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Abstract

A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray
viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra.
This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The
energetic particle distribution function f0(r, p) at cylindrical radius r from the jet axis (assumed to lie along the z-
axis) is given by convolving the particle momentum spectrum ¥ ¢( )f p,0 with the Green’s function ¢( )G r p p, ; ,
which describes the monoenergetic spectrum solution in which d - ¢( )f p p0 as r→∞ . Previous work by
Webb et al. studied only the Green’s function solution for ¢( )G r p p, ; . In this paper, we explore for the first time,
solutions for more general and realistic forms for ¥ ¢( )f p,0 . The flow velocity u= u(r)ez is along the axis of the jet
(the z-axis). u is independent of z, and u(r) is a monotonic decreasing function of r. The scattering time
t t= a( ) ( )r p p p, 0 0 in the shear flow region 0< r< r2, and t t= a( ) ( ) ( )r p p p r r, s

0 0 2 , where s> 0 in the region
r> r2 is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r, p) space
to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability
distribution y ¢( )r p p, ;p that particles observed at (r, p) originated from r→∞with momentum ¢p . The
acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models
for electron acceleration are described.

Unified Astronomy Thesaurus concepts: Radio jets (1347); High-energy cosmic radiation (731); Ultra-high-energy
cosmic radiation (1733); Relativistic jets (1390)

1. Introduction

The acceleration of ultrahigh-energy cosmic rays (UHECRs)
has been investigated by many authors (e.g., Axford 1981,
1994; Hillas 1984; Biermann & Strittmatter 1987; Protheroe &
Szabo 1992; Rachen & Biermann 1993; Rachen et al. 1993;
Dermer 2007; Blandford et al. 2014).
Active galactic nuclei (AGNs) jets are observed at a large

range of scales, extending from the black hole event horizon to
megaparsec distances (e.g., Blandford et al. 2019).

The acceleration of energetically charged particles by
cosmic-ray viscosity in astrophysical shear flows has been
investigated by, e.g., Berezhko (1981, 1982, 1983), Berezhko
& Krymskii (1981), Earl et al. (1988), Jokipii et al. (1989),
Jokipii & Morfill (1990), Webb (1989, 1990), Webb et al.
(1994, 2018, 2019), Ostrowski (1990, 1998, 2000), Stawarz &
Ostrowski (2002), Rieger & Mannheim (2002), Rieger &
Duffy (2004, 2005a, 2005b, 2006, 2016, 2019, 2022), Rieger
(2019), Ohira (2013), Liu (2015), Liu et al. (2017), and Kimura
et al. (2018).

Other particle acceleration mechanisms include second-order
Fermi acceleration (e.g., Achterberg 1979; Bicknell & Melrose
1982; Schlickeiser 2002) and first-order Fermi acceleration at

shocks (e.g., Axford et al. 1977; Krymskiy 1977; Bell 1978a,
1978b; Blandford & Ostriker 1978; Drury 1983; Malkov &
Drury 2001). Some models of particle acceleration by shock
waves also include the effect of second-order Fermi
acceleration (e.g., Webb 1983; Krüells 1992; Schlickeiser
2002).
First-order Fermi acceleration at relativistic shocks using the

pitch angle focusing transport equation was investigated by
Kirk & Schneider (1987a, 1987b), Kirk & Duffy (1999),
Achterberg et al. (2001), and Pelletier et al. (2017). Self-
consistent studies of particle acceleration at relativistic shocks
using particle-in-cell (PIC) codes were studied by Spitkovsky
(2008a, 2008b), Martins et al. (2009), Sironi & Spitkovsky
(2009, 2011), and Sironi et al. (2013). A PIC code was used by
Sironi et al. (2021) to investigate particle acceleration in
relativistic shear flows. The advantage of PIC code simulations
is that a consistent solution for both the particles and
electromagnetic fields can be obtained by this method.
However, because of computational constraints, the ratio of
the ion to electron mass mi/me imposes constraints on the
computation time. This is not a constraint for electron–positron
plasmas for which mp/me= 1, where mp is the positron mass.
However, it is an important constraint for an electron–proton
plasma mp/me= 1836. Sironi & Spitkovsky (2009) used
mp/me= 25 for their electron–proton plasma shock simula-
tions. In relativistic shock simulations, the Weibel instability
(WI; Fried 1959; Weibel 1959; Medvedev & Loeb 1999;
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Wiersma & Achterberg 2004; Achterberg & Wiersma 2007;
Achterberg et al. 2007) is similar to the two-stream instability
in which the two fluids consist of a cold ion beam upstream of
the shock that interacts with the hot shocked downstream
plasma, which can also be thought of as a beam in the shock
frame. The original formulation of Weibel (1959) involved
perturbation analysis of the collisionless Liouville equation, but
Fried (1959) applied the analysis to beam plasmas. Perucho
(2019) gives an overview of the extensive literature on linear
and nonlinear instabilities of hydrodynamical and magnetized
radio jets.

PIC simulations of the Kelvin–Helmholtz instability and
magnetic reconnection for radio jets have been studied by
Sironi et al. (2021). Mizuno et al. (2014) investigated the
current-driven kink instability for relativistic jets. Nishikawa
et al. (2016) investigated the evolution of global relativistic jet
collimations and expansion effects on the kinetic Kelvin–
Helmholtz instability (kKHI) and WI. Nishikawa et al. (2020)
studied rapid particle acceleration due to recollimation shocks
and turbulent magnetic fields in injected jets with helical
magnetic fields.

Particle acceleration in reconnecting magnetic flux ropes has
been studied by Drake et al. (2013), Zank et al. (2014, 2015),
Le Roux et al. (2019), Li et al. (2017), Khabarova et al. (2017),
and others.

Particle acceleration in Faranoff–Riley II (FR II) radio jets
has been studied by Matthews et al. (2019), Bell et al. (2019),
and Araudo et al. (2016, 2018).

Lemoine (2019) developed a theory of generalized Fermi
acceleration in which the affine connection coefficients
describing non-inertial and gravitational forces are included
in the Lorentz force equation. In this development, non-inertial
forces also arise from the nonuniform background flow because
the particle momentum is measured in the fluid frame (see also
Webb 1985, 1989; Achterberg & Norman 2018a, 2018b).

Scenarios for the acceleration of UHECRs in AGN jets have
included particle acceleration at sub-relativistic shocks in the
jet-induced backflow in FR II jets (e.g., Matthews et al. 2019),
second-order Fermi acceleration in turbulent flows in the jet
cocoon (e.g., Bicknell & Melrose 1982; Hardcastle 2010),
particle acceleration due to cosmic-ray viscosity in relativistic
shear flows (e.g., Rieger & Duffy 2004, 2005b; Webb et al.
2018, 2019, 2020; Rieger 2019; Wang et al. 2021, 2023),
discrete shear acceleration at interfaces between the jet spine
and the cocoon backflow (Ostrowski 1998; Kimura et al. 2018),
turbulent shear acceleration (TSA; Ohira 2013), and the so-
called expresso mechanism (Caprioli et al. 2015; Mbarek &
Caprioli 2019).

He et al. (2023) applied the shear acceleration model of
electrons in radio-jet sources of Rieger & Duffy (2019) and
Wang et al. (2021), taking into account synchrotron and inverse
Compton energy losses. They used the shear acceleration, leaky
box model to explain the observations of X-ray spectra in large-
scale FR II radio sources (e.g., 3C 273, C 403, 3C 17, Pictor A,
3C 111, and other sources).

Wang et al. (2023) carry out 3D MHD simulations of particle
acceleration in relativistic jet shear flows, with sufficient
resolution to investigate the formation of the spine-sheath
structure and the development of turbulence for a relativistic jet
propagating into a static cocoon. Different spine velocities to
match both FR type I and type II jets were investigated. The
simulations illustrate the growth and time development of the

Kelvin–Helmholtz instability (KHI; e.g., Ferrari et al. 1978;
Hardee 1979; Mizuno et al. 2007; Sironi et al. 2021) and
current-driven instabilities (CDI or kink instabilities; e.g.,
Lyubarskii 1999; Hardee 2007; Mizuno et al. 2014) in the jet.
In general, CDI dominates in high-magnetization jets with
toroidal magnetic fields, and KHI dominates in low-
magnetization jets. Wang et al. (2023) find that a sheath is
generated on the interface of the spine and the cocoon as a
result of the KHI. The large-scale velocity in the sheath is close
to linear.
Seo et al. (2023) carry out relativistic hydrodynamic

simulations of FR II radio jets and assess the relative
importance of the different mechanisms using Monte Carlo
simulations for the particle acceleration.
In this paper, we develop the model of Webb et al. (2020) for

energetic particle acceleration by cosmic-ray viscosity in
relativistic jets in which the jet velocity has the form of
u= u(r)ez along the jet axis (the z-axis), where u(r) is a
monotonically decreasing function of cylindrical radius r about
the jet axis. The particles are energized by scattering back and
forth across the shear flow, in the region 0< r< r2, where r2 is
the outer radius of the shear flow. The particles also scatter in
r> r2, but undergo no changes in energy in the r> r2 region.
This leads to a Dirichlet–Von Neumann boundary value
problem for the energetic particle distribution function f0(r, p)
at the edge of the jet at r= r2 (Webb et al. 2020). The solutions
are obtained for a scattering mean free time of the form
t t= a( )p p0 0 in the region 0< r< r2, and t =
t a( ) ( )p p r r s
0 0 2 in the outer region r> r2 (here, s is a positive
constant).
The flow velocity profile for β(r)= u(r)/c in the shear flow

region 0< r< r2 has the form

⎜ ⎟
⎛
⎝

⎞
⎠

b x x x x x= = - -( ) ( ) ( ) ( )r r
r

r
tanh , , 1

k

0 0 2
2

where k> 0 is a positive constant, ξ0= ξ(r= 0), and ξ2= ξ(r2).
In the region r> r2 we set b = const. The simplest choice is to
set β= β2. ξ is known as the relativistic rapidity of the flow.
More generally, it is possible to obtain other solution profiles

for u(r) or β(r), but there are constraints imposed on τ(r, p)
depending on u(r) in that case (see Webb et al. 2020). Rieger &
Duffy (2022) have investigated the spectral slope of the
accelerated particles in relativistic shear flows for a variety of
fluid velocity profiles both by semi-analytical and numerical
solutions of the cosmic-ray transport equation (which is an
elliptic partial differential equation in r and p). In the semi-
analytical approach, they use a leaky box model to describe the
spatial diffusive transport. They investigate convex velocity
profiles for k> 1, Gaussian velocity profiles (exponentially
decaying), and linear decreasing velocity profiles (for k= 1),
and the effect of the velocity profile u(r) on the spectral index
of shear accelerated particles.
Section 2 introduces the model of Webb et al. (2020) for the

steady-state transport equation of cosmic rays in a relativistic
shear flow. The boundary conditions at r= r2 are specified in
terms of a Dirichlet–Von Neumann boundary condition
connecting the particle transport in the shear-free flow in
r> r2 to the inner shear flow in 0< r< r2, where the particles
are energized by cosmic-ray viscosity. The cosmic-ray
continuity equation is written in conservation form, which
leads to the concept of cosmic-ray flow lines in (r, p) space.
This idea is further developed in Section 4.3.

2
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Section 3 provides the shear acceleration solution of Webb
et al. (2020) in which  ¥ ¢( )f f p,0 0 as r→∞ . The solution
for f0(r, p) has the form

ò= ¥ ¢ ¢ ¢
¥

( ) ( ) ( ) ( )f r p f p G r p p dp, , , ; , 20
0

0

where ¢( )G r p p, ; is the effective Green’s function, which
describes particle acceleration in 0< r< r2 and diffusive
particle transport with no changes in energy in r> r2.

In Section 4, ¢( )G r p p, ; is used to investigate the origin of
particles in the asymptotic spectrum as r→∞ , ¥ ¢( )f p,0 that
are observed at position r with momentum p. The probability
distribution y ¢( )r p p, ,p that particles observed at (r, p)
originated at r→∞with momentum ¢p is determined (see
Gleeson & Webb 1975, 1980, who studied the solar
modulation of galactic cosmic rays). Solutions for f0(r, p) for
boundary spectra ¥ ¢( )f p,0 are obtained using the convolution
integral (Equation (2)) for distributions ¥ ¢( )f p,0 consisting of
a negative power law in momentum at momenta ¢ >p pb.

¥ ¢( )f p,0 is continuous as p= pb and constant for
< ¢ <p p0 b. The solution for f0(r, p) splits into accelerated

particles with > ¢p p and decelerated particles with < ¢p p .
Section 4.3 determines cosmic-ray flow lines in (r, p) space.

In Section 5, observations and constraints on particle
acceleration in radio jets are discussed. The Hillas (1984)
constraints on particle acceleration, relativistic beaming in jets
(Forman 1970; Lind & Blandford 1985), numerical simulations
of particle acceleration in radio jets (e.g., Seo et al. 2023), and
the role of affine connection coefficients to describe particle
acceleration (e.g., Lemoine 2019) are discussed. Radio
galaxies, microquasars and nonthermal emissions and jets,
stellar mass, and supermassive black holes from mergers of
stellar-mass black holes are mentioned. Particle acceleration by
first-order Fermi mechanism at shocks, for example, at the head
shock where the jet impinges on the interstellar medium, at
helical shocks, at re-confinement shocks, the effect of stellar
ablation, stellar-mass black hole jets, and shear acceleration are
described.

The work of Webb et al. (2018, 2019, 2020) is extended in
this paper to include (i) the solutions of Webb et al. (2020) for
more general boundary spectra as r→∞. The convolution
Equation (2) gives the general solution, where f0→ f0(∞ , p)
as r→∞ . (ii) The probability distribution y ¢( )r p p, ,p that
particles at (r, p) originated at r→∞with momentum ¢p is
determined. For shear acceleration, y ¢( )r p p, ,p has both
accelerated particles with > ¢p p and decelerated particles
with < ¢p p (see Figure 8). The properties of the Green’s
function on the parameters and on ¢p p are investigated.
(iii) Solutions of the flow line differential equations,

=
á ñ
á ñ

( )


dr

dp

r

p
, 3

are determined, where á ñr and á ñp are determined by the
cosmic-ray continuity

¶
¶

á ñ +
¶
¶

á ñ =( ) ( ) ( ) 
r r

r r N
p

p N
1

0, 4

where N(r, p)dp= 4πp2f0(r, p)dp is the number density of
particles with momentum p in the momentum interval dp about
p. Flow lines are obtained for solutions for cases where

d - ¢( )f p p0 as r→∞ and for more general cases where

f0→ f0(∞ , p) as r→∞. (iv) The Hillas (1984) constraints on
the width and magnetic field strength of the jet required to
contain a UHECR with a given energy in the acceleration
region are described. The flow lines show how monoenergetic
particles with initial momentum ¢p as r→∞ split into
accelerated and decelerated particles. Flow lines for the case
of a cutoff power-law boundary spectrum (Equation (81)) are
obtained. In the latter case, the flow lines show particle energy
gains.
The main aim of the present paper is to explore the large-

scale implications of the acceleration of energetic charged
particles in radio-jet shear flows. In particular, the probability
y ¢( )r p p, ;p that particles observed at (r, p) originated from
r→∞with momentum ¢p determined for both monoenergetic
momentum spectra as r→∞ and for more general spectra

¥ ¢( )f p,0 (e.g., Figure 8). This allows one to determine the
mean value of the particle momentum á ¢ ñ( )p r p, and other
moments of y ¢( )r p p, ,p , as well as the mean particle
momentum changes á ¢ ñ -( )p r p p, in moving from r→∞ to
the observation point r. A second main contribution is the
determination of the cosmic-ray flow lines (Equation (3)) for
both monoenergetic spectra and more general spectra as
r→∞ (e.g., Figures 13–15).
It is important to note that our analysis does not deal with all

the complications that play a role in numerical fluid, PIC, or
kinetic simulations. For example, we do not delve into the role
of the magnetic field, KHIs, Rayleigh–Taylor instabilities, WI
(which may be thought of as two fluid beam instabilities), and
self-consistent wave or turbulence and particle interactions,
which can be addressed by PIC codes. The virtue of our
relatively simple mathematical approach is to reveal the gross
overall implications of particle transport and acceleration
(deceleration) in relativistic shear flows. The flow velocity
profile u= u(r)ez is assumed to be such that u(r) is a monotonic
decreasing function of r. In this case, there is a 1-1 map
between u and r in the shear acceleration region 0< r< r2. The
diffusion coefficient κ(r, p) depends on the fluid velocity
profile u(r) for 0< r< r2.
Appendix A derives the solution (Equation (2)) for f0(r, p).

