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Regularization Methods for Extracting Doppler
Broadening From Hall Thruster Plasma

A. K. M. Mustafizur Rahman and Richard Branam

Abstract— Extracting Doppler broadening from laser-induced
fluorescence (LIF) measurements is essential for determining
species temperature in the plasma. The fluorescence signal is
a convolution of many broadening effects of which Doppler
broadening is the most significant, but several others contribute
as well: collisional (pressure) broadening (particle-to-particle
interactions), natural lifetime broadening, and power broadening.
The process that extracts Doppler broadening is an ill-posed
inverse problem. The regularization approach addresses the
ill-posed problem to ensure a unique and stable solution with the
best possible accuracy. This study reported the Xe II temperature
by applying truncated singular value decomposition (TSVD) and
Tikhonov regularization (zeroth, first and second-order) methods
for deconvolution of Doppler broadening. Tikhonov first-order
and TSVD employing the generalized cross-validation (GCV)
method provide accurate reconstruction within 2.0%–8.0% of
the actual measurements.

Index Terms— Doppler broadening, hall thruster, laser-induced
fluorescence (LIF), Tikhonov, truncated singular value decompo-
sition (TSVD).

I. INTRODUCTION

LASER-INDUCED fluorescence (LIF) is a popular, non-
intrusive technique used to characterize the plasma of

a Hall effect thruster (HET). A specific laser frequency
associated with a particular electronic transition can increase
the corresponding excited-state population. The excited-state
species eventually returns to a ground/intermediate state,
producing measurable fluorescence. The center frequency of
the fluorescence is known, but the measured intensity is
distributed over a small frequency range. The fluorescence
signal is a result of several broadening and shifting effects,
such as Doppler broadening, collisional (pressure) broadening
(particle-to-particle interactions), natural lifetime broadening,
and power broadening induced by laser irradiance. The optical
spectrum is a full or partial blend of many different compo-
nents which includes the above broadening effects as well as
the contribution of hyperfine structure (Hfs) and isotope shift
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(IS). If a sufficiently high-resolution spectral apparatus is used,
these many effects can be seen and resolved. The nucleus of
an atom has a magnetic dipole moment related to the nuclear
spin. The interaction of this magnetic dipole moment with
the magnetic field created by the valence electrons results in
energy level splitting known as Hfs. The differences in the
mass and charge distribution of the nucleus shift the center
frequency of the spectra up to 120 MHz, which is referred
to as IS. Xenon has nine isotopes; seven isotopes have an
even number of neutrons in the nucleus, which balances the
relative nuclear spin (net spin is zero). However, xenon with an
atomic mass of 129 and 131 (129Xe and 131Xe) has unpaired
neutrons, resulting in non-zero nuclear spin and exhibiting Hfs.
The constants associated with the magnetic dipole and electric
quadrupole interaction allow us to determine the energy shift.
Depending on the transition, this energy shift can be up to
several GHz. External magnetic and electric fields contribute
to additional spectral splitting known as Zeeman and Stark
effects, but broadening due to these effects is significantly
less than other types of broadening. The splitting and shifting
effects contribute to the fluorescence spectrum, enabling the
final spectrum to be broader.

Researchers have shown that each physical phenomenon can
be mathematically characterized using distribution functions
related to the physical properties of the plasma. The expected
LIF line shape is then a convolution of all the physical
phenomena, including the Stark and Zeeman effects, and can
be expressed in the following equation:

Fluorescence = Doppler ⊗ Hfs ⊗ pressure ⊗ natural ⊗ Stark
⊗ Zeeman. (1)

