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ABSTRACT
We aim to understand how people assess human likeness in navi-
gation produced by people and artificially intelligent (AI) agents in
a video game. To this end, we propose a novel AI agent with the
goal of generating more human-like behavior. We collect hundreds
of crowd-sourced assessments comparing the human-likeness of
navigation behavior generated by our agent and baseline AI agents
with human-generated behavior. Our proposed agent passes a Tur-
ing Test, while the baseline agents do not. By passing a Turing Test,
we mean that human judges could not quantitatively distinguish
between videos of a person and an AI agent navigating. To under-
stand what people believe constitutes human-like navigation, we
extensively analyze the justifications of these assessments. This
work provides insights into the characteristics that people consider
human-like in the context of goal-directed video game navigation,
which is a key step for further improving human interactions with
AI agents.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Reinforcement learning; • Human-centered comput-
ing → Empirical studies in HCI.
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1 INTRODUCTION
Games are considered one of the oldest forms of human social
interaction [49, 79]. Throughout history, people have played games
as important cultural and social bonding events [45], as teaching
and learning tools [15, 44], and for enjoyment [41]. Today, video
games have emerged as a popular form of structured play, inviting
players to immerse themselves in captivating virtual worlds. This
immersion is vital to making these games enjoyable [11, 53].

To enhance this immersive experience, game designers focus
on creating believable non-player characters (NPCs) that can in-
teract with players in diverse ways. A crucial part of believability
is human-likeness — that is, the ability of the NPC to behave as
a person would. Because many player-NPC interactions are crit-
ical to the game, it is important that the NPCs behave believably
to maintain immersion [14, 35, 85]. Indeed, video game players
find playing against more human-like agents more enjoyable [72].
Traditionally, game developers have designed NPCs to follow a
predetermined set of actions. However, this approach can be both
time-consuming and challenging, which has motivated designers
to turn to artificial intelligence (AI) for assistance with NPC design.
Due to this shift, there is a need for research into understanding
what people perceive as human-like in AI agents.

At the same time, AI researchers have identified achieving com-
plex human-like behavior as a critical milestone [8, 21, 71] to-
wards developing agents that can flexibly collaborate with people in
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shared human-AI environments [9, 25, 84] and various robotics ap-
plications [64]. This goal is not satisfied by agents demonstrating a
high proficiency level at the assigned task. For example, AI-powered
vehicles must behave sufficiently human-like for human drivers
to interpret, anticipate, and act in their presence [27]. As a result,
understanding the behaviors that contribute to people’s perceptions
of human likeness is a foundational first step towards achieving
general human-like behavior of artificial agents.

In this work, we contribute to the objective of developing human-
like agents by identifying and understanding what constitutes
human-like behaviors in a video game. To scope our study, we focus
on a 3D video game where agents must navigate from one point to
another. This form of navigation is pervasive in many video games,
making it a key area of interest for game developers [3, 18]: in em-
bodied games, players must move from place to place to accomplish
their goals or explore the world. More generally, it is considered
fundamental to embodied biological intelligence [26, 59], making it
of interest to cognitive scientists [56, 62] and researchers interested
in intelligent behavior [87]. It has also been a key area of interest in
HCI [80] due to how people (or robots) navigate in real, augmented,
or entirely virtual spaces.

To study navigation in video games, we leverage the recently-
proposed Human Navigation Turing Test (HNTT) [16], in which
human judges indicate which of two videos demonstrates more
human-like behavior. The judges then justify their decision and
indicate their certainty about their choice. In that work, the authors
compared the accuracy of the human-likeness assessments to ran-
dom chance but did not instantiate a statistical test to definitively
conclude whether an agent passed the HNTT. According to their as-
sessment, both studied AI agents did not pass the HNTT. As a result,
producing an agent that passes the HNTT is still an open challenge.
To this end, we design a novel agent to pass the HNTT. To assist
with our design of a human-like agent, we inspect the resulting
behavior of the two baseline agents from prior work [16]. With
these insights, we design our novel agent — the reward-shaping
agent — using simple and intuitive techniques.

We then conduct a behavioral study on Amazon Mechanical
Turk (MTurk) of the HNTT to investigate the behavior of our agent
and the baselines. To determine whether agents pass the HNTT, we
propose a firm criterion: a statistical test that determines whether
human judges distinguish between human and agent behavior at a
level that is significantly different from chance. We then validate
the conclusion of previous work: the two baseline agents are not
sufficiently human-like because they do not pass the HNTT. In
contrast, human judges cannot reliably distinguish between the
behavior of our reward-shaping agent from one controlled by a
person. To our knowledge, this agent is the first to pass the HNTT.

To understand these assessments, we analyze the free-form re-
sponses to determine which characteristics people believe are rep-
resentative of human and AI navigation behavior. We annotate the
responses with codes that summarize the provided rationale. Using
these annotations, we find that there are key differences between
how people characterize human-like and non-human-like behavior.
Specifically, we find that people utilize the same high-level charac-
teristics when describing human-like and non-human-like behavior,
but the presence or absence of these characteristics strongly informs
their judgments.

Based on the findings of our analysis, we summarize consider-
ations when developing and evaluating the human likeness of AI
agents. For example, considering the end use of the agent is critical
for defining what is meant by human like and designing a study
accordingly. In summary, we make the following contributions.

(1) We contribute a novel reward-shaping agent that exhibits
more human-like navigation behavior.

(2) We conduct a behavioral study to assess: a) whether people
reliably distinguish the behavior produced by the AI agents
from that generated by people and b) what characteristics
people believe are indicative of human-like behavior.

(3) We conduct an extensive analysis of the resulting data. We
propose a firm criterion to determine whether an agent
passes the HNTT and find that only our reward-shaping
agent passes the HNTT according to this metric. We analyze
the free-form responses to determine the characteristics that
people believe are representative of human-like behavior.

(4) Based on our findings, we propose concrete suggestions for
developing and evaluating human-like AI.

2 RELATEDWORK
Researchers have taken various approaches to address the challenge
of developing believable AI agents in games, including learning
from demonstrations [33, 38, 52], reinforcement learning [5, 20, 52,
89], and more [54, 77]. We focus on reinforcement learning [73]
because it provides a generally-applicable set of algorithms for
learning to control agents in settings including (but not limited to)
modern game environments [3, 24, 43, 75, 81]. It also offers signifi-
cant benefits as an approach for generating navigation behavior [3].
In particular, the use of reinforcement learning may enable more
complex navigation abilities (such as grappling or teleportation)
and alleviate game designers from the labor-intensive procedure of
the most popular alternative method to produce this behavior [51].

In reinforcement learning, an agent learns to accomplish a task
by maximizing a reward, or score, that tells the agent how well
it is performing. Although agents learn effective navigation by
maximizing this reward, they make no consideration for the style
with which they act [3]. If these approaches are to be adopted in
commercial game development, practitioners have firmly asserted
that controlling style is essential [34]. As an extreme example, rein-
forcement learning approaches that have recently defeated world
champion human players at modern games demonstrated unusual
behaviors [30] that made collaborative play between human and AI
in mixed teams far less successful [6]. Simply maximizing the task-
specific reward signal is unlikely to produce human-like agents.

Reward shaping [58, 86] is a simple yet powerful technique that
allows practitioners to clearly specify the desired agent behavior.
This approach involves crafting a reward signal that provides dense
feedback to the agent. It is an intuitive way for those without
a machine learning background to control the agent’s behavior
by specifying objectives instead of dedicating time to optimizing
unintuitive hyperparameters. Additionally, reward shaping can be
used with any reinforcement learning algorithm, making it possible
to swap in and out the underlying algorithm as needed. We utilize
reward shaping to generate more human-like behavior.
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Figure 1: Navigation task as observed by study participants (screenshot, left), and detail of the mini map of the game level
(right). Agents spawn on the island outside of the main map, which is shown in the bottom portion of the mini map on the
right. They must jump to the main area and navigate to the goal location. The light blue containers in the left screenshot
represent the goal location.