The solution is derived using the Fourier transform of f0(r, p)
with respect to = ( )t pln , and uses the adjoint Green’s function
G ¢ ¢( )r p r p, ; , and Green’s formula. In Appendix A, we discuss
the asymptotic forms for ¢( )G r p p, ; in the limit as ¢ p p. The
solution (Equation (2)) for f0(r, p) was derived in Webb et al.
(2020) using a real Fourier–Bessel eigenfunction expansion.
Appendix B concerns the convergence of the eigenfunction
expansion and integral representation of the solution as
¢ p p, by using convergence criteria for large N, where N

is the number of terms in the series (e.g., Hardy 1946;
Bromwich 1947). This is useful in obtaining accurate
numerical solutions as ¢ p p, where the series converges
slowly. Appendix C addresses the inverse transport problem of
determining ¥ ¢( )f p,0 given the solution for f0(r, p) and

¢( )G r p p, ; at some fixed radius r. The solution for n¥ ¢¯ ( )f ,0 is
determined in Fourier transform space n¢, where n¢ is the
Fourier variable conjugate to ¢ = ¢( )t pln , and ¥ ¢( )f p,0 is then
determined using contour integration. Appendix D describes a
leaky box model of particle acceleration in relativistic jet shear
flows developed by Rieger & Duffy (2019), Webb et al. (2020),
and Wang et al. (2021). In Appendix D, g̃ denotes the
relativistic γ of the particle, and γ denotes the relativistic γ of

3
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the fluid velocity of the jet. The main result is an estimate of g̃
and total particle energy g= ˜E m c0 2 at which the systematic
particle energy gains due to shear acceleration balance the
particle energy losses. At this point g g=˜ max. The leaky box
model includes a source term of −f0/τesc representing the rate
of particle escape from the leaky box. For radio jets with a
characteristic width of ∼100 pc, and with a magnetic field of
10–30 μG, we obtain ~E 10 eVmax

15 for the electrons. The
existence of an energy or Lorentz gamma gmax occurs in models
with the turbulence power spectrum of the turbulence

µ -( ˜) ˜P k kxx
q in the inertial range, where 1< q< 2 and the

scattering mean free time t gµ a˜ , where α= 2− q. gmax does
not exist for the leaky box model for the case of Bohm
diffusion for the case of q= 1. Nontrivial solutions of the leaky
box model in terms of confluent hypergeometric functions were
obtained by Wang et al. (2021).

Section 6 concludes with a summary and discussion.

2. Model and Equations

The relativistic diffusive transport equation for cosmic rays
was derived by Webb (1989) and alternative derivations were
obtained by Achterberg & Norman (2018a, 2018b). A
simplified version of the transport equation was used by Webb
(1990) and Webb et al. (2018, 2019, 2020) to describe cosmic-
ray acceleration in relativistic radio-jet shear flows from Webb
et al. (2020), the steady-state diffusive cosmic-ray transport
equation for relativistic shear flows with u(r)= u(r)ez directed
along the axis of the jet reduced to the form

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

k t-
¶
¶

¶
¶

-
G ¶

¶
¶
¶

= ( )
r r

r
f

r p p
p

f

p
Q

1
, 5s0

2
4 0

where

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

g
b g

G = º ( )c d

dr

du

dr15 15
, 6s

2
4

2 4 2

is the viscous shear acceleration coefficient due to cosmic-ray
viscosity. Here,

g b b= - =-( ) ( ) ( )u r

c
1 , 72 1 2

are the relativistic gamma (γ) and Lorentz β= u(r)/c of the
flow, where c is the speed of light. For the case of
monoenergetic injection of particles with momentum p0 at
radius r1,

p
d d= - -( ) ( ) ( )Q

N

p r
p p r r

8
. 80

2
0
2

1
0 1

The transport equation (Equation (5)) applies for the shear flow
region 0< r< r2, where u= u(r)ez.

Outside the jet shear flow region in r> r2, there is no particle
acceleration due to cosmic-ray viscosity, and the transport
Equation (5) reduces to the diffusion equation

⎛
⎝

⎞
⎠

k-
¶
¶

¶
¶

= ( )
r r

r
f

r

1
0, 90

where we assume there are no particle sources in r> r2 at
finite r.

In Equations (5) and (9) we assume, for the sake of analytical
simplicity, that the energetic particle diffusion coefficient κ has

the form

k
t

=( ) ( )r p
c

,
3

, 10
2

where τ(r, p) is the particle scattering time. This approximation
is reasonable for relativistic particles with speeds of v≈ c, but
is not very good for nonrelativistic particles. For nonrelativistic
particles, a more acceptable form for the diffusion coefficient is

k
t

= ( )v

3
. 11

2

The scattering time τ(r, p) in the solutions for f0(r, p) obtained
by Webb et al. (2020) is assumed to have the form

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

t t= - + -
a

( ) ( ) ( ) ( )r p
p

p
H r r

r

r
H r r, , 12
s

0
0

2
2

2

where H(x) is the Heaviside step function. Solutions are also
possible for different forms for τ(r, p) than Equation 12, but the
model Equation (12) for τ(r, p) will be used in the present
paper.

2.1. Mixed Boundary Conditions

In this section, we briefly discuss the mixed Dirichlet–Von
Neumann boundary condition applied at the edge of the jet at
radius r= r2 used by Webb et al. (2020) in their model of
particle acceleration by cosmic-ray viscosity in relativistic jet
shear flows.
The general solution of the diffusive transport equation

(Equation (9)) in the region r> r2 has the form

ò k
=

¢
¢ ¢

+( ) ( )
( )

( ) ( )f r p C p
dr

r r p
D p,

,
, 13

r

r

0
2

where C(p) and D(p) are integration constants, and we assume
that the integral in Equation (13) is finite. By appropriate
choice of the integration constants (i.e., C(p) and D(p)), in
Equation (13) we obtain the solution for f0(r, p) in r� r2 as

⎜ ⎟
⎛
⎝

⎞
⎠

ò

k

k

= ¥ -

´
¶

¶
¢

¢ ¢
¥

( ) ( ) ( )
( )

( )
( )

f r p f p r r p

f r p

r

dr

r r p

, , ,

,

,
. 14

r

0 0 2 2

0 2

Setting r= r2 in Equation (14) gives the boundary condition at
r= r2 as

⎜ ⎟
⎛
⎝

⎞
⎠

ò

k

k

+
¶

¶
¢

¢ ¢
= ¥

¥

( ) ( )
( )

( )
( ) ( )

f r p r r p
f r p

r

dr

r r p
f p

, ,
,

,
, . 15

r

0 2 2 2
0 2

0
2

The boundary condition (Equation (15)) is a mixed Dirichlet–
Von Neumann boundary condition on the solution for f0(r, p)
describing particle acceleration by shear in the jet. In Webb
et al. (2018, 2019) it was assumed that κ→∞ in the region
r> r2. In that case, the boundary condition becomes a Dirichlet
boundary condition in which f0 is specified on the boundary at
r= r2. Webb et al. (2020) showed that the modified boundary
condition Equation (15) gives rise to harder accelerated particle
spectra at momenta p? p0 because particles that have exited
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the system at r= r2 could reenter the inner region and become
further accelerated by the shear flow in r< r2.

Taking κ(r, p) in r> r2 of the form

⎜ ⎟
⎛
⎝

⎞
⎠

k k= >( ) ( ) ( ) ( )r p p
r

r
s, , 0 , 16

s

1
2

the solution (Equation (14)) takes the form
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The boundary condition (Equation(15)) then becomes

+
¶

¶
= ¥( )

( )
( ) ( )f r p

r

s
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r
f p,

,
, . 180 2

2 0 2
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This is the mixed Dirichlet–Von Neumann boundary condition
that was applied by Webb et al. (2020) at r= r2 in their study
of particle acceleration by cosmic-ray viscosity in relativistic
radio-jet shear flows. This boundary condition is applied to the
solution for f0(r, p) in 0< r< r2.

2.2. Boundary Condition as r→ 0

The boundary condition on the solution for f0(r, p) as r→ 0
(see Webb et al. 2020) is

⎛
⎝

⎞
⎠

p k= -
¶
¶

  ( )rS r p
f

r
r4 0 as 0. 19d

2 0

This corresponds to no particle sources as r→ 0.

2.3. Cosmic-Ray Continuity Equation Perspective

Note that the viscous energization term in the transport
Equation (5) can be written in the Fokker–Planck form
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(Earl et al. 1988; Webb 1989; Achterberg & Norman 2018b),
where

t
D
D

º = G
( ) ( )p

t
D p

2
, 21pp s

2
2

is the second-order Fermi acceleration momentum dispersion
coefficient due to cosmic-ray viscosity, and

t
D
D

=
¶
¶
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¶
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( ) ( ) ( )p
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p p
p D

1 1
, 22s pp2
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is the systematic acceleration coefficient.
Introducing

p= ( )N p f4 , 232
0

for the number density of particles in the momentum interval
(p, p+ dp) about p, the transport equation (Equation (5)) can be
written in the form
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Equation (24) can be written more formally in the conservation
form

p á ñ +
¶
¶

á ñ =· ( ) ( ) ( ) r N
p

p N p Q4 , 25c c
2

where

ká ñ = = -
¶
¶

( )r S eN
N

r
, 26c d r

is the radial diffusive particle flux in cylindrical coordinates,
and

ká ñ = -
¶
¶

( )r N

r

ln
, 27c

is the mean spatial flow velocity in (r, p)-space. Similarly,

p t pá ñ = - G
¶
¶

º -
¶
¶

( )p N p
f

p
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p
4 4 , 28c s pp

4 0 2 0

defines the mean rate of change of momentum á ñp c for the
cosmic-ray continuity equation (Equation (25)), where the
subscript c denotes the continuity equation. Equation (25)
describes the balance between particle spatial transport due to
changes in radial diffusion and particle momentum due to shear
acceleration and cosmic-ray viscosity.
The mean rate of change of momentum á ñp c from

Equation (28) may be written in the form

gá ñ = -
¶
¶

=
( )

( )p
D

p

f

p

D

p

ln

ln
, 29c

pp pp
f

0

where

g = -
¶
¶

( )
f

p

ln

ln
, 30f

0

is the local momentum space spectral index for the cosmic-ray
distribution function f0. The rate á ñp c clearly depends both on
the particle momentum space diffusion coefficient Dpp as well
as on the shape of the particle momentum spectrum via the
spectral exponent γf.
In previous papers (e.g., Rieger & Duffy 2004, 2005a,

2005b; Webb et al. 2018, 2019, 2020), the rate of the
systematic change of momentum 〈Δp〉/Δt has been taken as
the representative rate of change of particle momentum, which
clearly gives a bad approximation in cases where |γf|? 1 (e.g.,
near a cutoff in the spectrum) and also in cases where |γf|= 1
where the spectrum is nearly flat.
Note that á ñp c is negative for f0 an increasing function of p

and is positive for f0 a decreasing function of p (i.e., for γf> 0).
Thus, if f0 is a Gaussian in p about p= p0, then the particles
with p< p0 are decelerated and the particles with p> p0 are
accelerated. In the limit that the width of the Gaussian
decreases to zero, but the area under the Gaussian is preserved,
i.e., for f0= δ(p− p0) and d¶ ¶ = ¢ -( )f p p po0 is the
derivative of a delta function then the profile of á ñp c resembles
an N-wave in momentum space, with á ñ <p 0c for p< p0 and
á ñ >p 0c for p> p0.

This means that the use of 〈Δp〉/Δt to estimate the particle
acceleration time is in general difficult to use, unless there is a
good estimate for γf. In particular the use of 〈Δp〉/Δt to predict
the time to accelerate particles from momentum p= p0 up to
momentum p gives a formula in which the particles attain an
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infinite energy in a finite time (e.g., Webb et al. 2019, 2020)
which clearly violates causality. Note that the γf factor is
important at late times after a diffusive equilibrium has been
established. Corrections to the acceleration time will also occur
at early times, when telegrapher equation inertial times should
be taken into account (Webb et al. 2018, 2019, 2020).
In more general models including energy losses of particles

due to synchrotron losses and second-order Fermi acceleration
á ñp c in Equations (25), (28), and (29) is replaced by the formula

gá ñ = - = + ( )p
D

p
D p D D D, , 31c

pp
f s pp pp pp

A2 sh

where Dpp
sh is the momentum dispersion coefficient

(Equation (21)) due to cosmic-ray viscosity and Dpp
A is the

corresponding momentum dispersion coefficient due Alfvénic
turbulence or waves. A simple formula for Dpp

A is

k
= ( )D

p V

9
, 32pp

A
2

A
2

for the case of equal intensities of backward and forward
propagating Alfvén waves, where VA is the Alfvén speed (e.g.,
Skilling 1975). The term

á ñ = - ( )p D p , 33s s
2

represents particle momentum losses due to synchrotron losses
(e.g., Blandford 1979; Webb et al. 1984). A similar formula to
Equation (33) also applies to particle energy losses due to the
inverse Compton effect, which has the same momentum
dependence as synchrotron losses. The coefficient Ds for
synchrotron losses has the form

t
t

p
s

= = ( )D
m c

m c

B

1
,

6
. 34s

r
r

0

0

T
2

Here, m0 is the rest mass of the particle species of interest (e.g.,
m0=me for electrons and m0=mp for protons), τr is the
timescale of synchrotron loss, B is the magnetic field strength,
and σT is the Thomson cross section.

The basic model in the present paper is mainly concentrated
on the steady-state solutions of Equation (5) describing changes
in particle momentum due to cosmic-ray viscosity in a
cylindrically symmetric model of radio-jet shear flows. A
convenient way to visualize the particle transport and
acceleration in (r, p) space is by means of integration of the
flow line differential equations

=
á ñ
á ñ

( )


dr

dp

r

p
, 35c

c

where á ñr c and á ñp c are given by Equations (27) and (29).

3. Solutions for f0(r, p) in Radio-jet Shear Flows

From Webb et al. (2020), the distribution function solution
of the transport equation for f0(r, p), satisfying Equation (5) for
0< r< r2 and satisfying the diffusion equation (Equation (9))
in the shear-free region r> r2 is given by an application of
Green’s formula (90) of Webb et al. (2020). The solutions for
shear accelerated particles depend on carrying out transforma-
tions of the independent variables (r, p) of the system, to more
convenient variables, that lead to analytical solutions of the
viscous shear and diffusive transport equation (Equation (5))

for f0(r, p). We use the variables
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Here, it is assumed that the fluid velocity parameter β= u(r)/c
is a monotonic decreasing function of cylindrical radius r about
the axis of the jet. In Equation (36), β02 is the relativistic
relative velocity of the two velocities β0 and β2, where β0 is the
value of β(r) at r= 0 on the axis of the jet, and β2 is the value
of β(r) at the edge of the shear flow region at r= r2. The
variable ξ(r) in Equation (36) is the relativistic rapidity of the
flow β= β(r). The scattering time τ(r, p) used in the model has
the functional form (Equation (12)) in which there is a change
in the radial dependence of τ(r, p) across the boundary
at r= r2.

Using the variables η= η(r) and ¢( )T p p, defined in
Equation (36) the solution for f0(r, p) of the transport equation
(Equation (5)) in the shear flow region 0< r< r2, and in the
shear-free flow region r> r2, where f0 satisfies the diffusion
equation (Equation (9)) and satisfying the boundary conditions
(Equation (18)) at r= r2 and the zero source boundary
condition (Equation (19)) at r= 0, Webb et al. (2020) obtained
the solution for f0(r, p) in the region 0< r� r2 of the form

ò= ¥ ¢ ¢ ¢
¥

( ) ( ) ( ) ( )f r p f p G r p p dp, , , ; , 370
0

0

where ¢( )G r p p, ; is the appropriate Green’s function of the
system discussed in Equation (38) et seq., below and also in
Appendix A.
(i) Case ò≠ 0
Consider the case where the particles undergo diffusion and

scattering in the region r> r2 outside the shear flow
energization region. In this case, the parameter ò= k/s≠ 0.
The solution for f0(r, p) for r� r2 is given by Equation (17).
Using the boundary condition (Equation (18)), one can rewrite
Equation (17) in the form
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The solution (Equation (38)) can be written as the convolution
of ¥ ¢( )f p,0 and ¢( )G r p p, ; in the form (Equation (37)), where
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where ¢( )G r p p, ;2 can be determined from Equation (46) or
(47). Notice that Equation (39) consists of a singular Dirac
delta function component proportional to d - ¢( )p p , represent-
ing particles with momentum = ¢p p that have not penetrated
the shear flow region 0< r< r2, plus the Green’s function term

¢( )( )G r p p r r, ; s
2 2 , which represents particles that have

scattered both in 0< r< r2 and in r> r2. This latter component
of f0(r, p) in r> r2 decays as ( )r r s

2 and goes to zero as
r→∞ . The non-singular term ¢( )( )G r p p r r, ; s

2 2 in
Equation (39) consists of both accelerated particles with
> ¢p p and decelerated particles with < ¢p p .
(ii) Case ò= 0 and/or ò→ 0
In the special case that ò= k/s→ 0 or for ò= 0, κ2(r,

p)→∞ in r> r2. In this case, there is no particle scattering in
r> r2, and hence,

=( ) ( ) ( )f r p f r p r r, , in . 400 0 2 2

The boundary condition at r= r2 implies that outgoing
particles from within 0< r< r2 free escape the inner shear
flow region and never return after they cross the boundary at
r= r2 because there is no scattering in r> r2 (i.e., κ→∞ in
r> r2). In this case, f0(r2, p)= f0(∞ , p) and ¢( )G r p p, ; is
given by

d¢ = - ¢( ) ( ) ( )G r p p p p r r, ; for . 412

These features of the ò= 0 solution can be verified by letting
ò→ 0 in the general solution (Equations (37)–(39)).

3.1. Solutions for 0 < r� r2

The Green’s function ¢( )G r p p, ; in Equation (37) in the
shear flow region 0< r� r2 has the form
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where the {λn} and the {jn} satisfy the eigenvalue equation

l h= - = = ¼( ) ( )
( )

j J j j J j n, 0, 1, 2, 3, .

43
n n n n n2 0 1

The parameters {χn} in Equation (42) are given by

c l h= + º +( ) ( ) ( )a a j5 5 . 44n n n
2 2 1 2 2 2

2
2 1 2

In the limit as p→∞ , ~ m- ¥G p , where

m h= + +¥ ( ) ( )a a j5 , 452
1
2

2
2 1 2

which is the spectral index of viscous shear accelerated
particles obtained by Webb et al. (2020). In the limit as ò→ 0
(weak scattering in r> r2), j1 = 2.4048, which corresponds to
the first zero of J0(x). This limit corresponds to no scattering in
r> r2, which leads to relatively soft accelerated spectra and
weak particle acceleration. In the opposite limit ò→∞ , j1→ 0
(see, e.g., Figure 2 of Webb et al. 2020), and
μ∞→ 2a= (3+ α), which is the spectral index of viscous
shear accelerated particles obtained by Berezhko (1982) and
Rieger & Duffy (2006).

