample
result from the test dataset, which demonstrate that our PINOs have learned the physics of this PDE and
describe it with remarkable precision even after we have evolved this system until the end of the time domain
under consideration. Quantitatively, we achieved an MSE of 8.49× 10−3 on the test dataset.

These results complete our analysis for a variety of PDEs that involve the Burgers equation, and indicate
that for various levels of complexity and ICs our PINOs are capable of learning and describing the physics of
these PDEs with excellent accuracy. We have also realized that we need to further develop these methods for
PDEs that involve shocks. We are keenly interested in this particular case, and will explore in future work.

5.8. Linear shallow water equations 2D results
Another original result in this study is the use of PINOs to learn the physics of three coupled PDE equations.
The first case under consideration is the 2D linear shallow water equation given by equations (11)–(13). In
this case we now consider the height of the perturbed surface, h, and the fields (u, v). Figures 10 and 11
present results assuming two Coriolis coefficient f = {0,1}, respectively. The discrepancy between PINO
predictions and ground truth values in the figures is very small, which furnishes strong evidence for the
adequacy of PINOs to learn the physics of this PDE Highlights of these results include:

• f = 0 case: Using 45 training samples and 25 testing samples, the MSE on the test dataset was 1.25× 10−3.
• f = 1 case:With the same number of samples as the previous case, theMSE on the test dataset was calculated
to be 6.28× 10−3.

These results provide a glimpse of the capabilities of PINOs to learn the physics of these linear, coupled
PDEs. We have extensively tested these equations and found that they are robust to a broad range of initial
data. These results provided enough motivation to explore the use of PINOs for a more challenging set of
coupled PDEs, namely, the 2D nonlinear shallow water equations that we discuss next.

5.9. Nonlinear shallow water equations 2D results
The final original contribution of this study is the use of PINOs to learn the physics of the 2D nonlinear
shallow water equation, given by equations (14)–(16). Even though this PDE is significantly more complex
than its linear counterpart, we notice in figure 12 that our PINOs learn the physics described by the fields
(η,u,v) with remarkable accuracy. We found the MSE for the test dataset of this case to be 0.0150

Finally, we provide an additional metric to quantify the overall performance of all the PDEs we have used
in this study in table 1. These results indicate that our PINOs provide state-of-the-art results to model simple
PDEs (1D wave equation and 1D Burgers equations), and excellent performance for a variety of PDEs that
are solved for the first time in the literature with PINOs.

12



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 10. PINO for 2D linear shallow water equation. Assuming a system with a Coriolis coefficient f = 0, we show the h, u, and
v fields in the top, middle, and bottom rows, respectively. The left column shows the initial condition provided to the network.
The center left column displays the ground truth value at t= 1 as produced by the simulation. The center right column shows the
value of prediction at t= 1 predicted by our PINO. The right column indicates the discrepancy between PINO predictions and
the ground truth at t= 1.

Figure 11. PINO for 2D linear shallow water equation. As figure 10 but now with a Coriolis coefficient f = 1.

13



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 12. PINO for 2D nonlinear shallow water equation The (η,u,v) fields are shown in the top, middle, and bottom rows,
respectively. The left column presents the test set initial condition that is fed into our network. The center left column displays the
ground truth value at t= 1 as produced by our simulations. The center right column shows the value of prediction at t= 1
predicted by the PINO. The right column illustrates the discrepancy between the PINO predictions and the ground truth at t= 1.

6. Conclusions

We have introduced an end-to-end framework to learn PDEs that range from simple equations that serve the
purpose of testing our methods (1D wave equation and 1D Burgers equation) to increasingly more complex
equations (2D scalar, 2D inviscid and 2D vector Burgers equation), and coupled PDEs that are solved with
PINOs for the first time in the literature (2D linear and nonlinear shallow waters equations). The methods
we introduce in this study provide the flexibility to produce initial data to test the robustness and
applicability of AI surrogates for a broad range of physically motivated scenarios. We provide scientific
visualizations of our results through an interactive website. We also release our PINOs and scientific software
through the Data and Learning Hub for Science so that AI practitioners may download, use and further
develop our neural networks. In addition to this Data and Learning Hub for Science implementation, we
release the source code used in this paper.

