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Abstract—Networks that provide agents with access to a
common database of the agents’ actions enable an agent to easily
learn by observing the actions of others, but are also susceptible
to manipulation by “fake” agents. Prior work has studied a model
for the impact of such fake agents on ordinary (rational) agents
in a sequential Bayesian observational learning framework. That
model assumes that ordinary agents do not have an ex-ante bias
in their actions and that they follow their private information in
case of an ex-post tie between actions. This paper builds on that
work to study the effect of fake agents on the welfare obtained
by ordinary agents under different ex-ante biases and different
tie-breaking rules. We show that varying either of these can
lead to cases where, unlike in the prior work, the addition of
fake agents leads to a gain in welfare. This implies that in such
cases, if fake agents are absent or are not adequately present,
an altruistic platform could artificially introduce fake actions to
effect improved learning.

Index Terms—Information cascades, herding, Bayesian opti-
mality, ex-ante bias.

I. INTRODUCTION

In many scenarios, agents seek to learn from observations of
other agents’ actions. Such learning is facilitated by networks
that enable an agent to connect to a common database for
making decisions. Examples of such networks include wireless
networks in which devices upload and share their data through
a common Access Point, on-line markets, social networks, etc.
Bayesian observation learning provides a framework for study-
ing such scenarios. In these models, Bayesian rational agents
take actions over time. Each agent updates it beliefs about
about the value of a given action based on its observations of
previous agents’ actions. Initial models for such settings in [1],
[2] considered the case where there is a common underlying
value for each of two actions, which agents take sequentially
after fully observing the prior agents’ actions. Additionally,
each agent receives an i.i.d. binary-valued signal modeling
their ex-ante beliefs about the underlying “state-of-the world”
that determines the values of the two actions. A key result is
that with probability one, agents will enter into an information
cascade in which all subsequent agents follow the majority
decision of prior agents, regardless of their own signal.

This basic observational learning model has been extended
in many directions including relaxing the assumption of i.i.d.
binary valued signals [3], assuming that every agent does not
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observe all previous agents’ actions [4], allowing for imperfect
observations [5], [6]. Other variations include [7]-[13]. This
paper, is motivated by one of these extensions in [6], which
considered a model similar to [1], [2] except that with a given
probability each agent is a “fake” agent who always reports
a favoured action regardless of the other users’ actions. This
models scenarios in which fake agents report a certain action
to encourage other non-fake agents to also adopt that action.
In [6], which was extended from [14], it was shown that
the presence of such fake agents can in some cases reduce
the likelihood of their preferred cascade. Conditioned on the
underlying state of the world, these fake agents may even
lead to improvement in the welfare, i.e., the expected pay-
off obtained by the agents. However, when averaged across
the state of the world, numerical results in [6] show that the
welfare is always reduced by the presence of fake agents.
A motivation for this paper is to understand this welfare
reduction and how it depends on both the ex-ante beliefs of
the agents and the tie-breaking rule used when agents are
indifferent between the two actions.

Fake agents degrade the information obtained in some
observations. This is reminiscent of Blackwell’s theorem on
comparing different information structures for single agent
decision problems [15], [16]. Blackwell’s result shows that if
one information structure is a garbling of a second, then the
former will result in a lower welfare for any decision problem
faced by a Bayesian rational agent. A natural question is then:
Can the welfare loss observed in [6] be explained through a
similar argument extended to this sequential decision making
setting? Our results show that this is not the case. Indeed if
Blackwell’s results directly generalized to this setting, it would
imply a welfare loss regardless of the agents’ ex-ante beliefs.
We show that this is not the case and that when agent’s have an
ex-ante bias, the presence of fake agents may lead to improved
welfare. We also show that even when agents are ex-ante
unbiased, if the tie breaking rule assumed in [6] is changed,
fake agents can again lead to improved welfare. This is in line
with other works that have shown that “better” information in
multiplayer games may not always lead to improved pay-offs
for players (see e.g. [17]).

The remainder of the paper is organized as follows. We
describe our model in Section II. We analyze this model and
identify the resulting cascade properties in Section III. In
Section IV, we characterize agents’ welfares and identify im-
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portant properties exhibited by them. In Section V, we present
our Markov chain formulation and devise an iterative method
to compute cascade probabilties. Further, in Subsections V-C
and V-D, we observe the effects of varying the ex-ante bias and
the tie-breaking rule respectively, on the agents’ asymptotic
welfare. We present our conclusions in Section VI and defer
a detailed description of the iterative method to the Appendix.

II. MODEL

We consider a model similar to [1] in which there is a
countable sequence of agents, indexed ¢ = 1,2, ... where the
index represents both the time and the order of actions. Each
agent ¢ takes an action A; of either buying (Y') or not buying
(N) a new item that has a true value (V'), which could either
be good (G) or bad (B). We assume a non-revealing general
prior for the true value, P(V = G) = ¢ € (0,1).