There is no standard set of metrics for evaluating human-like
AI. One paradigm involves measuring human similarity with proxy
metrics for human judgments. Some work measures the task per-
formance of the AI [77, 89], but this metric is an insufficient proxy
for human similarity. Other work assesses how well the AI agent
can predict the following human action [33] or align its behavior
with people [54, 76], but these metrics do not include actual hu-
man evaluations. They do not assess whether people can accurately
distinguish the AI player from the human one, which is vital for
assessing human likeness in games [22] and beyond [88].

Studies with human evaluations tend to be small-scale surveys to
understand the opinions regarding human-likeness [20, 52]. They
often offer only a preliminary investigation into the specific char-
acteristics that inform these beliefs and typically do not include a
form of Turing test [39], a well-established framework for address-
ing these problems [22]. Work that uses a Turing test often does
not investigate the behaviors or provide concrete metrics [55], or it
focuses on assessing the full spectrum of game behaviors [5, 20, 52].
Due to the complexity of these games and the resulting behaviors,
providing concrete recommendations to game designers is challeng-
ing. In contrast, we focus on a specific but widely-used behavior:
point-to-point navigation. To perform our assessment, we utilize
the setup of the recently-proposed Human Navigation Turing Test
[16]; however, we propose and perform a deeper evaluation of
human assessments of AI and human behavior.

3 BACKGROUND AND PRELIMINARIES
We utilize the navigation task from previous work [16] and instan-
tiate in the same modern AAA video game for our experiments. We
first describe the game in more detail, then provide an overview of
the navigation task.

3.1 The Video Game
To enable the reuse of agent and human-generated videos in our
study, we choose the same game as previous work. This game is a
multiplayer online combat game that features 13 customizable char-
acters, each with special abilities. The game is commonly compared
with other popular team-based action games, such as Overwatch
and DotA. Players compete against one another in two teams of four.
The game has two game modes. One mode requires capturing and
defending specific locations (called objectives) on the map, while
the other involves collecting items called cells and deposit them to
active platforms on the map. The game’s team-based mechanics,
objective balancing, and character customization offer a distinct
multiplayer experience, making it an excellent choice for studying
both AI behavior and human-AI interactions.

Underlying the game is the crucial mechanic of goal-directed
navigation: players must move from one location to another to
collect powerups or cells, go to drop-off platforms when they are
active, and engage in combat with other players. As a result, naviga-
tion between points represents an abstraction of the most common
task in the game. To allow us to concentrate on characteristics
specific to navigation, we utilized a simplified version of the game
that excludes other complex mechanics and objectives.

3.2 The Navigation Task
We instantiate the navigation task in the same way as prior work: a
single avatar must navigate to a target location. The left screenshot
of Figure 1 shows this location, indicated by the three blue contain-
ers. Navigating to a goal is a subtask of the main game, in which
players must balance navigating to target locations to collect cells
or boost health while warding off other players.
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Before the player moves, the navigation target spawns uniformly
at random in one of 16 possible locations, denoted by the green
crosses in the right-hand image of Figure 1. Then, the player spawns
on an island outside the main map (shown in the bottom portion
of the mini-map) and must jump to the map’s main area using the
available jump areas. Once the player is in the central region, they
can move to the target location.

The HNTT asks human judges to identify which of two naviga-
tion behaviors more closely resemble how people navigate in reality.
This phrasing aims to capture how convincing an agent is [48], in
contrast to another interpretation of the Turing test: whether a hu-
man or AI agent controls an entity. We chose this phrasing because
we want to create convincing NPCs that contribute to an immersive
game experience. In contrast, we do not wish to deceive the player
into thinking that an agent is controlled by a person when it is not.

3.3 The Baseline Agents
Previous work [16] conducted their study with two agent types:
a symbolic and a hybrid agent. When presented with the two agents,
participants accurately detected human players above chance, mean-
ing that people did not perceive their behavior as sufficiently human-
like. We utilize these agents as baselines in our experiments, so we
describe their essential details.

To progress toward the goal location, the agents take actions
from a prespecified set (called an action space). This action space
consists of 8 possible actions: do nothing, move forward, and move
left and right (30, 45, and 90 degrees on each side). To facilitate
training, the agents receive a dense reward signal to encourage
successful navigation to the goal. It consists of the following terms:
a -0.01 per-step penalty to encourage the agent to efficiently reach
the goal, a -1 one-time penalty for dying because the agent may fall
off the map, an incremental reward for approaching the goal, and
a +1 reward for reaching the goal. We observed that this reward
signal only includes terms to encourage successfully reaching the
goal as quickly as possible.

Themain difference between these two agents is the observations
that they take as input. The symbolic agent receives only a semantic,
low-dimensional representation as input; the hybrid agent also
receives an image input. For more details about the baseline agents,
we refer an interested reader to Appendix A.1 and Devlin et al. [16].

4 BUILDING A MORE HUMAN-LIKE AI
To help design our reward-shaping agent, we analyze the hybrid and
symbolic agents to find characteristics that may have influenced the
previous judgments of human likeness. Based on this analysis, we
introduce a novel agent for the HNTT: the reward-shaping agent.

4.1 Designing our Reward-Shaping Agent
This agent extends the hybrid agent with two critical changes to
promote learning of human-like behavior. Specifically, we introduce
additional terms to the reward signal and expand the action space
available to the agent. To test whether our contributions result
in differences in perceptions of human likeness, we fix all other
components of our reward-shaping agent to be the same as the
hybrid agent.

Because the symbolic and hybrid agents previously exhibited
non-human-like behavior, we inspected examples of their gener-
ated navigation and isolated three classes of problematic behavior.
Agents would:

P1. Wildly swing camera angles or make sudden turns,
P2. Frequently collide with walls, and
P3. Sometimes move more slowly than expected.

To correct these behaviors, we utilize reward shaping [63] by in-
cluding terms corresponding to desired or undesired behavior. We
introduce the following terms. First, we include a camera angle
difference penalty for swift camera angle changes over a set 0.15
difference threshold value to combat P1. Second, we introduce a
penalty of -0.05 for any wall collisions to address P2. Third, to
address P3, we provide a penalty of -0.01 if the distance traveled be-
tween steps is lower than an environment-specific threshold value
of 220 map units. We choose these values in line with previous
training rewards and expert assessments of the relative importance
of each of the components.

To encourage smoother control and avoid abrupt turns, we utilize
an approach similar to action-space shaping [37] by introducing
additional available actions to the agent. Intuitively, we anticipate
that the introduction of finer-grain controls will yield more fluid
navigation. We extend the action space to 14 actions from the
previous 8. In addition to the ‘do nothing’ and ‘move forward’
actions, we include 6 degrees of turning left and right, rather than
the 3 used by the baselines. The updated list of turning degrees for
this agent is: 18, 36, 45, 54, 72, and 90 on each side.

Taken together, these two components comprise the novel as-
pects of the reward-shaping agent. We design this agent in a rel-
atively agnostic way to make it more accessible to those without
expertise in deep reinforcement learning. Consequently, these two
components can be applied to any state-of-the-art deep reinforce-
ment learning algorithm. Depending on the underlying algorithm,
the specific values, particularly those used for each term of the re-
ward signal, may need to be set differently. However, we believe that
adjusting these values is more intuitive than specifying complex
parameters that are specific to a particular algorithm.

4.2 Producing High-Quality Navigation
We train all agents to achieve a similar level of performance on the
navigation task (see Appendix A.2 for the details of our training
setup) to ensure that task skill is not responsible for the perceived
differences in human likeness. We measure task proficiency using
the number of steps needed to reach the goal. Each step corre-
sponds to around 5 seconds of real-time play. Figure 2 confirms
that the agent models are indeed representative of state-of-the-art
techniques for learning navigation in complex, 3D games.