Alternative forms for ¢( )G r p p, ; equivalent to Equation (42)
can be obtained by using the eigenvalue equation

(Equation (43)), for example,
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which is useful in evaluating the solution for G in the limit as
ò→ 0. This limit corresponds to the case where particles free
escape the system in r> r2 (i.e., κ→∞ in r> r2). One can
also write the solution (Equation (42)) for G in the form

å
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which is useful for ò? 1. This corresponds to the case of
strong scattering in r> r2. In this case, it is difficult for
particles to penetrate to r= r2 from r→∞ . A hard momentum
spectrum of particles is accelerated by the shear flow with
μ∞→ 2a= (3+ α) (because j1→ 0 in this limit). However,
the particle number density is very small at r≈ r2.

3.2. Characteristics of G(r, p; p′)

Below we present sample plots of ¢( )pG r p p, ; versus ¢p p,
which are useful in describing the acceleration, deceleration,
and redistribution of energetic particles in the shear flow, in
which particles injected with momentum ¢p at r→∞ end up at
position r with momentum p. These results are analogous to
plots of ¢( )pG r p p, ; versus ¢p p studied by Gleeson & Webb
(1975) in describing the solar modulation of galactic cosmic
rays in the solar cavity, for models of cosmic-ray transport in
the solar wind, in which the effect of particle energization at the
solar wind termination shock was neglected.
There are some delicate numerical issues in computing

¢( )pG r p p, ; versus ¢p p for momenta ~ ¢p p , where the
convergence of the eigenfunction expansions (Equations (42)–
(47)) is problematical. A discussion of these issues is provided
in Appendix A. A description of the convergence properties of
the Fourier–Bessel series solutions (Equations (42)–(47)) and
techniques to obtain accurate numerical solutions is provided in
Appendix B. Our main purpose in this section is to explore the
properties of ¢( )G r p p, , on the physical parameters. Numerical
details such as the convergence characteristics of the Fourier–
Bessel expansions for ¢( )G r p p, ; are discussed in Appendices
A and B. The slow speed of convergence of the Fourier–Bessel
series for ¢ ~p p is implemented using the Van Wijngaarden
transformation (van Wijngaarden 1953).
Figure 1 shows some characteristics of ¢( )pG r p p, ; as a

function of ¢p p for the case of

b b
a

= = =
= = = = ( )

r r
k s

0.5, 0, 0.2 ,
1, 1, and 1 3. 48

0 2 2

The parameter α= 1/3 corresponds to a Kolmogorov power-
law spectrum of magnetic field fluctuations with power
spectrum Pxx(k)∝ k−5/3 (e.g., Jokipii 1966, 1971) for which
the particle parallel diffusion coefficient κ∥∝ p2− q= p1/3 for
q= 5/3.
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The figure shows that the particles at (r, p) split into two
groups, namely, (i) accelerated particles with < ¢ <p p0 1,
i.e., > ¢p p and (ii) decelerated particles with ¢ >p p 1 (i.e.,
< ¢p p ). Detailed inspection of the solution for ¢( )pG r p p, ;

versus ¢p p in the expanded inset for < ¢ <p p0.95 1.08
shows that G has a single maximum at roughly ¢ =p p 1.02.

From Equation (42), the dominant term in the series
¢( )pG r p p, ; as ¢  ¥p p is the n= 1 term, which implies
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Similarly,
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where a= (3+ α)/2, and μ∞ is the power-law spectral index
of the accelerated particles as p→∞ . The results
(Equations (49)–(52)) are evident in Figure 1.

Figure 2 show plots of ¢( )pG r p p, , versus ¢p p for different
radial positions r/r2= 0, 0.6, 1.0, and 2.0. The inset shows plot
of ¢( )pG r p p, ; near ¢ ~p p 1 ( < ¢ <p p0.9 1.1). The main

points to note are (i) ¢( )pG r p p, ; has a single maximum as a
function of ¢p p; (ii) for the case of r= r2, pG→∞ as
¢ p p 1; and (iii) pG is a positive power law in ¢p p for
¢ <p p 1 and a negative power law for ¢ >p p 1. If one

interprets the figure with ¢p fixed, then the accelerated particles
correspond to the region ¢ <p p 1 and the decelerated particles
correspond to the region ¢ >p p 1. In Figure 2, we have
included a curve for r/r2= 2, which corresponds to the region
outside the shear flow region 0< r< r2. The figure shows the
second term in Equation (39) (i.e., ¢( )( )G r p p r r, ; s

2 2 ) and
does not include the d - ¢( )p p term in Equation (39). The
second term in Equation (43) vanishes as r→∞ and the first
term has the same spectral shape as that at r= r2.
Panel (a) in Figure 3 shows how the solution for

¢( )pG r p p, ; varies with ò, for ò= 0.5, 1, 2, 5, 10, and 100
for the case of r/r2= 0.6, s= 1, α= 1/3, β0= 0.5, and β2= 0.
The main point to note is the spectral hardening of the
accelerated particles as ò increases (see Webb et al. 2020).
Again recall that the accelerated particles in Figure 3
correspond to the region ¢ <p p 1. Note that the parameter k
in the solution is given by the relation k= òs.
Panel (b) in Figure 3 illustrates essentially the same features

of the solution for ¢( )G r p p, ; as panel (a), namely, the
hardening of the asymptotic momentum spectrum of the
particles at large p for a fixed ¢p (i.e., the particles with
¢ <p p 1 in the plot). However, in panel (b), k is fixed at

k= 10, and the different values of s= k/ò correspond to
varying ò. Recall from Webb et al. (2020) that increasing the
value of ò corresponds to increasing the role of particle
scattering outside the shear layer in the region r> r2.
Figure 4 shows plots of ¢( )pG r p p, ; versus ¢p p for a range

of β0:

b = ( )0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. 530

Figure 1. The blue curve shows the Green’s function in Equation (42) (or equivalently, Equation (46) or (47) for ò = 1. Other parameters used here are listed in
Equation (48) and p is chosen to be 1 as an example. The black dotted and dashed lines represent the asymptotic power-law spectra given by Equations (49) and (51),
respectively. And the vertical black solid line at ¢ =p p separates particles into the accelerated (left) and decelerated (right) groups. We see good agreement between
the exact and asymptotic solutions.
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The other parameters are k= s= 1 (so that ò= 1), α= 1/3 and
β2= 0. The main point to note is the hardening of the
accelerated particle spectrum as β0 increases (i.e., for particles
with < ¢ <p p0 1). Similarly, the spectrum flattens with
increasing β0 for the decelerated particles with ¢ >p p 1.

4. The Origin of Particles at (r, p)

The Green’s function ¢( )G r p p, ; can be used to determine
where particles observed at (r, p) originate in the asymptotic
momentum spectrum ¥ ¢( )f p,0 (see Gleeson & Webb 1975 for
a similar investigation of cosmic-ray modulation in the solar
wind, where particles observed at Earth say, at (r, p), originate
with momentum ¢p as r→∞, where r corresponds to
heliocentric radius).

Following the approach of Gleeson & Webb (1975, 1980),
we specify the asymptotic spectrum as r→∞ , which we refer
to as the extragalactic spectrum in the present exposition. We
describe the particle spectrum by the differential number
density UT as the number of particles with kinetic energy T in
the range of (T, T+ dT) per unit volume, which is related to the
differential number density of particles with momentum p
(denoted by Up) and the differential intensity jT by the formulas

p p= = = = ( ) ( )U dT U dp p f dp j p f vU4 , 4 . 54T p T T
2
0

2
0

Thus,

p
= = ( )U

p f

v
j p f

4
, , 55T T

2
0 2

0

gives UT and jT per unit of kinetic energy T in terms of the
distribution function f0(r, p) at cylindrical radius r and
momentum p. From relativistic kinematics and mechanics,

the total particle energy E is given by

= + = +( ) ( )E p c E T E , 562 2
0
2 1 2

0

where E0=m0c
2 is the particle rest mass energy.

Figure 5 shows the cosmic-ray spectrum observed by air-
shower array experiments. We take ¥ ¢( )f p,0 , which in part
resembles this spectrum.
In the solution (Equation (2)) for f0(r, p), we need to specify

the extragalactic spectrum

p
¥ ¢ =

¥ ¢
¢

= ¢ ¥ ¢( )
( )

( ) ( )U T
p f p

v
j p f p,

4 ,
or , . 57T T

2
0 2

0

Before studying realistic and semi-realistic cases, it is
instructive to study idealized schematic examples, which
illustrate the principles involved. First note that the solution
for f0(r, p) in Equation (2) can be split up into accelerated ( fA)
and decelerated ( fD) particles

= +( ) ( ) ( ) ( )f r p f r p f r p, , , , 58A D0

where

ò

ò

= ¥ ¢ ¢ ¢

= ¥ ¢ ¢ ¢
¥

( ) ( ) ( )

( ) ( ) ( ) ( )

f r p f p G r p p dp

f r p f p G r p p dp

, , , ; ,

, , , ; . 59

A
p

D p

0 0

0

We use the notation

¢ = ¢ - ¢
¢ = ¢ ¢ -

( ) ( ) ( )
( ) ( ) ( ) ( )

G r p p G r p p H p p

G r p p G r p p H p p

, ; , ; ,

, ; , ; , 60
A

D

where H(x) is the Heaviside step function, which splits
¢( )G r p p, ; up into accelerated (GA) and decelerated (GD)

particles. We use the notation

¥ ¢ = ¥ ¢ ¢ = ¢ =ˆ ( ) ( ) ( ) ( ) ( )f t f p t p t p, , , ln , and ln . 610 0

Figure 2. Green’s functions in Equation (46) observed at different locations: r/r2 = 0, 0.6, 1.0, and 2.0 (i.e., out of the jet), which are represented by the blue, red,
green, and violet solid curves, respectively. Again, the asymptotic spectra for accelerated and decelerated particles are shown in the black dashed and dotted lines,
respectively. See the text for more details.
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Using Equation (46) for ¢( )G r p p, ; , we obtain

å
h

c¢ = - + - - ¢
=

¥

( ) ( ) [ [ ( )]( )]

( )

G r p p
p

A r a t t, ;
5 1

exp 1 ,

62

A
n

n n
2
2

1

å
h

c¢ = - + - ¢ -
=

¥

( ) ( ) [ [ ( )]( )]

( )

G r p p
p

A r a t t, ;
5 1

exp 1

63

D
n

n n
2
2

1

where

l h
c

c h=
+

= +( )
( )

( )[ ]
( ) ( )


A r

j J

J j j
a j

1
, 5 . 64n

n n

n n n
n n

0

1
2 2

2 2
2
2 1 2

Using Equations (59)–(64) in Equation (58), we obtain the
formulae

å

å

h

h

= W

= W

=

¥

=

¥

( ) ( ) ( )

( ) ( ) ( ) ( )

f r p A r p a

f r p A r p a

,
5

, ,

,
5

, , 65

A
n

n n
A

D
n

n n
D

2
2

1

2
2

1

where

ò
ò

c

c

W = ¥ ¢ - + - ¢ ¢

W = ¥ ¢ - - ¢ - ¢

-¥
¥

( ) ˆ ( ) [ ( )( )]

( ) ˆ ( ) [ ( )( )]

( )

p a f t a t t dt

p a f t a t t dt

, , exp ,

, , exp .

66

n
A

t

n

n
D

t
n

0

0

4.1. Particle Redistribution Functions ψT(r, T, T′) and ψp(r,
p, p′)

If the asymptotic particle momentum spectrum as ¢  ¥r is
¥ ¢( )f p,0 , then there are

p ¢ ¥ ¢ ¢ ¢( ) ( ) ( )p f p G r p p dp dp4 , , ; 672
0

particles per unit volume at position r originating in the
momentum range of ¢ ¢ + ¢( )p p dp, as ¢  ¥r . The fraction of
particles at (r, p) that originated in ¢dp about ¢p as ¢  ¥r is
given by y ¢ ¢( )r p p dp, ;p , where

ò
y ¢ =

¥ ¢ ¢

¥ ¢ ¢ ¢

º
¥ ¢ ¢

¥( )
( ) ( )
( ) ( )

( ) ( )
( )

( )

r p p
f p G r p p

f p G r p p dp

f p G r p p

f r p

, ;
, , ;

, , ;

, , ;

,
. 68

p
0

0 0

0

0

Note that y ¢( )r p p, ;p is a probability distribution function and
that

ò y ¢ ¢ =
¥

( ) ( )r p p dp, ; 1. 69p
0

If one uses kinetic energy ¢T instead of momentum ¢p in the
above analysis, then the distribution y ¢T is given by

y y y¢ = ¢
¢
¢
=

¢
¢( ) ( ) ( ) ( )r T T r p p

dp

dT v
r p p, ; , ;

1
, ; . 70T p p

The mean values of ¢T and ¢p for fixed (r, p), are given by

ò
ò

y

y

á ¢ ñ = ¢ ¢ ¢

á ¢ ñ = ¢ ¢ ¢

¥

¥

( ) ( )

( ) ( ) ( )

p r p p r p p dp

T r T T r T T dT

, , ; ,

, , ; . 71

p

T

0

0

Note that á ¢ ñ( )p r p, and á ¢ ñ( )T r T, depend on both r and p.
However, in applications of Equation (71) it is simplest to take
r as a constant, in which case á ¢ñp and á ¢ñT are functions of p or
T and r is a constant parameter. This was the approach taken by
Gleeson & Webb (1975) in their study of cosmic-ray
modulation in the heliosphere.
The mean value á ¢ ñ( )p r p, for particles observed with

momentum p at radius r using Equation (71) can be written

Figure 3. Panel (a) Green’s functions (Equation (46)) for different ò for a fixed spatial dependence on τ outside of the jet (i.e., s = 1, see Equation (12)); Panel (b) the
same as panel (a) but with different s and a fixed spatial dependence on the jet profile (i.e., k = 10, see Equation (36)).
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in the form

ò

ò
á ¢ ñ =

¢ ¥ ¢ ¢ ¢

¥ ¢ ¢ ¢
=

¥

¥( )
( ) ( )

( ) ( )
( )p r p

p f p G r p p dp

f p G r p p dp

f

f
,

, , ;

, , ;
, 720 0

0 0

1

0

where

ò= ¢ ¥ ¢ ¢ ¢
¥

( ) ( ) ( )f p f p G r p p dp, , ; , 731
0

0

ò= ¥ ¢ ¢ ¢
¥

( ) ( ) ( )f f p G r p p dp, , ; . 740
0

0

In the shear flow region 0< r< r2, use of Equations (58)–
(66) and similar results for f1 we obtain

å

å

h

h

= W + W

= W + + W +

=

¥

=

¥

( ) ( )[ ( ) ( )]

( ) ( )[ ( ) ( )]

( )

f r p A r p a p a

f r p
p

A r p a p a

,
5

, , ,

.
5

, 1 , 1 ,

75

n n
A

n
D

n
n n

A
n
D

0
2
2
n 1

1
2
2

1

for the zeroth and first moments in Equations (73) and (74).
Using Equations (73)–(75) gives

å

á ¢ñ
=

å W + + W +

W + W

=
¥

=

¥
( )[ ( ) ( )]

( )[ ( ) ( )]
( )p

p

A r p a p a

A r p a p a

, 1 , 1

, ,
. 76n n n

A
n
D

n
n n

A
n
D

1

1

Similarly, one can determine higher-order moments of ψp

with respect to ¢p . For example, á ¢ ñp 2 may be written in the
form

á ¢ ñ
= =

å W + + W +

å W + W
=

¥

=
¥

( )[ ( ) ( )]
( )[ ( ) ( )]

( )

p

p

f

f

A r p a p a

A r p a p a

, 2 , 2

, ,
.

77

n n n
A

n
D

n n n
A

n
D

2

2
2

0

1

1

One can also use Equations (76) and (77) to compute the
standard deviation of y ¢( )r p p, ;p , namely, s = á ¢ ñ - á ¢ñ( )p pp

2 2 1 2.

In the region r> r2 we find

⎡
⎣

⎛
⎝

⎞
⎠
⎤
⎦

⎛
⎝

⎞
⎠

= ¥ - +( ) ( ) ( ) ( )f r p pf p
r

r
f r p

r

r
, , 1 , , 78

s s

1 0
2

1 2
2

where

ò= ¢ ¥ ¢ ¢ ¢
¥

( ) ( ) ( ) ( )f r p p f p G r p p dp, , , ; , 791 2
0

0 2

ò= ¥ ¢ ¢ ¢
¥

( ) ( ) ( ) ( )f r p f p G r p p dp, , , ; . 800 2
0

0 2

Equations (78)–(80) can be used to determine á ¢ñ =p f f1 0 in
the region r> r2. Similarly, it is possible to calculate á ¢ ñp 2 and
s = á ¢ ñ - á ¢ñp p2 2 2 by similar methods.

