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Abstract. We describe kinetic simulations of transient problems in partially ionized weakly-
collisional plasma around spherical bodies absorbing or emitting charged particles. Numerical 
solutions of kinetic equations for electrons and ions in 1D2V phase space are coupled to an 
electrostatic solver using the Poisson equation or quasineutrality condition for small Debye 
lengths. The formation of particle groups and their contributions to electric current flow and 
screening of charged bodies by plasma are discussed for applications to Langmuir probes and 
solar wind. 

1. Introduction 
Problems associated with screening spherical bodies in plasmas (Langmuir probes, dust particles, 
satellites in the ionosphere, solar wind, etc.) are similar. In all these problems, one type of charged 
particle gets trapped near an electrically charged body by the electric fields, which are induced by the 
body and self-generated by the surrounding plasma. Due to plasma screening, the trapped particles 
modify the electric field profile around the body compared to the Coulomb profile (in a vacuum). Dust 
particles in plasma are charged negatively, and the trapped particles are positive ions. Sun is charged 
positively, and the trapped particles are electrons. In the case of Langmuir probes, both situations are 
possible. The floating potential of the probe corresponds to a negatively charged probe, ensuring net 
zero current to the surface and ion trapping around the probe.  
 
Thermo- and photo-electron emission often occurs from probes and dust particles. Sun emits electrons 
and ions, and their fluxes must be balanced in the dynamic quasi-steady state of ambient solar wind.  
Kinetic equations for collisionless non-magnetized plasma have striking similarities with those for 
magnetized solar wind plasma, especially for the magnetic field of a magnetic monopole. However, we 
note an essential difference between unmagnetized and magnetized spherical plasma. In the first case, 
trapped particles circle the sphere on closed orbits around the force center. Trapped particles bounce 
radially along the magnetic field lines in the second case.  
 
The kinetic theory of plasma around satellites [1] and the kinetic theory of ambient solar wind [2] have 
been developed. However, their implementation for practical simulations of probes under different 
conditions is still missing, and relations between the kinetic and commonly used MHD models for the 
solar wind are unclear. Effects of collisions on particle trapping and screening of charged objects in 
plasma remain a subject of active research [3,4]. Several recent papers have emphasized the importance 
of the electric fields in the solar wind for explaining the measured electron velocity distribution functions 
[5,6], which usually contain three electron groups: core, strahl (beam), and halo. The latest paper [7] 



 
 
 
 
 
 

explains that the halo could form from the strahl without scattering due to electron reflections by the 
ambipolar electric field.  
 
This paper describes a kinetic model of spherical plasma coupling grid-based kinetic solvers for 
electrons and ions in phase space with electrostatic solvers for the electric field. We use a Poisson and 
an iterative solver for the electric field based on quasineutrality conditions. The latter is crucial for the 
solar wind due to the tiny value of the Debye length close to the Sun compared to the spatial scale of 
interest. We illustrate the current capabilities of our model for applications to Langmuir probe and solar 
wind. We also introduce a quasi-diffusion kinetic model, which could be a part of a future hybrid code 
for more efficient treatment of different electron groups.  

2. Kinetic model of spherical plasmas 
Assuming spherical symmetry, we reduce the general 3D3V phase space to a 1D2V phase space, which 
consists of 1D physical space (the radial distance 𝑟𝑟) and 2D velocity space (the magnitude of velocity 
𝑣𝑣 and the cosine of the angle between the velocity and the radial direction 𝜇𝜇). The kinetic equation in 
the conservative form has the form [8]: 
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where 𝑌𝑌 = 𝑟𝑟2𝑣𝑣2𝑓𝑓, 𝑓𝑓 = 𝑓𝑓(𝑟𝑟, 𝑣𝑣, 𝜇𝜇) is the phase space density, 𝑞𝑞 and 𝑚𝑚 are the charge and mass of the 
given species, respectively, 𝐸𝐸 is the radial electric field, and 𝑆𝑆(𝑟𝑟, 𝑣𝑣, 𝜇𝜇) is a collision operator that can 
describe different types of collisions and wave-particle interactions [9]. The electrostatic potential 𝜙𝜙  or 
the potential energy 𝑈𝑈 = 𝑒𝑒𝑒𝑒

𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒
  normalized to electron thermal energy is usually found from the Poisson 

equation: 
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where, 𝑛𝑛𝑒𝑒 and 𝑛𝑛𝑖𝑖 are electron and ion density, 𝑛𝑛�𝑒𝑒 and 𝑛𝑛�𝑖𝑖 are the densities normalized to a typical density 
𝑛𝑛0. We normalize the kinetic equation with a typical length 𝑟𝑟0, typical velocity 𝑣𝑣0 (~ to the thermal 
speed 𝑣𝑣𝑡𝑡ℎ), and typical time scale 𝑡𝑡0, and use the Poisson equation for the normalization of the electric 
field 𝐸𝐸0 = 4𝜋𝜋𝜋𝜋𝑛𝑛0𝑟𝑟0, where the variables with a tilde are the normalized quantities.  
 
There are two challenges. The value of 𝜆̃𝜆𝐷𝐷2  becomes very small at 𝑟𝑟0"𝜆𝜆𝐷𝐷. This leads to severe inefficiency 
in calculating the electric field using the Poisson solver and requires another method for calculating the 
electric field. Another challenge is associated with the electron and ion mass disparity and the speed of 
electrons and ions. This disparity makes our explicit kinetic solvers very expensive during the transient 
process (when 𝑛𝑛�𝑒𝑒 ≠ 𝑛𝑛�𝑖𝑖) due to CFL limitations. This challenge can be resolved using an artificially 
smaller mass ratio, which does not substantially affect the steady solution [10]. The method is based on 
the fact that in steady-state collisionless electrostatic plasma, the solution with a reduced mass ratio can 
be scaled to the one for the actual mass ratio. It has been successfully used for speed-limited particle-in-
cell (SLPIC) simulations [10].  
 
We solve the kinetic equations for electrons and ions using the same mesh in phase space, which can be 
dynamically adapted as described in [8]. The Poisson solver uses separate mesh and the Thomas 
algorithm to calculate the self-consistent electric field based on the number density of electrons and ions 
obtained from the phase space density. Below, we describe an iterative method of calculating electric 
fields for problems with small Debye lengths. This coupled kinetic solver for charged particles and the 
electric field applies to many spherical plasma problems. Below, we demonstrate its current capabilities 
for simulations of Langmuir probes and solar wind. We also introduce reduced kinetic models for 
trapped particles. 



 
 
 
 
 
 

3. Langmuir Probes 
Simulations of spherical probes were conducted for  𝑇𝑇𝑖𝑖

𝑇𝑇𝑒𝑒
= 1 with different 𝑚𝑚𝑟𝑟 = 𝑚𝑚𝑖𝑖

𝑚𝑚𝑒𝑒
 , and 𝜆𝜆𝐷𝐷𝐷𝐷. Figure 1 

shows the results for 𝑚𝑚𝑟𝑟 = 4 for different 𝜆𝜆𝐷𝐷𝐷𝐷. The electric potential profile 𝜙𝜙�(𝑟̃𝑟) is calculated self-
consistently by the Poisson solver. The flux is reasonably consistent with the analytical predictions. The 
size of the space charge sheath is proportional to the 𝜆̃𝜆𝐷𝐷𝐷𝐷 value. When 𝜆̃𝜆𝐷𝐷𝐷𝐷 = 0.02, the potential shows 
fluctuations near the left boundary, which is unphysical and indicates problems with the Poisson solver.  
 

 
Figure 1 The profiles of density, the particle flux multiplied by 𝑟𝑟2, temperature, electron potential energy 
−𝜙𝜙�(𝑟̃𝑟)

𝜆𝜆�𝐷𝐷𝐷𝐷
2 , and electric field for the mass ratio 𝑚𝑚𝑟𝑟 = 4 and 𝜆̃𝜆𝐷𝐷𝐷𝐷 = 0.02, 0.05, 0.1,𝑎𝑎𝑎𝑎𝑎𝑎 0.2. The black (blue) 

solid line is for electron (ion) profiles. For the particle flux, the green (red) dashed line shows the 
analytical solution for electrons. 
 