The reward-shaping and hybrid agents exhibit higher variance
during training than the symbolic agent. Because these agents must
also learn from pixels, their learning task is more challenging than
the symbolic agent (that only takes in symbolic input). As a result,
we expect higher variance during training as the agent learns this
more complex task. Importantly, all agents learn to reliably reach
the goal, indicated by the performance near the end of training. A
skilled agent now takes approximately 60 steps to complete the
task (about 12 seconds of real-time play). This result ensures that
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Figure 2: Hybrid, symbolic, and reward-shaping agents suc-
cessfully learn to navigate. This plot shows the average
amount of time needed to solve the task (y-axis) as a
function of the amount of time taken to train the agent.
The shaded area shows the standard deviation. For reward-
shaping, N=3; for hybrid and symbolic, N=4). All curves are
smoothed with a rolling window of 200. Importantly, on av-
erage, all agents converge to solve the task in around 60 steps
(around 12 seconds of in-game time). In contrast, agents
start out needing around 140 steps (around 28 seconds of in-
game time) on average to solve the task. The starting perfor-
mance on this task is similar to how long an agent taking
random actions would take to solve it. The main takeaways
are that performance differences are not responsible for per-
ceived differences in human likeness, and standard metrics
of task performance are insufficient to assess human like-
ness.

differences in the human-likeness of assessments are not due to
differences in the ability of the agents to solve the task.

5 EXPERIMENTAL DESIGN
To understand what characteristics people believe are indicative
of human likeness, we conducted a behavioral study with human
participants. Our setup closely follows prior work [16]; however, we
introduce important extensions, including collecting assessments
from a greater number of participants using a crowd-sourcing plat-
form (MTurk) and additional data for a more thorough analysis. For
completeness, we detail the full study design here.

5.1 Experimental Task
We asked each human participant to act as a judge by completing a
survey consisting of 6 HNTT trials. In each HNTT trial, the judge
was presented with two side-by-side video stimuli of people or
agents completing the navigation task. After watching these videos,
the judge answered three questions to indicate which video they
believed navigated more like a human would in the real world, a
justification of their response, and an indication of their certainty.
More specifically, participants answered the following questions:

(1) Which video navigates more like a human would in
the real world? The judge clicked the button underneath

Study Number of Number of
participants trials

Human vs. hybrid 50 6
Human vs. symbolic 50 6

Human vs. reward-shaping 92 6

Table 1: Conditions tested in each study and the number of
trials per condition. Importantly, note that the human vs.
hybrid and human vs. symbolic studies are replications of
prior work [16] to validate the switch to a crowd-sourcing
platform.

the video that they believed navigated more like a human
would. This decision was a forced binary choice.

(2) Why do you think this is the case? Please provide de-
tails specific to the video. The judge answered this ques-
tion as a free-form response in the box below the question.

(3) How certain are you of your choice? The judge answered
this question on a 5-point Likert scale, with choices ranging
from extremely certain to extremely uncertain.

To mitigate subject learning effects from sequentially viewing
multiple videos, we did not reveal to the judges which of the videos
was AI-generated. In other words, participants completed each task
and, in the end, did not know which videos were human-generated.

5.2 Experimental Procedure
We completed 3 studies; each study pitted a human-controlled agent
against a different AI agent. Within each study, all judges viewed
the same 6 trials. The trials were presented in a randomized order
per judge. Within each trial, the ordering of the two videos was
randomized, such that the human-generated video could not be
inferred by presentation order. Table 1 outlines the conditions tested
in each study.

Each participant first read through an introduction page with the
required task instructions (see Appendix B for the full text). They
then completed a consent form and read through a background
page with brief details about the video game. They answered a
series of questions to assess their comprehension of the task and
familiarity with video games. Finally, participants engaged in the
6 HNTT trials. Figure 3 shows screenshots of the comprehension
and familiarity questions (a) and an example HNTT trial (b).

5.3 Navigation Video Generation and Sampling
A key part of the study is the videos that were shown to the human
judges. For the human-generated navigation data and videos, we use
the publicly-available sample published by previous work [16].1 We
sampled human videos from the 40 published under their “study 1”
protocol. To generate the AI navigation data, we select each agent’s
most recently saved version. Then, we instantiate a new session
and deploy the agent in the game 100 times, producing 100 total

1Data use under MSR-LA license. License details can be found in the original authors’
GitHub https://github.com/microsoft/NTT. This link includes all data used in this
study, including from our reward-shaping agent.

https://github.com/microsoft/NTT
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(a) (b)

Figure 3: Screenshots of HNTT survey questions. The screenshot in (a) shows the comprehension and familiarity questions
(asked once per participant). We gauge the participant’s familiarity with the time the task will take, understanding of task
completion, familiarity with third-person action video games, and familiarity with the video game used in the survey. The
screenshot in (b) depicts one HNTT trial. We ask participants to choose their response to the human likeness question, justify
it, and indicate their level of certainty.

navigation videos per agent. To produce the video stimuli used in
the study, we sample the recordings uniformly at random.

We implemented several measures to standardize the videos and
ensure that any measurement noise applied to all conditions. First,
we checked that any changes in light applied similarly across con-
ditions. Second, we designed the timing of the stimuli to ensure
that participants had sufficient time to engage in and provide mean-
ingful responses in all trials. As a result, we did not use videos
that were too long and excluded videos shorter than 10 seconds
(before post-processing) because they were deemed too short to
assess navigation quality in pilot studies. Third, because the goal
locations may differ depending on the game-controlled initializa-
tion, we matched the goal locations of the human videos with the
AI agent videos. Consequently, we used different human videos
for different studies. Fourth, we applied the post-processing steps
from prior work [16]), including masking identifying information,
adding a “For Research Purposes Only" watermark, and cutting out
the last few seconds of the human videos. We implemented the last
change to correct an effect of the data collection process, where
the human players manually ended their recording, adding a few
seconds at the end of the videos.

5.4 Other Experimental Control
The MTurk crowd-sourcing platform [60] is widely used for data
collection and research due to its scalability, as long as researchers
implement appropriate steps for quality control [32]. Here, we detail
the study inclusion criteria that we implemented for quality control.

We set the following MTurk requirements for survey participa-
tion: location is United States, age is 18 or older, and language is
English. We did not collect demographic information or any other
personally identifiable information. To target more experienced
MTurk Workers, we set the following Human Intelligence Task
(HIT) qualifications: HIT Approval Rate greater than 98%, Number
of HITs Approved greater than 500, and a qualification to prevent
repeat responses. To incentivize quality, we included a bonus pay-
ment for each high-quality response. We reviewed the free-form
answers to find low-quality or suspected bot responses; for exam-
ple, we excluded from analysis responses with high instances of
typos, copy/pasted answers, or nonsensical wording. We paid all
participants who completed the task for the HIT, even if their re-
sponse was identified as low-quality. The low-quality responses
did not receive the bonus payment. We paid on average 15 USD per
hour. We obtained approval for our studies from our Institutional
Review Board (IRB) and informed consent from each participant.
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We included details of the study and a description of any potential
participant risks in the consent form.

6 ANALYSIS
Our primary objective is to evaluate the human-likeness of the
agents using both quantitative and qualitative measures. To quan-
tify the ability of the human judges to distinguish between the
human-like and non-human-like agents, we analyze their accuracy
scores and self-reported uncertainty. To identify the factors that in-
fluence their perceptions of human likeness, we adopt a qualitative
approach. We construct and use codes to summarize the reasons
cited in the open-ended responses and compare the frequency of
these codes across different settings.

6.1 Assessing Human-Likeness
We first aim to identify which agents pass the HNTT according
to our proposed criterion. Because existing work demonstrates
differences in assessment ability depending on expertise, we seek
to identify whether this phenomenon holds in our setting. We
finally seek to investigate the relationship between self-reported
uncertainty and accuracy when assessing the agents. We instantiate
the following research questions:

RQ 1. Which agents are judged as being human-like?
RQ 2. Do the judges exhibit greater accuracy in assessing hu-

man likeness as a function of their experience with games?
RQ 3. What is the relationship between the accuracy of human

judges and their self-reported uncertainty?