4.2. Examples

As a simple example consider the case where ¥ ¢( )f p,0
consists of a negative power law in ¢p for ¢ >p pb and is
constant for < ¢ <p p0 b, i.e.,

¥ ¢ = - ¢ + ¢ ¢ -g- +( ) [ ( ) ¯ ( )] ( )( )f p C H p p p H p p, , 81b b0 1
2s

where C1, pb, and γs are constants. Here, ¢ = ¢p̄ p pb and
=p̄ p pb and the subscript b refers to the bend in the spectrum

at p= pb.
For the spectrum (Equation (81)) for ¥ ¢( )f p,0 ,

Equation (66) gives

⎧
⎨⎩c

c g

W =
+

- + -

+
+ - +

´ - -

c

g c

- +

- + - +

( ) ( ( ) ( ¯ ) ( )

[ ( )]
[( ¯ ) ( ¯ ) ] ( )} ( )

( )

( ) ( )

p a C
a
H p p p H p p

a

p p H p p

,
1

1

2

, 82

n
A

n
b

a
b

n s

a
b

1

2

n

s n

Figure 4. Green’s functions in Equation (46) with different central jet speed β0. See the text for more details.
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⎧
⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

c g

c

g c

W =
+ + -

+
-

- -

+
+ + -

-

c

c

g

-

-

- +

( ) ( ¯ )

[ ( ¯ ) ] ( )

( ¯ ) ( ) ( )

( )

( )

( )

p a C
a
p

a
p H p p

p

a
H p p

,
1

2

1
1

2
. 83

n
D

n s

a

n

a
b

s n
b

1

2

n

n

s

The above solutions for W ( )p a,n
A and W ( )p a,n

D assume that
there are no resonant denominators in Equations (82) and (83).
For example, if γs+ 2= χ1+ a, then one needs to use
l’Hôpital’s rule to calculate W ( )pA

1 , in which case we obtain

⎡
⎣⎢

⎤
⎦⎥

c
W =

+
- + -

+ -

c

c

- +

- +

( ) [ ( ) ( ¯ ) ( )]

( ¯ ) ( ¯ ) ( ) ( )

( )

( )

p a C
a
H p p p H p p

p p H p p

,
1

ln . 84

A
b

a
b

a
b

1 1
1

1

1

Because χ1+ a= γs+ 2 it follows that one produces a
modified power-law solution at large p̄ consisting of the
original power lawµ g- +¯ ( )p 2s plus a further term proportional to

g- +( ¯) ( ¯)( )p pln2s . A similar resonant phenomenon occurs in
diffusive shock acceleration (DSA) of energetic particles at
astrophysical shocks, when the shock runs over a preexisting
power-law spectrum of seed particles with µ m-f p0

c, which
have the characteristic spectral index of DSA, namely,
μc= 3rc/(rc− 1), where rc is the shock compression ratio
(e.g., Axford 1981, 1994; Drury 1983; Forman & Webb 1985).
In the latter case, the accelerated spectrum of diffusive shock
accelerated particles has a spectrum with µ m- ( )f p pln0

c as
p→∞ (e.g., Axford 1981; Forman & Webb 1985).

It is instructive to note in the solution for f0(r, p) in
Equation (75) that the nth term in the series (Equation (75)) for
f0 may be written in the form

W + W = -

+ -

( )[ ( ) ( )] ( ) ( )
( ) ( )

( )

( )

( )

A r p a p a T r p a H p p

T r p a H p p

, , , ,

, , .

85

n n
A

n
D

n b

n b

1

2

Asymptotics as  ¥p̄
Our main interest here is the solution for f0(r, p) for p> pb

and in particular the form of the solution for p→∞ , which is
described by ( )( )T r p a, ,n

1 , namely,

= +c g- + - +[ ( )( ¯ ) ( )( ¯ ) ] ( )( ) ( ) ( ) ( ) ( )T C S r a p S r a p, , , 86n n
a

n
1

1
1 2 2n s

where

g
c g c

c
g c g c

=
+

+ + - +

=
-

+ - + + + -

( ) ( ) ( )
( )[ ( )]

( )
( )

[ ( )]( )
( )

( )

( )

S r a
A r

a a

S r a
A r

a a

,
2

2
,

,
2

2 2
. 87

n
s n

n s n

n
n n

s n s n

1

2

One can also write down expressions for ( )( )T r p a, ,n
2 as a

constant plus a positive power-law component µ c -( ¯)( )p an .
In the limit as  ¥p̄ , the asymptotic spectral index μ∞ for

f0(r, p) is given by the dominant n= 1 term in Equation (85).
Thus,

m c g= + +¥ ( ) ( )amin , 2 . 88s1

In the examples below, we assume μ∞= a+ χ1< γs+ 2.

Figure 5. All particle spectrum as a function of E (energy per nucleus) from air-shower measurements: the high-energy cosmic-ray spectrum scaled by E2.6, i.e.,
E2.6 × jT vs. E, where E is the total particle energy for the energy range of 1013 eV < E < 5 × 1020 eV from a variety of experiments (from Patrignani et al. 2016). The
figure shows the spectrum for jT consists of three basic power laws, (a) jT ∼ E−2.6 for 1013 eV < E < 3 × 1015 eV, (b) jT ∼ E−3.0 for 3 × 1015 eV < E < 1017 eV and
(c) jT ∼ E−3.4 for energies 1017 eV < E < 5 × 1018 eV followed by (d) the ankle in the spectrum for E > 5 × 1018 eV.
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Analysis of the expression (Equation (76)) for á ¢ñp p gives

á ¢ñ
=

å +

å

=
å + + +

å +

c g

c g

=
¥

=
¥

=
¥ - + + - +

=
¥ - + - +

( )
( )

( )( ¯ ) ( )( ¯ )
( )( ¯ ) ( )( ¯ )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p

p

T r p a

T r p a

S r a p S r a p

S r a p S r a p

, , 1

, ,

, 1 , 1

, ,
.

89

n n

n n

n n
a

n

n n
a

n

1
1

1
1

1
1 1 2 2

1
1 2 2

n s

n s

For p? pb, the denominator D in Equation (89) is dominated
by the n= 1 term µ c- +( ¯) ( )p a 1 , i.e.,

c- + +( )( ¯ ) ( )( ) ( )D S r a p, 90a
1
1 1 1

and the numerator N in Equation (89) is approximated by

å~ + g

=

¥
- +( )( ¯ ) ( )( ) ( )N S r a p, 1 . 91

n
n

1

2 2s

Using the approximations (Equations (90) and (91)) in
Equation (89) gives

á ¢ñ
 ¥g c- + - +( )( ¯ ) ¯ ( )[ ( )]

p

p
K r a p p, as , 92a2s 1

where

=
å +=

¥

( )
( )
( )

( )
( )

( )K r a
S r a

S r a
,

, 1

,
. 93n n1

2

1
1

For r/r2= 0.5 and using the same parameters as in Figure 6,
we obtain

g c
g m
= = + - +

º + - =¥

( ) ( )
( )

K r r a a0.5 , 0.7818, 2

2 0.4505. 94
s

s

2 1

The results are consistent with the direct numerical evaluation
of á ¢ñp p from Equation (76).

The solutions for the accelerated particles fA(r, p) and the
decelerated particles fD(r, p) are given by Equation (65). The
solution for f0(r, p) is given by f0(r, p)= fA(r, p)+ fD(r, p). In
principle, there could also be a population of particles fN with
no change in momentum, in which case f0= fA+ fD+ fN. We
can show that fN = 0 for the particles in 0< r< r2. However,
fN≠ 0 in the outer region r2< r<∞ . In the outer region
r> r2, f0= fA(r, p)+ fD(r, p)+ fN(r, p).
Some basic characteristics of the solution (Equations (58),

(59), (65), and (66)) in which the W ( )pn
A and W ( )pn

D are given
by Equations (82) and (83) are displayed in Figure 6. The
calculations pertain to a relativistic jet with parameters

b b a= = = = = = = ( )k s
k

s
0.9, 0, 1, 1,

1

3
. 950 2

The boundary spectrum as r→∞ is the cutoff power-law
spectrum (Equation (81)). For galactic cosmic rays, we take
γs= 2.65 implying f0∝ p−4.65 and jT∝ p−2.65. We have in
mind the cosmic-ray spectrum in the momentum range of
1 GeV< pc< 106 GeV, with pbc= 1 GeV. Thus, the spectrum
roughly represents galactic cosmic rays above pc= 109 eV and
below the cosmic-ray knee at pc= 1015 eV. Thus,
Equation (81) roughly describes the galactic cosmic-ray
spectrum below the knee.
The figure shows the accelerated particles ( fA), the

decelerated particles ( fD), and the total particle distribution
function f0= fA+ fD, as well as the boundary spectrum
(Equation (81)) as r→∞ . The inset shows the spectra near
the bend at p= pb. At small momenta (p< pb), fD (the red
curve) dominates, but the accelerated particles fA (the blue
curve) dominate at large p. The spectra are shown at the fixed
radius r= 0.5r2 where r2 is the cylindrical radius of the jet.
There is significant acceleration of the particles at the higher

Figure 6. The spectra of accelerated particles fA(r, p), decelerated particles fD(r. p), and total distribution f0(r, p) = fA(r, p) + fD(r, p) of accelerated plus decelerated
particles for the case of an asymptotic power-law spectrum f0( ∞ , p) described by Equation (81). The particles fA and fD are defined by Equation (65). See the text for
more details.
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momentum, and the accelerated particle spectrum at large p is
flatter than the input spectrum f0(∞ , p) as r→∞ .

From Equation (82), the asymptotic momentum spectral
index at large momenta (p? pb), with µ m- ¥f p0 is given as

m c g= + +¥ [ ] ( )amin , 2 , 96s1

where

⎜ ⎟
⎛
⎝

⎞
⎠

c h
a

h
b
b

b
b b

b b

= + =
+

=
+
-

=
-

-

[ ]

( )

a j a5 ,
3

2
,

1

2
ln

1

1
,

1
. 97

1
2

1
2

2
2 1 2

2
02

02
02

0 2

0 2

For the parameters used in Figure 6,

m c h= + = + +¥ ( ) ( )a a a j5 , 981
2

1
2

2
2 1 2

where j1 is the first root for n= 1 of the eigenvalue equation
(Equation (45)). For general n, the {jn} depend on ò= k/s,
which describes the coupling of the particles in the region
0< r< r2 to those in the region r> r2. The parameter k
describes the shear flow in 0< r< r2 and the parameter s
describes the radial dependence of the diffusion coefficient in
the region r> r2. Note that μD= γs+ 2 is the spectral index of
the decelerated particles fD(r, p) for p? pb, whereas
μA= a+ χ1 is the spectral index for fA for p? pb.

Figure 7 shows f0(r, p) versus p/pb for a range of radii
r/r2= 0, 0.5, 1.0, and 2.0, for the jet shear flow (Equation (95)).
The solution for f0(r, p) in r> r2 is given in terms of f0(r2, p) and
f0(∞ , p) by Equation (38). Note that in r> r2, there is a
component of the solution = - ¥( ) [ ( ) ] ( )f r p r r f p, 1 ,N

s
2 0 ,

which represents particles that have scattered only in r> r2 but
have experienced no changes of energy. Scattering of particles
in r> r2 and in 0< r< r2 leads to a more effective acceleration

process compared to solutions with a free escape boundary at
r= r2 (see, e.g., Webb et al. 2020). This effect is incorporated
into the model, by means of the mixed Dirichlet–Von Neumann
boundary condition at the edge of the jet (see Webb et al. 2020).
Figure 8 shows sample plots of y ¢( )r p p, ;p versus
¢ -( )p GeV c 1 , for a radio jet with the same parameters as given

in Figure 7 for k= s= 1, ò= k/s= 1, α= 1/3, β0= 0.9,
β2= 0, γs= 2.65, and pbc= 1 GeV, at observation radius
r/rb= 0.5 and a range of observation momenta p (here pb is
the break momentum in the spectrum as r→∞ ). The figure
shows six panels with different momenta p at the observation
radius r/r2= 0.5, which is located inside the jet shear flow
region. The different panels correspond to the momenta (a) p=
0.1, (b) p= 1, (c) p= 10, (d) p= 100 (e) p= 103, and (f)
p= 106 GeV c−1. The plots show the numerical value of the
mean momenta á ¢ ñ( )p r p, in each panel. The mean momenta are
also shown by the dashed vertical lines. It turns out thatá ¢ñ <p p
in panels (b)–(f), but á ¢ñ >p p in panel (a). Thus. the particles in
general are energized on average by the shear flow in traveling
from their source at r→∞ to the observation point at r= 0.5r2.
In case (a), there is a particle energy loss (i.e., á ¢ñ >p p).
Figure 9 shows a plot of á ¢ñp versus p for the shear flow

model in Figures 7 and 8 for the case of r/r2= 0.5. In Figure 9,
á ¢ñ ~¯ ¯p p0.78 0.55 for large enough p̄. This corresponds to
á ¢ñ ~ n-( ¯)p p p0.78 , where ν= (γs+ 2)− μ∞ and μ∞= a+
χ1 is the spectral index of shear accelerated particles as
described by the asymptotic formula (Equation (92)). In the
present case, ν= 0.45, and K= 0.78 in Equation (92). Note
that Figure 9 depends on the values of ò and η2 in the model.
Figure 10 shows a plot of the momentum difference
- á ¢ñ∣ ∣p p versus p for the solution. Note that - á ¢ñ∣ ∣p p is

an increasing function of p for pc> pbc= 1 GeV. Using
Equations (92)–(94), one can see that - á ¢ñ >p p 0 for p> pb,
i.e., the particles on average gain energy from the shear flow for

Figure 7. Spectra for the distribution function f0(r, p) vs. p/pb for the solution, Equation (37). The particles are accelerated (decelerated) in the shear flow in the region
0 < r < r2 about the jet axis. The boundary spectrum of particles as r→ ∞ , namely ¥ ¢( )f p,0 is given by Equation(81). Inside the shear flow region, 0 < r < r2 the
solution consists of accelerated and decelerated particles given by Equation (58) et seq. Outside the shear flow region in r > r2, f0(r, p) is given by Equations (37)–
(39). Note that at low momenta, ∂f0/∂r is positive, but after the crossover point in the spectra in p > pb the gradient ∂f0/∂r is negative.
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p> pb (red curve). However, for p< pb, the particles lose
energy and - á ¢ñ <p p 0 (blue curve) in this momentum
regime. There are particle energy losses to the flow below the
breakpoint pb= 1 GeV c−1 for the asymptotic spectrum f0(∞ ,
p) as r→∞ in Figure 7.

Figure 11 shows the zero contour level of ¶ ¶( )f rln ln0 in
the (r, p) plane. The particles diffuse inward at small p, where
¶ ¶ <( )f rln ln 00 and diffuse outward at large p where
¶ ¶ >( )f rln ln 00 . The zero contour is at about p∼ 3pb at
small r at r/r2= 10−2, but is at p∼ 2pb at r/r2= 103 at large r.

Figure 12 shows a contour plot of á ¢ñ( ) )p plog10 in the (r, p)
plane. At large p á ¢ ñ( )p r p, has contours with á ¢ñ <p p but
á ¢ñ >p p at small p at p< pb, where pb= 1 GeV c−1. The
contours are shown using the color code on the right-hand side
of the plot.

4.3. Flow Lines

There is a temptation to regard the difference in momentum
- á ¢ñp p as the change of the momentum of particles in

moving from r→∞with momentum ¢p to the point (r, p),
where p is the momentum at position r. However, this
interpretation does not account for the local cosmic-ray
continuity equation perspective in Section 2.3. From
Equations (25) and (28) we can write the steady-state
continuity equation in the form

 á ñ +
¶
¶

á ñ =· ( ) ( ) ( ) r N
p

p N 0, 99

in regions where there are no sources of particles (i.e., Q= 0).
Here,
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where g = -¶ ¶f pln lnf 0 is the momentum spectrum spectral
index for f0. From Equations (99) and (100), one can visualize

Figure 8. Examples of y ¢( )r p p, ;p vs. ¢p for the same model described in Figure 7, for a radio jet with β0 = 0.9, β2 = 0. The vertical dashed lines show the value of
the mean momenta á ¢ ñ( )p r p, and the actual values of á ¢ñp are given in each panel, after the horizontal dashed key.
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the local transport in (r, p) space in terms of the flow line
equations

k
=

á ñ
á ñ

=
¶ ¶
¶ ¶

( )


dr

dp

r

p

f r

D f p
. 101

pp

0

0

The continuity equation (Equation (99)) may be written in
the form

¶
¶

á ñ +
¶
¶

á ñ =( ) ( ) ( ) 
r r

r r N
p

p N
1

0, 102

or alternatively in the form

¶
¶

á ñ +
¶
¶

á ñ =( ) ( ) ( ) 
r
r r N

p
r p N 0. 103

The conservation law (Equation (103)) will be automatically
satisfied if there exists a potential Λ(r, p) such that

á ñ =
¶L
¶

á ñ = -
¶L
¶

( ) r r N
p

r p N
r

, . 104

In that case, the continuity equation (Equation (103)) reduces to
the integrability condition

¶ L
¶ ¶

-
¶ L
¶ ¶

= ( )
r p p r

0, 105
2 2

which is satisfied if Λ has continuous second-order partial
derivatives. From Equations (101) and (104), we obtain

⎜ ⎟
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r
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From Equation (106), it follows that the flow line equations
possess integrals of the form

L =( ) ( )r p, const ., 107

where const. is an integration constant that has a different value
for each flow line. To obtain Λ(r, p) requires further work.

Webb & Gleeson (1980) and Gleeson & Webb (1980)
investigated cosmic-ray transport in the solar wind (without a
termination shock) using flow line differential equations.
However, in their analysis, they used particle momentum in
an inertial frame fixed in the solar system, rather than the
comoving frame particle momentum used in the present
analysis. Webb et al. (1983, 1985) indicated how the flow
lines of Webb & Gleeson (1980) are modified in the presence
of the solar wind termination shock, where the particles are
accelerated by the first-order Fermi mechanism, as well as
being decelerated by adiabatic energy losses inside the
termination shock.