The agents are Bayes-rational utility maximizers where the
pay-off received by each agent ¢, denoted by m;, depends on
its action A; and the true value V as follows. If the agent
chooses [V, his payoff is 0. Whereas, if the agent chooses Y,
he incurs a cost of C' > 0 for buying the item and gains an
amount that reflects the item’s value/utility to its buyer. The
buyer gains the amount x if V = G and —y if V = B, where
x > C and y > 0. Then, the net pay-off for any agent ¢ is

xz—C, if A; =Y and V =G,
T =8 —y—C, ifA; =Y andV = B, )
0, if A, = N.

It follows from (1) that the ex ante expected pay-off for any
agent is xq—y(1—q)—C if it buys the item, and is 0 otherwise.
In the case xq—y(1—¢q) > C, an agent a priori prefers taking
action Y over N, and vice-versa if zqg — y(1 — q) < C. The
model in such cases is said to have an ex-ante bias between
the two actions. On the other hand, if xg—y(1—¢q) = C, then
the ex ante expected pay-off for any agent is O for either of the
actions. Let ¢* € (0, 1) be this unique probability of V = G,
which is ¢* := (y + C)/(z + y).! Thus, if ¢ = ¢*, then to
begin with, an agent is indifferent to the two actions. While
previous works [1], [5], [6], [10], [12] consider this unbiased
ex-ante preference of actions, our work extends to the generic
case of a possible ex ante bias in the actions.

To incorporate agents’ private beliefs about the new
item, every agent ¢ receives a private signal S; €
{H (high), L (low)}. This signal, as shown in Figure la, par-
tially reveals the information about the true value of the item
through a binary symmetric channel (BSC) with crossover
probability 1 — p, where 1/2 < p < 1. This implies that the
signal is informative but not revealing. Moreover, the sequence
of private signals {S7,S2,...} is assumed to be iid. given
the true value V. Each agent i takes a rational action A; that
depends on his private signal S; and the past observations
{01, Oo,..., Oi—l} of actions {Al, Ao, ..., Ai—l}- Next, we

IThe condiitons > C' > 0 and y > 0 assumed in (1) ensure that ¢* §§ 0
and # 1, as otherwise, all agents prefer a fixed action regardless of their
beliefs on the item’s true value, V.
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modify the information structure in [1] by assuming that
at each time instant, an agent could either be fake with
probability (w.p.) € € [0,1) or ordinary w.p. 1 — ¢, where
€ is common knowledge. An ordinary agent ¢ honestly reports
his action, i.e. O; = A;. On the contrary, a fake agent
always reports a Y, reflecting his intention of influencing the
successors into buying the new item, regardless of its true
value. This implies that at any time 4, if A; = N then w.p.
1—e¢, the reported action O; = N and w.p. €, O; = Y. Whereas,
if A, =Y then O; =Y w.p. 1. Refer to Figure 1b.

G v H Y Y
1% S A; O;

(a) (b)
Fig. 1: (a) The BSC through which agents receive private signals.
(b) The channel through which agents’ actions are corrupted.

III. OPTIMAL DECISION AND CASCADES

For the n'" agent, let the history of past observations be
denoted by H,,—1 := {O1,042,...,0,_1}. Then, the Bayes’
optimal action for every agent n, A,, € {Y, N} is chosen such
that it maximizes the expected pay-off given its information
set I, := {Sn, Hn_1}. Let ¥, (Sn, Hn1) £ P(G|Sn, Hn_1)
denote the posterior probability of the item being good, i.e.,
V= G. The expected pay-off F,_ that agent n obtains by
taking action A, given {S,,, H,_1} is then expressed by:

5 _{(w—cm—@w)(l—w if Ay =,
Ap —

0=(@x-C)q¢" —y+C)1—-gq") if A, =N. @

Here, recall that ¢* is the unique probability of V' = G for
which an agent would be indifferent to the two actions. By
comparing Ey with En in (2), it follows that the Bayes’
optimal decision rule is:

Y, if v, >q",
A, =< N, if 4, <q*, (3)
T, if v, =q".

Note that when v, = ¢*, By = Epn and so the agent is
indifferent between the actions. This conditon is characterized
by the two elements of set [,,, namely, the history H,_
and the private signal S,, favouring opposing actions, equally
strongly. In this case, we assume that all agents adhere to a
common tie-breaking decision rule, denoted by 7. In prior
works [2], [5], [6], [10], [12], the decision rule in this case
follows the private signal S,,, i.e., the agent buys the item only
if S, = H. Another choice in this case is to follow the history
‘Hn—1, which also means to oppose the private signal S, i.e.,
the agent buys the item only if S,, = L. In this paper, we focus
on both these choices for breaking ties, which is represented
by T € {s (follow S,,), h (follow H,_1)}.
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Definition 1: An information cascade is said to occur when
an agent’s decision becomes independent of his private signal.