Future work may focus on the extension of these PINOs to high-dimensional PDEs that are relevant for
the modeling of complex phenomena that demand subgrid scale precision, and which typically lead to
computationally expensive simulations. We will also focus on developing methods that handle shocks
effectively, since these phenomena are common in fluid dynamics and relativistic astrophysics, to mention a
few. We will also continue our research program combining scientific visualization and accelerated
computing to gain insights about what PINOs learn from data, and how this information may be used to
enhance their performance when applied to experimental datasets [45–47].

It is our expectation that our AI surrogates may be used to replace computationally demanding
numerical methods to learn PDEs in scientific software used to model multi-scale and multi-physics
phenomena—e.g. numerical relativity simulations of gravitational wave sources, weather forecasting,
etc—and eventually provide data-driven and physics informed solutions that more accurately describe and
identify novel features and patterns in experimental data.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/shawnrosofsky/PINO_Applications.

14

https://shawnrosofsky.github.io/PINO_Applications/
https://www.dlhub.org
https://github.com/shawnrosofsky/PINO_Applications/tree/main
https://github.com/shawnrosofsky/PINO_Applications
https://github.com/shawnrosofsky/PINO_Applications


Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Acknowledgments

This material is based upon work supported by Laboratory Directed Research and Development (LDRD)
funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U S
Department of Energy under Contract No. DE-AC02-06CH11357. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357. S R and E A H gratefully acknowledge National Science Foundation Award
OAC-1931561. This work used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation Grant Number ACI-1548562. This work used the
Extreme Science and Engineering Discovery Environment (XSEDE) Bridges-2 at the Pittsburgh
Supercomputing Center through allocation TG-PHY160053. This research used the Delta advanced
computing and data resource which is supported by the National Science Foundation (Award OAC-2005572)
and the State of Illinois. Delta is a joint effort of the University of Illinois Urbana-Champaign and its
National Center for Supercomputing Applications.

15



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 13. FNO for 1D Burgers equation. The left column shows the test set initial conditions fed into our FNO. The center left
column shows the ground truth value, utrue(x, t), produced by our simulations. The center right column presents the predicted
values upred(x, t) by our FNO. The right column shows the discrepancy between FNO and ground truth predictions, upred − utrue.

Figure 14. FNO for 2D scalar Burgers equation The left column shows a sample of test set initial conditions fed into our FNO
model. The center left column displays the ground truth value, utrue(x,y), of our simulations once they have evolved up to t= 1.
The center right column shows model predictions for this PDE at t= 1. We have selected this time to quantify the accuracy of our
model once the system has evolved sufficient time to accumulate errors. The right column illustrates the discrepancy between
model predictions and the ground truth, upred − utrue, at t= 1.

Appendix. Fourier neural operators

Here we present results for the solution of three different types of PDEs using Fourier neural operators
(FNOs). Specifically, we present results for the 1D Burgers equation in figure 13; the 2D scalar Burgers
equation in figure 14; and the 2D nonlinear shallow water equation in figure 15. These results indicate that
including physics principles in the optimization of AI surrogates leads to enhanced performance. We also
refer the reader to table 1, where we show additional comparisons between PINOs and FNOs for other PDEs
in terms of relative MSE.

16



Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

Figure 15. FNO for 2D nonlinear shallow water equation The (η,u,v) fields are shown in the top, middle, and bottom rows,
respectively. The left column presents the test set initial condition that is fed into our network. The center left column displays the
ground truth value at t= 1 as produced by our simulations. The center right column shows the value of prediction at t= 1
predicted by the FNO. The right column illustrates the discrepancy between the FNO predictions and the ground truth at t= 1.

ORCID iDs

Shawn G Rosofsky https://orcid.org/0000-0002-3319-576X
E A Huerta https://orcid.org/0000-0002-9682-3604

References

[1] Geroch R P 1996 46th Scottish Universities Summer School in Physics: General Relativity
[2] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes 3rd Edition: The Art of Scientific Computing 3rd

edn (Cambridge: Cambridge University Press)
[3] Radice D 2020 Symmetry 12 1249
[4] Radice D, Bernuzzi S, Perego A and Haas R 2021 arXiv:2111.14858 [astro-ph.HE]
[5] Foucart F 2020 Front. Astron. Space Sci. 7 46
[6] Schalkwijk J, Jonker H J J, Siebesma A P and Meijgaard E V 2015 Bull. Am. Meteorol. Soc. 96 715
[7] Erba A, Baima J, Bush I, Orlando R and Dovesi R 2017 J. Chem. Theory Comput. 13 5019
[8] Asch M et al 2018 Int. J. High Perform. Comput. Appl. 32 435
[9] Gropp W, Banerjee S and Foster I 2020 arXiv:2012.09303 [cs.CY]
[10] Huerta E A 2020 J. Big Data 7 88
[11] Taher M 2009 2009 4th Int. Design and Test Workshop (IDT) pp 1–6
[12] Rodrigues C I, Hardy D J, Stone J E, Schulten K and HwuW-MW 2008 Proc. 5th Conf. on Computing Frontiers CF ‘08 (Association

