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The accelerating pace of emerging zoonotic diseases in the twenty-first
century has motivated cross-disciplinary collaboration on One Health
approaches, combining microbiology, veterinary and environmental
sciences, and epidemiology for outbreak prevention and mitigation. Such
outbreaks are often caused by spillovers attributed to human activities
that encroach on wildlife habitats and ecosystems, such as land use
change, industrialized food production, urbanization and animal trade.
While the origin of anthropogenic effects on animal ecology and biogeogra-
phy can be traced to the Late Pleistocene, the archaeological record—a long-
term archive of human-animal-environmental interactions—has largely
been untapped in these One Health approaches, thus limiting our under-
standing of these dynamics over time. In this review, we examine how
humans, as niche constructors, have facilitated new host species and
‘disease-scapes’ from the Late Pleistocene to the Anthropocene, by viewing
zooarchaeological, bioarchaeological and palaeoecological data with a One
Health perspective. We also highlight how new biomolecular tools and
advances in the ‘-omics’ can be holistically coupled with archaeological
and palaeoecological reconstructions in the service of studying zoonotic
disease emergence and re-emergence.

1. Introduction

The profound environmental alterations that characterize the Anthropocene—
our human-driven epoch of intensive agriculture, deforestation, pollution and
extractivism—have introduced new variables into zoonotic pathogen selection
[1,2]. Consequently, novel human pathogens have emerged from wildlife over
the last century with increasing frequency, including HIV, pandemic strains of
HINT influenza A virus, ebolaviruses and highly human pathogenic corona-
viruses. Today zoonotic pathogens account for at least 60% of emerging
infectious diseases in humans, and significant efforts are directed at predicting
and preventing new threats based on the phylogeny, ecology, environmental
conditions and human interactions of different host species and populations [3].

The One Health approach centres the inextricable interconnectedness of
human, animal and environmental health and thereby guides multi-disciplin-
ary investigations of many different factors in disease emergence [4]. While
this approach has been successful in addressing syndemics—where multiple
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diseases cluster together and influence public health—the
temporal dimension of zoonotic disease emergence is often
underappreciated, if not entirely overlooked [5,6]. Archaeolo-
gists can help address this problem by documenting the
deeper history of humans in shaping diseases. However,
archaeological methods, tools and data have not fully been
leveraged in One Health approaches, with a few notable
exceptions such as the One Health Archaeology Research
Group at the University of Edinburgh and a handful of
initiatives and researchers elsewhere [7-11].

The archaeological record is an archive of the long-term
human-animal-environment interactions that provides a
temporal context for understanding disease dynamics in a
particular place, culture or ecosystem. Anthropogenically cre-
ated disease landscapes, or ‘disease-scapes’ [12], are the result
of the types of animals, plants and microbes that are cultu-
rally and behaviourally selected within a constructed
niche—a process known in archaeology as niche construction
theory. Zoonotic transmission is often a complex cascade of
events that requires the alignment of ecological, epidemiolo-
gical and behavioural determinants that can increase
pathogen pressure, host exposure and host receptivity to
infection [13]. These disease dynamics are not novel but
rather build upon successive rounds of anthropogenic
disruptions over time. Indeed, major shifts in human behav-
iour and their environmental impacts have deep roots in
the current Quaternary period (approx. 2.58 Ma to present)
[14-16], long before the Great Acceleration of 1950 CE [17].
Many of the drivers of disease emergence we see today,
including deforestation, species translocation and urbaniz-
ation [18,19], are likewise ancient [20,21]. The present is
therefore a palimpsest of overwritten human interactions
with landscapes and species.

Here, we outline a technical toolset that demonstrates
how One Health research can be extended by uniting
zooarchaeological, bioarchaeological and palaeoecological
data from the Late Pleistocene (approx. 126 000 to 11700
years ago) to the Anthropocene (which has various proposed
starting dates) [15,17]. Such temporal dimensions and diverse
datasets can elucidate early associations in human-driven
disease dynamics as models for future research. Importantly,
we also address the relevance of the archaeological lens in
highlighting health disparities, as past pandemics have
disproportionately affected marginalized communities and
created inequities that persist into the present [22,23]. With
a focus on these issues, we provide steps forward for interdis-
ciplinary research and highlight ethical considerations for
collaborative and inclusive research.