Flow Lines for r > r2. In the model discussed in Section 2,
there is no particle acceleration in the region r> r2. Thus, in
this region

á ñ = ( )p 0 108

because Dpp= 0 in this region. The value of á ñr is
ká ñ = - ¶ ¶( ) ( ) ( )r r f rln ln0 . The solution for f0 in r> r2 is

given by Equation (38). Using Equation (38), we find

k
á ñ =

- ¥ -
¥ + - ¥

a( ) ¯ [ ( ) ( )]
( ) ( ) [ ( ) ( )]

( )r
r p f p f r p

f p r r f r p f p

, ,

, , ,
, 109

s

0 0 0 2

0 2 0 2 0

where k k= a( ) ( )p p r r s
0 0 2 is the diffusion coefficient in

r> r2 and κ0= c2τ0/3 is the value of κ at r= r2 and p= p0.
Here, f0(r2, p) is the distribution function solution at r= r2. For
f0(∞ , p) given by Equation (81) f0(r, p) is given by
Equation (38). From Equations (108) and (109), it follows that

= ( )p const. 110

on the flow lines. The direction of the flow lines is parallel to
the r-axis and its direction is determined by the sign of f0(∞ ,
p)− f0(r2, p) in Equation (109).

Figure 9. Left panel: a plot of á ¢ñp̄ vs. p̄ for the model of shear acceleration described in Figure 7. Shown is the exact numerical value of á ¢ñp̄ . The dashed curve
represents the asymptotic approximate á ¢ñp vs. p curve (Equation (92)) as p →∞. á ¢ñ ~¯ ¯p p0.78 0.55. The right panel shows the same information using a plot of
á ¢ñ ( ¯ )p p0.78 0.55 vs. p̄. Here, r/r2 = 0.5.
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Flow lines for 0 < r < r2. The flow lines in Equation (101) can
be written in the form

h
h
z

=
¶ ¶
¶ ¶( )

( )
( )

( )dr

dp p d dr

f

f

5
, 1110

0

where

z = ( ) ( )pln . 112

Using η and ζ as independent variables, the flow line
differential equations reduce to the form

h
z

h
z

=
¶ ¶
¶ ¶
( )

( )
( )d

d

f

f

5
. 1130

0

Note that z z¢ = ¢ º ¢ -( ) ( )T p p p p, ln .

Flow lines for the Green’s function solution ¢( )G r p p, ; in
Equation (42). Figure 13 shows the flow lines for the Green’s
function in Equation (42) for a monoenergetic spectrum of
particles with momentum ¢p as r→∞ . The arrows indicate the
tangent vectors to the flow lines in Equation (101). The dark
gray vertical line at r= r2 is the boundary of the jet shear flow.
Outside the jet at r> r2, á ñ =p 0 and the flow lines are
horizontal straight lines on which =p const. In r> r2,
particles with momentum = ¢p p flow inward. This is balanced
by an outflow of particles, both at momenta > ¢p p of
accelerated particles and at momenta < ¢p p of decelerated
particles. There are no changes of particle momentum in r> r2.
The curve á ñ =p 0 inside of the shear flow at r< r2 is
represented by the dark solid curved line, which is a
continuation of the straight line with = ¢p p from the r> r2
region. There is one class of flow lines (i) located below the
á ñ =p 0 curve, which continuously lose energy. These flow
lines eventually turn around where á ñ =r 0 and then move
outward and exit the system into the r> r2 region. There is
another class of flow lines (ii) that move inward. However,

some of the curves correspond to particles that start at the point
r= r2 and = ¢p p , on which the particles first lose momentum
until they hit the á ñ =p 0 curve after which they subsequently
gain energy. There is a turning point on the blue curves, where
the flow lines turn from inward to outward where á ñ =r 0 and
upward in momentum until the exit at the r= r2 boundary.
An expanded view of the flow lines shown in Figure 13

inside r= r2 is shown in Figure 14. It shows in more detail the
complexity of the flow lines, and the á ñ =p 0 and the á ñ =r 0
curves inside the region 0< r< r2.

Flow lines for f0(∞ , p) of Equation (81). Figure 15 shows the
flow lines corresponding to ¥ ¢( )f p,0 consisting of a cutoff
power law with =f const.0 for < ¢ <p p0 b and with a power
law in ¢p for ¢ >p pb as specified by Equation (81). The
particles enter the region at low momenta from r> r2; they then
undergo acceleration as they move inward into the region
0< r< r2. Eventually, they turn around at the point where
á ñ =r 0, and then they move outward in r as they continue to
gain mometum. Eventually, they move outward into the outer
region r> r2. Because á ñ =p 0 in r> r2 the outward flow lines
in r> r2 are horizontal straight lines parallel to the r-axis.

4.4. Rate of Changes of Particle Momentum

It is interesting to compare the rate of systematic
acceleration 〈Δp/Δt〉 in Equation (22) with the rate of
change of momentum á ñp c in Equation (29) associated with
viscous shear acceleration due to cosmic-ray viscosity. From
Equation (22),

⎜ ⎟
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Figure 10. Plots of - á ¢ñ∣ ∣p p vs. p for the model for particle acceleration described in Figures 7–9. Note that the particles are accelerated from momentum ¢p to
momentum p in the case of á ¢ñ - <p p 0 (color red). The particles are decelerated for á ¢ñ - >p p 0 (color blue).
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where
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is the dispersion coefficient for particle acceleration in the
radio-jet shear flow. From Equations (114) and (115), we
obtain

a
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D
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4 . 116

pp

Comparing this rate with the rate of change of the continuity
equation momentum (Equation (29)) gives

g
a

á ñ
áD D ñ

=
+

( )p
p t 4

, 117c f

where g = -¶ ¶f pln lnf 0 is the momentum spectral index
based on the momentum spectrum for f0(r, p).

For the galactic cosmic-ray spectrum for kinetic energies
109 eV< T< 1015 eV, we take f0∝ p−4.65 and taking α= 1/3
corresponding to a Kolmogorov power-law spectrum for the
turbulence, gives γf= 4.65 and Equation (117) gives the
estimate

á ñ
áD D ñ

= = ( )p
p t

4.65

4.3333
1.073. 118c

Thus, at least for the observed galactic cosmic-ray spectrum
with f0∝ p−4.65 and á ñ áD D ñ p p tc in the above kinetic
energy range to within 10%. This estimate will in general
depend on the cylindrical radius r from the jet axis and also on
the value of γf at different observation points (r, p).

The above estimate of á ñp c does not apply to the
monoenergetic spectrum solution of Equation (5) for the case
in which d¥ ¢ = ¢ -( ) ( )f p N p p, g0 0 . In this case, one finds that

γf< 0 for p< p0 (decelerated particles) and γf> 0 for p> p0
(accelerated particles).
The result (Equation (118)) would of course be different if

one included other particle acceleration mechanisms (e.g.,
second-order Fermi acceleration of particles due to Alfvénic
turbulence as in Equation (31)), and particle momentum losses
due to synchrotron and inverse Compton losses.

5. Discussion

An important orientation to the production of UHECRs may
be traced back to Hillas (1984), based on the idea that to
accelerate particles to a prespecified energy, e.g., E= 1018 eV
for protons say, one needs an acceleration region large enough
in which to contain the particle based on the particle gyroradius
or mean free path. Also one needs to accelerate the particles up
to the required energy in a timescale consistent with the
acceleration mechanism invoked, taking into account the
timescales of the escape time and energy loss (see, e.g., Rieger
2022 for a recent review of UHECRs in AGN). Here, we
reiterate in part the arguments presented by Liu et al. (2017),
Webb et al. (2018, 2019, 2020), and Rieger & Duffy (2019).
The constraints on the particle acceleration in radio-jet shear

flows are (i) the width of the jet ΔL must be greater than the
particle mean free path λ and gyroradius rg; (ii) the particle
acceleration time tacc must be less than the timescale of
synchrotron loss tsynch (i.e., tacc< tsynch and other loss
timescales); and (iii) the timescale of acceleration tacc< tdyn,
where tdyn is the dynamical advection time along the jet, which
limits the allowed values of the magnetic field B and the width
of the jet ΔL.
The constraints (i)–(iii) on particle acceleration in radio-jet

shear flows were investigated in detail by Liu et al. (2017),
Rieger & Duffy (2019), and Webb et al. (2019; there were
some numerical errors in the Webb et al. 2018 calculations).
Figure 16 from Webb et al. (2019) shows plots of

Figure 11. Zero contour plot of ¶ ¶f rln ln0 in the (r, p) plane for the model of Figure 7. The particles diffuse inward at small p below the zero contour, and they
diffuse outward at large p above the zero contour.
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D[ ( )]Llog pc10 versus m[ ( )]Blog G10 . The allowed region in the
(ΔL, B) space is shaded in gray. The top panel applies to a jet
with g b= - =-( )1 1.1j j

2 1 2 , where βj is the relativistic β on
the axis of the jet, i.e., βj≡ β0= u0/c. The bottom panel
corresponds to a jet with γj= 2.0 on the axis of the jet. The top
and bottom panels show the lines ΔL= rg by the blue straight
line. The condition (i) requires ΔL> rg, which corresponds to
the area above the blue line. The condition (ii) that tacc< tsynch
corresponds to the area below the long dashed red line
tacc= tsynch. The condition (iii) tacc< tdyn corresponds to the
area below the short dashed straight line tacc= tdyn.

One of the main results of this paper is the á ¢ ñ( )p r p, relation,
which describes how particles observed at (r, p) originated with
momentum ¢p in the asymptotic boundary spectrum as r→∞ .
This is different than the analysis of Webb et al. (2018, 2019,
2020), in that the averaging is now over the asymptotic
spectrum ¥ ¢( )f p,0 as well as taking into account that there are
many paths in phase space that start at ¥ ¢( )p, and end up at (r,
p). There is a probability folded into the trajectory associated
with the Green’s function ¢( )G r p p, ; and a probability
associated with ¥ ¢( )f p,0 . In applications it is of interest to
have estimates of say - á ¢ñp p for particles of high energy, say
beyond the knee at pc= 1015 eV, up to the ankle at pc=
1018 eV, with a more realistic ¥ ¢( )f p,0 . For example, we
could add a further power law in momentum to

¥ ¢ µ ¢-( )f p p,0
5 beyond the knee and up to the ankle to

represent ¥ ¢( )f p,0 . More detailed and exact spectra for
¥ ¢( )f p,0 based on detailed observations could be used.

However, this exercise is beyond the scope of the present
paper.

In the present paper, we explicitly studied cases where the
particles sources are specified as r→∞ (i.e., we specify

¥ ¢( )f p,0 ). It is also possible to develop solutions for f0(r, p) in
which particle sources are specified at finite values of r at r= rs

say, which could be thought of as the primaries. In that case,
there is the possibility of investigating secondaries produced by
nuclear collisions and spallation in the medium. This
investigation is beyond the scope of the present paper.
Webb et al. (2019, 2020) mention that a telegrapher-type

transport equation is useful in overcoming the unrealistic
noncausal nature of time-dependent momentum space diffusion
models because, for example, in the work by Berezhko (1983)
on the time-dependent Green’s function for particle accelera-
tion by cosmic-ray viscosity, the solution predicts the
production of infinite energy particles at a finite time. The
same type of behavior is obtained if one naively integrates the
equation dp/dt= 〈Δp/Δt〉, as a differential equation in p and t
(i.e., there is a blowup in p at a finite time).

5.1. Instabilities

In principle, the timescales for various instabilities should be
taken into account to see if they are consistent with the particle
acceleration process. For example, one would like to know if
the KHI growth rate γKHI is sufficiently large to provide the
wave scattering field which is parameterized by the particle
scattering time τ(r, p). Here, τ is thought of as a characteristic
scattering time for the particles in plasma kinetic theory, and
λ= vτ is taken as the mean free path of the particles (e.g.,
Jokipii 1966). However, in general τ and λ would be expected
to be much less than characteristic length and timescales for the
KHI or other large-scale fluid instabilities caused by stellar
winds and supernova remnants in the interstellar mediums.
Ratkiewicz et al. (1994) and Axford (1981, 1994) argued

that the cosmic-ray diffusion coefficient to be used in
supernova remnant shock models of cosmic-ray acceleration
by the first-order Fermi mechanism should be based on the
longer timescales and length scales characteristic of the KHI
and Rayleigh–Taylor instability, which are much greater than

Figure 12. Contour plot of á ¢ ñ( ( ) )p r p plog ,10 in the (r, p) plane for the model in Figure 7. Note á ¢ñ <p p at large p, but á ¢ñ >p p at small p. The parameters are the
same as in Figure 7.
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plasma kinetic scales (the cosmic-ray diffusion coefficient used
in simple hydrodynamical cosmic-ray models is usually taken
to be κ∼ 1028 cm2 s−1, in order to take into account the
average lifetime of cosmic rays in the galaxy as deduced from
10Be abundance). The alternative possibility of using the
cosmic-ray diffusion tensor from kinetic theory to describe
particle acceleration at the supernova forward shock was used
by Zakharian et al. (2001). In the latter case, the particle
acceleration was much faster at the quasi-perpendicular shock
at the equator than at the quasi-parallel shock at the poles. It is
perhaps problematical to adequately treat these large-scale
phenomena using PIC codes, which concentrate on plasma
kinetic instabilities.

Plasma instabilities that could contribute to the particle
scattering are the WI (e.g., Wiersma & Achterberg 2004 and
Achterberg & Wiersma 2007; Achterberg et al. 2007) and the
kink instability (Mizuno et al. 2014). Nishikawa et al. (2020)
investigated the role of the WI and the kKHi in relativistic jets
in which there is a helical background magnetic field. The
second-order Fermi-type dispersion term Dpp due to cosmic-ray
viscosity in the relativistic diffusive cosmic-ray transport
equation of Webb (1989) depends on whether the particle
scattering is weak Ωτ? 1 or strong Ωτ= 1, where Ω is the
particle gyrofrequency. The cosmic-ray streaming instability
associated with wave–particle interactions (e.g., Lee 1971;
Skilling 1971, 1975; Bell 1978a, 1978b) is invoked in cosmic-
ray acceleration by the first-order Fermi mechanism at
nonrelativistic shocks. Achterberg (1979) in a study of Fermi
acceleration uses the concept of a Fermi reservoir for both the

particles and the turbulence (Burn 1975). This implies that the
energy of waves plus particles must be conserved. This
approach gives rise to two evolution equations for the energy
densities of the turbulence Ut and the energy density of the
particles Up. The turbulence energy can contribute to
accelerating the particles, but it can also go into heating the
background thermal plasma. Achterberg invoked the weak
turbulence theory of three wave resonant interactions to
describe the turbulent cascade. Both Alfvén waves and
magneto-acoustic waves are involved in the turbulent cascade.
Bell & Lucek (2001) considered a nonlinear generalization

of the cosmic-ray streaming instability in which there are both
backward and forward Alfvén wave growth due to work done
on the waves due to the cosmic-ray pressure gradient. It is an
approximate scheme to describe cosmic-ray modified fluid
dynamics and particle acceleration in supernova remnant
shocks. This approach neglects wave mixing in which the
backward and forward Alfvén disturbances interact due to
gradients in the background flow. The Bell & Lucek (2001)
model has some connection to the work of McKenzie & Völk
(1982) on three fluid models for cosmic-ray modified shocks
(see also Ko 1992).
Bell (2004) made a more careful analysis of wave

instabilities for cosmic rays in supernova remnant shocks. He
found that there are both Alfvénic and non-Alfvénic
nonresonant modes generated in between the forward and
backward shocks in supernova remnant shocks. This instability
analysis is sometimes referred to as the Bell instability. These
complicated processes are probably best dealt with using PIC

Figure 13. Flow lines for the Green’s function (Equation (42)) for a monoenergetic spectrum of particles with momentum ¢p as r→ ∞. The arrows indicate the
tangent vectors to the flow lines. The dark gray line at r = r2 is the boundary of the shear flow. The black dashed curve represents á ñ =r 0 inside the jet. The black
solid line starting at r→ ∞ with = ¢p p represents the incoming monoenergetic particles with = ¢p p . This curve extends into the region 0 < r < r2. On this curve
á ñ =p 0. Note that á ñ =p 0 in the region r > r2 as there are no changes of energy in this region.

20

The Astrophysical Journal, 958:169 (36pp), 2023 December 1 Webb et al.



code simulations or fluid simulations (although PIC simulations
do not always incorporate all the physics at all scales). Many
treatments of instability growth rates are concerned with the
wave growth at early times and do not attempt to study wave
growth saturation. The instabilities depend on the state of the
background medium (e.g., magnetic field strength and
orientation; Mach number of the flow; density, etc.).

Rieger & Duffy (2021) explore the constraints imposed by
shear-driven instabilities on particle acceleration in relativistic
shear flows. They argue that the shear layers in large-scale
AGN jets can encompass a sizeable fraction of the jet radius
(;0.1), which requires a sizeable injection of electrons for
effective acceleration of electrons. They invoke the analysis of
Urpin (2002) to characterize the generation of Kelvin–
Helmholtz–like modes (shear-driven modes) that can contribute
to the turbulence wave power scattering the cosmic rays.
Without going into the details, the Rieger & Duffy (2021)
analysis was based on Equations (26) and (41) in Urpin (2002).
They obtained a growth rate of unstable modes ofmath-
top="10pt" mathbottom="10pt"
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where csj is the thermal gas sound of speed, Msj= Vj/csj is the
Mach number of the jet flow, and
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has the dimensions of an acceleration (i.e., [g]= [L][T]−2). It
should be noted that g is not the acceleration vector of the fluid.
In Equation (119), G = - -( )V c1j j

2 2 1 2 is the relativistic
gamma of the jet and G ¢ = Gd drj j . Urpin (2002) studied the
dispersion equations for the shear flow unstable waves both at
short wavelengths using the WKBJ expansion, and at long
wavelengths of the order of the jet radius. Urpin (2002) studied
long wavelength waves for a jet with a Lorentz Gamma profile
of Γj(r)= Γ0[b/((b+ r)]1/3. The most unstable mode growth
rates at small, but nonzero and large enough k have a form
similar to that of Equation (119) (see Urpin 2002,
Equation (41)). It turns out there are other modes for smaller
k in the limit as k→ 0, described by Urpin (2002), Equation
(38). The unstable waves as k→ 0 would scatter UHECRs (see
Urpin 2002 and Rieger & Duffy 2021 for further details).