The cross inside the circle (⊗) represents the convolu-
tion operator, i.e., the fluorescence signal is a convolution
associated with the Hfs, the Zeeman effect, the Stark effect,
and broadening due to natural lifetime, pressure, and the
Doppler effect. The species temperature characterizes the
Doppler effect, which is often represented by a Boltzmann
distribution. If the Doppler broadening of the LIF signal can
be separated, the species’ temperature can be determined.
A deconvolution algorithm is necessary to extract Doppler
broadening. Cedolin et al. [1] used a nonlinear optimization
routine to fit computational spectra with measured spectra.
However, the approach did not agree with the measured spectra
over the entire range. Keefer et al. [2] applied a method similar
to Cedolin et al. [1]. Smith [3] attempted to solve the inverse
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problem by developing several deconvolution approaches to
separate the effects of different phenomena. The deconvolution
processes amplified the noise, requiring additional smoothing
techniques to obtain meaningful results. Hargus and Nakles [4]
applied a zeroth-order (classical) Tikhonov algorithm with the
L-curve method to the problem. Hargus and Nakles’s approach
reduced noise in the deconvolution but artificially narrowed the
line shape and increased the maximum intensity by as much as
20%. The L-curve method for Tikhonov regularization tends
to produce a slightly over-smoothed reconstruction. If the
singular value decomposition (SVD) coefficients decay faster
to zero such that the first few SVD components dominate the
solution, the L-curve criteria may fail.

This study has reported truncated SVD (TSVD) and
Tikhonov regularization techniques by means of the L-curve
and generalized cross-validation (GCV) methods for singly
ionized xenon (Xe II). The effort has included first- and
second-order terms more accurately. The Tikhonov first-order
and TSVD employing the GCV method provide reconstruction
within 2.0%–8.% of the actual measurements.

II. PROBLEM STATEMENT

We model the fluorescence as a system of linear equations
by considering each physical phenomenon [5]

A f + ε = b (2)

where b ∈ Rm is a m × 1 vector of measurements, A ∈ Rm×n

is an m × n coefficient matrix, f ∈ Rn is the n × 1 vector
of unknown Doppler (Gaussian) profile, and ε ∈ Rm is the
m×1 measurement error/noise. A well-posed problem A f = b
where A is a normal operator in Hilbert space (complete) is
defined by the Hadamard conditions: existence, uniqueness,
and stability. A well-posed problem requires A to be objective
and A−1 must be continuous [6]. In some cases, a unique
solution may be difficult to find initially, especially for an
overdetermined system. However, reformulating the problem
using a least-squares approach yields a solution. On the other
hand, an underdetermined system can have infinitely many
solutions. A unique solution can be obtained using a minimum
norm technique, but the stability of the solution is affected
because a small amount of noise in the data amplifies the
error. Also, we must pose the problem so that A−1 exists
and is continuous. Otherwise, the solution does not depend
on the data continuously. Actual results always include some
variations in the measurements because of ill-posedness. The
magnitude of variance can be determined from the product of
the norm of A with its inverse norm, which defines condition
number [7]

cond(A) = ∥A∥2∥A−1
∥2 =

d1

dmin{m,n}

(3)

where di is the i th singular number of matrix A.

III. REGULARIZATION MODEL

Regularization methods impose regularity on the solution by
suppressing the noise level of an ill-posed inverse problem.
The least-squares or minimum norm solution for a linear

system requires an inversion of the forward model that maps
the unknown signal to the data; however, the stability of the
solution is affected because of the inherent noise. The inverse
operation of the discrete linear problem can be ill-posed, which
can produce a large error in the reconstruction, even for a small
noise in the data.

A. Truncated SVD

For an ill-posed problem, a minimum-norm solution can
satisfy the first two Hadamard conditions of a well-posed
problem while using a pseudoinverse (Moore-Penrose inverse)
of A. But, the solution’s instability still exists, which can
violate Hadamard’s third condition. TSVD method can over-
come the violation of Hadamard’s condition and reconstruct
the function. The SVD is the starting point for regularization
techniques. The coefficient matrix A in (2) can be written in
the expansion of SVD