We first consider the rule 7' = s. It follows from (3)
that, agent n cascades to a Y (N) if and only if v, > ¢*
(< ¢*) for all S,, € {H, L}. The other case being 7, > ¢*
for S,, = H and ~, < ¢* for S, = L; in which case,
agent n follows S,,. To better understand the above cascade
conditions, we encapsulate the information contained in the
history H,,_1 observed by agent n in the term g,,_1(H,_1) =
(L2 /), 1 (1), where 1, 1 () 2 P(-|B)/P(|G) is
the likelihood ratio function of the public history H,_;.
Further, we define 3, (-) £ P(:|B)/P(:|G) as the likelhood ratio
of the private signal S, where it follows from Figure la
that 3,(H) = (1 — p)/p and B.(L) = p/(1 — p). Next,
using Bayes’ rule, we express Yn in terms of g,_1 and (3,
as vy, = 1 /( ) The inequality v, > ¢* can
then be simplified to the form gn-1 < 1/B,. Thus, for
T = s, the condition on -y, for a Y (N) cascade translates
to gn—1 < 1/8, (> 1/8,) for all S,,. This gives bounds on
gn—1 for a cascade to occur, as stated in the next lemma.

Lemma 1: Under the tie- breaking ruleT = s (T = h), agent
n cascades to a Y if g, < L=p (gn, < 1%17), cascades to
aNifg, 1> ﬁ (gn,1 > l—p) and otherwise follows its
private signal S,,.

For the other rule, 7' = h, similar techniques yields the
bounds on g,,_1, also stated in Lemma 1. If agent n cascades,
then O,, does not provide any additional information about
the true value V' to the successors over what is contained in
Hp—1. As a result, l,,4; = l,,—1, which implies g, +; = gn—1
for all ¢ = 0,1,2,... and hence they remain in the cascade,
which leads us to the following property, also exhibited by
prior models, e.g. [1], [2], [S]-[7].

Property 1: Once a cascade occurs, it lasts forever.

On the other hand, if agent n does not cascade, then Property
1 and Lemma 1 imply that all the agents until and including n
follow their own private signals ignoring the observations of
their predecessors. For every such observation O;, i < n, as
S; is conditionally independent of the history H;_; given V/,
the likelihood ratio can be updated as: I; = (IT‘b)li,l ifo;, =Y,
else l; = (&)l;—1 if O; = N. Here,

a:=PO; =Y|V=3G) and b:=P(O; = N|V = B) (4)

denote the probabilities that an observation O; follows the
true value V, given that A; follows S;. It can be shown from
Figures 1a and 1b that in the above case,

a=p+ (1 —ple and b=p(l —¢). 3)

Now, as a result of the updates, [, can be shown to
depend only on the number of Y’s (denoted by ny) and N’s
(denoted by ny) in the observation history H,,. Specifically,
I, = (£2)™""" where the exponent is the difference
between the number of Y’s weighted by n and the number
of N’s. The weight n is given by

(e )(n) o
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Then, given that agent n has not cascaded, the term g,, can
_ _ \hn
be expressed as: g, = ln(lTp) 0= (17)—”) , where

hn = nny — nn + ho, @)

0= [ (1) e (£, s

) ®
p
Thus, agents that have not cascaded satisfy the next property.

Property 2: Until a cascade occurs, each agent follows its
private signal, and h,, defined in (7) is a sufficient statistic of
the information contained in H,,_1.

Note in (8) that hg = 0 only when there is no ex-ante bias
between actions, i.e., only when ¢ = ¢*. Otherwise, hg > 0
when ¢ > ¢*, i.e., when action Y is preferred over action [NV
a priori; else hg < 0 when vice-versa.

Remark 1: The term hg in (8) reflects the ex-ante bias
between actions, where hy = 0 implies that there is no ex-
ante bias. Otherwise, hg > 0 implies that a priori, action Y is
preferred over action N, and hg < 0 implies vice-versa.

The model with fake agents in [6] also exhibits Property
2, with h,, as its sufficient statistic, except that it is restricted
to hg = 0. Further, as in [6], if ¢ = 0 (no fake agents) then
a =b = pand n = 1. Whereas, if ¢ > 0 then n < 1. It
then follows from (7) that, due to the presence of fake agents,
the information conveyed by a Y in an agent’s observation
history reduces by a factor of 7, whereas the information
conveyed by a N remains unaffected. This is because, unlike
a N which always comes from an honest agent, a Y incurs the
possibility that the agent could be fake. Further, this reduction
in information from a Y is exacerbated with an increase in the
possibility of fake agents, as 1 reduces with an increase in e.