To answerRQ1, we propose a firm criterion for decidingwhether
an agent is sufficiently human-like, formalizing the question: are
human assessors unable to distinguish between agent and human
behavior? We implement this criterion as a statistical test that de-
termines whether human judges distinguish between human and
agent behavior at a level significantly different from chance. We
instantiate this test by computing the 95% confidence interval for
the median of the human-agent comparisons using bootstrap sam-
pling (a non-parametric approach). If the 95% confidence interval
includes 0.5 (chance-level agreement), then the agent passes the
HNTT.

For both RQ 2 and RQ 3, we compare our variables of interest
with accuracy. We define accuracy to mean that the participant
identified that the human-generated behavior was more human-
like than the AI-generated behavior. To answer RQ 2, we compare
accuracy to the self-reported familiarity of the participants with
action games in general and the specific game in the study. To
answer RQ 3, we examine the self-reported uncertainty of the
judges and its relationship to accuracy.

6.2 Assessing Human-Like Characteristics
To analyze the characteristics that correspond to assessments of
human likeness, we instantiate the following research questions:

RQ 4. Are there key differences between how people charac-
terize human-like and non-human-like behavior? Does this
differ when the agent does or does not pass the HNTT?

RQ 5. What is the relationship between the characteristics
that people use to assess human likeness and their ability to
accurately assess it?

We selected a sub-sample of the responses from the hybrid agent
and the reward-shaping agent studies for analysis. We chose these
studies to enable comparison between an agent that does not pass
the HNTT with one that does (see Section 7.1). We first randomly
sampled a set of 55 responses to compute the initial agreement,
called the agreement sample. We filtered this sample to 53 after re-
moving responses that were ambiguous or could not be categorized
by any of our codes. We then constructed the sample for analysis
by randomly sub-sampling three free-form responses per judge for
each study. To minimize bias, we shuffled responses before sam-
pling. We removed responses that were ambiguous or could not
be categorized by any of our codes, resulting in a dataset of 395
responses for our analyis of human-like characteristics.

We followed a pair-coding approach to annotate the data. The
annotator with more familiarity with the data proposed an initial
list of codes derived from previous work [91]. Following established
notation [4], we have a set of 𝐼 items (or responses), labeled as at
least one of the 𝐾 categories by 𝐶 = 2 coders. We decompose each
label as more or less human-like 𝐻 = (more, less) and quantify
its direction 𝐷 = (more, less), when applicable. For example, if
we label item 𝑖 as smoothness of movement, we note whether the
judge considered the behavior human-like and whether they noted
it as being more + or less − smooth.

The two annotators then convened to discuss the meaning of
the codes and jointly code a set of 5 responses. Table 2 illustrates
an example of a coded response. After that, the two annotators
separately coded the agreement sample with the initial set of codes.
Optionally, the annotators could label responses as other and pro-
vide specific examples to enable revisions of the codes if other
themes emerged. The two annotators iteratively reconvened to
discuss disagreements and refine the codes. After multiple rounds
of discussion, independent coding, and disagreement resolution,
the annotators fixed the set of codes (Table 3) and their inclusion
criteria to label the full sample.

Because we aim to design human-like AI agents, we want to iden-
tify codes that could be utilized by AI designers. For that reason,
when deciding on codes, we prioritize codes that refer to specific be-
haviors over more general ones. For example, a collision avoidance
behavior could be coded as goal-directed; however, we code it only
as collision avoidance. This protocol promotes the independence
of categories while prioritizing specific, lower-level behaviors to
use in designing agents. When coding, the annotators first consider
whether the response could be categorized as a lower-level code,
then move to more general codes if needed. Appendix C contains
more details about this process.

The annotators achieved an overall average inter-annotator
agreement of 0.84 on the agreement sample. We calculate inter-
annotator agreement with binary Cohen’s kappa 𝜅 [13] over 𝐾 , 𝐷 ,
and 𝐻 , as previously defined. See Table 4 for more details. After
fixing the list of codes, the annotators divided the data sub-sample
such that there was overlap on 25% of the data (99 items). We report
Cohen’s kappa in Table 4 for the overlapping sample to ensure that
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Response Free-Form Response More Human-Like Less Human-Like
B The character in Video B runs in straight lines and goes to where Smoothness of movement +; Collision avoidance −;

he needs to be going. The character in Video A is running in Goal directed + Goal directed −
circles,into objects, etc.

Table 2: Example coded response to the question, "Which video navigates more like a human would in the real world?". The
leftmost column indicates that this judge believed Video B to exhibit the more human-like behavior. The highlighted text
illustrates the annotation process. The judge identifies that themore human-like character runs in straight lines (more human-
like code: smoothness of movement +) and navigates to the goal (more human-like code: goal directed +), while the character
that they believe is less human-like runs in circles (less human-like code: goal directed −) and into objects (less human-like
code: collision avoidance −).

Annotation Code Shorthand Definition Key Words and Phrases Example Snippet
Smoothness of smooth The quality of the agent’s navigation Smooth, jerky, straight, Movements are way
movement or camera movement swerve, steady, fluid more smooth

Goal directed goal How goal-directed the agent’s behavior Intention, focus, Deliberate camera
seems knew where to go movements

Collision avoidance Whether the agent avoids collisions Collide, avoid, crash Runs into a box
avoidance runs into obstacle

Environment receptivity Whether the agent understands and/or Explore, stay on path, Ignores all the
receptivity properly interacts with the environment collect power-ups health/mana/etc
Intuition intuition The judge cannot pinpoint behaviors Natural, feeling, Just a feeling

seems to be
Self-reference self-reference Relationship to the judge’s own Like I play [Like] how I navigate

movement or play with that ... view
Table 3: Annotation code definitions. The codes used to label the free-form responses are presented in the leftmost column.
The middle-left column shows the corresponding shorthand for the codes, used later in the paper. In the middle column, a
brief definition of each code is presented. The middle-right column lists the keywords and phrases that the annotators used
to determine if a response could be labeled as containing a particular code. An example snippet of a response that would be
labeled with that code is provided in the rightmost column. Although the included examples are fairly clear, the free-form
responses often contain more ambiguous content.

our understanding of the codes did not overfit the specific examples
in the agreement sample.

We provide a more detailed discussion of the annotation codes
and inclusion criteria. Table 3 includes these definitions and phrases
that helped us identify the presence of each code. For each code,
we provide a supporting example to give the reader a sense of what
common responses may look like. Smoothness of movement refers to
the quality of the agent’s navigation or cameramovement. This code
considers both immediate jerky actions and temporally-extended
zig-zagging behavior. Goal directed refers to how intentional the
agent’s behavior appears. We include descriptions of behavior that
pertain to a perceived goal, even if that goal is not the primary one.
We include the code collision avoidance because it is a long-standing
area of research in the robotics community [67]. This code refers to
intentional behavior to redirect from a potential crash. Environment
receptivity aims to capture the agent’s relationship with the game
environment, its contextual understanding, and adherence to norms.
In a real-world setting, this might look like a person walking on a
path instead of the grass or crossing the street when permitted by a
pedestrian signal. Any responses that refer to non-specific feeling
that a behavior was more human-like are categorized as intuition.
We include this code to capture instances where participants can

identify what they believe is more human-like behavior but struggle
to express it. Finally, we include self-reference as a code to capture
when judges relate the agent’s behavior to their own play.

During the iterative coding process, the annotators assessed the
likely causes of disagreements. After resolving mistakes and other
easy-to-resolve issues, the annotators determined that the remain-
ing disagreements arose from individual differences in interpreting
ambiguous natural-language responses. This cause means that nei-
ther annotator can be treated as more correct for disagreement
resolution. The annotators, therefore, decided on the following
disagreement resolution scheme. When a disagreement arises in
at least one label for an item annotated by both annotators, we
randomly choose an annotator to treat as correct and use their
labels.