A = U DV T (4)

where U ∈ Rm×m , V ∈ Rn×n are orthonormal matrices,
D = diag(d1, d2, . . . , dmin{m,n}) ∈ Rm×n has nonnegative
entries on the diagonal and zeros on the off-diagonal such that
d1 ≥ d2 ≥ · · · ≥ dmin{m,n} ≥ 0. The least-squares solution

fLS = A†b =

r∑
i=1

1
di

〈
uT

i , b
〉
vi (5)

where, A†
= V D†U T

=
∑r

i=1 vi d−1
i uT

i is the pseudoinverse
of A and r = rank(A) ≤ min{m, n}. Singular values decrease
monotonically, leading to more oscillation (sign changes) of
corresponding singular vectors vi ∈ V and ui ∈ U . The
noise in the measurements can affect the solution due to
the small singular value in the denominator in (5), resulting
in an unstable solution. The TSVD addresses this problem
by filtering out the influences of smaller singular values by
truncating the series to k. The TSVD solution can be written
as

ftsvd(b) = V D†
k U T b =

k∑
i=1

1
di

〈
uT

i , b
〉
vi (6)

where A†
k = V D†

k U T . All Hadamard’s conditions hold: the
single-valued linear mapping ftsvd : Rm

→ Rn is well-defined,
and the norm

∥ ftsvd∥ =

∥∥∥V D†
k U T

∥∥∥ ≤ ∥V ∥

∥∥∥D†
k

∥∥∥∥∥U T
∥∥ =

∥∥∥D†
k

∥∥∥ = (dk)
−1

(7)

implies continuity. Simplifying (6) yields

ftsvd(b) = V D†
k U T (A f + ε)

= V D†
k

(
U T U

)
DV T f + V D†

k U T ε. (8)

The first part of the right-hand side of (8) approximates f ,
while the second term associated with the error yields∥∥∥V D†

k U T ε

∥∥∥ ≤

∥∥∥V D†
k U T

∥∥∥∥ε∥ =

∥∥∥D†
k

∥∥∥∥ε∥ = (dk)
−1

∥ε∥. (9)

Since d−1
1 ≤ d−1

2 ≤ · · · ≤ d−1
k , fewer singular values result

in less noise amplification in the reconstruction. The quality
of the solution depends on the optimum number of singular
values.
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B. Tikhonov

The idea of Tikhonov regularization is to minimize the
expression ∥A f − b∥

2
+ α∥I f ∥

2, where identity matrix I
represents the regularization matrix, and 0 < α < ∞ denotes
the regularization parameter [5], [6], [8]. The expression has
two parts: data discrepancy or residual norm (∥A f − b∥)

and solution norm or smoothing norm (∥I f ∥). The Tikhonov
functional

Jα( f ) = ∥A f − b∥
2
+ α∥I f ∥

2 (10)

where ∇
2 Jα( f ) = 2(AT A + α I ) is positive semidefinite. The

solution is obtained by solving the system of the following
equations: (

AT A + α I
)

ftikh = AT b (11)

ftikh(b) =
(

AT A + α I
)−1

AT b (12)

where Atikh = (AT A + α I )−1 AT . Adding a positive number
to the diagonal elements of the coefficients matrix results in
instability. Using the SVD of matrix A = U DV T

ftikh(b) = V −T
[(

D2
+ α

)−1
D

]
U

T
b. (13)

Orthogonality implies

ftikh(b) = V DαU T b (14)

where the diagonal matrix, Dα = [(D2
+ α)

−1 D]

Dα = diag
(

d1

d2
1 + α

, . . . ,
dr

d2
r + α

, 0, 0, . . .

)
. (15)

Simplifying (14) yields

ftikh(b) =

r∑
i=1

gi (α)

〈
uT

i , b
〉
vi

di
(16)

where gi (α) = (d2
i )/(d2

i + α) is known as filter factors. The
main goal is to remove the effects of small singular values.
The filter factors yield

gi (α) ≈

{
1, if di ≫

√
α, or α = 0

0, if di ≪
√

α
(17)

which are bounded, and 1 ≥ g1 ≥ g2 ≥ · · · ≥ gr ≥ 0. Filter
factors close to one (for a larger singular value) reduce the
SVD components of the residual. It is clear that for a negligible
regularization parameter, the reconstruction (16) becomes a
least-squares solution. For the TSVD

gi (α) =

{
1, if 1 ≤ i ≤ k
0, if k < i ≤ r.