2. Epidemiological transitions as manifestations
of human niche construction through time

Niche construction theory (NCT) provides a co-evolutionary
framework in which organisms do not solely adapt to their
environment, but rather reconstruct the environments
around them, which in turn creates or influences other natu-
ral selective pressures [24,25]. It recognizes that the selective
pressures created during niche construction have long-lasting
effects on multiple taxa and result in greater evolutionary and
ecological consequences [26,27]. Consequently, not only are
selected genes passed from generation to generation, but so
too is an altered ecological inheritance [24,26]. Organisms

create repetitive niche constructions and the environment is
then re-imposed on future generations, becoming a force of
selection [26].

Humans have greatly influenced their own evolution by
altering environments for their benefit, which in turn has
created and influenced other selective pressures [16,28].
Archaeology recognizes the impacts of these alterations
within disease ecology through an epidemiological transition
framework. We can therefore consider epidemiological tran-
sitions as manifestations of human niche construction
through time, where humans have driven disease dynamics
and pathogen selection within their shared environment
through niche creation, niche modification and niche
reduction (figure 1). Three epidemiological transitions are
recognized with parallel landscape alterations and human
demographic transitions: (1) a rise in zoonotic diseases as
humans adopted agriculture and transitioned to more seden-
tary lifestyles beginning more than 10000 years ago, (2) a
shift from acute infectious diseases to chronic diseases with
Western industrialization and colonialism over the last sev-
eral centuries, and (3) an increase in (re-)emerging
infectious diseases due in part to antibiotic resistance and
global travel in recent decades [29,30]. As the Third Epide-
miological Transition continues to unfold, it is critical to
recognize that these transitions are a consequence of contin-
ued alterations to modified disease-scapes.

(a) First Epidemiological Transition

The transition from the Late Pleistocene to the Holocene
(approx. 11700 years ago) is associated with major climatic
shifts, the extinction of the majority of the world’s mamma-
lian megafauna, and human population size increase.
Through complex and variable processes that continue to
be studied, new developments in lithic technologies and sub-
sistence strategies become evident in the archaeological
record for this time period, including a transition from fora-
ging to increased sedentism and localized food production
[28]. While agriculture developed independently and asyn-
chronously in different regions (with the earliest evidence
in the Levant approx. 12000 years ago and the most recent
in North America approx. 5000 years ago [29]), this transition
is acknowledged by the onset of selective breeding of certain
traits in plants and animals in addition to the rise in mono-
crop strategies and reduction in the diversity of food items
consumed [28].

These anthropogenically altered landscapes (also known
as anthromes) introduced humans to both vector and non-
vector parasites through irrigation systems and faeces used
as fertilizers [29]. Parasitic infections, such as blood-borne
Plasmodium parasites that cause malaria, thus became more
predominant in human-animal-environment interactions
[31]. Burning, clearing, terracing and irrigation resulted in
habitat fragmentation while also redefining human, domestic
animal and wildlife relationships. Landscape alterations
enhanced opportunities for domesticated animals such as
cattle, goats, sheep, pigs and poultry to become reservoirs
and intermediate hosts for zoonotic diseases such as influ-
enza, tuberculosis and brucellosis [29,32]. Growing human
and animal populations in crowded and confined spaces
became conducive to the spread of crowd diseases and the
evolution of more virulent human pathogens, such as those
that cause measles and smallpox [29].
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Figure 1. Human niche construction of disease-scapes. Anthropogenic impacts on disease dynamics can be explored through niche creation, niche modification and
niche reduction (1). While ecological niches are further reduced, pathogen niches expand (2). During niche creation a subset of an area is altered (1a); consequently,
introducing naive host populations to new pathogens (2a). Through niche modification, specific plants and animal species are selected, resulting from either dom-
estication, translocation, or extinction events (1b), thus resulting in an influx in zoonotic spillovers (2b). Within niche reduction, humans continue to limit species
richness within the constructed niche (1c), yet pathogen biodiversity expands as new reservoir hosts are created and diseases become endemic (2c).

Such changes sparked the First Epidemiological Tran-
sition, which has been defined as an influx of infectious
diseases observed within the bioarchaeological record. For
instance, compared with Palaeolithic foragers, the skeletal
remains of early agriculturalists have provided evidence of
increased nutritional deficiencies, oral pathologies, chronic
infections, co-morbidities and childhood mortality rates
[29]. The adoption of agriculture thus changed disease ecol-
ogy as humans created new routes and sources of infection,
where human waste, food stores and livestock became
prominent within densely populated communities.

