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Abstract— There are many settings in which agents learn
from observing the actions of other agents. Bayesian obser-
vational learning models provide a framework for studying
such situations and have been well-studied in settings where
agents sequentially choose Bayes’ optimal actions by learning
from the actions of previous agents. Here, we consider such
observational learning in a mean-field game setting, in which
agents repeatedly choose actions over time to maximize an
infinite horizon discounted pay-off. This pay-off depends on
the underlying mean-field population state, which agents do
not know and only have a prior common belief over it. At the
end of each time-step, agents observe a common signal which
is an imperfect observation of the mean-field action profile
played in that time-step and use this to update their beliefs.
We give a sequential decomposition of this game that enables
one to characterize Markov perfect equilibria of the game. We
then focus on a particular sub-class of these games which can
be viewed as a mix of coordination/anti-coordination players.
Using the sequential decomposition, we characterize the impact
of varying the observation quality on the outcome of the game
and show that this can exhibit non-monotonic behaviour, where
in many instances, poorer observations lead to better expected
total discounted pay-offs.

I. INTRODUCTION

Bayesian observational learning models provide a frame-

work for studying situations in which Bayesian agents seek

to learn from observing the actions of other agents. Early

models for such settings include [1]–[3], which considered

a setting in which a homogeneous set of Bayesian rational

agents sequentially take binary actions to optimize a pay-off

that depends on an unknown binary state of the world. Each

agent privately receives an independent binary signal about

this state of the world and also observes the actions of

previous agents, which may provide additional information

about the private signals those agents received. A key re-

sult in these models is that a herding behavior can occur,

where at some point in time, it is optimal for an agent to

ignore its private signal and follow the action taken by the

majority of previous agents. Subsequent agents then follow

suit due to their homogeneity; hence learning stops. There

have been many variations of this basic model subsequently

studied including [4]–[12]. In particular, we highlight work

on models in which the observations available to agents are

imperfect due to the presence of observation noise [13] or

“fake” agents that do not correctly report their actions [14].
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The aforementioned papers all consider settings in which

agents sequentially take an action, and each agent only

acts once. Instead, in this paper, we consider observational

learning in a mean-field game setting [15] in which players

repeatedly take actions in a discrete-time mean-field game

with an infinite horizon discounted pay-off. Each player has a

private type and its pay-off depends on the underlying mean-

field type distribution of the players, which is not known

to the players. We assume that the players instead have a

common prior belief over this type distribution. Further, after

each time-slot, the players obtain an imperfect observation

of the mean-field action profile, which they can use to update

their beliefs. We study how these belief updates evolve. This

type of imperfect observation of players’ actions can also

be viewed as a form of imperfect public monitoring [16].

To this end, we first show a sequential decomposition of

this game as in [17], which also considers mean-field games

with private types. However, the mean-field action profile is

perfectly observed in [17], while in our work this observation

is imperfect. Other related sequential decompositions for

dynamic games include [18]–[20].

We next consider a specific class of games in which there

are two types of players choosing binary valued actions: one

type seeks to coordinate its action with the other players,

while the other type seeks to anti-coordinate.1 Further, we

assume that the mean-field type distribution takes one of two

possible values over which the players have a common prior

belief. After each time-slot, the players receive a common

binary valued signal regarding the resulting mean-field action

profile. We use our sequential decomposition to characterize

the possible Markov perfect equilibria of this game and for

two particular choices of equilibria, we characterize how the

players’ beliefs evolve over time. Similar to the sequential

models for observational learning, we show the possibility

of “herding” behavior. Here, herding corresponds to all

players choosing their actions independent of their private

types, so that the resulting signals obtained do not convey

any information about the mean-field type distribution, and

thus learning stops. We also characterize how changing the

observation quality impacts the players’ expected discounted

total pay-offs and show that, as in [13], [14], in several cases

“better” information leads to lower pay-offs.