(18)

Smoothing the solution is one of the key tasks in any regular-
ization method. Instead of using the identity matrix, we can
write a general form using a suitable coefficient matrix L

ftikh(b) = arg. min
f ∈R

{
∥A f − b∥

2
+ α∥L f ∥

2}. (19)

Equation (19) is referred to as a generalized Tikhonov solution
and (AT A+αLT L)−1 AT is the generalized inverse. We apply

a first-order finite difference matrix (first-order derivative
operator) for the first-order Tikhonov

L =



−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0
... · · · · · ·

. . . · · ·
...

0 · · · 0 0 −1 1
0 · · · 0 0 0 −1


. (20)

While for second-order Tikhonov, we use a second-order
derivative operator

L =



1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
0 0 1 −2 · · · 0
... · · · · · ·

. . . · · ·
...

0 · · · 0 0 1 −2
0 · · · 0 0 0 1


. (21)

C. Parameter Estimation

The quality of the reconstruction of an unknown function
of an inverse problem depends on the truncation parameter
k (TSVD) and norm smoothing parameter α (Tikhonov reg-
ularization). An appropriate parameter produces the highest
fidelity solution and does not impose oscillatory reconstruction
due to noise amplification or over-smoothing reconstruction.
Currently, no explicit unique method exists that estimates opti-
mum parameters. For the LIF spectroscopy, we use L-curve
and GCV methods to determine the regularization parameters
effectively.

The L-curve method provides a quantifiable way of deter-
mining the quasi-optimal value of α. The method plots all
possible α values for all possible residual and solution norms.
The optimum value of α is found at the maximum curvature
(corner of the L-curve) for log∥L f ∥2 as a function of log∥A f −

b∥2. The smooth function of log∥L f ∥2 looks like the letter L.
Fig. 1 shows a sample L-curve to estimate the regularization
parameter.

The GCV method estimates regularization parameters by
minimizing the GCV function [7]

GCV=
∥A freg − b∥

2
2(

trace
(
I − AAreg

))2 (22)

where freg is the regularized solution such that freg = Aregb.
In the case of TSVD, freg = ftsvd, and Areg = A†

k . While
for Tikhonov regularization, freg = ftikh and Areg = Atikh.
Fig. 2 shows the GCV function used to estimate the truncation
parameter.

IV. ERROR ANALYSIS

The error in these regularization techniques comprises
smoothing errors due to data loss and noise error (statistical
variations) [6]

errα = errsα + errnα.errsα (23)

errsα represents error due to data loss, and errnα denotes noise
error. In a semi-random approach, the smoothing error is
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Fig. 1. Estimating truncation parameter using the L-curve method.

Fig. 2. Estimating truncation parameter using GCV.

deterministic, whereas the noise error is random and can have
a zero mean and covariance. The expected value of the total
error is defined as follows:

E
{
∥errα∥

2}
= ∥errsα∥

2
+ E∥errnα∥

2 (24)

where the expected value of the noise error is computed [10]

E
{
∥errnα∥

2}
= d2

i

k∑
i=1

(
d2

i

d2
i + α

)
∥vi∥

2

di
. (25)

The smoothing error increases and the noise error decreases
with α. Since the exact solution f is unknown, the quality of
the reconstruction cannot be determined. However, the relative
errors when comparing the model data with measured data
estimate the quality of the solution. We model fluorescence,
m using the reconstructed Gaussian function. The relative error
using the p-norm (p = 1, 2, 3, . . . ,∞) is defined as

Rel.err =
∥b − m∥p

∥L f ∥p
.100%. (26)

V. TEST FACILITY

The space propulsion laboratory at The University of
Alabama has a vacuum test facility that can achieve a base
pressure of 9.2 × 10−7 torr. The HET used in this study

TABLE I
THRUSTER OPERATION CONDITIONS

was a laboratory model with a power rating of 1.5 kW. The
operating conditions of the thruster for this experiment are
listed in Table I.

The thruster was modified to allow optical access. Two
optical windows were placed in the discharge channel. The
base plate of the thruster and anode had a window that allowed
the laser to enter the discharge channel. Fluorescence was
collected through the other window on the outer wall of the
channel.