(b) Second Epidemiological Transition

From the fifteenth to twentieth centuries CE, extensive settler
colonialism and industrialization required more elaborate
built environments to support large, densely packed popu-
lations, which experienced growing social and health
disparities [33]. Many infectious diseases (e.g. smallpox,
typhoid, typhus and tuberculosis) became established with
reoccurring outbreaks due to the harsh working environments,
crowded living conditions and the geographical spread of
pathogens through Euro-colonial expansion [33]. Simul-
taneously, medical interventions, improved nutrition and
public health measures led to increased life expectancy and
population size around the world, with demographic changes

towards greater proportions of older individuals with chronic
illnesses. This Second Epidemiological Transition is character-
ized by a shift from these periodic infectious outbreaks to a
prevalence of chronic, non-degenerative, non-infectious
diseases such as cancer, diabetes, obesity, and diseases related
to environmental pollution [33,34].

(c) Third Epidemiological Transition

The Third Epidemiological Transition is associated with the
emergence of novel and familiar diseases in different geo-
graphical areas as well as new threats of antibiotic-resistant
pathogens as a result of rapid globalization [30,35]. This epi-
demiological transition is most often linked to changes in
disease ecology and major anthropogenic disruptions, such
as human-driven climate change and consequent changes in
host and vector distributions, industrialized food production
and related pathways for food-borne and livestock-mediated
diseases, as well as global travel and trade networks that can
rapidly spread zoonotic pathogens to and among people
everywhere. In addition, increasingly sanitized environments
to mitigate outbreaks, as well as increasingly intensive farm-
ing methods to increase the size and quantity of livestock,
have led to widespread overuse and misuse of antibiotics
and thus diminished microbial diversity within human
and human-associated populations. The loss of microbial
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Box 1. The origin and spread of morbilliviruses

Humans have driven disease dynamics and pathogen selection with the origin and spread of crowd diseases like morbilli-
viruses, which cause rinderpest (RPV), measles (MeV) and canine distemper (CDV) (figure 2). RPV is a ruminant
morbillivirus that was eradicated in 2011 [42]. The origin of MeV has been associated with the early transmission of RPV
from domesticated cattle in the Eurasia Steppe during the sixth century BCE [39,43]. The spread of MeV from Europe to
the Americas caused massive mortality among Indigenous people in the sixteenth century CE. This MeV outbreak may
have spilled over into local dogs, as the first recorded case of CDV is noted in Ecuador during this time [39]. Since its trans-
mission into domestic canines, the transmission of CDV into alternative hosts has rapidly and globally expanded. Outbreaks
have been reported within marine mammals, including Phocid (seal) distemper virus (PDV) and Cetacean morbillivirus
(CeMYV), as well as in ferrets, tigers and lions, pandas, badgers and non-human primates.

3
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Figure 2. Origin and spread of morbilliviruses. Arrows represent transmission direction, with blue for animals and orange for humans. (a) Transmission of
rinderpest virus (RPV) to humans and the origin of measles virus (MeV). (b) Transmission of MeV into the Americas and the first documentation of canine
distemper virus (CDV). (c) Current reported countries with CDV. (d) Spread of morbilliviruses into recent alternative host species.

diversity within the gut microbiome is thought to be associ-
ated with the rise in allergies and autoimmune diseases, as
early childhood exposure to microbes are essential for train-
ing and strengthening the immune system (also known as
the hygiene hypothesis) [36,37].

(d) Overlapping epidemiological transitions

Epidemiological transitions can overlap at varying geographi-
cal scales [35]; for instance, the impacts of land appropriation
and colonial expansion brought new diseases into immunolo-
gically vulnerable populations. Such translocations resulted in
devastating consequences, such as the decimation of Indigen-
ous people in the Americas from measles, smallpox and
other diseases introduced via European colonization begin-
ning in the fifteenth century [38,39] (box 1). New global
supply chain demands, mass mining and over-reliance on
monoculture have led to global landscape changes that are
still felt today with modified trophic interactions (e.g. the bio-
diversity loss of predators and consequent propagation of
pathogen-carrying reservoirs such as mice, rats, bats) [40],
and the rapid progression of outbreaks to epidemics and
pandemics due to globalization [41]. These overlapping

epidemiological transitions and disease dynamics (including
exposure, transmission and host switching) frame the impor-
tance of a temporal dimension to One Health, but they can
only be teased apart with the inclusion of zooarchaeological,
bioarchaeological and palaeoecological datasets.