7 RESULTS
We first present the results from our analysis described in Section
6.1; in particular, we demonstrate that our reward-shaping agent
passes the HNTT while other agents do not. We then present the
results from our analysis described in Section 6.1 by highlighting
characteristic behaviors and key differences in how human judges
perceive AI vs human players. We find that people tend to utilize
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Annotation Direction Cohen’s 𝜅 Cohen’s 𝜅
Codes Agreement Overlapping

Sample Sample
Smoothness of More + 0.90 0.79
movement Less - 0.64 0.64

Goal directed More + 0.82 0.78
Less - 0.82 0.63

Collision More + 1.00 1.00
avoidance Less - 0.64 0.73

Environment More + 0.82 0.93
receptivity Less - 0.73 0.67
Intuition 1.00 0.87

Self-reference 1.00 1.00

Average 0.84 0.78
Table 4: Per-code Cohen’s 𝜅 score. The two annotators
achieved an average Cohen’s 𝜅 score of 0.84 over all of the
codes for the agreement sample. According to Cohen’s sug-
gested interpretation, we achieve at least moderate agree-
ment on each category and achieve almost-perfect agree-
ment on 7 of the 10 categories when annotating the agree-
ment sample. When annotating the overlapping sample, the
two annotators achieved an average Cohen’s 𝜅 score of 0.78
over all of the codes. According to Cohen’s suggested inter-
pretation, we achieve at least substantial agreement on each
category. There was only a small overall decrease in agree-
ment between these two settings, indicating that our coding
process is fairly general.

Agent Median Accuracy (IQR) [95% CI]
symbolic 0.83 (0.67 − 1.00) [0.67, 1.00]
hybrid 0.83 (0.67 − 1.00) [0.83, 1.00]

reward-shaping 0.50 (0.33 − 0.67) [0.50, 0.50]
Agent Median Uncertainty (IQR)

symbolic 2.17 (1.67 − 2.42)
hybrid 1.92 (1.33 − 2.25)

reward-shaping 2.17 (1.75 − 2.67)

Table 5: Full summary statistics of accuracy and uncertainty.
We show the median accuracy (IQR=Q1-Q3) for each agent,
reported as non-parametric measures of central tendency
and spread; we report 95% confidence interval and median
uncertainty (IQR=Q1-Q3) of the human-agent comparisons
for each agent. Only the reward-shaping agent passes the
HNTT according to our proposed metric.

similar high-level characteristics when characterizing human-like
behavior. However, their beliefs about AI capabilities may inform
whether they think AI agents more or less strongly exhibit these
characteristics.

7.1 Analysis of Human Likeness
Only the reward-shaping agent passes theHNTT.Table 5 shows
the full summary statistics, which are computed over the full dataset

from our survey. Each bootstrap calculation is run over 10000 it-
erations. The symbolic and hybrid baseline agents do not pass the
HNTT according to our criterion. The judges had median accura-
cies of 0.83 (symbolic agent, 95% CI=[0.67, 1.0]) and 0.83 (hybrid
agent, 95%CI=[0.83, 1.0]), indicating that they distinguish the agents
from humans significantly higher than chance level. In contrast,
our reward shaping agent passes this test of human-likeness: the
median accuracy has a 95% confidence interval that includes 0.5
(chance-level agreement). This result suggests that the judges can-
not consistently differentiate between the reward shaping agent and
the human player (reward shaping agent, median accuracy=0.50,
95% CI=[0.50, 0.50]).

Because the sample sizes of the trials differ (50 samples for the
human vs. hybrid and human vs. symbolic conditions; 92 samples
for the human vs. reward-shaping condition), we validate our results
by subsampling the data for the reward-shaping agent to 50 samples,
then run the bootstrap sampling procedure 100 times. We find that
the computed CI always contains 0.5, or chance-level agreement, in
each run of the bootstrap. The averagemedian accuracy is 0.50, with
a variance of 0.00; the averaged CI is [0.44, 0.63], with a variance of
0.01 for the lower bound and 0.00 for the upper bound.We, therefore,
answer our RQ 1: the reward-shaping agent is the only agent that
is judged as human-like according to this proposed metric.

There is no relationship between game familiarity and
ability to accurately assess the human likeness of the AI
agents. For each study, we perform a multiple linear regression
analysis to test whether specific game familiarity and general game
familiarity significantly predicted accuracy in assessing human-
likeness. There is no relationship between either of the self-reported
familiarities and accuracy for all agents. For the symbolic agent, the
fitted regression model was:

accuracy = 0.68 − 0.01(specific game familiarity)
+ 0.03(general game familiarity) .

The overall regression was not statistically significant (𝑅2 = 0.01,
𝐹 (2, 47) = 0.21, 𝑝 = 0.814). Decomposing the results further, neither
specific game familiarity (𝛽 = −0.01, 𝑝 = 0.878) nor general game
familiarity (𝛽 = 0.03, 𝑝 = 0.525) predicted accuracy.

For the hybrid agent, the fitted regression model was:

accuracy = 0.67 − 0.03(specific game familiarity)
+ 0.06(general game familiarity) .

The overall regression was not statistically significant (𝑅2 = 0.06,
𝐹 (2, 47) = 0.26, 𝑝 = 0.261). We found that specific game familiar-
ity did not significantly predict accuracy (𝛽 = −0.03, 𝑝 = 0.377).
General game familiarity also did not significantly predict accuracy
(𝛽 = 0.06, 𝑝 = 0.109).

Turning our attention to the reward-shaping agent, the fitted
regression model was:

accuracy = 0.40 − 0.02(specific game familiarity)
+ 0.04(general game familiarity) .

The overall regression was again not statistically significant (𝑅2 =
0.02, 𝐹 (2, 89) = 0.94, 𝑝 = 0.393). This result holds for both spe-
cific game familiarity (𝛽 = −0.02, 𝑝 = 0.522) and general game
familiarity (𝛽 = 0.04, 𝑝 = 0.191).
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These findings suggest that game familiarity is generally not
predictive of accuracy for this specific task, answering RQ 2. In
contrast, previous findings have demonstrated a relationship be-
tween the ability to assess human likeness and familiarity with the
domain of study. We suspect that this result differs because we are
studying a relatively simple setting, in which most people have
strong priors about what constitutes human likeness. Navigating by
walking or running is an activity that most people either perform
or observe daily, meaning we will likely have a strong internal
sense of human-like movement — even if we are not familiar with
games that require navigation. In contrast, we hypothesize that
game familiarity would be predictive of accuracy in the full game
setting, implicating the importance of assessing human likeness in
more complex settings as an important next step.

Human judges exhibit less false confidence in their assess-
ments of the reward-shaping agent.We assess the median un-
certainties of participants; lower values correspond to more cer-
tainty and higher values correspond to less certainty. Table 5 depicts
the results of this analysis. Participants reported similar levels of un-
certainty when assessing our reward-shaping agent (median=2.17,
IQR=(1.75-2.67)) and the symbolic agent (median=2.17, IQR=(1.67-
2.42)). In comparison, participants reported higher certainty when
assessing the hybrid agent (median=1.92, IQR=(1.33-2.25)).

People felt less confident about their assessments of the symbolic
and reward-shaping agents compared to the hybrid agent; however,
participants more accurately detected human-generated behavior
in the presence of the symbolic and hybrid agents. This result is
surprising because it suggests that self-reported uncertainty and
accurate assessments are not necessarily correlated. In other words,
participants may exhibit false confidence in their ability to assess
the human likeness of agents.We believe that participants may have
been less certain about their assessments of the symbolic agent due
to differences in the lengths of the videos: on average, the videos
of the symbolic agents were 8.3 seconds long, whereas the hybrid
agent videos were 15.3 seconds long. Participants may have not had
enough time with the agent to accurately assess it. Taken together,
the accuracy and uncertainty results indicate that, when presented
with behavior from the reward-shaping agent, participants exhibited
less false confidence in their assessment ability compared to when
they were presented with behavior generated by the hybrid agent.
This result answers RQ 3.