Substituting g,, = (1;—”) in Lemma 1, it follows that for
all times n until a cascade occurs, h,, € [-1,1] for T = s,

and h,, € (—1,1) for T = h, respectively. Further, it follows
from (7) that at all such times n, the update rule for h,, is:

B, = hn—1+n rf O, =Y, ©)
hn,1—1 if On:N

R

Whereas, for T = s, when h,, > 1 (< —1), likewise for
T = h, when h,, > 1 (< —1), a Y (N) cascade begins and
h,, stops updating (Property 1). Here, hg defined in (8), is the
fixed initial state of process {h,,}, since the first agent has no
observation history. Now, if hg > 1 (< —1) for T' = s, or if
ho > 1 (< —1)forT = h, then a Y (V) cascade begins from
the first agent itself. In such cases, the history H,_; for any
agent n does not play any role in its decision; this makes the
channel in Figure 1b irrelevant. We thus state the next remark.

Remark 2: We assume hy € (—1,1) as otherwise, for either
or both values of T, the presence of fake agents has no effect
on rational agents.

Lastly, given the true value V, we denote the probability
that a Y (N) cascade begins for process {h,} by PY .
(]P’X,_Cas). Here, ]P’N_CaS =1- P¥_cas as it can be shown that
{h,} eventually enters a cascade w.p. 1.
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IV. AGENT WELFARE

Let the n'™ agent’s welfare refer to its pay-off averaged (in
expectation) over V' € {G, B}, denoted by E[m,]. It can be
shown that the asymptotic welfare, denoted by 117" for rule T,
relates to the cascade probabilities of process {h,} as:

HT = lim E[ﬂ.’ﬂ] = (z - C)qP}g—casf (y + C)(l - q)PXBj—cas' (10)

n—00

Now, the bounds on hg (in Remark 2) ensure that it takes at
least one time-step, starting from state hg, to begin a cascade.
This implies that the first agent always follow its private signal,
and hence obtains the welfare:

Elm]=F:=(x-Clgp—-(y+C)1-q)(1—-p). (11)

In fact, F' defined in (11) refers to the welfare for any agent
n, if A,, always follows .S,, disregarding the optimal decision
rule in (3), i.e., E[m,|A, always follows S,] = F, for all
n. The next property shows that E[r,] is monotonic in the
agents’ indices.

Property 3: Given any T and hy, the welfare of each agent
is at least equal or greater than the welfare of its predecessors.
Thus, E[r,] > F and is non-decreasing in n.

Proof: Consider two consecutive agents, n — 1 and n
with their respective information sets I, and I,,_;. Under
the informational equivalance of their private signals: S,,_;
and S,, we have I,_; C I,. Property 3 is then proved by
applying the celebrated Blackwell’s Theorem on comparing
information structures [15], which implies that it is sufficient
to show that the signals from observing the smaller set I,,_
are obtained as a stochastic mapping (garbling) of the signals
from the larger set I,,. Let I,, and I,,_; be the n and (n — 1)-
length random vectors corresponding to the observations sets
I, and I,,_; respectively, such that the two vectors share the
first n — 1 elements. Then, the desired mapping is given by
I, 1 = GI,, where G is a (n — 1) x n diagonal matrix. Then,
Blackwell’s result for the corresponding optimal welfares
states that E[r,,] > E[r,,—1]; and E[m,,] > F for all n follows
from (11). [ |

V. MARKOVIAN ANALYSIS OF CASCADES

In this section, we analyse the process {h,, }, given V/ for the
probability of cascades. We consider the tie-breaking rule 7" =
s for the sake of analysis. Now, it follows from Section III that
conditioned on V/, the process {h,,} is a discrete-time Markov
process taking values in [—1, 1] before getting absorbed into
the NV cascade region (< —1) or the Y cascade region (> 1).
Specifically, eq. (9) shows that, given V, {h,} is a random
walk (r.w.) that starts from state hg and moves to the right by
n w.p. P(O, = Y|V) or to the left by 1 w.p. P(O,, = N|V)
until a cascade occurs, where these probabilities are defined
in terms of a and b in (4). Figure 2 depicts this random walk,
where p; = P(O,, = Y|V) denotes the probability of a Y’
being observed given V, when any agent n follows .S,,. We
have from (4): py = a for V. = G, whereas pf = 1 — b for
V =1B.
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Note that in special cases such as when hg and 7 satisfy
(L—=1ho|)/n =t, |ho|/n = v for some t,v € {0,1,2,...}, the
process {h,,} is equivalent to a Markov chain with finite state-
space A={-r—1,—r,...,—1,0,1,...,7, 7+ 1}, where r :=
t+v and —r—1 and r+ 1 are absorption states corresponding
to N and Y cascades, respectively. In this case, absorption
probabilities can be obtained by solving a system of linear
equations. In this paper, our main focus is on the more generic
case of non-integer values of (1— |hg|)/n and |hg|/n resulting
in {h,} possibly taking countably infinite values in [—1,1].2

pr
o — e >
= ﬁUho hotn 1

Fig. 2: Partial transition diagram of random walk {h} given V.