3. Tools and datasets to reconstruct past disease-
scapes

Examination of the archaeological record allows researchers
to trace niche creation, modification and reduction through
time. Below, we offer a toolkit to explore how past diseases
and humans could have reciprocally shaped each other
(figure 3). We then advocate for how archaeological tools
and datasets can contribute to documenting changes in
environmental, animal and human health in the past.

(a) Reconstructing past animal populations and health
Zooarchaeology is the study of animal remains (e.g. bones,
feathers, eggshells, hides and shells) within archaeological
contexts, such as harvest, consumption, domestication, translo-
cation or extinction events [44]. This research permits us to
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Figure 3. Tools and datasets to reconstruct past disease-scapes. The Venn diagram presents tools that can be implemented into a One Health framework to
reconstruct past disease-scapes. The box contains data sources for each component—nhuman, animal, environment—that can be studied.

reconstruct past species richness and abundance, which can be
used to evaluate hypotheses exploring the underpinnings of
human interactions with different animal species (i.e. food,
dairying, ritual, clothing, shelter, tools, cultural material).
These findings provide insight into types of spillover opportu-
nities (e.g. subsistence strategies and dietary patterns) that may
have been present. Zooarchaeologists most often employ osteo-
logical approaches for species and element identification, which
help to determine minimum number of individuals (MNI)
within the assemblage, body size, sex ratios, age at death, skel-
etal modifications and pathologies, and signs of domestication
[45]. The majority of zooarchaeological faunal assemblages con-
sist of fragmented skeletal remains, which can create challenges
to determine species identification. Both cultural (e.g. butcher-
ing, modelling for tools) and taphonomic (e.g. diagenetic
processes and bioturbation) filters can make taxa identification
even more challenging [46]. However, taxonomic resolution
may be achieved by analysing the differences in mass of the col-
lagen peptide, which forms a unique fingerprint for different
taxa [46]. Zooarchaeology by mass spectrometry (ZooMS) has
been useful in reconstructing past ecologies by looking at
species that are otherwise infrequently observed in archaeologi-
cal faunal assemblages using osteological approaches [47]. It
has provided taxonomic resolution for animal remains that
have been culturally modified (tools, jewellery) [48,49], as
well as for animals that are difficult to distinguish through skel-
etal remains alone (sheep and goat) [46,50]. Yet, the application
of ZooMS is limited to taxa where there is enough divergence
within the collagen protein. Therefore, canid species (dog,
wolf and coyote), bovids (cattle and bison) or equids (horse
and donkey) would be difficult to identify at the species level
using ZooMS alone. Alternative peptide biomarkers may
resolve some of these taxonomic resolution issues in equid or
bovid species [51].

Combined zooarchaeological and palaeogenomic approa-
ches have been used to study infectious disease within animal
remains [52-54]. Early veterinary reports and more recent
palaeopathology studies of animal diseases include canine dis-
temper, rabies, cowpox, tuberculosis and plague, to name a
few [39,55]. Some challenges within the discipline include
disease identification due to skeletal preservation and tapho-
nomic changes which can impact pathogen palaeogenomic
research as well as the varying physiology of the pathology
among different species (i.e. the degree of pathogenicity) [56].
Here, the integrative research among veterinarians and zooarch-
aeologists would greatly benefit zoonotic disease research.
Animal health experts can provide uniform disease recording
methods among different species while zooarchaeologists can
provide context for early human-animal interactions [56].
Reconstructing microbial genomes and pathological manifes-
tations in the skeletal remains of wild and domestic animals
can elucidate disease origins, alternative enzootic transmission
routes, ecological changes and human-animal interactions that
may have facilitated cross-species transmission in the past.