A. Notation

We use uppercase letters for random variables and

lowercase for their realizations. We use notation −i to

1This is related to models of mixed coordination and anti-coordination
games, e.g. [21]
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represent all players other than player i, i.e., −i =
{1, 2, . . . , i − 1, i + 1, . . . , N}. Similarly, we use a−i

t to

mean (a1t , a
2
t , . . . , a

i−1
t , ai+1

t . . . , aNt ). We use notation a1:t
to represent the vector (a1, a2, . . . , at). We denote the indi-

cator function of any set A by 1{A}. For any set S, P(S)
represents the space of probability measures on S. We denote

the probability measure generated by (or expectation with re-

spect to) a strategy profile σ by P σ (or Eσ). For a probabilis-

tic strategy profile of players (σi
t)i∈[N ] where probability of

action ait conditioned on (o1:t, x
i) is given by σi

t(a
i
t|o1:t, x

i),
we use the short-hand notation σ−i

t (a−i
t |o1:t, x

−i) to rep-

resent the probablity
∏

j 6=i σ
j
t (a

j
t |o1:t, x

j) of action a−i
t

conditioned on (o1:t, x
−i). All equalities and inequalities

involving random variables are to be interpreted in a.s. sense.

II. MODEL AND MPE SOLUTION

We consider an infinite-horizon discrete-time large popu-

lation sequential game G as follows. There are a countably

infinite number of homogenous players. Let [N ] = {1, 2, . . .}
denote this set of players and [T ] = {1, 2, . . .} be the set of

discrete time indices. To begin with, each player i ∈ [N ]
observes its private type xi ∈ X = {1, 2, · · · , Nx}. Let the

mean-field of player types be z =
(

z(1), z(2), . . . , z(Nx)
)

,

where z(x) denotes the fraction of population having type

x ∈ X , i.e.,

z(x) := lim
N→∞

1

N

N
∑

i=1

1{xi = x}, (1)

and
∑Nx

i=1 z(i) = 1. Thus, z ∈ Z , where Z is the (Nx − 1)-
dimensional probability simplex. Further, we assume that at

time t = 1, players do not know the mean-field z, but have

a common prior belief π1 ∈ P(Z) over it.

Now, at time t ∈ [T ], each player i ∈ [N ] takes an action

ait ∈ A = {1, 2, · · · , Na} which similarly generates a mean-

field of players’ actions: yt = (yt(1), yt(2), . . . , yt(Na)).
Here yt(a) denotes the fraction of actions having type a ∈ A
at time t, i.e.,

yt(a) = lim
N→∞

1

N

N
∑

i=1

1{ait = a}, (2)

and
∑Na

i=1 yt(i) = 1. Players do not observe other’s actions

or the resulting yt, but instead observe a common signal

ot ∈ O which partially reveals yt through a noisy channel

represented through the kernel, ot ∼ Q(·|yt). Here, con-

ditioned on {yt}
∞
t=1, the sequence of observations {ot}

∞
t=1

are assumed to be mutually independent. Each player i then

receives a reward R(xi, ait, yt) which is a function of its

private type xi, action ait and the action mean-field yt. The

rewards are assumed to be bounded and unobservable to the

players during the course of the game.

Remark 1: In this game, the mean-field of player types

does not evolve over time; however, players’ common belief

about it will evolve based on their observations.

Let Ot−1 denote the space of observations o1:t−1 com-

monly observed before time t. At time t, player i’s observa-

tion history is denoted by hi
t = (o1:t−1, x

i). The player then

takes action ait according to a behavioral strategy σi = (σi
t)t,

where σi
t : O

t−1×X → P(A). We denote the space of such

strategies as Kσ . This implies Ai
t ∼ σi

t(·|o1:t−1, x
i). For the

game G, each player i wants to play a strategy σi ∈ Kσ ,

that maximizes its expected total discounted reward over an

infinite-time horizon, with discount factor 0 < δ < 1, which

is given by

J i := E
σi

[

∞
∑

t=1

δt−1R(xi, Ai
t, Yt)

∣

∣

∣
π1, x

i

]

. (3)

A. Solution concept: MPE

The Nash equilibrium (NE) of G is defined as strategies

σ̃ = (σ̃i)i∈[N ] that satisfy, for all i ∈ [N ],

E
(σ̃i,σ̃−i)

[

∞
∑

t=1

δt−1R(xi, Ai
t, Yt)

]

≥ E
(σi,σ̃−i)

[

∞
∑

t=1

δt−1R(xi, Ai
t, Yt)

]

,

(4)

For sequential games, however, a more appropriate equi-

librium concept is Markov perfect equilibrium (MPE) [22],

which we use in this paper. We note that an MPE is also

a Nash equilibrium of the game, although not every Nash

equilibrium is an MPE. An MPE (σ̃) satisfies sequential

rationality such that, for any history hi
t = (o1:t−1, x

i), and

for any i ∈ [N ], t ∈ [T ],

E
(σ̃iσ̃−i)

[

∞
∑

n=t

δn−tR(xi, Ai
n, Yn)

∣

∣

∣
o1:t−1, x

i
]

≥ E
(σiσ̃−i)

[

∞
∑

n=t

δn−tR(xi, Ai
n, Yn)

∣

∣

∣
o1:t−1, x

i
]

.