Consider the special case where fake agents are absent (e =
0). Then, for the r.w. depicted in Fig. 2, it follows that = 1,
and py =pif V =G, else pf =1 —pif V = B. Fig. 2 then
implies that {h,,} occupies an equivalent finite state-space .A,
and thereby has a closed-form expression for PY. .. which for
varying values of hg and T € {s, h} are tabulated below.

ho | T A PY .
0,1) | sh | {=2,-1,0,1} | ps/[ps+ (1 —ps)?]
(=L0) | s,h | {=10,1,2} | p7/[p}+ (1 —py)]
0 s | {~2,-1,0,1,2} | p7/[p} + (1 —py)?]
0 h {~1,0,1} Py

TABLE I: Equivalent state-space A and Py ., of rw. {hn} under
€ = 0 for varying values of ex-ante bias ho and tie-breaking rule T.

In Table I, for A in each case, O is the initial state and the
leftmost and the rightmost states are the N and Y cascade
absorption states, respectively. Note that for cases where hg #
0, the tie-breaking rule 7" does not matter since {h,,} for any
n never equals 1 or —1, which are the only values at which
a tie could occur. Lastly, the asymptotic welfare TI7 (0, hg) is
obtained by using the expression for PY. . from Table I, for
the corresponding values of hgy and 7T, in equation (10).

A. Thresholds {€;} under a non-negative ex-ante bias

In the case hg = 0 and ¢ = 0 as in [I1], » = 1 and so
a Y cascade requires at least two consecutive Y’s. However,
when hgo > 0, then starting from hg, only a single Y triggers a
Y cascade. However, sequences having one or more N’s, but
have not cascaded, still require at least two consecutive Y’s
for a Y cascade to begin. Now, as e increases and reduces
7, a greater number of consecutive Y’s (> 1 for hg > 0 and
> 2 for hy = 0) may be required to cause a Y cascade. This

2For example, if  was chosen uniformly at random, then almost surely
(w.p. 1) it would fall into this case.

337

Authorized licensed use limited to: Northwestern University. Downloaded on February 13,2024 at 01:33:08 UTC from IEEE Xplore. Restrictions apply.



is characterized by first defining an increasing sequence of
e-thresholds {e;}22,, for a fixed signal quality p.

1—hg
oa—« t

, fort=1,2,..., (12)

€= —ihg
a7t -1
and ¢ = 0, with o := 1%11. Here, for ¢t > 1, ¢ is such that
at € = ¢, =M —¢ Now, starting from state hg, t + 1
consecutive Y’s would be needed to begin a Y cascade only
when 1=he < g < 1=ho This inequality when simplified in
terms of ¢ implies that € € [e;, €,41) where € is the ¢
threshold, defined in (12).

Remark 3: For an ex-ante bias of hg > 0, if € € [ef, €141),
then starting from state hg, ¢t + 1 consecutive Y’s start a YV
cascade. Here, integer ¢ satisfies ¢t = {ﬂ

The thresholds {e,}22; derived in [6], which does not
consider any ex-ante bias, then become a special case of the
thresholds {¢;} in (12) when hy = 0.

B. Y cascade probability, P -

As depicted in Figure 2, the r.w. {h,} typically occupies
a countably infinite state-space and does not readily allow
for a closed-form solution to P¥_Cas. So instead, we develop
recursive equations that can compute ]P’)‘f_cas with arbitrary
precision. These equations are motivated by the construction of
an iterative method, which enumerates all possible observation
sequences that would lead to Y cascade. This method, first
developed in [6] for hg = 0 and T' = s, is modified in this
paper to also account for a possible ex-ante bias in actions
(ho # 0). Refer to Appendix A for a detailed description of
this iterative method. Later, in Appendix C, the case of T' = h
is also considered. We use the iterative method to compute
PY (€, ho) for V € {G, B}. Then, substituting these values
in eq. (10) yields the asymptotic welfare, I17 (¢, hg).

C. Improved learning due to fake agents in the presence of
ex-ante bias

In [6], it has been numerically shown that with 7" = s,
when there is no ex-ante bias (hg = 0), agents’ asymptotic
welfare deteriorates for any € > 0. Interestingly, when ex-
ante bias between actions does exist (hg # 0), we observe
that in certain cases, the presence of fake agents improves
agents’ asymptotic welfare. To demonstrate this, Figure 3 plots
IT° (¢, ho) with respect to ¢ € (0,1) for two cases, namely,
ho = 0 and hg = 0.047 (Y preferred over N a priori) under
fixed signal quality p = 0.7 and cost structure: * = 1,y =
0,C = 1/2. Thus, ¢* = 1/2 and we vary the value of hg
by only varying the prior ¢ in (8). Figure 3 also contrasts
these welfares with the corresponding welfares in the absence
of fake agents (computed by using PY . from Table I in eq.
(10)), indicated as baselines. Observe that IT° (¢, 0) < II°(0, 0)
for all € € (0,1), in line with the results in [6]. However, with
ex-ante bias hg = 0.047, we see that there exist a range of
values of € at which II°(e, hg) > II°(0, ho). An important
reason for this ordering is the drop in the baseline welfare
I1°(0, hg) when hg is increased from 0 to 0.047. This drop
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S

Asymptotic welfare, IT°(e, hy)

Fig. 3: Asymptotic welfare as a function of € for p = 0.7, T = s
and indicated values of ho. II° at thresholds {e;} for ho = 0.047
are marked by o, and for ho = 0 are marked by X.

in turn occurs due to a change in the state-space .4 and the
corresponding expression for ]P’)‘f_cas in Table I, when under
T = s, the value of hg is changed from 0O to any value in
(0,1).