5.2. Other Models

Our model for particle acceleration in relativistic radio jets is
clearly not the whole story. A more complete model of the
acceleration of UHECRs in FR II radio jets has been developed
by Seo et al. (2023). They carry out numerical simulations of
relativistic hydrodynamical models of FR II radio jets. In their
model, they inject cosmic rays continuously into the time-
dependent radio-jet flow and simulate the transport and
acceleration of the cosmic-ray particles using Monte Carlo
methods. They identify the principal cosmic-ray acceleration
mechanisms, including DSA, relativistic shear acceleration
(RSA), which can be split up into acceleration at shear

Figure 14.More details of the flow lines shown in Figure 13. Note that the green curves cut across the á ñ =p 0 curve horizontally and join continuously with the blue
curves. These flow lines correspond to particles that first lose energy, but then gain energy as they cross the á ñ =p 0 curve to become the red curves. There are also
curves on which the particles continuously lose energy (the blue curves).
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discontinuities in the flow and (RGSA) acceleration in gradual
shear flows, and TSA. They find that particles with energy
E< 1 EeV gain energy mainly through DSA in the jet spine
flow and in the jet backflow (cocoon) containing shocks and
turbulence. They hypothesize that particles with energies E
greater than a few exaelectronvolts are energized mainly by
RSA at the discontinuous backflow interface, reaching energies
of the order of 1020 eV (see also Ostrowski 1998). The so-
called expresso mechanism (Caprioli et al. 2015; Mbarek &
Caprioli 2019), in which large discontinuous jumps in the
particle energy are modeled by Monte Carlo methods is most
likely operative. In the present paper, we only study particle
acceleration in smooth relativistic shear flows (RGSA).

Spitkovsky (2008a, 2008b) and Sironi et al. (2013; and
references therein) used PIC simulations to study particle
acceleration in relativistic shocks. They found that particle
acceleration in relativistic shocks is not very efficient in
environments with magnetization s = >V c 1iA

2 2 , where
m= ( )V B n mi i iA 0 is the nonrelativistic Alfvén speed. Sironi

et al. (2021) used PIC simulations to study particle acceleration
and the KHI in relativistic shear flows.

Drury & Völk (1981) and Axford et al. (1982) developed
two fluid hydrodynamical models of cosmic-ray modified
shocks which took into account the reaction of the accelerated
cosmic rays on the background flow. These models satisfied the
constraints of total momentum and energy conservation, but
did not take into account the detailed momentum spectrum of
the accelerated particles. Later work by McKenzie & Völk
(1982) developed a three fluid model of cosmic-ray modified
shocks, consisting of Alfvén waves propagating upstream of

the shock that are excited by the cosmic-ray streaming
instability, the thermal plasma, and the cosmic-ray hydro-
dynamical fluid (see also Ko 1992 for a model including both
backward and forward Alfvén wave fields and second-order
Fermi acceleration of the particles). A recent overview of
cosmic-ray hydrodynamical models is given by Zweibel
(2017). Zweibel studies both models with (a) self-excited
waves and models (b) that have both an external source of
waves and self-excited waves.
Lemoine (2019) uses the affine connection coefficients of the

relativistic transport equation or continuity equation to describe
non-inertial forces where the particle momentum is measured in
the local fluid frame. This approach can incorporate general
relativistic effects due to non-Euclidean metrics in the vicinity
of Schwarzschild and Kerr black holes (e.g., Webb 1991, 1992;
Webb et al. 1994).
Liodakis et al. (2022) suggest that polarized blazar X-rays

are due to particle acceleration in relativistic shocks in
radio jets.

5.3. Observational Constraints

In principle, one can determine the particle distribution
function in the fixed inertial reference frame Σ of the jet by
using the Lorentz invariance of the distribution function
between the local fluid reference frame S¢ and the fixed
reference frame Σ (e.g., Forman 1970). This clearly results in a
large anisotropy in the fixed inertial frame, due to the Lorentz
boosting between frames (e.g., Lind & Blandford 1985). Lind
& Blandford (1985) studied the Lorentz boosting between the

Figure 15. Flow lines for the solution Equation (37) with asymptotic spectrum ¥ ¢( )f p,0 of Equation (81) for which ¥ ¢( )f p,0 is constant for < ¢ <p p0 b and is a
power law for ¢ >p pb, where pb denotes the break momentum. ¢( )G r p p, , is given by Equation (42) for 0 < r � r2 and has the form of Equation (39) for r > r2. The
flow lines are obtained by numerical integration of the flow line, ordinary differential equation system (Equation (101)). The arrows indicate the tangent vectors to the
flow lines. The dark gray line at r = r2 indicates the boundary of the shear flow.
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local fluid frame and the fixed reference frame, in the
interpretation of particle acceleration in the flow. If the flow
speed u is much less than the particle speed, the Lorentz
boosting effect is referred to as the Compton–Getting effect
(Gleeson & Axford 1968; Forman 1970). Lind & Blandford
(1985) assumed that to first-order the particle distribution
function and synchrotron radiation were isotropic in the fluid
frame. In principle, a similar study could be carried out for the
present model of particle acceleration by cosmic-ray viscosity
in radio-jet shear flows, in which the zeroth, first, and second
moments of the distribution function with respect to the solid
angle in momentum space in the comoving frame could be
determined. This calculation is clearly of interest to
observations of radio jets. However, this calculation is beyond
the scope of the present paper.

Lind et al. (1989) and many other authors have carried out
MHD numerical simulations of radio jets. The simulations
show marked differences between strongly magnetized and
weakly magnetized jets that in general must be considered in
more general models of particle acceleration in radio jets (see
also Seo et al. 2023). The anisotropy of the distribution
function of accelerated particles measured in the fixed inertial
reference frame due to relativistic beaming investigated by
Lind & Blandford (1985) is clearly of observational interest.

Radio galaxies as well as microquasars emit nonthermal
emission in their jets. This requires particle acceleration to high
energies to account for the emission. Radio galaxies with jets
that are pointed toward us often appear to us as blazars: these
are the sources of high-energy neutrinos, implying that these
radio galaxies accelerate protons (IceCube, Kun et al. 2014,
2021). UHECRs also include nuclei such as oxygen and
heavier ions (Mayotte et al. 2022; The Pierre Auger
Collaboration et al. 2023). Radio galaxies with a selection of
relativistic jets aimed at Earth (possibly up to four jets in the
case of a supermassive black hole merger (e.g., Gergely &
Biermann 2009), which appear as flat spectrum radio sources
(Blandford 1979), are prime candidates as a source of UHECRs
(Ginzburg & Syrovatskii 1963; Hillas 1984; Biermann &
Strittmatter 1987; Jaroschewski et al. 2023). All their activity
may be traced to mergers of two central supermassive black
holes following a merger of two galaxies (Toomre & Toomre
1972; Press & Schechter 1974; Gergely & Biermann 2009).
There is evidence that microquasars or stellar-mass black holes
exhibit all these phenomena as well, including mergers and the
acceleration of UHECR particles (Mirabel 2004, 2010; Mirabel
et al. 2011; Biermann et al. 2018). There is a general analogy
between the activities of stellar mass black holes and
supermassive black holes (e.g., Merloni et al. 2003, 2006;
Falcke et al. 2004; Mirabel 2004; Markoff et al. 2015;
Mościbrodzka et al. 2016).

But what is the precise mechanism and location of the
accelerated particles? Six pathways of UHECR origin are well
established:

5.4. The Head Shock of a Jet

Rotating black holes emit from their nearby accretion disk
relativistic jets (Blandford & Znajek 1977; Falcke et al. 2004;
Daly 2019). These jets are variable (e.g., Her A, Timmerman
et al. 2022), and often exhibit a final small region of strong
emission, considered to be the head shock (Cyg A, Carilli et al.
1991; Harris et al. 1994: PKS 215369, Gopal-Krishna et al.
2001; Young et al. 2005). The emission there exhibits evidence

of weak relativistic motion (3C 179, Porcas 1981), and
sometimes a flatter radio spectral index, suggesting fresh
injection of newly accelerated particles (Kardashev 1962;
McKean et al. 2016; Dabbech et al. 2018; Snios et al. 2018).
The ubiquitous cutoff in nonthermal emission seen in such
regions at about 3× 1014 Hz can be interpreted as being driven
by ultrahigh-energy protons (Meisenheimer & Roeser 1986;
Biermann & Strittmatter 1987; Roeser & Meisenheimer 1987;
Meisenheimer et al. 1989). In this approach, ultrahigh-energy
protons in their loss limit drive the wavelengths that in turn
excites the irregular magnetic field cascade that governs the
electron energy distribution and so defines their cutoff by losses
(Kardashev 1962; Matthaeus & Goldstein 1982; Matthaeus
et al. 1982; Drury 1983; Goldstein et al. 1995; Chhiber et al.
2021). This model gives a maximum emission cutoff frequency
near 3× 1014 Hz independent of free parameters, such as the
classical electron radius divided by the speed of light multiplied
by the electron to proton mass squared to within a simple
numerical factor. The corresponding proton energies are
maximally around 1021 eV. But this acceleration site may just
reaccelerate energetic protons (or nuclei) injected elsewhere.

5.5. Helical Nonthermal Emission in Jets

Very commonly both on arc-second scales as well as on
milliarcsecond scales relativistic jets show helical emission
structures (like single or double-helix DNA, e.g., Kun et al.
2014; Britzen et al. 2017; Nishikawa et al. 2020; Meli et al.
2023). These structures can be interpreted as helical shock
structures; if so, mass continuity requires that such shocks
disappear at the central axis, so a spine-sheath structure is
foreordained with a dark central spine or axis (M87 Owen et al.
1989, 2000). Such shocks could explain acceleration and
reacceleration along the entire length of a jet.

5.6. Re-confinement Shock Structures

Expanding supersonic jets can experience quasiperiodic re-
confinement shock structures if the outside pressure exceeds
the internal pressure (Sanders 1983; Norman & Winkler 1985).
Such structures include conical oblique shocks and often a
central Mach disk, plus slip discontinuities going down from
the triple point (actually, in jets a triple point ring), where three
shocks (two oblique and one perpendicular) meet with a slip
discontinuity. As the outside pressure around jets is given by
the hot interstellar material in a galaxy (usually an early
Hubble-type galaxy, like an elliptical) the outside pressure
drops off far faster than the internal pressure, and so jets are
usually thought to be self-confined. We discuss the rare
exceptions below, when outside ram pressure can kink a jet
(Baan & McKee 1985).

5.7. Stellar Ablation

Occasionally stars can wander into a jet, and the ram
pressure and radiation field can destroy them (e.g., Araudo
et al. 2013). Clouds intersecting a jet can analogously provide
lots of material (e.g., Gopal-Krishna et al. 2007; Gopal-Krishna
& Wiita 2010; del Palacio et al. 2019). Destroying an entire star
provides enough material for accelerating particles for quite a
while. A single star of mass Må can provide all the material for
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energetic protons in a jet of power Ljet for a time τ given by
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Obviously, all the associated electrons can also be provided,
as well as the heavy elements from the destroyed star. If this
were a strong contribution to UHECR composition, then heavy
elements might abound, unless these stars were freshly formed.
However, even in a starburst induced by the merger of two
galaxies (see the radio galaxy Cen A) will not suddenly
dominate all the old most common low-mass stars in a galaxy,
like the Sun, or even much older stars.

5.8. Stellar-mass Black Hole Jets

The activity of stellar-mass black holes has long been studied
(Mirabel 2003, 2004, 2010; Mirabel et al. 2011), and these are
usually referred to as microquasars because of their many
similarities (Fender 2001; Fender et al. 2003; Falcke et al.
2004; Markoff et al. 2015). As has been long known, active
stellar-mass black holes are quite common; since they derive
from massive stars, with a new black hole born in our Galaxy
about every 400 yr (Diehl et al. 2006, 2010). Most of them are
expected to be in binary systems (Chini et al. 2012, 2013a,
2013b), allowing binary black hole mergers, now commonly
detected in gravitational waves (LIGO/VIRGO/KAGRA lists
GWTC-1, GWTC-2.0, GWTC-2.1, and GWTC-3). There is a
proposal that we have seen one such merger in the radio
structure of the starburst galaxy M82 (Kronberg et al. 1985;
Bartel et al. 1987; Biermann et al. 2018) around the compact
radio source 41.9+58 believed to have been a gamma-ray burst
(Muxlow et al. 2005). A large fraction of massive stars are in
triple or even quadruple systems, allowing second-generation
mergers (i.e., three mergers in sequence: two mergers of four
black holes to two black holes in a first generation, and the
resulting merged black holes merge again in a second
generation to form one final black hole), leading to quite high
final masses of the black hole.

5.9. Shear Injection and Acceleration

As relativistic jets propagate through an environment, there
is friction with particles both entering and escaping the jet. The
outside medium is the halo gas of the galaxy, detectable in
X-rays, and with a density and pressure rapidly decreasing
toward the outside (Biermann et al. 1982; Biermann &
Kronberg 1983; Roediger et al. 2015; Sheardown et al. 2018,
2019; Ge et al. 2021; Geng et al. 2022); further outside there is
the gas of the Local Group of galaxies or the cluster of galaxies
with a much larger radial pressure decay length scale, but with
a very low pressure. That implies that these jets are usually self-
confined, and do not interact much with the outside. Early-type
galaxies are usually in groups and clusters of galaxies, so the
jets easily propagate into the intergalactic medium, which is a
hot tenuous gas. As these galaxies and their associated jets
move around, there can be strong ram pressure for the jets.

However, there are several instances where such an
interaction is directly visible, e.g., in the radio galaxies
NGC 1265 and in 3C 449 (Baan & McKee 1985; Feretti
et al. 1999; Croston et al. 2003). The jets show a kink, where
they just bend into a new direction; the interpretation is that
ram pressure in an intergalactic medium outside their host
galaxy pushes them to the side, by inducing a highly oblique

shock in the jet. Now inside the jet the medium is thought to be
highly relativistic, and outside the medium is visibly hot, since
we can detect it in X-rays. It follows that the density of the
outside medium must be much higher than the inside medium,
providing a very strong injection (see Equation (15)). However,
there is no evidence of any enhanced emission downstream
from that kink, so the injection of new particles must be weak.
In this paper, we focus on very powerful radio galaxies, with a
much higher jet power than those of either NGC 1265 or
3C 449; so there is even less motivation to expect a strong
injection of particles.
However, the outside pressure could get quite large in the

core of the host galaxy. Relativistic jets are often thought to
start as pure Poynting flux jets, with an electron/positron
plasma only (V404 Cyg, Siegert et al. 2016). Such jets need to
add hadronic material early to explain the neutrino observations
(Kun et al. 2021) that show that the emission is optically thick
for energetic photons at the epoch of neutrino emission. Shear
is a suitable candidate, and may be the only chance to inject
hadronic material quickly.
Therefore, shear injection and acceleration may be strong

near the foot of the jet.

6. Concluding Remarks

The acceleration of cosmic rays in astrophysical shear flows
was initiated by Berezhko (1981, 1982, 1983) and by Berezhko
& Krymskii (1981). Earl et al. (1988) re-derived the diffusive
cosmic-ray transport of Parker (1965; see also Krymskiy 1964
for a constant solar wind speed V; Gleeson & Axford 1967 and
Dolginov & Toptygin 1967) by including the effects of cosmic-
ray viscosity as an important mechanism for particle
acceleration in nonuniform fluid flows. They also included
the effects of advection, diffusion, adiabatic compression, and
accelerating flows on the particle transport for the case of
nonrelativistic fluid flows. The generalization of the diffusive
transport equation for cosmic rays for relativistic flows was
derived by Webb (1989; see also Achterberg & Norman
2018b). Pitch angle transport equations for cosmic rays for
nonrelativistic flows were derived by Skilling (1971, 1975).
Webb (1985, 1987) and Achterberg & Norman (2018a) derived
the corresponding focused transport equations for relativistic
flows. Particle transport and acceleration in relativistic shear
flows were studied by Webb (1989, 1990; see, e.g., Rieger
2019 for a recent review).
The basic shear acceleration model for particle acceleration

in radio-jet shear flows was described in Section 2. In Section
2.3, we introduced a perspective on particle acceleration and
transport based on writing the transport equation in conserva-
tion form. This allows one to consider the particle transport in
(r, p) space in terms of flow lines, which are the solutions of the
associated differential equation system = á ñ á ñ dr dp r p in the
(r, p) plane, where á ñr and á ñp are the mean particle advection
velocity and rate of change of momentum. This approach was
used by Gleeson & Webb (1974, 1980) and Webb & Gleeson
(1980) to describe cosmic-ray transport in the heliosphere.
However, in the latter papers, p corresponded to the particle
momentum in an inertial reference frame fixed in the solar
system. The changes of particle energy in these papers
correspond to the work done on the cosmic rays by the solar
wind due to the cosmic-ray pressure gradient (see also Jokipii
& Parker 1967 for a hydrodynamical version of this result). In
the present analysis, we use the particle momentum p in the
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comoving frame, moving with the background flow, and hence
the changes of particle energy also contain non-inertial
reference frame effects.