for Computing Machinery (New York)) pp 273–82
[13] Wysocki D, O’Shaughnessy R, Lange J and Fang Y-L L 2019 Phys. Rev. D 99 084026
[14] Graff P, Feroz F, Hobson M P and Lasenby A 2012Mon. Not. R. Astron. Soc. 421 169
[15] Rosofsky S G and Huerta E A 2020 Phys. Rev. D 101 084024
[16] Huerta E A and Zhao Z 2020 Advances in machine and deep learning for modeling and real-time detection of multi-messenger

sources Handbook of Gravitational Wave Astronomy, ed C Bambi, S Katsanevas and K D Kokkotas (Singapore: Springer) pp 1–27
[17] Cuoco E et al 2021Mach. Learn. Sci. Technol. 2 011002
[18] Huerta E A et al 2021 Nat. Astron. 5 1062
[19] Huerta E A et al 2019 Nat. Rev. Phys. 1 600
[20] Khan A, Huerta E A and Zheng H 2022 Phys. Rev. D 105 024024
[21] Chaturvedi P, Khan A, Tian M, Huerta E A and Zheng H 2022 Front. Artif. Intell. 5 828672
[22] MacLeod B P et al 2020 Sci. Adv. 6 eaaz8867
[23] Wilkinson M et al 2016 Sci. Data 3 160018
[24] Park H, Zhu R, Huerta E A, Chaudhuri S, Tajkhorshid E and Cooper D 2022 arXiv:2212.11317 [cond-mat.mtrl-sci]
[25] Chen Y et al 2022 Sci. Data 9 31
[26] Ravi N, Chaturvedi P, Huerta E A, Liu Z, Chard R, Scourtas A, Schmidt K J, Chard K, Blaiszik B and Foster I 2022 Sci. Data 9 657
[27] Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzadenesheli K and Anandkumar A 2021 arXiv:2111.03794 [cs.LG]

17

https://orcid.org/0000-0002-3319-576X
https://orcid.org/0000-0002-3319-576X
https://orcid.org/0000-0002-9682-3604
https://orcid.org/0000-0002-9682-3604
https://doi.org/10.3390/sym12081249
https://doi.org/10.3390/sym12081249
https://arxiv.org/abs/2111.14858
https://doi.org/10.3389/fspas.2020.00046
https://doi.org/10.3389/fspas.2020.00046
https://doi.org/10.1175/BAMS-D-14-00114.1
https://doi.org/10.1175/BAMS-D-14-00114.1
https://doi.org/10.1021/acs.jctc.7b00687
https://doi.org/10.1021/acs.jctc.7b00687
https://doi.org/10.1177/1094342018778123
https://doi.org/10.1177/1094342018778123
https://arxiv.org/abs/2012.09303
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1103/PhysRevD.99.084026
https://doi.org/10.1103/PhysRevD.99.084026
https://doi.org/10.1111/j.1365-2966.2011.20288.x
https://doi.org/10.1111/j.1365-2966.2011.20288.x
https://doi.org/10.1103/PhysRevD.101.084024
https://doi.org/10.1103/PhysRevD.101.084024
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1038/s41550-021-01405-0
https://doi.org/10.1038/s41550-021-01405-0
https://doi.org/10.1038/s42254-019-0097-4
https://doi.org/10.1038/s42254-019-0097-4
https://doi.org/10.1103/PhysRevD.105.024024
https://doi.org/10.1103/PhysRevD.105.024024
https://doi.org/10.3389/frai.2022.828672
https://doi.org/10.3389/frai.2022.828672
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://arxiv.org/abs/2212.11317
https://doi.org/10.1038/s41597-021-01109-0
https://doi.org/10.1038/s41597-021-01109-0
https://doi.org/10.1038/s41597-022-01712-9
https://doi.org/10.1038/s41597-022-01712-9
https://arxiv.org/abs/2111.03794