 
 
Figure 2 The profiles of density, the particle flux multiplied by 𝑟𝑟2, temperature, electron potential energy 
−𝜙𝜙�(𝑟̃𝑟)

𝜆𝜆�𝐷𝐷𝐷𝐷
2 , and the electric field for fixed 𝜆̃𝜆𝐷𝐷𝐷𝐷 = 0.1 and mass ratio 𝑚𝑚𝑟𝑟 = 2, 4, 8 and 16. The black (blue) 

solid line is for electron (ion) profiles. For the particle flux, the green (red) dashed line shows the 
analytical solution for electrons (ions). 



 
 
 
 
 
 

Figure 2 shows the results with 𝜆̃𝜆𝐷𝐷𝐷𝐷 = 0.1 for different 𝑚𝑚𝑟𝑟. The calculated 𝜙𝜙
�𝐿𝐿
𝜆𝜆�𝐷𝐷𝐷𝐷
2  is different for each case. 

The larger 𝑚𝑚𝑟𝑟, the easier for the system to reach equilibrium. The flux is reasonably consistent with the 
analytical prediction for 𝑚𝑚𝑟𝑟 = 4, 8, 16. The location 𝑟̃𝑟𝑐𝑐 where the potential nearly reaches its asymptotic 
behavior increases with increasing 𝑚𝑚𝑟𝑟. This is consistent with the kinetic theory of solar wind predicting 
𝑟̃𝑟𝑐𝑐 ≈ (𝑚𝑚𝑖𝑖/𝑚𝑚𝑒𝑒)1/4 [11]. Most of the electrons at 𝑟𝑟 < 𝑟̃𝑟𝑐𝑐 are returning back to Sun, while the electrons at 
𝑟𝑟 > 𝑟̃𝑟𝑐𝑐 include escaping electrons and those trapped on both sides due to the electric and magnetic mirror 
forces [11]. The trapped electron trajectories are filled up in a steady state via collisions. In our transient 
simulations, trapped electrons can also be generated without collisions during the transient effects [12].  

4. Kinetic Model of Solar Wind 
The kinetic equation for charged particles in magnetized plasma coincides with Eq. (1) for a magnetic 
monopole [13].  In collisionless (exospheric) models, an analytical solution of the kinetic equations for 
electrons and ions can be obtained using a Liouville theorem. For a Maxwellian distribution of injected 
particles at the boundary, the analytical solution gives for the electron and ion fluxes [14,11]. In our 
code, the potential on the right boundary 𝜙𝜙𝑅𝑅 was set to zero, and the potential on the left boundary, 𝜙𝜙𝐿𝐿 
was determined to equalize the ion and electron fluxes in a steady state. The calculated 𝜙𝜙𝐿𝐿 was used as 
a boundary condition for the Poisson solver to find 𝜙𝜙(𝑟𝑟) at different 𝜆𝜆𝐷𝐷𝐷𝐷.  
 
This method of calculating the potential drop, ∆𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, ensuring equal fluxes of electrons and ions 
assumes a collisionless plasma and does not consider numerical diffusion, transients, and other factors. 
Therefore, our code has implemented a more general method based on an interactive potential 
adjustment to equalize the electron and ion particle fluxes. The scheme uses an adjustable relaxation 
parameter 𝛼𝛼 (which is proportional to the sphere capacitance), and the analytical value of ∆𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 as an 
initial condition:  

 
∆𝜑𝜑𝑛𝑛+1 = ∆𝜑𝜑𝑛𝑛 + 𝛼𝛼∆𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗𝑒𝑒𝑛𝑛−𝑗𝑗𝑖𝑖
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    (3) 

 
with ∆𝜑𝜑𝑛𝑛=0 = ∆𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. This scheme allowed converging towards a solution with equal electron and 
ion particle fluxes.  
 