(b) Reconstructing past human populations and health
The bioarchaeological record—human skeletal remains within
archaeological contexts—can reconstruct past human health
and behaviours that may have impacted past and future disease
transmission events. Bioarcheological methods have provided
insights into human origins [57], human migration [58],
human behaviours including funerary and ritual practices
[59], identity and gender roles [60], diet [61], demography [59]
and the impacts of these behaviours on past human health
[62]. Many findings have resulted from osteological analyses,
yet the incorporation of biomolecular techniques is providing
novel insights into early disease dynamics.

GZS0EZ0T 06T § 205 Y 2044 qdsi/jeuinol/biobuiysigndAiaposiefo H



Within the subfield of palaeopathology, the study of patho-
logical conditions in ancient remains, most techniques have
relied on identifying skeletal alterations in response to environ-
mental factors during life. These bony lesions can result from
trauma (e.g. fractures and breaks) and nutritional stress, which
can lead to metabolic diseases such as rickets, scurvy, osteo-
porosis, osteomalacia and fluorosis [61]. Bioarchaeological
research on nutritional stress has focused on cribra orbitalia,
porotic hyperostosis, stature and oral pathologies as indicators
of poor health and increased susceptibility in past populations
[61,62]. Although most people died of infectious diseases prior
to the development of germ theory and modern medical
interventions, palaeopathology has focused mostly on certain
bacterial, fungal and parasitic infections with specific
indicators in bone (e.g. tuberculosis, leprosy, brucellosis and
treponemal diseases—particularly syphilis). This focus is
partly due to the lack of bony responses to acute infections
that typically occur with viral pathogens. Researchers are
thus often limited in their abilities to study viral infections
using skeletal remains alone, with the exception of poliomye-
litis and variola osteomyelitis [63]. Radiological imaging can
help to some extent by visualizing features that are not
accessible through anthroposcopic techniques.

() Reconstructing past environments

Sediment cores of both anthropogenic and natural contexts hold
great promise for the reconstruction of disease-scapes, as they
represent incremental snapshots of environmental changes
and can therefore be used to evaluate the environments in
which human—pathogen relationships evolved. These stratigra-
phically controlled samples of sediments can be taken from
lakes, oceans and terrestrial environments to reconstruct past
vegetation, climatic conditions and fire regimes. Charcoal par-
ticles provide some of the earliest evidence of landscape
alteration in the form of controlled burning and deforestation
up to 45000 years ago in Southeast Asia, Australia and Papua
New Guinea [64] and among Pre-Columbian settlements
in the Amazon [64,65]. Such analyses have highlighted the
longevity of human manipulation of tropical forest ecologies,
especially when combined with macrobotanical remains
(seeds, roots, woods and fruits) and microbotanical remains
(phytoliths, pollen, spores and starch grains) [44]. Botanical
remains can also provide evidence for plant species transloca-
tions through time (native, alien and invasive species). The
botanical remains found on tools or ceramics can reveal the
types of plants that people ate and used (such as for ritual and
medicinal purposes) in the past. Together, these datasets can
reconstruct how plant communities changed over time, laying
a foundation for palaeoecological reconstructions.

Estimating the human impact on environments via proxies
of population size can also be achieved through a diverse
combination of methodologies, ranging from laser imaging
detection and ranging (LiDAR) for archaeological site identifi-
cation and size estimation, estimation of faecal accumulation
from stanols [66], and summed probability distributions
(SPDs) of radiocarbon dated materials from archaeological
sites [67,68]. With many open-source databases, archaeological
data can now be modelled to explore regional and global
population fluctuations and responses to environmental and
climatic changes. These include palaeoecology databases like
Neotoma [69] and the International Paleofire Network [70],
radiocarbon databases such as p3kl4c [71], and environmental

models such as History Database of the Global Environment
(HYDE 3.2) [72] and ANTHROMES [73]. For example,
palaeoenvironmental reconstructions using ANTHROMES
data illustrated that more than 95% of temperate and 90% of
tropical woodlands were inhabited or cultivated as far back
as 12000 years ago [73]. Combining these palaeoenvironmen-
tal datasets with disease records can point to possibilities for
disease emergence in ancient times. For instance, periods of
drought and climatic shift, which can be identified through
dendrochronology and sediment cores, are usually followed
by famines and high mortality rates, as observed during the
Late Antique Little Ice Age during the sixth century CE [74].
The presence of controlled fire and deforestation for agricul-
tural and irrigation purposes signifies large population sizes,
pooling water and the propagation of vector-borne diseases,
as observed with malaria [29]. In addition, current deforesta-
tion changes bat roosting patterns into more favourable
habitats for various bat species, thus potentially allowing
a greater likelihood for bat-borne viruses to enter human
populations [75]. Therefore, palaeoecological datasets and
environmental reconstructions can elucidate some of the
early baselines for current disease-scapes.