Further, observe in Figure 3 that an abrupt and significant
increase in II° occurs for hg = 0 (marked by x) and for hg =
0.047 (marked by o) at their respective e-threshold values:
{€:}$2,, which are defined by (12). In both cases, the abrupt
increase in asymptotic welfare at each of the thresholds can
be attributed to a sudden increment (by 1) of the number of
consecutive Y’s required to trigger a Y cascade, starting from
ho (Remark 3).

The next theorem shows that even when a priori, action Y
is marginally preferred over action N, there exists an interval
of e-values in (0, 1) such that the presence of fake agents w.p.
€ improves the asymptotic welfare.

Theorem 1: Given an infinitesimal ex-ante bias towards
action Y, i.e. hg = 0%, and a fixed private signal quality
p € (0.5,1), there exists some € = f(p) > 0 for some function
f, such that

I%(e,0") > 11°(0,0%), V €€ (0,¢). (13)

Proof: We prove this theorem by showing that the limiting
value of the function II%(¢,0") as € — 0 exceeds it’s value
when € = 0. For this, we first find the limiting value of ]P’)‘f_cas
at hg = 07 and € — 0", which is done in Lemma 2 in

Appendix C and is restated here for convenience.

. 1 + (1 — pf)pf
lim Pv,m €, 0M) =p2- o S0
B By cas(€07) = Py (1 = Ps)ps
Next, the value of ]P’y_cas as hg = 07 and € = 0 can be obtained
from Table I as follows.

PY_ (0,0)= Pr |
Y»cas( ) P+ (1 _ pf)z

Now, note that at hg = 0%, ¢ = ¢* which implies that (z —

(14)

5)
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C)g = (y+C)(1 —q). Thus, eq. (10) for by = 07 and any €
simplifies to:

I (67 OJr) = (I - C)q [Pg—cas(ea O+) - ]P))]?—cas(ev OJF)} . (16)

Then, the difference in the asymptotic welfares as e — 0 and
at € = 0 can be expressed as:

I%HS(Q 0+) - HS(Oa O+) = (LL' - C)Q[AG - AB]a (I7)

where AV for V € {G, B} is defined as:

AV = lg% P¥—0a3(67 0+> - P)‘i—cas(oa O+)7 (18)

(@ —pr(1—pp)(1—p3)
1—ps(1—py)
Step (a) follows by substituting the expressions obtained in
eq. (14) and (15) in eq. (18). Now, with py = p for V =G
and py = 1 —p for V = B, we substitute (19) in (17), which
simplfies to give:

19)

sl ot s( () _ p(1—p)2p—1)
lim T1 (e,07) = 11°(0,0 )—(a:—C)qma (20)

>0, Vpe(051). (@D

The inequality in (21) follows from the fact z > C and p >
0.5. Thus, there exists some € > 0 such that (13) holds true.
|

D. Improved learning due to fake agents when rational agents
follow the history to break ties

In this subsection, we investigate agents’ welfare for the
case: T'= h and hg = 0. To compute ]P’y_cas for this case, the
iterative method in Appendix A requires a few modifications
to account for the change in tie-breaking rule, i.e., for T =
h. Appendix B describes them in detail. Now, equipped with
these modifications, the iterative method computes Py, .., and
welfare 17 (¢, 0). Figure 4 plots 17 (¢,0) with respect to € €
(0,1) for T = s and T = h, given p = 0.7 and cost structure:
x =1,y =0,C = 1/2. Here, as hy = 0 in (8), ¢ = ¢* =
1/2. Figure 4 also contrasts these welfares with the respective
welfares in the absence of fake agents, indicated as baselines.
As in Figure 3, we observe that when 7' = s, II°(¢,0) <
I1°(0,0) for all € € (0,1). However, when T = h, we see
that the inequality gets reversed, i.e., II"(e,0) > I1"(0,0),
for all € € (0,1). This implies that if agents prefer to follow
their history to break ties, then presence of fake agents in any
amount ¢ € (0,1) improves agents’ asymptotic welfare. The
next theorem formalizes this property for any p, and more
specifically shows that such an improvement in welfare due
to any € € (0,1) occurs not only as n — oo but also occurs
for every agent n.