We first obtained 1D2V solutions assuming constant ion velocity (𝑣𝑣𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and the ion density 
profile 𝑛𝑛𝑖𝑖(𝑟𝑟) = 𝑛𝑛0(𝑅𝑅/𝑟𝑟)2. Boldyrev et al. [11] mentioned that the ion velocity does not change 
considerably the electric potential profile in the solar wind. Figure 3 illustrates the formation of an 
electron-trapping potential in our simulations. The results show that the EVDF for most electrons is 
close to isotropic, which justifies using a simpler model for these electrons.  
 
Such a P1 model was implemented based on two-term Spherical Harmonics Expansion (SHE) of the 
EVDF in velocity space and coupled with the iterative solver for the self-consistent electric field. 
 
Figure 4 shows the radial profiles of solution variables and the corresponding Electron Energy 
Distribution Functions (EEDF's) (an isotropic part of the EVDF) at two locations obtained from the P1 
model.  
 



 
 
 
 
 
 

 
 
Figure 3. 1D2V solutions for Debye length-to-radius ratio 𝜆𝜆𝐷𝐷𝐷𝐷/𝑅𝑅 = 0.1. Shown are EVDF moments 
and self-consistent electrostatic potential and field (left) and EVDFs at two locations (right). 
 

 
 
Figure 4. The P1 solutions for Debye length-to-radius ratio 𝜆𝜆𝐷𝐷𝐷𝐷/𝑅𝑅 = 0.1. EVDF moments and self-
consistent electrostatic potential and field (left) and EEDFs at two locations (right). 
 
Figure 5 compares the results of 1D2V and P1 models. The trapping potential for electrons is formed in 
both cases. The decrease of electron temperature from the Sun's surface (predicted in Boldyrev et al. 



 
 
 
 
 
 

[11]) is well reproduced by the P1-model code, with very similar (normalized) electron temperature 
magnitudes. The electrostatic potential and electric field predicted with the 1D2V and P1 models agree 
quantitatively.  
 

 
 
Figure 5. The 1D2V (left) and P1-model (right) solutions for Debye length-to-radius ratio 𝜆𝜆𝐷𝐷𝐷𝐷/𝑅𝑅 = 0.1.  
 
The overall agreement between the 1D2V model and the P1 model is encouraging. The P1 model can 
reproduce the main critical features of the VDF of returning electrons, which control the electric 
potential variation and magnitude at a significantly reduced cost compared to the 1D2V model. More 
detailed comparisons (e.g., for the particle and energy fluxes controlled by runaway anisotropic 
electrons) and model fine-tuning are required to validate the P1 model in a broader range of conditions. 
 
To enable calculations for smaller Debye lengths, we implemented an iterative scheme for computations 
of (steady-state) electric potential based on the paper [15]. We used two schemes: 
 

𝜑𝜑𝑛𝑛+1(𝑟𝑟) = 𝜑𝜑𝑛𝑛(𝑟𝑟) + 𝛼𝛼𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟) 𝑛𝑛𝑒𝑒𝑛𝑛(𝑟𝑟)−𝑛𝑛𝑖𝑖
𝑛𝑛(𝑟𝑟)
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    (4) 

or  
𝜑𝜑𝑛𝑛+1(𝑟𝑟) = 𝜑𝜑𝑛𝑛(𝑟𝑟) + 𝛼𝛼𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟)𝑙𝑙𝑙𝑙[𝑛𝑛𝑒𝑒𝑛𝑛(𝑟𝑟)/𝑛𝑛𝑖𝑖𝑛𝑛(𝑟𝑟)]   (5) 

 
Approximate analytic solutions for the plasma potential 𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟) were applied as initial conditions to 
speed up convergence. The relaxation parameter 𝛼𝛼 could be a function of 𝑟𝑟. 
 



 
 
 
 
 
 

This Quasi-Neutral Field Solver (QNFS) allowed obtaining well-converged quasi-neutral solutions for 
low-resolution mesh in phase space without resolving space charge sheath. We have used a radially 
varying weight function for the relaxation parameter and verified that solutions are Debye-length 
independent. Figure 6 shows an example of calculations with a coarse static grid. 
 