Mach. Learn.: Sci. Technol. 4 (2023) 025022 S G Rosofsky et al

[28] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part i): data-driven solutions of nonlinear partial
differential equations (arXiv:1711.10561 [cs.AI])

[29] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part ii): data-driven discovery of nonlinear
partial differential equations (arXiv:1711.10566 [cs.AI])

[30] Raissi M, Perdikaris P and Karniadakis G 2019 J. Comput. Phys. 378 686
[31] Pang G, Lu L and Karniadakis G E 2019 SIAM J. Sci. Comput. 41 A2603
[32] Lu L, Meng X, Mao Z and Karniadakis G E 2021 SIAM Rev. 63 208
[33] Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A and Anandkumar A 2021 arXiv:2108.08481 [cs.LG]
[34] Lu L, Jin P, Pang G, Zhang Z and Karniadakis G E 2021 Nat. Mach. Intell. 3 218–29
[35] Wang S, Wang H and Perdikaris P 2021 Sci. Adv. 7 eabi8605
[36] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A and Anandkumar A 2020 Neural operator: graph kernel

network for partial differential equations (arXiv:2003.03485 [cs.LG])
[37] Li Z, Kovachki N B, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A M and Anandkumar A 2020 CoRR arXiv:abs/2006.09535
[38] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A and Anandkumar A 2020 Fourier neural operator for

parametric partial differential equations (arXiv:2010.08895 [cs.LG])
[39] Rosofsky S G and Huerta E A arXiv:2302.08332 [physics.comp-ph]
[40] Paszke A et al 2019 Advances in Neural Information Processing Systems vol 32
[41] Hendrycks D and Gimpel K 2016 Gaussian error linear units (gelus) (arXiv:1606.08415 [cs.LG])
[42] Chard R, Li Z, Chard K, Ward L, Babuji Y, Woodard A, Tuecke S, Blaiszik B, Franklin M J and Foster I 2019 2019 IEEE Int. Parallel

and Distributed Processing Symp. (IPDPS)
[43] Blaiszik B, Ward L, Schwarting M, Gaff J, Chard R, Pike D, Chard K and Foster I 2019MRS Commun. 9 1125
[44] Ainsworth M and Dong J 2021 SIAM J. Sci. Comput. 43 A2474
[45] Doshi-Velez F and Kim B 2017 arXiv:1702.08608 [stat.ML]
[46] Safarzadeh M, Khan A, Huerta E A and Wattenberg M 2022 arXiv:2202.07399 [gr-qc]
[47] Carvalho D V, Pereira E M and Cardoso J S 2019 Electronics 8 832

18

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10566
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/18M1229845
https://doi.org/10.1137/18M1229845
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://arxiv.org/abs/2108.08481
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2302.08332
https://arxiv.org/abs/1606.08415
https://doi.org/10.1557/mrc.2019.118
https://doi.org/10.1557/mrc.2019.118
https://doi.org/10.1137/20M1366587
https://doi.org/10.1137/20M1366587
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/2202.07399
https://doi.org/10.3390/electronics8080832
https://doi.org/10.3390/electronics8080832

	Applications of physics informed neural operators
	1. Introduction
	2. Modeling physics with artificial neural networks
	2.1. Physics informed neural networks (PINNs)
	2.2. Neural operators
	2.3. PINOs

	3. Methods
	3.1. Initial data
	3.2. BCs
	3.3. Training data generation
	3.4. Training approach
	3.5. Model architecture
	3.6. Performance quantification

	4. Test problems
	4.1. Wave equation 1D
	4.2. Wave equation 2D
	4.3. Wave equation 2D non-constant coefficients
	4.4. Burgers equation 1D
	4.5. Burgers equation 2D scalar
	4.6. Burgers equation 2D inviscid
	4.7. Burgers equation 2D vector
	4.8. Linear shallow water equations 2D
	4.9. Nonlinear shallow water equations 2D

	5. Results
	5.1. Wave equation 1D results
	5.2. Wave equation 2D results
	5.3. Wave equation 2D non-constant coefficients results
	5.4. Burgers equation 1D results
	5.5. Burgers equation 2D scalar results
	5.6. Burgers equation 2D inviscid results
	5.7. Burgers equation 2D vector results
	5.8. Linear shallow water equations 2D results
	5.9. Nonlinear shallow water equations 2D results

	6. Conclusions
	Appendix. Fourier neural operators
	References