(5)

We now provide an MPE solution for G. We consider a

Markovian equilibrium strategy for each player i, which at

time t, depends on the common information o1:t−1 through

a belief πt (defined below in (7)) on the mean-field of player

types, and on the player’s private type xi. Equivalently,

player i takes action of the form Ai
t ∼ σi

t(·|πt, x
i). Similar

to the common agent approach in [23], an alternate and

equivalent way of defining the strategies of the players is

as follows. We first generate a prescription γi
t : X →

P(A) as a function of the belief πt through an equilibrium

generating function θit : P(Z) →
(

X → P(A)
)

such that

γi
t = θit[πt]. Then, action Ai

t is generated by applying the

prescription γi
t on player i’s private type xi, i.e. Ai

t ∼
γi
t(·|x

i). Thus, Ai
t ∼ σi

t(·|πt, x
i) = θit[πt](·|x

i). We only

consider symmetric equilibria of such games. We can thereby

drop the dependence of i on the functions θit and γi
t , and have

Ai
t ∼ γt(·|x

i) = θt[πt](·|x
i).

We now define some pre-requisites for the MPE solution.

At time t, given the mean-field of player-types z, the

action mean-field yt that results from the players applying a

symmetric prescription function γt can be computed as:

yt(a) =
∑

x∈X

γt(a|x)z(x), ∀ a ∈ A,
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which we represent by function f such that

yt = f(z, γt). (6)

Further, let the common belief on z ∈ Z at time t, denoted

by πt be defined as:

πt(z) , P(Z = z|γ1:t−1, o1:t−1), (7)

with π1 being the initial common belief of the players. Then,

πt can be updated according to:

πt+1 = φ(πt, γt, ot), (8)

where the update function φ is described as follows:

πt+1(z) =
Q(ot|yt)πt(z)

∑

z̃∈Z Q(ot|ỹt)πt(z̃)
, ∀ z ∈ Z, (9)

with yt = f(z, γt) and ỹt = f(z̃, γt). Lastly, note that

through (6), the belief πt on the mean-field of player-types

translates to the belief PY (·|πt, γt) on the action mean-field

yt,

Yt ∼ PY (y|πt, γt) :=
∑

z∈Z

1{y=f(z,γt)}πt(z). (10)

With the above pre-requisites, we can now provide a

symmetric MPE of G. Note that since G has an infinite-time

horizon, there exist MPE solution functions θ̃t and γ̃t that are

stationary, thus the dependence on t is dropped. Then, the

equilibrium strategy is defined as Ai
t ∼ γ̃(·|xi) = θ̃[πt](·|x

i).
In addition, we generate a reward-to-go function V : P(Z)×
X → R. Then (γ̃, V ) are obtained as solutions of the

following fixed-point equations, for all xi ∈ X , πt ∈ P(Z):

γ̃(·|xi) ∈ argmax
γ(·|xi)

E
γ(·|xi)

[

R(xi, Ai
t, Yt)

+ δV (φ(πt, γ̃t, Ot), x
i)
∣

∣

∣
πt, x

i
]

, (11a)

V (πt, x
i) , E

γ̃(·|xi)
[

R(xi, Ai
t, Yt)

+ δV (φ(πt, γ̃t, Ot), x
i)
∣

∣

∣
πt, x

i
]

, (11b)

where the expectations in (11) are with respect to the

random variable (r.v.) (Ai
t, Yt, Ot) through the measure

γ(ait|x
i)PY (yt|πt, γ̃) Q(ot|yt).

Note that within the expectation in (11a), the second term

does not have any dependence of γ(·|xi). This implies that

γ̃(·|xi) can be obtained without knowing the V function

defined in (11b), by simply solving the fixed point equation:

γ̃(·|xi) ∈ argmax
γ(·|xi)

E
γ(·|xi)

[

R(xi, Ai
t, Yt)

∣

∣πt, x
i
]

. (12)

Remark 2: A solution of eq. (12) is in fact a NE of the

static version of game G, with a common mean-field belief

πt on the player types.