An extended-cavity tunable diode laser can scan wave-
lengths between 820 and 840 nm. The laser had a mode-
hop-free range of 150 GHz at 834.955 nm. The laser was
scanned from 359 079.63 to 359 024.63 GHz to pro-
mote Xe II electronic transition 5 d[4]7/2 → 6p[3]

0
5/2 at

359 052.13 GHz. The maximum absorption of neutral xenon
(Xe I) at 359 070.72 GHz, captured by a see-through hollow
cathode lamp, provided a reliable reference. Fig. 3 shows the
optical train outside the vacuum chamber.

A Faraday isolator was aligned with a laser beam to avoid
back-reflection. The first beam splitter in the optical train
(50–40) directed 50% of the laser (probe) beam through a
chopper into an optical cable to obtain the beam inside the
vacuum chamber. The remaining laser beam was used for
reference and control of the experiment: 10% of the laser
beam was fed into a wavemeter that monitored the wavelength
and power, 10% of the beam passed through a Fabry–Perot
etalon to monitor the quality of the scan, and 20% of the
beam was directed through a chopper and then injected into
a hollow cathode lamp filled with xenon. The lamp was the
reference source, where Xe I atoms absorbed photons centered
at a frequency of 359 070.72 GHz. The reference absorption
was used to determine the Doppler shift and hence the velocity
distribution. The center frequency of Xe II absorption is
18.58 GHz away from the center frequency of Xe I absorption
(NIST). Fig. 4 shows the laser injection and fluorescence
collection inside the discharge channel.

The probe beam entered the discharge channel of the
thruster through a 2.5 mm window in the thruster’s base plate.
The laser beam was directed in the z-direction parallel to the
electric field and perpendicular to the applied radial magnetic
field. The fluorescence was collected by a collection of lenses
(75 mm diameter and 250 mm focal length) orthogonal to the
laser beam. A single-core fiber cable carried the fluorescence
signal from the vacuum chamber back to the optical table (see
Fig. 3).

The signal was directed through a monochromator (Horiba
microHR) with a focal length of 140 mm and image magnifi-
cation of 1:1 at the exit slit.
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The monochromator grating position was set to the center
wavelength of the expected fluorescence. The monochromator
wavelength accuracy was ±0.25 nm for a 1200 gr/mm grating
at 400 nm. The monochromator signal was then detected
using a photomultiplier tube (PMT). The PMT signal was
phased with the chopper frequency using a lock-in amplifier
to separate the fluorescence signal from the background noise.

VI. LINE SHAPE BROADENING

The initial state of the Xe II transition, 5d[4]7/2 is a
metastable state; therefore, it has a high population density
and a long lifetime. The decay transition 6p[3]

0
5/2 → 6 s[2]3/2

emits photons at 542 nm (vac). Isotopes producing Hfs
splitting (xenon atomic mass of 129 and 131) are naturally
abundant and listed in Table II. The upper excited state,
6p[3]

0
5/2 has a robust non-resonant transition (with little to

no photon scattering). Currently, the known Hfs splitting
constants of xenon are limited to a specific set of energy
levels. For this particular transition, the Hfs constants of the
upper excited state are available; however, the information
is unknown for the lower excited state. Previous work sug-
gested using published data for Hfs for a similar transition
of 5d[D]7/2 → 6p[P]5/2 [11].

The Doppler shift is a frequency shift caused by the thermal
motion of atoms and molecules. If the atom emits a photon at
a frequency ϑ0, the observed frequency, ϑ can be shifted due
to the relative motion away/toward

ϑ = ϑ0 ± ϑ0

(vz

c

)
(27)

where, vz is the speed of species along the z-direction, and
c is the speed of light. Photons with frequencies below
the center frequency (+ sign) move in the direction of
the laser beam. A Gaussian function is used to determine
temperature (28).