Theorem 2: Given T' = h, hy = 0 and a fixed private signal

quality p € (0.5,1), agent n’s welfare 7/ satisfies:
7(e,0) > 71(0,0) = F, Vee (0,1),neN, (22)

and the improvement in welfare, A, (¢) := 7 (¢,0) — " (0,0)
is monotonic and non-decreasing in n. F' is defined in (11).
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Fig. 4: Asymptotic welfare as a function of € for p = 0.7, ho = 0
and indicated values of T.

Proof: First, note that for T' = h, hy = 0, the state-space

A in Table I implies that a cascade begins immediately after
the first agent follows its private signal. That is, 4,, = Y (N)
for all n, if S; = H(L), which is informationally equivalent
to every agent following its private signal. Thus, 7(0,0) =
F, for all n. Second, by Property 3, 7/(¢,0) > F and is
monotonic and non-decreasing in n. This concludes the proof.
|

VI. CONCLUSIONS

We revisited the model for observational learning with fake
agents from [6]. We showed that while in [6], fake agents
reduced the welfare of rational agents or equivalently caused
poorer learning, this conclusion may not hold when rational
agents either have an ex-ante bias or employ a different tie-
breaking rule. In particular, we proved that when there is no
ex-ante bias as in [6], if rational agents follow their history
to break ties, then the presence of fake agents in any amount
always leads to improved learning, and thus a higher welfare.
On the other hand, under an ex-ante bias, when rational agents
follow their private signals to break ties, we show that there
exists a range for the amount of fake agents, in which better
learning occurs. These cases are other examples of a game
setting in which better quality information may lead to lower
pay-offs for the players of that game.

In future work, we plan on determining sharp characteriza-
tions of when degraded observations lead to lower welfare.
Other potential future directions include considering other
forms for noisy observations such as those considered in [5],
non-Bayesian rationality and random tie-breaking rules.
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APPENDIX A
ITERATIVE METHOD TO COMPUTE THE Y CASCADE

PROBABILITY Py ., , UNDER T = s AND EX-ANTE BIAS hg

The iterative method presented here computes PV, - for r.w.
{hn}, given T = s, hy € (=1, 1), by enumerating all possible
sequences that can lead to a Y cascade. The enumeration of all
such sequences is depicted in a stage-wise manner in Figure
5. First, consider the case hg > 0, for which Stage 0 does not
contain any sequence, i.e., o is set to 0. The iterative method
thus begins from Stage 1, with the process {h,,} starting from
state hg. We initialize Stage 1 with r; =t + 1. As a result,
The first sequence of r; consecutive Y'’s, denoted by Y"1,
clearly enters the Y cascade region (Remark 3), and so r1n €
[1,1+4n]. The rest of the sequences, each of length 1 + 1, are
simply permutations of each other that contain only a single
N. This is because two N’s or more are not possible without
entering the IV cascade region. Now, each of these r; distinct
sequences results in the same net shift of ;77— 1, which ends
in the region [0,7] as we know that 71 € [1,1 + n]. This
completes Stage 1. For each Stage n that follows, we define
r, in a manner similar to ry, as follows:

Definition 2: The integer r,, for n = 1,2, ... is the number
of consecutive Y’s required to enter the Y cascade region in
Stage n of Figure 5.

The sequences in Stage n are then enumerated exactly as in
Stage 1, except that r,, now replaces r;. This ensures that

ISBN 978-3-903176-55-3 © 2023 IFIP

at the end of each Stage j = 1,2,..., any sequence that of
length n; = »_7_,(1 + ;) that has not yet begun a cascade
satisifies: h,,, € [0,7]. This resets the r.w. for the next stage.
In this manner, all sequences that lead to a Y cascade are
enumerated.

Y cascade
A

Y cascade
A

YT -

Stage (0)  Stage (1) Stage (2)

Fig. 5: An enumeration of all possible sequences that would lead
to a'Y cascade. The term Y represents a sequence of t consecutive
Y'’s. The sequence {ry} is defined as per (23) for ho > 0, and as
per (24) for ho < 0. Stage (0) is only applicable when ho < 0.

To obtain the values of {r,}, we first initialize r; = ¢t + 1.
Now, at the end of each Stage j, given that a Y cascade has
not yet begun, we know that h,,; € [0, 7]. From here, it would
take either r or 7 4+ 1 consecutive Y’s to enter the Y cascade
region, where integer r := |1/7n]. Therefore, r,, € {r,r + 1}
for n = 2,3,.... Then, with 7y = ¢t + 1, successive values
of r, for n =2,3,... are obtained by applying Definition 2,
which can be expressed as follows:

T, if ho + Z;:ll (rin—1)+my > 1,

23
Ny (23)

Th =
0.W.