Thus, with γ̃(·|xi) = θ̃[πt](·|x
i) defined as per (12) for

each πt ∈ P(Z), the MPE strategy at time t is defined as

σ̃i
t(a

i
t|πt, x

i) = γ̃(ait|x
i), (13)

where γ̃ = θ̃[πt]. The next theorem shows that the strategy

obtained by (12) and (13) is an MPE of the game.

Theorem 1: A strategy (σ̃) obtained by solving (12) and

defined as per (13) is an MPE of game G, i.e., it satisfies the

sequential rationality property stated in (5), for any history

hi
t = (o1:t−1, x

i), for all i ∈ [N ], t ∈ [T ].
Refer to the Appendix for a detailed proof. We now define

an important phenomenon that may occur during the course

of the game.

Definition 1: Herding is said to occur when the common

mean-field belief πt becomes such that the players’ MPE

strategy γ̃ = θ̃[πt] is independent of their private types.

A consequence of Definition 1 is as follows. If players

herd at time t under belief πt, then the signal ot observed

by the players does not convey any new information about

the true value of the mean-field z. As a result, belief πt

stops updating and players continue to play the strategy γ̃ =
θ̃[πt] for all τ ≥ t. Therefore, from the onset of herding,

the players’ actions do not reveal any information about the

mean-field; hence learning stops.

Property 1: Once herding of players occurs, it lasts for-

ever.

III. AN EXAMPLE GAME

In this section, we consider a particular example GE of

the dynamic game G, as follows. Let each player i ∈ [N ]
have a private type xi ∈ X = {−1, 1}. Then, the mean-field

of player types is the probability vector z =
(

z(−1), z(1)
)

.

We assume that this mean-field takes only two possible

values, that is z ∈ Z = {(1 − p0, p0), (1 − p1, p1)},

where 0 < p0 < p1 < 1. We further assume that this is

common knowledge, i.e., every player knows that the mean-

field will take on only one of these values. In this case,

players’ prior common belief on z, i.e., π1 ∈ P(Z) can

be parameterized by d1 ∈ (0, 1), where d1 := π1[z =
(1 − p1, p1)]. Now, at any time t ∈ [T ], each player i takes

action ait ∈ A = {−1, 1}. This then generates the action

mean-field yt = (yt(−1), yt(1)) which is not observable

to players. Instead, the players observe a common signal

ot ∈ {H (high), L (low)}. This signal, as shown in Figure

1, partially reveals whether yt(1) ≥ 0.5 through a binary

symmetric channel (BSC) with crossover probability 1− u,

where u ∈ (0.5, 1] is the signal quality. Each player i then

receives a reward:

R(xi, ait, yt) :=
(

2yt(1)− 1
)

xiait, (14)

which implies that a player of type xi = 1 prefers the action

that will be taken by the greater fraction of the population.

Whereas, a player of type xi = −1 prefers to take the action

H

L

Yt(1) ≥ 0.5

Yt(1) < 0.5

Ot

u

u

1−
u

1−
u

Fig. 1: The BSC through which players receive the common signal
ot at each t, where u ∈ (0.5, 1] denotes the signal quality.
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that will be taken by the lesser fraction of the population.

Games with such a reward function relate to the work on

mixed coordination and anti-coordination games [21].

A. MPE solution

Now, to provide the MPE solution for this game, first let

the prescription γ : X → P(A) be represented as γ =
[q, r] := [γ(1| − 1), γ(1|1)], where q, r ∈ [0, 1]. In other

words, q (r) is the probability that that a type −1 (1) player

chooses action 1. If the symmetric prescription [q, r] acts

upon the belief dt of the mean-field z, then as per (10), the

action mean-field is a r.v. Yt such that

Yt(1) =

{

(1− p1)q + p1r, w.p. dt,

(1− p0)q + p0r, w.p. (1− dt).
(15)

The expectation of Yt is then

E
[q,r][ Yt(1)

∣

∣ dt ] = Btr + (1−Bt)q,

Bt := p1dt + p0(1− dt) ∈ (p0, p1). (16)

Here, Bt is the expected value of z(1) under belief dt. Also,

let At := 1−Bt. By applying this expectation to (14), each

player i, which chooses action ait as per strategy [q, r], then

receives the expected reward:

E
[q,r]

[

R(xi, ait, yt) | dt
]

=
{

{

2E[q,r][Yt(1)
∣

∣ dt ]− 1
}

(2r − 1), for xi = 1,
{

2E[q,r][Yt(1)
∣

∣ dt ]− 1
}

(1− 2q), for xi = −1.