7.2 Analysis of Human-Like Characteristics
In all plots, we use the shorthand version of the codes, noted in
Table 3, along with the + and − notation. The + and − notation
indicate the degree, or direction, of the code. For example, smooth
+ indicates that the participant referenced more smooth movement,
and smooth − indicates that the participant referenced less smooth
movement.

Human judges rely on similar high-level characteristics
when assessing human-like behavior. Figure 4 shows the codes
that participants use to describe human-like and non-human-like be-
havior. We investigate the relative number of times a code was used

Figure 4: Codes used to describe human-like and non-
human-like behavior. We compare the proportion of codes
used to describe human-like and non-human-like behavior
by human judges in their assessment of human likeness.
People more frequently characterize human-like behavior
as being more smooth, receptive and responsive to the envi-
ronment, and goal-directed. In contrast, participants more
frequently describe non-human-like behavior as being less
smooth, receptive and responsive to the environment, and
goal-directed.

compared to all codes used to describe either human-like or non-
human-like behavior (human-like and non-human-like code propor-
tions should sum to 1). Judges tend to rely on similar high-level char-
acteristics when characterizing human-like behavior. Overall, they
most often reference the following high-level codes: smoothness of
movement, environment receptivity, and goal-directedness. When
we decompose the responses based on whether the behavior was
assessed as human-like or not, we find that people more frequently
characterize human-like behavior as more smooth, receptive and
responsive to the environment, and goal-directed. In contrast, par-
ticipants more frequently describe non-human-like behavior as
being less smooth, receptive and responsive to the environment,
and goal-directed. They rely on intuition and self-reference to a
similar degree when describing human-like and non-human-like
behavior.

We investigated these responses based on agent type but did
not find a difference between the resulting proportions of codes.
This result supports the assertion that people may have relatively
stable beliefs what constitutes human-like behavior. Therefore, the
rationale is only sometimes useful: in other words, looking for the
jerkier agent only makes sense if the AI has not been designed to be
less jerky than the person. We, therefore, conclude that, although
people rely on different specific characteristics to determine human
likeness, the general characteristics are relatively stable across
different AI agents, which answers RQ 4.

Human judges that more accurately assess human like-
ness exhibit different beliefs about characteristics than hu-
man judges that less accurately assess human likeness, de-
spite relying on the high-level characteristics to similar de-
grees.We divide the participants into two groups: high-accuracy
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(a) Codes used to describe human-like behavior by low- and high-
accuracy judges.We compare the proportion of codes used to describe
human-like behavior by human judges in their assessment of human
likeness.

(b) Codes used to describe non-human-like behavior by low- and high-
accuracy judges.We compare the proportion of codes used to describe
non-human-like behavior by human judges in their assessment of hu-
man likeness.

Figure 5: Codes used to describe human-like and non-human-like behavior, further decomposed by high- and low-accuracy
judges. We compare the proportions of codes that are used to describe human-like behavior (left) and non-human-like be-
havior (right). We further decompose these codes by high- and low-accuracy judges to determine whether individuals who
are more accurate rely on different features to rationalize their decisions. Interestingly, we see that the judges rely on similar
characteristics to different degrees.

(greater than 80% of responses indicating the more human-like
agents aligned with the human-generated video) and low accu-
racy (less than or equal to 80% of responses indicating the more
human-like agents aligned with the human-generated video). We
examine which codes are more frequently used to describe human-
likeness by the participants in each group. Figure 5 shows this
decomposition. Although high- and low-accuracy judges gener-
ally rely on similar characteristics, they do so to different degrees.
For example, both types of judges refer to the high-level code of
smoothness of movement in 40% of their codes when describing
human-like behavior. Similarly, they both refer to the high-level
code of smoothness of movement in around 49% of their codes
when describing behavior that they do not perceive as human like.
These results indicate that there is no difference in their tendency
to rely on this characteristic to explain behavior. However, high-
accuracy judges more commonly describe smooth motion when
describing human-like behavior. In contrast, low-accuracy judges
more often mention smoothness as a characteristic of behavior
that is not human-like. This result further supports the idea that
people’s beliefs about AI capabilities may inform their assessments.
In our case, the low-accuracy participants seem to share a similar
belief that an AI agent is more capable than a person (by producing
more smooth or “perfect” navigation).

Low-accuracy judges more often describe human-like agents
as exhibiting more receptivity and responsiveness to their sur-
roundings. A similar pattern emerges with less receptivity to justify
non-human-likeness. This result indicates that low-accuracy par-
ticipants may incorrectly attribute behaviors to interacting with
the environment. As an example, a human judge that incorrectly
identified Video A as being more human-like claims,

Video A takes the more obvious route to the finish
while B takes the longest possible one. A human gen-
erally would take the easiest route.

Interestingly, both high- and low-accuracy judges utilize intuition
and self-reference to a similar level of frequency when assessing
human-like behavior. In combination with the previous results
showing that assessments of human likeness are influenced by
stereotyped beliefs about AI capabilities, this finding suggests that
some participants have better intuition because it aligns with the
actual capabilities of AI agents.

8 DISCUSSION AND FUTURE DIRECTIONS
Although conducted in a limited scope, our findings should assist
with future work on designing and evaluating human-like agents.

8.1 Limitations
Our study specifically evaluates the human-likeness of third-person
perspective point-to-point navigation behavior in agents. Although
this type of navigation is present in many settings, like pedestrian
navigation in driving simulator [83] there are many other forms of
navigation that exist in both real-world and virtual environments.
Each of these types presents unique challenges and requires dif-
ferent strategies for designing human-like behavior. Although our
study does not address all types of navigation, it provides a valuable
starting point for evaluating the human-likeness of agents in one
specific type of navigation. The codes that we identify are general
enough to provide a starting point for researchers to analyze dif-
ferent forms of navigation. For instance, collision avoidance is a
general characteristic that is persistent in many domains featuring
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diverse types of navigation, like driving and running. Future work
should consider expanding these evaluations to provide a more
comprehensive understanding of how to design agents that behave
in a more human-like manner.

Additionally, the analysis of the free-form responses revealed
that there were different interpretations of the human likeness
question. Some judges related the movement directly to human
navigation in the real world. One judge said,

In real life a human would almost certainly not jump
down as far as the character in video A did without
severely hurting themselves.

However, others related the movement to how human players
would control an agent in a video game. Another judge mentioned,

... in Video A, the player bumps into a wall briefly be-
fore readjusting. This is something humans do when
they get distracted and look away for a moment.

To investigate this disagreement, we annotated the agreement
sample with which interpretation of the question the subject an-
swered: real-world human navigation, video game navigation, and
unclear. The two annotators had a high agreement for this an-
notation (Cohen’s kappa: 𝜅 = 0.94). It was largely unclear which
question the subjects were answering (40 out of 53 responses). How-
ever 11 responses referred to video-game navigation, while only
2 responses were clearly about real-world human navigation. We
suspect that including the video game familiarity questions primed
subjects to believe that the question was about video-game-specific
navigation, rather than general human-like navigation. In future
studies, we recommend that the study designers clarify which ques-
tion is asked of participants by including an additional question
that asks the participants the other interpretation of the question
to provide an obvious contrast or describing the situation in which
they would like the participants to envision themselves.

8.2 Designing and Evaluating Human-Like AI
Our study revealed that only the agent designed to display more
human-like behavior passed our test of human likeness, highlight-
ing the importance of explicitly incorporating these objectives when
designing agents. However, determining what exactly constitutes
human likeness requires careful consideration from designers. This
assertion is further supported by the different interpretations of the
human likeness question by the human judges. One interpretation
of human likeness is acting as if the agent is controlled by a person,
while the other refers to exhibiting more realistic behaviors. Both
perspectives can be useful in different contexts.