 
 
Figure 6 Converged spatial distributions for different plasma densities (Debye lengths). 
 
We have enhanced QNFS for dynamically varying phase space mesh. Figure 7 shows a well-converged 
solution with Adaptive Mesh Refinement (AMR) in phase space (baseline grid + 1-level-up refinement). 
The dynamic AMR allows convergence on a coarse grid and then applies the iterative QNFS scheme. 
With this method, we first observed somewhat noisy solutions for the electric field, which were 
improved by implementing a noise-filtering technique. The QNFS module enables efficient 
computations under high plasma density conditions (extremely low Debye lengths), and we plan to 
expand the QNFS module further for simulations with ion transport and collisions. 
 



 
 
 
 
 
 

 
 
Figure 7. Electron density convergence history with QNFS at different distances from the surface (left) 
and converged radial plasma profiles (right). 

5. A quasi-diffusion model for electrons 
Quasi-diffusion models have been used for neutron, photon, and electron kinetics [16,17]. They have a 
broader applicability range than the P1 model described above, based on the two-term SHE. To evaluate 
the quasi-diffusion models proposed in [16], we have implemented a hybrid model of partially-ionized 
spherical plasma in COMSOL. The model uses a Fokker-Planck kinetic solver for EEDF, a free-flight 
fluid model for ions, and the Poisson equation for the electric field. Electrons and ions are injected from 
an internal sphere and exist through the external sphere. Elastic collisions of electrons with neutral gas 
atoms and Coulomb interactions among electrons are considered. Self-consistent distributions of the 
electric potential were found for different values of the potential drop between the spheres by solving a 
transient problem until a steady state. We observed that the electron flux in the steady state is reduced 
by varying the potential drop from 1.5 V to 3 V. 
 
Below, we illustrate the model results for the spheres with a radius of 1 cm and 30 cm in Argon gas at a 
pressure of 1 mTorr. The electrons and ions are injected with densities 1018 cm-3 and equal temperatures 
of 1eV, corresponding to the Debye length at the sphere location of 0.007 mm. Figure 8 shows the spatial 
distributions of the electron density and temperature and the EEDF at a specific spot for different values 
of the Coulomb collision frequencies at the assumed potential drop of 1.5 V between the spheres. 
 



 
 
 
 
 
 

   

   
Figure 8 The spatial distributions of the electron density and temperature and the EEDF at a specific 
location for different values of the Coulomb collision frequencies: 𝜈𝜈𝑒𝑒𝑒𝑒 = 0 (top) and 𝜈𝜈𝑒𝑒𝑒𝑒 ≠ 0  (bottom). 
 
Figure 9 illustrates the effects of the Coulomb collisions on the spatial distributions of the electric 
potential. Minimal changes are observed when Coulomb collisions are taken into account. 
 

  
 
Figure 9 The spatial distribution of the potential without (left) and with Coulomb collisions  
 
To summarize, partially-ionized spherical plasma with densities up to 1018 m-3 could be modeled with 
COMSOL using a Poisson solver. For the considered test of the quasi-diffusion model, a potential well 
trapping most electrons formed and 𝑇𝑇𝑒𝑒(𝑟𝑟) dropped in a very similar fashion to full 1D2V results (from 
1 to ~0.25). The EEDF of trapped electrons remained close to a Maxwellian (following the injected 
EEDF) even without Coulomb collisions—however, a significant "hot" tail with a temperature higher 
than the injected temperature formed. Coulomb collisions resulted in the transition to a Maxwellian 
EEDF with the same "temperature" for all electron energies, i.e., heating the cold, trapped electrons by 
the hot tail electrons. The spatial distributions of electron density 𝑛𝑛(𝑟𝑟) and 𝑇𝑇𝑒𝑒(𝑟𝑟) remained practically 



 
 
 
 
 
 

unchanged. This behavior indicates a proper numerical scheme, as Coulomb collisions among electrons 
should not affect the EEDF moments. We used a simple version of the quasi-diffusion model in these 
simulations, which corresponds to the P1 model used in the Basilisk simulations. We plan to combine 
the general quasi-diffusion model with the 1D2V solver for more efficient simulations of different 
electron groups.  
 