This relationship provides a robust approach for determining
the plasma temperature by fitting the curve to the shape of the
Doppler profile

ϕD(ϑ) =
c
ϑ0

(
M

2πkT

)1/2

exp

[
−

Mc2

2kT

(
ϑ − ϑ0

ϑ0

)2
]

(28)

where M is the mass of species, k is the Boltzmann constant
and T is the species temperature. The species transfers to
different energy states, and a photon is absorbed (increasing
energy state) or emitted (returning to a lower energy state).
The Heisenberg uncertainty principle sets the lifetime limit for
the excited states. The limit is the relaxation time of a given
species for a specific transition period. The limit also results
in a frequency shift of photons from the spectral line values.
This phenomenon causes spectral line broadening, which is
referred to a natural lifetime broadening, defined by

1ϑnat =
1

2πτu
(29)

where τu denotes the radiative lifetime of the upper
state. The Lorentzian function best describes the

natural lifetime broadening

ϕL(ϑ − ϑ0) =
1
π

1ϑnat/2

(ϑ − ϑ0)
2
+

(
1ϑnat

2

)2 . (30)

The radiative lifetime of the upper state is inversely reciprocal
to Einstein’s A coefficient, which is 6.2 × 107(s−1) (NIST).

The linear Zeeman effect caused by the applied mag-
netic field distorts (splits) the fluorescence line shape. The
strength of the radial magnetic field varies with the axial
and radial locations of the thruster. Therefore, the magnitude
of the Zeeman effect on the fluorescence line shape is also
dependent on the axial position. For the Xe II 5d[4]7/2 →

6p[3]
0
5/2 transition, π -Zeeman splitting effects are negligible,

but σ -Zeeman splitting effects still exist [12]. The Zeeman
effect in moderate magnetic field strengths (∼145 G for our
experiment) can contribute several hundred MHz to the overall
LIF. The contribution of this effect is significantly less than
that observed from collisional or Doppler broadening and is
difficult to discern.

VII. RESULTS AND DISCUSSION

The Doppler shift of the bulk motion of the plasma in
the HET is related to the potential drop. The potential drop
from anode voltage to beam potential along the length of the
chamber is affected mostly by ionization and acceleration.
The exit velocity of the ions depends on the axial location
(voltage potential) in the channel when the particle ionizes.
Additionally, the amount of noise in the fluorescence signal
varies with the axial location of the thruster. The fluorescence
signal can exhibit multiple peaks and long tails with significant
variance in the near exit plane, meaning that Xe II ions are
not all in the same energy state, contributing greatly to the
variability in velocity. The magnetic field is designed to focus
on the plume, often creating regions with bimodal fluorescence
measurements.

The numerical model in (2) requires a set of initial values.
A point spread function (PSF) has been proven insightful in
previous studies. We developed a PSF from the right-hand side
of (1) resulting from known Hfs (isotopes), natural lifetime
broadening, and their appropriate spectral ranges in the flu-
orescence data. Before applying the regularization methods,
the Savitzky–Golay data smoothing algorithm was applied
to the raw fluorescence data to best represent the spectral
response without removing significant statistical variations.
We collected LIF signals every millimeter inside the discharge
channel along the centerline from the top of the anode to the
exit of the channel and the plume. Although all collected fluo-
rescence was investigated thoroughly with these regularization
methods, in this study, we presented fluorescence data for
Xe II collected at a 21 mm location along the axial z-direction
(see Fig. 5).

The dimension of the Gaussian function was determined
by the frequency range of the scan and the laser resolution.
We estimated the condition number of 145 841.83, suggesting
a severely ill-posed problem. The decay of the singular values
is shown in Fig. 6.
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Fig. 3. LIF optical setup outside the chamber.

Fig. 4. Laser path and fluorescence collection in the discharge channel.

Fig. 5. Raw LIF signal.

The importance of the technique can be analyzed by com-
paring measured fluorescence with Gaussian reconstruction
with and without regularization. Fig. 7 shows the recon-
struction of the Gaussian function using the TSVD with
GCV and L-curve methods, all singular values, and without
regularization.

The reconstruction using all singular values shows a very
wavy structure resulting in an impractical Gaussian function
and width. The reconstruction without applying the regu-
larization method reveals broader Gaussian width, resulting

Fig. 6. Singular value spectrum.