(d) Integrative tools to reconstruct past human—

animal—environment interactions

The incorporation of geochemistry and new ‘-omic’ method-
ologies has advanced our understanding of past human-
animal-environment interactions within the same geographical
area. While there is a plethora of research on how each of these
tools have been implemented in different scientific disciplines,
we focus on geochemical and “-omic” tools that can be incorpor-
ated in reconstructing past disease-scapes by knitting together
data across humans, animals and their shared environments.

(i) Geochemistry

Geochemical techniques including stable isotopes and trace
element analysis can be used to reconstruct past diets, life his-
tories, migration, climates and husbandry strategies. Stable
isotope analyses of organic remains provide quantitative per-
spectives of the life histories and resources consumed [44].
Bulk stable isotopes of carbon and nitrogen are most fre-
quently used to analyse dietary patterns and trophic levels,
though new studies are increasingly using compound-specific
stable isotopes to address changes in trophic position within
amino acids [76]. Strontium, oxygen and hydrogen isotopes
have reconstructed past migration, trade and diet within
humans and animals, as they reflect the geochemistry of
local geology and hydrology [77]. Trace elements, such as cad-
mium, lead, manganese, mercury and zinc, can help identify
risks to human health, given that they are needed for meta-
bolic processes, but their overabundance in the environment
can be harmful, as observed with lead pollution from
Roman mining and metallurgy (100 BCE-400 CE) [78,79].

(i) Omics

New techniques in the ‘omics” have opened doors to untangle
past human—-animal-environment interactions with relevancy
for uncovering past epidemiological events [7,80]. This revolu-
tion has predominately been led by archaeogenomics made
possible by ancient DNA (aDNA) from bone, dental calculus,
seeds and palaeofaeces from animals, plants and humans.
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Now environmental DNA (eDNA, also known as sedaDNA)
methods can reconstruct past ecologies where zooarchaeologi-
cal and bioarchaeological data may be absent [81]. With more
standardized methods, targeted enrichment techniques and
high-throughput sequencing, ancient genome analysis has
allowed researchers to explore human and animal phylogeo-
graphic patterns [82] as well as the reconstruction of ancient
pathogen genomes. These methods have been applied to Yer-
sinia pestis [83], Mycobacterium tuberculosis [80], human herpes
simplex virus 1 (HSV-1) [84], the pandemic influenza strain of
1918 [85], Salmonella enterica [86], Klebsiella pneumoniae [87] and
more. Many of these pathogens can infect multiple species that
have long and close relationships with humans (i.e. Y. pestis in
rodents, M. tuberculosis and Brucella in cows) and have been
recovered from both archaeological and zooarchaeological
assemblages [7,32,80].

Where aDNA is limited due to preservation, other omic
techniques such as palaeoproteomics and metabolomics are
starting to fill in the gaps, especially since proteins may pre-
serve better than DNA [88]. Both targeted and metaproteomic
techniques have been applied to reconstructing our own evol-
utionary history as well as determining how past animal by-
products have been used in tool manufacturing, art and dairy-
ing [88-90]. The application of metaproteomics allows
researchers to investigate ancient diseases through host-patho-
gen interactions as well as explorations of the host immune
response [91]. Metabolomics has proven value in highlighting
pathogen biomarkers [92]. Within the archaeological record,
metabolomics has mainly been used for the analysis of organic
residues found within ceramics. Yet it can also be applied to
recover gut microbiota from palaeofaeces [93], which may be
beneficial in studying shifts in human and animal microbiomes
and any association to disease susceptibility.

Palaeo ‘omic’ studies are proving their value for current
health concerns [94]. For instance, palaeogenomic studies on
host—pathogen relationships have provided novel insight in
pathogen selective pressures on human genome diversity
and present-day inflammatory disease [95,96]. With the help
of artificial intelligence, palaeogenomic datasets have yielded
novel peptides with antibiotic properties, opening new path-
ways for drug development [97]. Further integration of these
host and pathogen palaeo ‘omic” studies has great potential
in addressing patterns of increased virulence and disease
susceptibility for current and future epidemiological concerns.