For the other case: hp < 0, the only change to the
enumerations in Figure 5 is the inclusion of Stage 0, which is
the sequence Y"°. Here, 19 = v := | hg/n], is the least number
of consecutive Y’s such that h, € [0,7n]. This is because a
N cannot occur at any ¢ < v without causing a [NV cascade.
Moreover, this ensures that at the end of Stage 0, h, € [0, 7],
which as stated earlier, is required to reset the r.w. for the
next stage. Now, we apply Definition 2 to obtain the values of
{r,}, . Then, having obtained the values: {r;}"~', r,, as per
Definition 2 is given by:

r, if ho+ovn+ Z;le (rin —
r+1,

1 1
)+ > 1, 24)

rn =
0.W.

We now proceed to compute Py as follows. Let P,
denote the probability that a sequence in Fig. 5 terminates
in a Y cascade, but not before the n stage. The following
recursion then holds.

Py =py [1+ (1 —ps)Pauya], forn=1,2,... (25
and the probability of a Y cascade, denoted by ]P’)‘f_Cas is:

Pla
Py P,

for hg > 0,

P¥'0a5(67 ho) = for hy <0

(26)
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Note that the factor p} for hg < 0 corresponds to Stage 0 being
included as a prefix to sequences in the subsequent stages.

Since (25) is an infinite recursion, to compute ]P’y_cas in prac-
tice, we truncate the process to a finite number of iterations
M, as done in [6]. To this end, we first assume that Py = 1.
Next, we use (25) to successively compute Pj while k£ counts
down from M to 1, performing a total of M iterations. We
denote the obtained value as “OPY . The analysis in [6]
shows that for hg = 0, Py __ - is in fact a tight upper bound
to PY .. as M — oo for any p € (0.5,1) and € € [0,1).
Moreover, the difference MPY _ — PV decays to zero at
least as fast as {0.5*}, in the number of iterations M. With
minor modifications to this analysis, it can be shown that the
same result extends to the more general case of hy € [—1,1]
considered here. For the plots presented in this paper, we use
M = 10 to compute PV, (e, ho) for V € {G, B} using
the above recursive method, which gives an error of less than
10~3. Then, substituting these obtained values in equation (10)
yields the asymptotic welfare, I1° (¢, hg).

APPENDIX B
MODIFICATIONS TO THE ITERATIVE METHOD FOR T = h

In this section, we discuss how the iterative method for
computing PY. . outlined in Appendix A, can be modified
for T' = h, but with hg = 0. Now, the first modification is
in (23), which computes the values {r;}. Here, the inequality
condition to be satisfied for r,, = r changes from > 1 to > 1.
This reflects the change in the Y cascade region from > 1
for T = s to > 1 for T" = h. The second modification is
in the enumerations depicted in Figure 5, which is to discard
the sub-sequence NY ™ from Stage (1). This is because, with
T = h, starting from state 0, an N would trigger a N cascade.
To reflect this change, the recursion in (25) which computes
the values {S,,} has to be modified for n = 1 as follows:

Pr=pp [+ (-1 -pp)P] =PV 27

Now, we assume ¢ € {e : 1/n € Q} to avoid the case of
rational values of 1/7. This ensures that at the start of any
later stage, hy, # 0. This in turn ensures that the N in the sub-
sequence NY' in Stage (j), for any j > 1 does not trigger
a N cascade. Else the sub-sequence would also have to be
discarded. As a result, recursion in (25) remains unchanged
for all n > 1. Equipped with the above modifications, the
iterative method in Appendix A can now compute P¥_Cas, for
V € {G,B}, when T = h and hy = 0.

APPENDIX C

Lemma 2: Given the ex-ante bias hg and the fraction of
fake agents ¢, the limiting value of the Y cascade probability,
PY .. at ho = 0" and € — 0T is given by

lim PY .(e,01) = p2 1+ A =pp)ps (28)
e—

L= (1= pp)py

Proof: To find the limiting value of Py, .. at hg = 0T
and € — 0T, we first show that in this limiting regime, for
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all « > 2, r; in (23) satisfies: 7; — 1 as € — 0. To prove
this, assume r; = 1 for all 2 < j5 < 7 — 1 and note that
r1 =t+1 =2 as ¢t = 1. Then it follows from (23) that r; = 1
only if n > (1+ %)71. Now as € — 07, n — 1 and hence this
condition is satisfied. Using this argument inductively shows
that r;, = 1 for all + > 2.

Now, with r; — 1 for all ¢ > 2 as ¢ — 0, it thus follows that
the recursion in (25) results in the same infinite computation
to obtain P, as for P, 1, for all > 2. Thus, all P, forn > 2
have the same value which satisfies: P, = p;[1+ (1 — py)P,].
Solving this equation for n = 2 gives the value for Ps. Using
this value in equation (25) for n = 1 yields P;, which from
(26) is in fact Py and is as follows

: L+ (1 —pslpy
imPY  (e,07) =p2——— 10/
50 Y»cas(€7 ) pfl — (1 — pf)pf
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