Fig. 7. Gaussian reconstructions: raw signal (magenta), TSVD with GCV
(blue) and L-curve (red), using all singular values (black), and without
applying regularization (green).

in higher ion temperature. The augmented temperature is
about 8290 K. Fig. 8 shows the reconstructions using the GCV
method and a comparison with the raw fluorescence signal.

Tikhonov’s second-order method provides a little oscillatory
solution in the range of (−10, −3) GHz; nevertheless, all
technique offers a good reconstruction. Finding the peak posi-
tion is essential for determining the Doppler shift and hence
the velocity distribution of Xe II. The reconstructions using
Tikhonov zeroth-order and TSVD methods provide ambiguous
peak positions compared to Tikhonov first-order. A similar
reconstruction is found when the L-curve method is applied,
Fig. 9.

Tikhonov zeroth-order provides an oscillatory reconstruc-
tion with an ambiguous peak while TSVD overestimates the
Doppler profile. Tikhonov’s first and second-order methods
return better reconstruction, but the optimum value of the
parameter α is not found at the maximum curvature of the
L-curve; Fig. 10.

The L-curve method for Tikhonov regularization tends to
produce regularization parameters slightly over-smooth. If the
SVD coefficients decay faster to zero such that the first
few SVD components dominate the solution, the L-curve
criteria may fail [13]. The resulting temperatures for these
four methods are relatively similar and listed in Table III.
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TABLE II
THRUSTER OPERATION CONDITIONS

TABLE III
THRUSTER OPERATION CONDITIONS

Fig. 8. Gaussian reconstructions using GCV method: raw signal (magenta),
Tikhonov zeroth-order (black), Tikhonov first-order (red), Tikhonov sec-
ond-order (green), and TSVD (blue).

Fig. 9. Gaussian reconstructions with L-curve method: raw signal (magenta),
Tikhonov zeroth-order (black), Tikhonov first-order (red), Tikhonov sec-
ond-order (green), and TSVD (blue).

The average ion temperature is approximately 16 303 K.
In contrast, without applying the regularization, the corre-
sponding ion temperatures increase up to 24 590 K.

We also estimated the Doppler shift of about 3.02 GHz,
resulting in exhaust velocities of 2.52 km/s. It is worth
noting that the typical ion exhaust velocity is approximately
20.0 km/s in the plume for a moderate discharge condition.

Fig. 10. L-curve of Tikhonov first-order method.

Fig. 11. Method comparison between L-curve and GCV of Tikhonov
second-order.

Ions produced at different axial locations experience different
plasma potential drops. The plasma potential varies along the
axial z-direction, resulting in various Doppler shifts. In the
HET, Xe II downstream (away from the anode) experiences
greater acceleration due to the higher electric potential, result-
ing in a much larger Doppler shift in the LIF response.

We observed that the reconstructed Gaussian profiles are
not ideal Gaussian functions for all cases. A noticeable side
peak at around −4.75 GHz suggests a fraction of the ion
population with a distinct energy level is substantially shifted
from the center frequency. As the second population of ions
becomes more significant at higher discharge powers, the
model needs to be extended to two-temperature Gaussian
functions; otherwise, the accuracy of the model will suffer.

Quantifying the total error is difficult without a verifiable
and independent method to determine the temperature conclu-
sively. Statistical techniques can analyze the quality of these
methods, though. Correlation can be assessed by calculating
the difference between two measurements and comparing the
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Fig. 12. Method comparison between L-curve and GCV of Tikhonov
first-order.

Fig. 13. Method comparison between TSVD and Tikhonov first-order using
GCV method.

trend line with the line of identity. The Bland-Altman plot uses
the differences between the two methods along the y-axis and
their averages along the x-axis and quantifies the significance
of systematic and proportional errors [14]. We conducted the
comparisons and presented them in Figs. 11–13. The red dots
represent the difference between the two methods, whereas the
green and black lines correspond to the line of equality and
bias, respectively. The bias measures the trade-off between
the difference from the line of equality. The line of equality
ideally indicates no differences between the measurements.
In addition, a 95% confidence interval to the bias defines the
limits of agreement between the methods and presents in blue
dashed lines; the smaller the width better the agreement. The
comparison of the reconstruction using the L-curve and GCV
method for the Tikhonov second-order is shown in Fig. 11.
A broader limit of agreement is observed, suggesting less
agreement between the methods.