(e) Evaluating synergies: how did human—animal—-
environment interactions contribute to zoonotic
spread? A focus on rats of the genus Rattus

Humans have been translocating species for at least 20 000
years [16,98-100]. Four species of rodents—the black rat
(Rattus rattus), the Pacific rat (Rattus exulans), the house
mouse (Mus musculus) and the brown rat (Rattus norvegi-
cus)—are significantly more abundant in anthropogenically
modified niches where they exist as commensal organisms.
In archaeological contexts, their remains are often found in
food storage pits and linked to agricultural transitions and
food surplus [99,101]. These species of rodents have attained
a global distribution due to human migration and have there-
fore been successful in inhabiting areas outside their natural
bounds with human assistance [101]. They have been used
as a proxy to study human migration [102], but can also

serve as a proxy for associated vector-borne diseases

[98,102]. Rodents are characterized as hyper-reservoirs
given that they carry many zoonotic disease agents that can
infect humans, including those that cause hantavirus dis-
eases, viral haemorrhagic fevers, leptospirosis plague and
others [103]. Through human-facilitated translocation, they
have contributed to extinction events and the establishment
of new disease reservoirs. Examples include the North Amer-
ican introduction of Y. pestis via infected rats and their fleas in
the early twentieth century, when ground squirrels and
prairie dogs became plague reservoirs that persist in the wes-
tern USA to this day [104] (box 2), as well as the extinction of
Christmas Island rat (Rattus macleari) following the trans-
mission of a pathogenic trypanosome carried by the
recently introduced black rats in 1900 CE [105].

4. New avenues for transdisciplinary research
and data sources

Collaborative efforts between zoos, natural history museums,
and biorepositories can contribute to understanding zoonotic
disease host origins and transmission events [111]. Museum
collections have provided valuable insight into the spread of
antimicrobial resistance [112], chytrid fungus [113], Lyme dis-
ease [114], White Nose syndrome [115] and Sin Nombre
virus [116]. In addition, they offer snapshots of biodiversity,
spanning important time gaps between archaeological and
modern outbreaks. Virtual communities such as Project
ECHO’s Museums and Emerging Pathogens in the Americas
(MEPA) are transforming how collaborative research using
biorepositories and specimen vouchers along with field
collections can add value in predictive outbreak models [117].

5. Ethical considerations

While every field of research in this transdisciplinary
One Health perspective has their own guidelines and stan-
dards for ethical research, we highlight two cross-cutting
ethical concerns for marginalized and under-represented com-
munities: (i) collaborative and inclusive research through
community engagement and (ii) data sovereignty. Each of
these ethical concerns are ongoing discussions [118-120]; how-
ever, we highlight some ways they have been implemented for
a more inclusive and decolonized interpretation of the past.
Collaborative and inclusive research begins with community
engagement. Consulting with descendant communities (broadly
defined) can occur in all stages of research, from co-developing
research agendas and identifying how the community will
benefit to destructive sampling and data storage [120,121]. Co-
interpretation of data, including authorship, can provide accu-
rate cultural and behavioural contexts and avoid inappropriate
language use. This has been highlighted within ‘omics’ research,
where Indigenous communities are often relied on as a baseline
of ‘non-Westernized” versus ‘Westernized’ and are frequently
described as ‘non-modern’, ‘non-industrialized’ or ‘traditional’
for comparative studies [122]. Such terminology relays to the
broader audience that the community is somehow stagnant
both culturally and genetically while progressing bias and
inaccurate narratives [122]. The incorporation of ethnographic
ethnohistoric records, oral traditions and languages in conjunc-
tion with archaeology and phylogeography have provided
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Box 2. What can we learn from past pandemics: plague pandemics