The application of flow line differential equations in (r, p)
space to the steady-state particle transport equation in radio-jet
shear flows was further explored in Section 4.3. The rate of
change of particle momentum gá ñ = [ ]p D pc pp f derived from
the cosmic-ray continuity equation involves the spectral slope
parameter g = -¶ ¶f pln lnf 0 of the particle distribution
function f0(r, p). The rate of change of momentum á ñp was
compared with the rate of change of the systematic momentum
〈Δp/Δt〉 in Section 4.4. If γf> 0, the particles gain energy, but
if γf< 0 the particles lose energy. In other words, the changes
in particle energy and momentum in this formulation depend
on the sign of the spectral index γf.

Section 3 gives the detailed form of the Green’s function
¢( )G r p p, ; for the model. Plots of ¢( )pG r p p, ; versus ¢p p

provide insight into the inverse particle transport problem, in
which (r, p) are regarded as fixed, and ¢p corresponds to the
particle momentum as ¢  ¥r . Section 4 discussed the origin
of particles of momentum p at position r for representative
asymptotic spectra ¥ ¢( )f p,0 as ¢  ¥r .

Detailed analysis of the general solution (Equation (2)) and
the Green’s function ¢( )G r p p, ; forms (Equations (42), (46),
and (47)) are given in Appendix A. Appendix A develops a
Fourier transform form of the solution, which can be
investigated using Cauchy’s theorem to obtain Equation (42).
An alternative method to obtain ¢( )G r p p, , was developed by
Webb et al. (2020) in which a Fourier–Bessel expansion was
developed, which is analogous to a Fourier series solution,
except that the usual trigonometric functions are replaced by
orthogonal Bessel eigenfunctions. The development in Webb
et al. (2020) only uses real analysis. The work in
Equation (A33) in Appendix A is useful in obtaining
approximate asymptotic solutions in the limit that ¢ p p 1.
In this limit, the usual eigenfunction expansion is difficult to
evaluate. A detailed discussion of the convergence properties of
the eigenfunction expansion (Equation (42)) and the equivalent
expansions (Equations (46) and (47)) are described in
Appendix B.

The main motivation for the present paper is the observation
that the radio-jet shear acceleration model has steady-state
solutions for f0(r, p) of the form

ò= ¥ ¢ ¢ ¢
¥

( ) ( ) ( ) ( )f r p f p G r p p dp, , , ; , 1220
0

0

where ¢( )G r p p, ; is the effective Green’s function and r is
cylindrical radius about the jet axis (see Equation (2)). From
Equation (122), one obtains
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as the fraction of particles at (r, p) that originated in the
momentum interval ¢ ¢ + ¢( )p p dp, as ¢  ¥r (see Figure 8).

Gleeson & Webb (1975) and Li et al. (2009) studied a
similar inverse problem for solar modulation of galactic cosmic
rays in the solar cavity. Li et al. (2009) used a set of stochastic
differential equations for representative particles starting at (r,
p) and integrated the stochastic particle paths backward in time
to the boundary at r= R. The spectrum of ¢( )f R p,0 versus ¢p
may be constructed from the ensemble of particle paths.

Gleeson & Webb (1975) and Li et al. (2009) studied the energy
losses of galactic cosmic rays with momentum ¢p as ¢  ¥r
that are observed at radius r with momentum p in the
heliosphere.
In this paper, we have studied the inverse transport problem

of the shear acceleration model for particle acceleration in radio
jets, in which one fixes the observation point (r, p) and
determines y ¢ ¢( )r p p dp, ;p defined by Equation (123), which in
turn is used to determine the mean momentum á ¢ ñ( )p r p, .
One of the main results of the paper is the dependence of

á ¢ ñ( )p r p, on p for a fixed r illustrated in Figures 8 and 9, which
apply to protons for which synchrotron and inverse Compton
losses can be neglected. Figure 9 shows that á ¢ñ ~¯ ¯p p0.78 0.55

for the semi-realistic, cutoff power-law spectrum f0(∞ , p)
displayed in Figure 7, corresponding to a jet with β0= 0.9,
β2= 0, ò= k/s= 1 and pb= 1 GeV c−1. Here, =p̄ p pb and
¢ = ¢p̄ p pb, where pb is the break in f0(∞ , p) in Figure 7

(recall that ò= 0 corresponds to a free escape boundary at
r= r2, but ò→∞ corresponds to strong scattering in the shear-
free region r> r2). Representative values of á ¢ñp̄ are given in
Figure 8. For example, p= 10 GeV c−1 gives á ¢ñ =p

-3.07 GeV c 1. Thus, p is substantially larger than á ¢ñp in this
example (i.e., substantial particle acceleration is obtained). For
p= 106 GeV c−1, p= 1553 GeV c−1. Using the relation
á ¢ñ ~¯ ¯p p0.78 0.55, we deduce that for E∼ pc= 1018 eV, protons
correspond to á ¢ñ = ´ -p 6.95 10 eV c13 1 as r→∞ . These
calculations give some idea of the original average momentum
of the particles given by á ¢ñp that gave rise to the particles
observed at r= 0.5r2 with p∼ 1018 eV c−1. Thus, the
acceleration process boosts the original average particle
momentum á ¢ñp by a factor of á ¢ñ ~ ´p p 1.44 104 in this
case. The contours of á ¢ñp in the (r, p) plane in Figure 12 give a
more general view of á ¢ñp p as a function of r and p for other
values of the observation radius r and momentum p. These
results should be consistent with the constraints of Figure 16
for an acceptable source. However, Figure 16 implicitly
assumes that the particles are constrained to lie in the shear
acceleration region 0< r< r2. We identify ΔL= r2 as the
width of the jet shear acceleration region. This constraint
should be relaxed somewhat in the case where there is
significant particle scattering in the region r> r2, because these
particles can be scattered back into the shear acceleration
region 0< r< r2. Figure 16, shows that to constrain and
accelerate an E= 1018 eV particle in the radio-jet shear flow,
only the gray-shaded region of (ΔL, B) space is allowed. For
example, to obtain E= 1018 eV protons requires that
1 kpc<ΔL< 105 kpc for B= 1 μG and for a radio jet with
γj= 1.1 (i.e., βj= 0.4166). For B = 100 μG, ΔL lies in the
range of 10 pc<ΔL< 103 kpc. The length of the jet
d= 100ΔL was assumed. AGN jets with these characteristics
for ΔL and B (Liu et al. 2017; Webb et al. 2019) include the
possible sources MKN 501 and MKN 421 (Dermer 2007;
Sahayanathan 2009; Abbasi et al. 2014; Caprioli et al. 2015).
Rieger & Duffy (2019), Webb et al. (2020), and Wang et al.

(2021; see also Liu 2015 and Liu et al. 2017) developed a leaky
box model for particle acceleration in radio-jet shear flows, that
takes into account (i) particle acceleration by the shear flow,
(ii) particle energy losses due to synchrotron and inverse
Compton losses, and (iii) particle escape from the acceleration
region due to spatial transport. Rieger & Duffy (2019) showed
that for a spectrum of turbulence of the form Pxx(k)∝ k− q in
the inertial range, for which the particle scattering time is
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t gµ a˜ , where α= 2− q, there exists a particle energy
g g=˜ max at which the particle energy gains balance the
particle energy losses due to synchrotron and inverse Compton
processes. At energies g g<˜ max the particle energy gains
dominate whereas at energies g g>˜ max the particle energy
losses dominate. For electrons, simple estimates (Rieger &
Duffy 2019; Wang et al. 2021) imply that g= ~E m cemax

2

10 eV15 for a range of jet models, whereas for protons efficient
acceleration to several exaelectronvolts appears feasible. An
overview of these leaky box models for particle acceleration in
radio-jet shear flows is given in Appendix D.

The effect of synchrotron losses on the spectral index μ∞ of
particle acceleration in a leaky box model of radio-jet shear
flows for Bohm diffusion was studied by Webb et al. (2020).
For Bohm diffusion, there is no maximum energy gmax for
which synchrotron losses balance particle energy gains due to
shear acceleration. They obtained the formula
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Equation (124) is Equation (171) of Webb et al. (2020). Here,
tacc, tsynch, and tesc refer to the characteristic acceleration time,
the synchrotron loss time, and the leaky box escape time. Webb

et al. (2020) considered the case of Bohm diffusion for which
α= 1. From Equation (170) of Webb et al. (1984, 2020),
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where the χe and χp are the values of χ for electrons (e) and
protons (p). Thus, the timescale of proton synchrotron loss is
much larger than the timescale of electron loss by a factor of
( )m mp e

4. Synchrotron losses can be neglected for protons but
must be taken into account for electrons.
Explicit expressions for tacc, tsynch, and tesc are given by

Webb et al. (2020). Webb et al. (2020) Equations (163) and
(167) can be written as
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The escape time is given by Webb et al. (2020), Equation
(168),
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Equations (127) and (128) apply to both electrons and protons.
The timescale of the synchrotron loss for electrons in the
model, given by Webb et al. (2020), (Equation 162) is
equivalent to
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In Equation (127), κ(p)= c2τ(p)/3 is the particle diffusion
coefficient in the shear acceleration region 0< r< r2.
Figure 9 of Webb et al. (2020), or Figure 17 of the present

paper shows a plot of μ∞ versus β0 for electrons, including the
synchrotron losses for jets with β2= 0, s= 0.1, k= 1, r2=
100 pc, B= 1 μG, and P0= (δB/B)2= 0.01. Only for
relativistic shear flows with 0.8< β0< 1 does one obtain a
hard spectral index μ∞ for the electrons (i.e., 4< μ∞< 5).
Clearly, synchrotron losses are important for the electrons.
Note that μ∞ decreases with increasing β0 with μ∞→ (3+ α)
as β0→ 1 and μ∞→∞ as β0→ 0. The parameter ò= k/s also
has a marked effect on the value of μ∞ (see, e.g., Figure 3 of
Webb et al. 2020 for the case of protons, with no synchrotron
losses).
The accelerated particles in the radio-jet shear flow should in

general have a gyroradius of rg<ΔL, in order to be contained
in the shear flow (however, this constraint can be relaxed
somewhat if the particles in r> r2=ΔL can scatter back into
the shear flow region (i.e., for the case of ò≠ 0)). For the above
parameters used by Webb et al. (2020), an E= 1016 eV electron
has rg= 3× 1019 cm, for B= 1 μG but ΔL= 3× 1020 cm,
which is about 100 pc. In this example, rg/ΔL≡ rg/r2= 0.1
and the electron is well confined by the jet. However, for
Ee= 1018 eV, rg= 3× 1021 cm, then rg/r2= 10, and in that
case, the electron is not well confined by the jet. Again, if there

Figure 16. Constraints (i)–(iii) on E = 1018 eV protons in radio jets for
(a) γj = 1.1 (top panel) and (b) γj = 1.2 (bottom panel) from Webb et al. (2019)
Figure 10. The allowed region of ΔL and B-phase space is shaded in gray.
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is significant scattering of the particle in r> r2 the confinement
criterion is then not very strict.

It is important to note that recent simulations of FR II jets by
Seo et al. (2023) indicate that shear acceleration appears to
dominate shock acceleration, at energies E> 1 EeV. Gradual
shear acceleration and non-gradual shear acceleration are
increasingly important above about 1 EeV. This seems to
justify the present model as a particle acceleration model above
about E= 1 EeV, but the model is not so good at lower
energies where DSA is dominant.

A further aspect of the gradual shear acceleration problem
studied in this paper is the flow line equation solutions of
Equation (3) associated with the conservation form of the
transport equation (Equation (4)) in (r, p) space. This analysis
gives an overall picture of the particle radial transport due to
spatial diffusion and the corresponding particle momentum
changes over the whole (r, p) phase space domain (see, e.g.,
Sections 2.3 and 4.3 and Figures 13 and 14 illustrating flow
lines for a monoenergetic particle spectrum boundary condition
for f0 as r→∞ ). Figure 15 illustrates the form of the flow lines
for the case of a more general spectrum ¥ ¢( )f p,0 consisting of
a negative power law in ¢p at ¢ >p pb and with ¥ ¢( )f p,0
constant for < ¢ <p p0 b. In the latter case, the flow lines are
inward at low momenta at 0< p< pb and move outward at
p> pb. The particles in this case always gain energy (in reality,
there must be both gains and losses of the particle momentum
because there is momentum space diffusion describing the
shear acceleration). The flow lines show that on average the
particles always gain energy in a statistical sense in the Figure
15 example. In principle, there should be energy losses at high
energies due to synchrotron losses, but these are not included in
the present analysis. The energy losses are clearly masked in

Figure 15, by the weighting of the results by the
spectrum ¥ ¢( )f p,0 .
Observational constraints and particle acceleration possibi-

lities (e.g., radio-jet emission beaming, microquasars, blazars,
stellar-mass black hole jets, supermassive black hole jets
following the merger of two galaxies, shock acceleration at the
head shock, at helical shocks in jets with helical magnetic
fields, re-confinement shocks, stellar ablation, injection, and
acceleration of particles in shear flows) were discussed in
Section 5. These observational constraints are important in
developing more general models and theories of particle
acceleration in radio jets than the simple shear acceleration
model used in the present paper. However, the present model
does have some heuristic value in elucidating particle
acceleration by cosmic-ray viscosity in radio-jet shear flows.
For example, it is clearly easier for particles to enter the shear
flow and cross back and forth across the flow, than for particles
to swim against the flow as envisaged for particle acceleration
by the first-order Fermi mechanism in relativistic shocks. In
early models of particle acceleration by the first-order Fermi
mechanism at relativistic shocks based on the focused transport
equation for cosmic rays (e.g., Kirk & Schneider 1987a, 1987b;
Achterberg et al. 2001) the pitch angle diffusion coefficient
Dμμ used in the models was assumed to be of a given form
suggested by quasi-linear theory. For particles to be accelerated
by the first-order Fermi mechanism in these models the
particles need to be highly beamed along the magnetic field and
shock normal in order to swim upstream of the shock. Such
highly beamed distributions are inherently unstable, giving rise
to waves that isotropize the distribution function leading to
quenching of the shock acceleration process. This suggests that
a more realistic model of wave–particle interactions and
momentum space diffusion would take into account the
dynamical coupling of the waves or turbulence scattering the
particles and the particle transport coefficients. One might
expect both energy losses and energy gains of particles due to
momentum space diffusion and perhaps quasi-isotropic particle
distribution functions due to enhanced turbulence, but with a
net particle energization in such models. The PIC simulations
of Sironi et al. (2013) show that particle acceleration in
relativistic shocks is not very efficient in environments with
magnetization of σ= B2/(μ0nimic

2)> 1. Kirk et al. (2023)
investigate particle acceleration at ultrarelativistic perpend-
icular shock fronts. Put another way, a more realistic model for
particle acceleration at relativistic shocks should take into
account momentum space diffusion due to either cosmic-ray
viscosity or due to turbulence. Momentum space diffusion
would then lead to both energy gains and energy losses at
relativistic shocks.
Particle acceleration in radio jets should in principle take into

account all other possible acceleration mechanisms, e.g., by
first-order and second-order Fermi mechanisms, shear accel-
eration, electric fields at shocks, the effects of accelerating
reference frames (pseudo-gravity), and particle energy losses.
However, these issues are beyond the scope of the present
paper. These more general models are necessary to properly
evaluate the significance of each acceleration mechanism.
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Appendix A

In this appendix, we present a version of the analysis of
Webb et al. (2019, 2020), which shows how the solution
(Equation (37)) for f0(r, p) arises from the Fourier transform
solution, for general cases where ò≠ 0 or ò= 0. This analysis
was not presented in Webb et al. (2020). Webb et al. (2019)
only considered the case of ò= 0. The Fourier transform of the
solution is useful in evaluating the Green’s function ¢( )G r p p, ;
for ¢ ~p p 1, where the real eigenfunction expansion for

¢( )G r p p, ; does not converge very fast. In this regime, it is
possible to invert the Fourier or inverse Laplace transform
solution numerically or by using asymptotic analysis (i.e., the
Fourier transform version of the solution could be useful in
asymptotic analysis for ¢ ~p p). It is clear from Equation (37)
that the Green’s function ¢( )G r p p, ; has the property in which

d¢  - ¢  ¥( ) ( ) ( )G r p p p p r, ; as . A1

There are two distinct Green’s function solutions of the
transport equation (Equation (5)). The solution for ¢( )G r p p, ;
satisfying the boundary condition (Equation (A1)) is referred to
as the monoenergetic spectrum Green’s function solution.
Another fundamental Green’s function solution corresponds to
steady injection of particles into the flow at radius r= r1 with
momentum p= p0, which are energized in the shear flow
region 0< r< r2, where f0(r, p) satisfies the transport equation
(Equation (5)) in the region 0< r< r2 and f0 satisfies the
diffusion equation (Equation (9)) in the shear-free region
r> r2. The solution in 0< r< r2 is matched at the boundary at
r= r2 by the mixed Dirichlet–Von Neumann boundary
condition (Equation (18)) in which we set f0(∞ , p)= 0. We
also require that the solution corresponds to no particle sources
at r= 0, which is equivalent to the requirement that rSd→ 0 as
r→ 0, where Sd is the radial particle diffusive flux (see
Equation (19)).