When designers seek to automate parts of the development pro-
cess, such as playtesting, it is more important to create agents
that appear to be human-controlled. In automated playtesting of
games [23, 68], AI agents that act like real users would enable video
game designers to expedite the iterative development process while
also alleviating the burden of game players to extensively evaluate
new content. Users could provide feedback only after obvious bugs,
like those related to movement, have been corrected, which may
enhance their enjoyment of the feedback process. In shared auton-
omy [2], developing agents that behave like that user would enable
a more seamless integration of semi-autonomous control with user
inputs. For example, we observed that the judges called out strafing

as an example of what a human would do in a video game. Strafing
is a tactical, sideways maneuver that would not be performed by
a person navigating in the real world. Incorporating these game-
specific movements would likely increase the perception of the
agent being human-controlled, especially by expert players. The
creation of such agents would enable players who experience dis-
ruptions, like network issues, to still play cloud games [57]. When
the system detects a disruption, it can take control and begin emu-
lating human-like behavior. When the user can take back control,
they can do so seamlessly. This can also be included as an option
for players who desire in-game assistance for other reasons, such
as mobility issues. Conversely, when the objective is immersion,
producing more realistic navigation is essential.

In our study, we focused on producing more realistic navigation.
To that end, we identified a set of high-level characteristics, such
as smoothness of movement, that the judges relied on to assess
human likeness. As a result, game AI designers can first focus on
adjusting these characteristics. As we demonstrate with our reward-
shaping agent, these characteristics may be targeted using simple
techniques and assessed with an automated Turing test [16]. After
handling the most frequently mentioned characteristics, designers
can then focus on more fine-grained details, such as agents not
walking in puddles, to reflect more real-world navigation.

Furthermore, we employed a third-person Turing test where
participants watched videos of the agents navigating. Although the
ability to pause, rewind, and replay the videos provided a means of
interrogation, it was based solely on observation, and lacked the
intervention-based approach of a typical Turing test. Intervention-
based approaches could include changing the camera perspective,
adversarially interrupting the AI agent’s intended path, and more.
These forms of interaction may yield different insights.

There are some downsides, however, to deploying a more inter-
active test, particularly at scale. Recruiting a human evaluator and
a human player to interact requires their simultaneous availability
for real-time feedback. One solution is in-person studies, which
can be challenging to scale and deploy. For instance, at the time of
this study, we could not run in-person studies due to the ongoing
global pandemic or distribute our proprietary game build to remote
participants. Future work could take advantage of advances in game
streaming, which may enable interactive remote studies with pro-
prietary game builds. This solution can also incorporate previous
work on simultaneous recruitment of participants [7, 82]. How-
ever, constructing the architecture to incorporate these different
technologies may require significant engineering effort.

Importantly, previous work has demonstrated that the inclusion
of more direct ways to interrogate the agent by embodying the
player and agent in the same virtual space can lead to limited
insight [78]. Indeed, work that included an in-game assessment
of the human or bot introduced the side effect of an additional
game mechanic causing some players to prioritize either gameplay
or on the believability assessment [28]. This division of attention
yields unreliable results, leading to other researchers adopting third-
person variants of these assessments [5, 16, 70]. As a result, we
believe that the following pipeline could be useful for evaluating
human-like agents. Designers can initially deploy a third-person
Turing test to evaluate the human likeness of specific behaviors.
The resulting characteristics can then be used to design a set of
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agents that exhibit different behavior that depends on the most
common beliefs of the participants. For example, agents could move
more smoothly if the participant believes smooth movement to be a
feature of human likeness. Players could then choose the characters
that they want to interact with in the game, which would enable
them to tailor the game to their own subjective experience and
enjoyment. This approach may offer more reliable insights into the
effectiveness of the agent’s design without sacrificing the integrity
of the assessment process. It could also empower game players by
enabling them to exert control over their experience.

8.3 Toward More General Human-Like Agents
Although the specific agent created for our studymay not generalize
to different games, this is a common and open challenge in the field
of AI [46, 61]. Instead, we offer suggestions for using feedback
from designers and players (e.g., through user research) to train
human-like agents more efficiently and effectively.

The differences in how more or less skilled human judges charac-
terize human likeness suggests that different people have different
interpretations of what constitutes human-like behavior. This sup-
ports the idea that the believability of NPCs in games is highly
subject to the prior beliefs and expectations of the players. This
finding aligns with the fundamental principle of familiarity [29]
that centers the real-world personal experience and knowledge of
the user and implicates the importance of player-centered design
and customization [74]. Rather than producing monolithic human-
like agents, we should strive to understand the beliefs of the player
and tailor their experiences accordingly.

When moving to more complex settings, an additional difficulty
is introduced. The evaluations of human likeness become even
more subjective, varying based on individual differences and cul-
tural factors [50]. This result underscores the importance of in-
volving diverse groups of people in the evaluation of AI agents to
obtain a more comprehensive understanding of how people per-
ceive these agents. In the context of games, this could look like
utilizing participatory design methods [65] to involve game players
in the design of the AI agents themselves. With the consent of
the players, we could use techniques in the area of learning from
human feedback [10, 31, 90], which provide additional channels for
people to communicate what they want from AI agents. With these
techniques, players can provide training data to the agents in the
form of preferences over paired demonstrations generated by the
agent, demonstrations of the desired behavior, and more. This can
help to ensure that the AI agents are designed with the needs and
preferences of diverse groups in mind.

This approach can also be used to help reduce the burden on
video game designers: in complex domains, it is often challenging
to specify reward signals by hand [12, 42, 47]. In part, this diffi-
culty stems from the complexity of the desired behavior: as we
have shown, human-like behavior is multi-faceted and necessitates
optimizing over multiple objectives. Furthermore, it is sometimes
challenging to write down exactly what we mean when specify-
ing a task. For instance, how do we construct a reward signal that
captures the task of build a house in a video game in the same style
as surrounding houses? [69]. When designing a reward signal for
this task, we would need to encode what counts as a house, what

components are most important to emulate in the style, and which
structures count as houses. A person can quickly understand the
intention of this instruction, but it is challenging to make explicit
this implicit understanding.

As a result, an exciting avenue for future work involves develop-
ing more effective techniques for learning from people, evaluating
user experiences of these techniques, and incorporating them into a
flexible, user-friendly tool. This tool can also help extend this work
to more general game settings. To more easily enable this line of
work, assessments of human likeness could be incorporated into
commonly-used game engines, like Unity [36]. This tool would en-
able game developers to easily evaluate the human likeness of their
AI agents using metrics and benchmarks that have been validated
in previous research. Additionally, this tool could contain libraries
of pretrained human-like AI agents, which developers could use as
a starting point for their own work. For example, developers could
utilize a pretrained human-like navigation agent to perform navi-
gation but develop their own algorithm to use for different tasks.
Using this tool could save developers time and effort by enabling
them to quickly and easily create more believable and engaging
agents to enhance the player experience.

9 CONCLUSION
In this work, we aimed to understand how people assess human
likeness in human- and AI-generated behavior in the context of
navigation in a 3D video game. Toward this goal, we designed and
implemented a novel AI agent to produce human-like navigation
behavior. We deployed a large-scale study of human-generated nav-
igation behavior with three AI agents, including our novel reward-
shaping agent. We find that our proposed agent passes a Turing
test, while the other two agents do not. We further investigated
the justifications people provided when assessing these agents and
found that people rely on similar higher-level characteristics when
determining human similarity. In this context, we suspect that dif-
ferences in the accuracy of assessing these agents are based more
on fixed beliefs about the capabilities of AI systems rather than
familiarity with the assessment domain of games. We conclude by
discussing the limitations of the work, suggesting concrete design
considerations for video game designers, and identifying a few
critical areas for future research.