The differences are widely distributed, and the degree of
variability is inconsistent. These results reinforce the idea that
significant systematic differences exist between these methods.
However, a relatively small difference between L-curve and
GCV methods for Tikhonov first-order is observed, Fig. 12.
The limit of agreement is relatively narrow, smaller bias still
exists though.

TABLE IV
THRUSTER OPERATION CONDITIONS

Fig. 14. Comparison between measured and model data: raw LIF (magenta),
TSVD with GCV (blue), and Tikhonov first-order with GCV (green).

The reconstructions using these two methods are indepen-
dent and comparable. Nevertheless, a better result is found for
the GCV method used in Tikhonov’s first-order and TSVD
techniques in Fig. 13.

We observed almost no statistical bias. The magnitude
of the differences is relatively small compared to the other
comparisons and is distributed around the line of equality.
Despite the 95% confidence interval being larger than Fig. 12,
it is relatively smaller and the statistical bias is negligible,
resulting in better agreement between the methods. We mod-
eled the fluorescence signals using these two methods, which
approximated the measured fluorescence (see Fig. 14).

The estimated relative errors between the model fluo-
rescence and measured (smooth) fluorescence are listed in
Table IV.

TSVD and Tikhonov first-order using the GCV method are
reliable and provide a similar temperature. But, the quality of
reconstruction and errors suggest Tikhonov’s first-order with
GCV method is the better approach.

VIII. LIF VALIDATION

Estimating Xe II temperature using other methods validates
LIF measurements. We estimated Xe I temperature from
LIF and thermocouple measurements since direct measure-
ment of Xe II temperature other than LIF is limited. The
annular-shaped anode injects Xe I propellant through several
small orifices (diameters less than 1 mm) in the axial direction.
Since the anode heats Xe I, the expected Xe I temperature
is to be higher than room temperature [15]. The anode is
heated by the discharge current and cooled using the mass
flow rate. The expected values are between 800 and 1000 K
at a moderate discharge voltage of 300 V [16]. The anode
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Fig. 15. Xe I LIF. Gaussian reconstruction (black) and Lev-Marq curve
fitting (blue).

temperature was measured using a K -type thermocouple at
approximately 674 K at a discharge voltage of 160 V. The laser
was capable of pumping the electronic transition 6 s2

[1/2]
0
1 →

6p2
[3/2]2 at 834.68 nm to excite Xe I. The decay transition

6p2
[3/2]2 → 6 s2

[3/2]
0
1 emits fluorescence at 473.41 nm. Xe I

LIF measurement was performed just above the anode surface
(∼1.0 mm). We estimated the Xe I temperature of 752 K using
the Tikhonov first-order with GCV method, Fig. 15.

The difference between the LIF results and the measured
values was within 10%. The results require further investiga-
tion of the discrepancy between the two values but provide
confidence in our regularization technique.

IX. CONCLUSION

The Tikhonov first-order and TSVD employing the GCV
method provide better performance for our problem. Com-
pared to the test case (measured values), these two approaches
return accurate reconstruction within 2.0%–8.0% of the actual
measurements. These two methods provide consistent ion
temperatures and best represent the underlying physics.

Tikhonov zeroth-order and TSVD approaches result in
ambiguous peak positions, bringing the solution’s validity into
question. The GCV method resembles a reasonably better
approach for estimating the parameters, but a definitive method
is required to estimate the regularization parameters.

The L-curve method for Tikhonov regularization tends to
produce a slightly over-smoothed reconstruction. If the SVD
coefficients decay faster to zero such that the first few SVD
components dominate the solution, the L-curve criteria may
fail. The L-curve method requires solving the minimization
problem several times to determine the optimum α, enabling
computationally more expensive than the GCV approach.
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