The transport equation (Equation (5)) in the region
0< r< r2 can be expressed in the form (e.g., Webb et al.
2020, Equation (28))
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The Green’s function of Equation (A2) can be obtained by
using the Fourier transform

òp
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¥
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2
, exp A40 0

(note there is a misprint in Equation (125) of Webb et al. 2020
where dν should be replaced by dT). Taking the Fourier
transform of Equation (A2) with respect to T gives the ordinary

differential equation
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The homogeneous equation (Equation (A5)) has solutions of
the form

h h= L + L º +( ) ( ) ( )y a I a K a y a y , A81 0 2 0 1 1 2 2

where η= ξ0− ξ, and I0(z) and K0(z) are modified Bessel
functions of the first and second kind of order zero
(Abramowitz & Stegun 1965, 9.6.1 p. 374).
Using standard results from Morse & Feshbach (1953) we

obtain the solution for f̄0 in the form
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The results (Equations (A9) and (A10)) generalize the solution
for n¢¯ ( )f r,0 given by Webb et al. (2020), Equations (131) and
(132), which were obtained for ò= 0. Webb et al. (2019) only
considered solutions with ò= 0, in which there was a free
escape boundary at r= r2.
The Green’s function solution of Equation (A2) can now be

obtained by inverting the Fourier transform solution
(Equation (A9)), i.e.,
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The solution for f0(r, p) can be obtained from Equation (A11)
using complex integration, accounting for the branch cuts for
the multivalued function nL ¢( ) and by taking into account the
residue theorem and the poles of the integrand (Equation (A9))
that occur at the zeros of D(Λη2)= 0. This process gives the
standard eigenfunction expansion (Equation(46)) of Webb
et al. (2020), namely,
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The parameters η1= η(r1) and η2= η(r2). J0(z) and J1(z) are
ordinary Bessel functions of the first kind. The eigenvalues jn
satisfy the eigenvalue equation (Equation (43)), and the
parameters λn and χn are related to the jn via the equations

l h c l= = + ( )j a, and 5 . A14n n n n2
2 2

Webb et al. (2020) use Green’s formula and an appropriate
version of the Green’s function (Equation (A12)) to derive the
monoenergetic spectrum Green’s function ¢( )G r p p, ; given in
Equation (42).

A.1. Boundary Value Problems

Webb et al. (2020) derived Green’s theorem and Green’s
formula for the transport equation (Equation (5)). In this
approach, Equation (5) is written in the form

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

k t= -
¶
¶

¶
¶

-
¶
¶

G
¶
¶

=( ) ( )

( )

 f
r r

r
f

r p p
p

f

p
Q r p

1 1
, ,

A15

s0
0

2
4 0

where Γs is the shear acceleration coefficient (Equation (6)). In
the case of monoenergetic injection of particles with
momentum p= p0 at radius r= r1,
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is the source term in Equation (A15). The monoenergetic
source Green’s function of Equation (5), is given by Equation
(46) of Webb et al. (2020). Using integration by parts, one
obtains Green’s theorem for the transport equation
(Equation (A15)) in the differential form
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is the bilinear concomitant of ψ and f0. It turns out that the
differential operator  is self-adjoint, i.e., =† . The adjoint
Green’s function G¢ ¢ ¢( )r p r p, ; , for the transport equation
(Equation (A17)) satisfies the adjoint transport equation
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Integrating Equation (A20) over the volume
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one obtains the solution for f0(r, p) in  as
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where we assume (r, p) lies inside the region  in
Equation (A21). The solution for f0(r, p) taking into account
the mixed Dirichlet boundary conditions at r= r2 in the region
 reduces to
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Equation (A23) is equivalent to Equation (90) of Webb et al.
(2020). Once the adjoint Green’s function G¢ ¢ ¢( )r p r p, ; , has
been determined, Equation (A23) gives the solution for f0(r, p)
in the form of Equation (37), where
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To determine G ¢ ¢( )r p r p, ; , notice that Equation (A15) for f0
with monoenergetic source term Equation (A16) has the same
form as the adjoint Green’s function (Equation (A19)). The
map of Equation (A15) onto Equation (A19) is obtained by
using the transformations
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in which the Green’s function solution is described by
Equations (A9)–(A12). Using Equation (A25) in
Equations (A9)–(A11), we obtain the Fourier space version
of G ¢ ¢( )r p r p, ; . as
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is the normalization constant. In addition the map
(Equation (A25)) implies the transformation
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Using Equations (A26), (A27), and (A11), we obtain
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is the explicit form for G ¢ ¢( )r p r p, ; , , where
n n¢ º G¯ ( ) ¯ ( )f r r, ,0 is given by Equations (A26) and (A27).

Using the results (Equations (A24)–(A29)) in the first
expression for ¢( )G r p p, ; in Equation (A24) we obtain for
0< r< r2 the solution form
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Because F(w2, w2)= ò, we obtain for 0< r< r2:
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Equation (A30) gives the solution for ¢( )G r p p, ; only for the
region 0< r< r2. The solution for ¢( )G r p p, ; for r> r2 is
given by Equation (39).

Because Λ is an even function of n¢, Equation (A30) can be
written as a Fourier cosine transform
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which is a useful result for ¢( )G r p p, ; in the limit as
¢ ∣ ( )∣T p p, 0.

A.2. ò ≠ 0 Asymptotics as ¢ p p

In this section, we give a sketch of the asymptotics of the
solution for ¢( )G r p p, , as ¢ p p for the case of ò≠ 0.
Similar, but different results apply for ò= 0 case. In the case of
ò≠ 0, Φ(w, w2) from Equation (A32) for large w and w2 has the
approximation
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The simplest approximation in Equation (A34) is to drop the
higher-order terms that are of order O(1/w) in the numerator

and denominator leading to the crude approximation
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Use of Equation (A33) then gives the approximate solution for
¢( )pG r p p, ; for large ò and for small T of the form
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where Θ is given by

h hQ = ¢ + -[ ( ) ( ) ] ( )a T p p, 5 . A372
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For more general ò (ò∼O(1)), it is necessary to numerically
evaluate the integral equation (Equation (A33)) to obtain a
good approximation for ¢( )pG r p p, ; in the ¢ p p limit, in
which we use the approximation equation (Equation (A34)) for
Φ(w, w2).

Appendix B

In this appendix, we discuss the convergence of ¢( )G r p p, ;
as ¢ =p p (i.e., ¢ =( )T p p, 0). In such case, the Fourier–Bessel
series solution, i.e., Equation (46) reduces to
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where h h h=¯ ( ) ( )r r 2 ( h̄ 0 1) is a normalized form of η
(r) related to the location of the observer. Note that the
convergence of the series (Equation (B1)) depends entirely on
the large n terms (i.e., the infinite tails). We, therefore, study
the properties of the partial sums with a large integer N:
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For simplicity, we denote each term in series GN(r) by An(r).
Given a particular value of ò, the eigenvalues, {jn}, are given
by the zeros of the eigen equation (Webb et al. 2019, 2020)

- =( ) ( ) ( )J x xJ x 0 B30 1

for x, which is in principle numerically solved. However, in the
large n limit, it is possible to obtain simple approximations for
jn simpler forms for GN(r).

B.1. Case of ò ≠ 0

Recalling that the asymptotic expansion of Bessel function
for large arguments x (Abramowitz & Stegun 1965, formula
9.2.1, p. 364):
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With this approximation, Equation (B3) can be cast into the
form

⎛
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p
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4
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The poles of p-( )xcot 4 on the left-hand side occur when

p
p- = ( )x n

4
, B6
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where n=N, N+ 1L. From Equation (B5),

p
p

~ + ( )j n
4
, B7n

in the limit of large n. The approximation (Equation (B7)) is
extremely important in studying the convergence of GN(r).

Consider the simplest case where the observer is exactly
located at the jet boundary, i.e., h = =¯ ( )r r 12 . From
Equation (B3), the An(r) in the series (Equation (B2)) can be
approximated by
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On the other hand, in the large n limit, we can immediately see
that
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and therefore,
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This result suggests that GN(r2) behaves like ( )M Nln , where
M− N+ 1 is the number of terms summed over in the range of
N� n�M. This is similar to the harmonic series, which
diverges like ~ Nln .

Next, we seek the asymptotic form of An(r= 0). In this case,
h = =¯ ( )r 0 0 so that h º( ¯ ( ) )J j0 1n0 . Hence, the use of the
approximation (Equation (B4)) on J0( jn) yields
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Note that GN(0) now asymptotically becomes an alternating
series and the Leibniz criterion ensures its convergence (Arfkin
1985, Section 5.3).

Finally, we consider the general r-dependent case (i.e.,
h< <¯ ( )r0 1). Again, with Equation (B3) and the

approximation (Equation (B4)) for both h( ¯ )J jn0 and J0( jn), we
find
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where
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So, the partial sum GN(r) converges since the series
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n

converges (N is a large number), according to the Dirichlet’s
test (Dirichlet’s test is described in Wikipedia; however, a more
substantial discussion of convergence and divergence test for
series and infinite integrals were developed by Bromwich 1947
and Hardy 1946).

B.2. Case of ò = 0

Compared with Equation (B5), in this case, the asymptotic
form of the eigen equation J0(x)= 0 reads as (see
Equation (B4))

⎛
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p
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with the solution
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Consequently, a new large n-limit approximation for jn is
obtained,

p
p

~ - ( )j n
4
, B17n

which is similar to the approximation (Equation (B7)).
For h =¯ 1 at r= r2, the partial sum GN(r) in Equation (B2)

(or in fact Equation (B1) degenerates to G= 0 due to the eigen
equation J0( jn)≡ 0. However, if we consider the asymptotic
behavior of GN(r) as r→ r2, we can expand h( ¯ )J jn0 in terms of
the small parameter d h= - ¯1 by applying the multiplication
theorem gives
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suggesting that GN(r) grows like ∼N2 for r close to r2.
On the other hand, when we look at the h =¯ 0 case (i.e., at

r= 0), it turns out that
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which will result in a diverging GN(0), or equivalently,
= = ¢( )G r p p0; . Similarly, for h< <¯0 1, we can find the

GN(r) in Equation (B2) does not converge like that in the ò≠ 0
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case, because An(r) now oscillates like
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Appendix C

In this appendix, we investigate the inverse problem of
determining the asymptotic spectrum as r→∞ , namely.

¥ ¢( )f p,0 given the spectrum f0(r, p) at a fixed cylindrical
radius r from the jet axis. This problem can be addressed by
noting that the solution for f0(r, p) given in Equation (2) can be
expressed as a convolution integral in the variables = ( )t pln
and ¢ = ¢( )t pln . By writing the convolution integral in terms of
Fourier transforms with respect to t and ¢t allows one to solve
the problem in Fourier space by using the convolution theorem
for Fourier transforms.

We first note from Equations (A30)–(A33) that
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From Equation (C1), we may introduce y ¢ -ˆ ( )r t t, , where

y y¢ - = ¢ º ¢ ¢ˆ ( ) ( ) ( ) ( )r t t r p p p G r p p, , ; , ; . C3

Using Equation (C1), we obtain
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= ¥ ¢ = ¥ ¢ˆ ( ) ( ) ˆ ( ) ( ) ( )f r t f r p f t f p, , , , , , C50 0 0 0

the solution (Equation(2)) for f0(r, p) may be written in the
form

ò y= ¢ - ¥ ¢ ¢
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¥ˆ ( ) ˆ ( ) ˆ ( ) ( )f r t r t t f t dt, , , . C60 0

Equation (C6) involves a convolution integral. Taking the
Fourier transform of Equation (C6) and using the convolution
theorem for Fourier transforms, we obtain the Fourier
transform space equation
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are the Fourier transforms in Equation (C7), where t = ¢ -t t .
From Equation (C4), we obtain
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Thus, the general solution (Equation(2)) for f0(r, p) reduces
to the Fourier space (Equation (C7)). From Equation (C7), we
obtain

n
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y n
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, C110
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as the solution for n¥ ¢¯ ( )f ,0 in terms of n¢¯ ( )f r,0 where we
regard r as fixed. At first glance, Equation (C11) looks a bit
strange because it seems to imply that the radial dependence of
the numerator and denominator must cancel. On the other hand,
Equation (C7) makes sense because y n¢¯ ( )r, is the Fourier
transform of the Green’s function propagator. The inverse
Fourier transform of Equation (C11) in principle gives the
required solution for ¥ ¢( )f p,0 in terms of f0(r, p) and the
Green’s function propagator ¢( )G r p p, ; . This possibility is
beyond the scope of the present paper.
A formal derivation of Equation (C9) follows from the

definition of Equation (C8), namely,
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where we have used the delta function representation
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for the Dirac delta distribution in Equation (C11).

Appendix D

In this appendix, we describe the leaky box model for
cosmic-ray acceleration in radio-jet shear flows developed by
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Rieger & Duffy (2019), Webb et al. (2020), and Wang et al.
(2021). The model includes the acceleration of particles due to
radio-jet shear flows, synchrotron, and inverse Compton
cooling for electrons and particle escape from the leaky box.
The basic transport equation for f0 has the form
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Alternatively, using the energy number density pg= ˜n f4 2
0,

where g̃ is the relativistic particle Lorentz gamma (for
ultrarelativistic particles, the particle speed v≈ c and the
particle energy g g= µ˜ ˜E m c2

0
2 2. Here, we follow the

approach and the notation of Wang et al. (2021)ʼs leaky box
model for electron acceleration in radio-jet shear flows. The
transport equation (Equation (D1)) can be written in the
Fokker–Planck form
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where gáD D ñ˜ t c is the synchrotron and inverse Compton
cooling rate for g̃ and τesc is the escape time from the leaky
box, with source pg̃ Q4 2 . τesc is given by the estimate
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whereΔr= L is the radius of the cylindrical box and κ= c2τ/3
is the particle diffusion coefficient.

The energetic particle momentum diffusion coefficient gg˜ ˜D
and the systematic acceleration rate gáD D ñ˜ t sh have the form
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Liu (2015), Liu et al. (2017), Rieger (2019), and Webb et al.
(2018, 2019, 2020) assume a scattering mean free time of the
form
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where rg= pc/(eB) is the particle gyroradius and ΩB= eB/
(mc) is the gyrofrequency. Here, ℓb is the outer scale or
correlation length, where < <k̃ k0 b defines the energy
containing range of the turbulence, and kb= 2π/ℓb is the break
in the turbulence power spectrum at =k̃ kb. In the inertial
range of < <˜k k kb d the turbulence power spectrum

µ -( ˜) ˜P k kxx
q. We assume the power spectrum is negligible in

the dissipation range of >k̃ kd.

From Equation (D6), it follows that
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From Equations (D4) and (D5), we obtain
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2 1 2 is the Lorentz gamma of flow. In

Equation (D8),
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The systematic shear acceleration rate is given by
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and the corresponding acceleration time is given by
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The cooling rate due to synchrotron losses and inverse
Compton scattering is
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where f=Urad/UB is the energy density ratio between the
target field (Urad) from inverse Compton scattering and
UB= B2/(8π) is the magnetic field energy density. Here σT is
the Thomson scattering cross section.
The cooling rate (Equation (D13)) balances the systematic

shear acceleration rate at g g=˜ max when
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Equation (D14) has the solution
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The expression (Equation (D13)) for gmax may also be obtained
by setting the the cooling time g g g= áD D ñ =˜ ∣ ˜ ∣ ( ˜ )t t A1cool 2

equal to the acceleration time tacc in Equation (D12).
Using Equation (D7) for A0 and Equation (D13) for A2 in

Equation (D15) gives the equation
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for the particle Lorentz gamma, where ξ= (δB/B)2 measures the
strength of the turbulence. The formula gives the Lorentz particle
g̃ at which energy gains due to shear acceleration balance energy
losses due to synchrotron and inverse Compton losses. It is
equivalent to formula (11) of Rieger & Duffy (2019).
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In obtaining Equation (D16), the equation
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for the Thomson cross section in terms of the classical electron
radius re has been used.

Using the estimate
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2 4

2

for a jet with γj= 3 and with a linear decreasing profile of
βj= uj/c as a function of r, namely dβj/dr=− β0/Δr,
Equation (D18) gives

G
=

D( )
( )

c r

72

15
. D19s

2 2

Taking the outer scale ℓb=Δr as the lateral width of the shear
layer, now gives the equation

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

g
m

= ´
D

( )
B r

3.5 10
30 G 0.1 kpc

, D20max
8

7 2 2

which is Equation (12) of Rieger & Duffy (2019) for gmax. For
B= 30 μG and Δr= 100 pc, g = ´3.5 10max

8. This corre-
sponds to an electron energy of ~ ´E 1.8 10 eVmax

13 for
B= 30 μG and Δr= 0.1 kpc and assumes ξ= (δB/B)2= 0.2.
For B= 10 μG, Δr= 100 pc, Equation (D20) gives
g ~ ´1.636 10max

10 and ~ ´E 8.36 10 eVmax
15 , for electron

shear acceleration in the leaky box model. Thus,
Equation (D20) suggests ~E 10 eVmax

15 for the cutoff in the
electron energy spectrum. Further discussion of gmax and Emax

is given by Wang et al. (2021). The value of gmax in general
will depend on the radial profile of γj(r).

Wang et al. (2021) showed that the leaky box model for
electron acceleration in radio-jet shear flows described by
Equation (D2) admits steady-state solutions for g( ˜ )n of the
form

g g g g= ++ + - -+ -˜ ( ˜ ) ˜ ( ˜ ) ( )n C F q C F q, , , D21s s

where

⎜ ⎟
⎛
⎝

⎞
⎠

=
-


-

+
( ) ( )s

q q
w

1

2

5

4
. D22

2 1 2

Here,

t t= -( ) ( )w q6 . D23sh esc

The g( ˜ )F q, are defined in terms of Kummer’s confluent
hypergeometric function as

⎜ ⎟
⎡

⎣
⎢

⎛
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⎞
⎠

⎤

⎦
⎥g

g
g

=
+
- -

-
-
-


 

-

( ˜ ) ( )
( )

˜
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F q F
s

q

s

q

q

q
,

2

1
,

2

1
;

6

1
.

D24

q

1 1
max

1

Applications of the solutions (Equations (D21)–(D24)) by
Wang et al. (2021) for g( ˜ )n to X-ray emission in the FR I jet of
Centaurus A (NGC 5128) and to the FR II jet of 3C 273 were
studied. Wang et al. (2021) used an r-averaged form of Γs in

which

⎜ ⎟
⎛
⎝

⎞
⎠

b
b

=
+
-

- ( )w 40 ln
1

1
. D252 0

0
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