Many of the techniques described in §3 have helped to uncover the long-lasting impact and ecological inheritance of the first and
second plague pandemics. Research in pathogen DNA, rat ecology, environmental changes and vector competence are unravel-
ling the role of host susceptibility and vector dynamics within a shared environment [106]. Through the analysis of documented
plague burial sites and extraction of aDNA from victims of the Black Death (1347-1351 BCE) at the onset of the second plague
pandemic, Bos et al. [83] reconstructed the first draft genome of Y. pestis. This strain and the more recent Y. pestis strains appear to
have been more virulent and transmissible compared with ancestral strains that circulated in Eurasia more than 5,000 years ago,
possibly reflecting changes in disease ecology [107]. Reconstructed partial Y. pestis genomes recovered from rat skeletal remains
add new information to the evolution of Y. pestis strains and the role of rats as a reservoir [108]. Palaeogenomic analysis of black
rat populations reflect human migration and trade networks established during the Roman Empire [109]. The spatial distribution
of rat populations may highlight regions where plague outbreaks (including the Justinian Plague of the first plague pandemic in
541-549 CE) occurred due to the congregation of both human and rat populations and the cross-regional transportation routes
between them. Palynological records also support spatial heterogeneity in the impact of Y. pestis outbreaks [110]. The abundance
of crop pollen in sediment cores can be used as a proxy for population size—the greater agricultural turnover, the larger the
population—thus suggesting the Black Death had differential impacts across populations and communities. Recent investi-
gations into the human genome using aDNA has also suggested lasting effects of susceptibility to the plague with
implications for autoimmune disease today [96]. This research has continued relevance, along with the ecological changes
that created long-lasting social and economic inequalities, as plague became seen as a disease associated with poverty [23].
Plague remains a global health problem with the continuous enzootic transmission of Y. pestis and recurrent outbreaks in
some places, as well as emerging antibiotic-resistant strains that reflect a deeply rooted disease ecological inheritance and
health disparities. Future pandemic responses will need to focus on identifying and mitigating environmental and social

pressures that foster the longevity of pandemics at both regional and global fronts.

valuable insight where archaeological and phylogeographic
evidence is lacking and have documented the longevity of
zoonotic disease dynamics [123,124].

Data sovereignty is becoming increasingly important,
especially for Indigenous communities [121]. Discussions of
who has access to data, for how long and for what purpose
at the onset of research can reduce conflict and harm. In
addition, the researcher and community should discuss if
future research can be pursued from the generated data as
the misuse of data outside the scope of the project can have
long-lasting and negative effects [119]. Indigenous consor-
tiums and open-source platforms such as The Native
BioData Consortium [125] and Mukurtu [126] are paving
new paths for collaborative and ethical research. While
these bioethics are becoming more prominent within archae-
ology, inclusive research needs to be further implemented in
zoonotic outbreaks. This includes the sharing of zoonotic risk
technologies and diagnostics with communities in higher-risk
areas of spillovers to occur.

6. Conclusion

Conceptually and in practice, One Health breaks down barriers
between human, animal and environmental health with the inte-
gration of traditionally divided disciplines, data sources and
skillsets. As a field that already embraces the One Health triad
in its broad questions and collaborative teamwork, as evident
in the range of scientists who work together to reconstruct the
past, archaeology is a natural fit for the One Health community.
Bringing archaeology into One Health opens a discussion on
how long-term ecological changes brought on by humans
through niche construction can have lasting impacts and influ-
ence disease ecology. While this temporal dimension may not
prevent novel zoonotic outbreaks, it does provide a deeper
holistic foundation for disease ecology. Though some zoonotic
pathogens may not be transmissible across multiple hosts due
to host plasticity, zoonotic diseases that can infect ecologically

and taxonomically diverse host range have proven to have devas-
tating impacts. Now, with our accelerating population growth,
rapid global travel, encroachment of wildlife habitats, antibiotic
overuse and increasing socio-economic inequality, the biggest
challenge for human health is preventing devastating overlap-
ping pandemics. Foreseeing emerging events, therefore, cannot
only begin with predicting likely pathogens to infect human
populations, but rather must have a broader focus on pathogens
that will probably infect secondary hosts that then transmit to
humans, as well as pathogens that humans are likely to transmit
to animals. Overlooking this multi-directional flow of microbes
diminishes our understanding of spillover events.

This review has addressed how complex challenges in
studying disease-scapes can be approached with long-term
data. By incorporating palaeoecological, zooarchaeological
and bioarchaeological tools, we can begin to untangle past
human-animal-environment interactions and pathogen
transmission over the past millennia. In so doing, the evol-
ution of a disease-scape might then serve as a model in
foreseeing future zoonotic events.
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