By highlighting design considerations and challenges, we hope
that this paper will serve as a call for work that integrates perspec-
tives and techniques from the HCI and AI communities. Building
more general human-like agents requires careful design of both the
agents and the evaluation protocol. Developing tools that can be
incorporated into games and other settings enables quick iterations
of these designs and the incorporation of these different techniques.
At the highest level, we hope researchers can develop and evalu-
ate agents that exhibit human-like behavior that improves human
interaction with AI agents.
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Hyperparameter Value

Batch size 2048

Dropout rate 0.1

Learning rate 2.5e-4

Optimizer Adam [40]

Gamma 0.99

Lambda 0.95

Clip range 0.2

Gradient norm clipping coefficient 0.5

Entropy coefficient 𝑐2 0.0

Value function coefficient 𝑐1 0.5

Minibatches per update 4

Training epochs per update 4

Replay buffer size 5 x batch size
Table 6: Hyperparameters for training the symbolic, hybrid,
and reward-shaping agents. We train all of the agents with
the PPO algorithm [66]. For additional detail on what these
hyperparameters correspond to, we encourage an interested
reader to refer to the original PPO paper. We provide these
hyperparameter values for reproducibility.

A DETAILS ABOUT REINFORCEMENT
LEARNING AGENTS

In this section, we first provide information about the baseline
agents used in our study. We then provide training details for all
agents.

A.1 Baseline Agents
The hybrid and reward-shaping agents receive an additional input of
a 32x32 cropped depth buffer visual input which the symbolic agent
did not. The visuals present a third-person view of the agent in the
environment. To process this additional visual channel, the hybrid
and reward-shaping agents are equipped with a convolutional neu-
ral network which learns to extract high level visual features which
are then concatenated with a representation of the symbolic inputs.

A.2 Training Details
We provide important details about our training setup here.

We train all three agents with PPO [66], a popular deep reinforce-
ment learning algorithm.We choose PPO for training our agents for
a few reasons. This algorithm is commonly used because it is found
to be empirically robust and effective in a wide range of tasks [19].
We train each of the three agent architectures for 15 hours, the
equivalent of 10 million training timesteps, on at least 3 different
random seeds. We trained all agents using Tensorflow 2.3 [1] and
the OpenAI Baselines PPO2 implementation [17] with a distributed
sampler. For a full list of training hyperparameters used in all agent

versions, please refer to Table 6. We found this set to perform best
on preliminary experiments.

To effectively train agents in a complex video game setting, we
use a distributed approach leveraging an in-house sample collec-
tion framework and Azure cloud resources. Training samples are
collected from a scaleset of 20 low priority GPU virtual machines
(Azure NV6), each running 3 video game instances. The samples
are then sent to one training head node, a CPU-only Azure E32s
memory-optimized virtual machine.

B BEHAVIORAL STUDY DETAILS
In this section, we include additional details about our MTurk be-
havioral study.

B.1 Full Instructions
We detail the full instructions included in the MTurk study here.

We are conducting a survey on navigation in video
games for a research project. Please read theDescrip-
tion and Requirements, and then select the link be-
low to complete the survey. At the end of the survey,
you will receive a code to paste into the box below to
receive credit for taking our survey.
Description:
• Overview: The survey is anonymous and includes
a required consent form, comprehension check,
some background info, and 6 video sections with 3
questions each. All questions are marked *required.

• Time required: about 30 minutes.
• Compensation: you will receive a fixed compensa-
tion of $6.50 for completing the task, with potential
for a $1 bonus for a high-quality response. For ex-
ample, copy/pasting answers, or responses that are
not specific to the videos on each page, will not get
the bonus.

• The MTurk HIT has a 1-hour duration. It will not
allow you to submit after 1-hour has passed (re-
member to submit or return HITs within 1-hour so
you don’t time out!)

• If you start the task but change your mind, you
may terminate your participation at any time and
return the HIT within 1-hour, but you will not
be paid for returned HITs or partial completions.

Requirements:
• You must complete all the questions.
• You must not have previously completed a HIT
called "Navigation Turing Test (NTT)". Repeat par-
ticipants are ineligible and will not be paid.

• You cannot participate from tablets ormobile phones.
Make sure to leave thiswindowopen as you com-
plete the survey. When you are finished, you will
return to this page to paste the code into the box.

B.2 Data Collected
In addition to the consent, familiarity, and HNTT questions, we
collected the following data: timing data broken down by page and
the order in which the trials were presented to each participant.
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C CODING DETAILS
We include the coding guide agreed upon and used by both annota-
tors when annotating their responses. Figure 6 shows a screenshot
of the guide.
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Goals of Codes
● Independence
● Separation

General Protocol
● Ideally, we want nice separation between codes. We also don’t want the

codes to be highly dependent. For example, we don’t want every instance
of goal directed to also be coded as collision avoidance. Therefore, if
something can be coded in two ways, it is better to code it as the more
specific instantiation.

● If we think collision avoidance, only code as collision avoidance and not
environment receptivity.

● If we think smoothness, only code as smoothness and not mechanistic.
This is true even if the response calls out stereotyped bot behavior.

Codes
1. Smoothness of movement: refers to the quality of the agent's navigation

or camera movement. This code considers both more immediate jerky
actions and more temporally-extended zig-zagging behavior.

a. Key words:
i. Smooth (+)
ii. Janky (-)
iii. Jerky (-)
iv. Straight (+)
v. Swerve (-)

vi. Moving camera (-)
vii. Steady camera (+)
viii. Fluid (+)
ix. Rigid (-)
x. Zig-zag (-)
xi. Clunky (-)

2. Goal directed looks at how intentional the agent's behavior seems to be.
Participants describing behavior that pertains to a perceived goal, even if
that goal is not the main one in the video, is included in this code. For
example, if they refer to intentional exploration, we code it as goal directed.

a. Key words:
i. “Knew where they were going” (+)
ii. Moving with intention (+)
iii. Navigating with purpose (+)
iv. Moving with focus (+)
v. Making decisions (+)

3. Collision avoidance can be considered an instantiation of goal-directed
behavior, but we set up a separate code because we believe it is an
important feature in its own right. To preserve the independence of codes,
behaviors that are coded as collision avoidance should not be coded as
any other code --- except when e.g., the participant calls out another
goal-directed behavior in the same response. An example of collision
avoidance would be an agent trying not to “crash” into other objects. An
example of a response that would not be considered collision avoidance is
if an agent tries to collect a power-up.

a. Key words:
i. Collide (-)
ii. Avoid (+)
iii. Crash (-)
iv. Run into obstacle (-)

4. Environment receptivity aims to capture the agent's relationship with the
game environment. In a real-world setting, this might look like a person
walking on a path instead of the grass or being responsive to the
environment (such as a walk sign). Dynamic. The focus here is on the
intention of the behavior. This code also aims to capture abiding by norms
or (potentially unspoken) conventions that people may only have a sense
for.

a. Keywords:
i. Explore (+)
ii. Stay on the path (+)
iii. Collecting power-ups (+)
iv. Already knows everything about the environment (-)
v. Take shortcut (+)

vi. Seeing through walls (-)
vii. Took shortcut (+)

5. Non-mechanistic is a more nebulous code that tries to capture
pre-conceived notions of human imperfection. An example of mechanistic

behavior is one identified as being too perfect. This code also captures any
references to mistakes or error correction.

a. Keywords:
i. Too perfect (-)
ii. Makes mistakes (+)
iii. Precise (-)
iv. Micro-corrections (-)
v. Random (+)

vi. Overcorrect (-)
6. Intuition refers to feelings that a behavior was more human-like, without

sufficient specific justification. We include this code to capture instances
where participants can identify what they believe is more human-like
behavior but struggle to express it.

a. Keywords:
i. Natural
ii. Feeling
iii. Seems to be
iv. Normal
v. Realistic

7. Self-reference is a code to capture when judges relate the agent behavior
to their own play. This could look like participants mentioning that they
would feel ill if they played this way or mentioning that they typically collect
all power-ups when playing.

a. Keywords:
i. “Like how I play”

Discard
1. If the participant seems to randomly assign human-like or not. This may

look like saying, “I don’t know” or “I can’t tell”. In contrast, if they say that
the response is based off of feeling, we categorize it as intuition.

2. If the free-form response is in conflict with the actual response.

Figure 6: Coding guide used by the annotators. The guide includes a description of the codes, the general protocol, and the
discard guidelines.
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