Acknowledgments 
This work was supported by the NSF EPSCoR project OIA-2148653 and NASA SBIR project 80NSSC-
21-C-0527. 

References 
 

[1] Al'pert Ya L, Gurevich A V and Pitaevskii L P 1965 Space Physics with Artificial Satellites 
(Plenum, New York) 

[2]  J. Lemaire J and Scherer M 1973 Kinetic Models of the Solar and Polar Winds, Reviews of 
Geophysics 11 427 

[3]  Kiselyov A A, Dolgonosov M S and V. L. Krasovsky V L 2015 Formation of trapped-ion 
population in the process of charging of an absorbing sphere in a collisionless plasma, Europhys. 
Lett. 111 15001 

[4]  Filippov A V 2021 Distribution of Electrons and Ions Near an Absorbing Spherical Body in a 
Nonequilibrium Plasma, Journal of Experimental and Theoretical Physics 132 148 

[5]  Berčič L, Landi S, and Maksimović M 2021 The Interplay Between Ambipolar Electric Field and 
Coulomb Collisions in the Solar Wind Acceleration Region, Journal of Geophysical Research: 
Space Physics 126 e2020JA028864 

[6]  Halekas J S, et al. 2022 The Radial Evolution of the Solar Wind as Organized by Electron 
Distribution Parameters, The Astrophysical Journal 936 53 

[7]  Horaites K and Boldyrev S 2022, The heliospheric ambipolar potential inferred from sunward-
propagating halo electrons, MNRAS 515 5135 

[8]  Kolobov V I, Arslanbekov R R and Levko D 2029 Boltzmann-Fokker-Planck kinetic solver with 
adaptive mesh in phase space, AIP Conference Proceedings 2132 060011  

[9]  Tang B, Zank G P and Kolobov V I 2022 Numerical Modeling of Suprathermal Electron 
Transport in the Solar Wind: Effects of Whistler Turbulence with a Full Diffusion Tensor, ApJ 
924 113  

[10]  Werner G R, Robertson S, Jenkins T G, Chap A M and Cary J R 2022 Accelerated steady-state 
electrostatic particle-in-cell simulation of Langmuir probes, Physics of Plasmas 29 013502 

[11]  Boldyrev S, Forest C and Egedal J 2020 Electron temperature of the solar wind, Proceedings of 
the National Academy of Sciences 117 9232  

[12]  Sánchez-Arriaga G 2013 A direct Vlasov code to study the non-stationary current collection by a 
cylindrical Langmuir probe, Phys. Plasmas 20 013504. 

[13]  Kolobov V I, Arslanbekov R R and Levko D 2020 Electron Groups in Solar Wind and Gas 
Discharge Plasmas, J. Phys.: Conf. Ser. 1623 012006  

[14]  Meyer-Vernet N 2007 Basics of the Solar Wind, Cambridge University Press 
[15]  Meyer-Vernet N and Issautier K 1998, Electron temperature in the solar wind: Generic radial 

variation from kinetic collisionless models, JGR Space Physics 103 29705  
[16]  Gol'din V Ya 1964 A quasi-diffusion method of solving the kinetic equation, USSR 

Computational Mathematics and Mathematical Physics 4 136 
[17]  Koterov V N and. Shcheprov A V 1991, Calculation of spatially nonequilibrium transport of 

electrons in a gas-discharge plasma, U.S.S.R. Comput. Math. Math. Phys. 31 56 
 
 
 
 
 

https://agupubs.onlinelibrary.wiley.com/authored-by/Lemaire/J.
https://agupubs.onlinelibrary.wiley.com/authored-by/Scherer/M.
https://agupubs.onlinelibrary.wiley.com/authored-by/Meyer%E2%80%90Vernet/Nicole
https://agupubs.onlinelibrary.wiley.com/authored-by/Issautier/Karine
https://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=26327
https://www.mathnet.ru/php/archive.phtml?wshow=contents&option_lang=eng&jrnid=zvmmf&yl=1964&vl=4&series=0#showvolume