(17)

The MPE solution of this game, γ̃ := [q̃, r̃] for a given

belief dt can then be obtained by applying the fixed point

equation in (12) for xi = 1 and −1, which are respectively

given by

r̃ = argmax
r

{

2E[q̃,r̃][ Yt(1)
∣

∣ dt ]− 1
}

(2r − 1), (18a)

q̃ = argmax
q

{

2E[q̃,r̃][Yt(1)
∣

∣ dt ]− 1
}

(1 − 2q). (18b)

When Bt < 0.5, it can be shown that the only possible

solutions to these fixed point equations are for q̃ and r̃ to

be chosen such that the term E[q̃,r̃][Yt(1) | dt] = 1/2, which

results in all players’ expected rewards, given in (17), to be

zero. Any such choice of [q̃, r̃] is a MPE. When B̃t ≥ 0.5,

such a choice of [q̃, r̃] is again a MPE as well as setting [q̃, r̃]
to be either [0, 1] or [1, 0]. We can then summarize the set

of MPEs as:

MPE =











{ [q̃, r̃] : q̃ = 0.5−r̃Bt

At

, r̃ ∈ [0, 1]}, for Bt < 0.5,

{ [q̃, r̃] : r̃ = 0.5−q̃At

Bt

, q̃ ∈ [0, 1]} for Bt ≥ 0.5.

∪{[1, 0], [0, 1]},

(19)

The corresponding fixed point equation for the reward-to-go

function V , given by (11b), simplifies for xi = 1 and −1 as

given below.

V (dt, 1) =
{

2E[q̃,r̃][Yt(1)
∣

∣ dt ]− 1
}

(2r̃ − 1),

+ δE[q̃,r̃][ V (dt+1, 1) | dt], (20a)

V (dt,−1) =
{

2E[q̃,r̃][ Yt(1) | dt ]− 1
}

(1− 2q̃),

+ δE[q̃,r̃][V (dt+1,−1) | dt]. (20b)

Here, dt+1 = φ(dt, [q̃, r̃], ot), which is a simplified represen-

tation of the belief update equation in (8).

In the next section, we analyze the game GE under an

MPE strategy, that exhibits herding. We denote this strategy

by [q̃, r̃]H , where the superscript indicates that players could

herd under this strategy. From this analysis, we aim to

understand how herding, which stifles learning, impacts the

aggregate reward accrued by each player and how is it

affected by varying the quality of the observation signals.

IV. LEARNING DYNAMICS UNDER [q̃, r̃]H

We now analyze the dynamics of the sequence of mean-

field belief states {dt}
∞
t=1 for the game GE , where all players

play strategy [q̃, r̃]H , which we define as follows:

[q̃, r̃]H =

{

[1/2, 1/2], for Bt < 0.5,

[0, 1], for Bt ≥ 0.5.
(21)

Now, as per the definition of Bt in (16), the inequality

Bt < (≥) 0.5 translates to dt < (≥) dth. Here dth :=
(0.5−p0)/(p1−p0) refers to a threshold belief, which when

crossed results in players switching their strategies, as per the

MPE strategy profile in (21), and more generally in (19). We

then make the following assumption on the parameters of the

game to ensure that such a threshold exists, which thereby

ensures that both herding and non-herding belief states exist.

Assumption 1: Let p0 < 1/2 < p1 for the set of possible

mean-field values: Z = {(1 − p0, p0), (1 − p1, p1)}, as it

ensures that the threshold belief dth exists.

We now compute the updates on dt, brought about by

observing the common signal ot. First, consider the case dt ≥
dth, which is when players play the strategy [q̃, r̃]H = [0, 1].
Applying this strategy in (15) generates a random Yt(1) such

that Yt(1) = p1 when z = (1−p1, p1), which occurs w.p. dt;
otherwise Yt(1) = p0. As p0 < 1/2 < p1 (Assumption 1),

this implies that Yt(1) ≥ 0.5 w.p. dt; otherwise Yt(1) < 0.5.

Now, applying Yt(1) as input to the BSC shown in Figure

1 and then observing the output Ot yields the following

updates for dt.

dt+1 =















udt
udt + (1 − u)(1− dt)

, if Ot = H,

(1 − u)dt
(1− u)dt + u(1− dt)

, if Ot = L,

(22)

where P(Ot = H | z, dt ≥ dth) = u if the true value of

the mean-field, z = (1 − p1, p1), and equals 1 − u if z =
(1− p0, p0). Next, consider the case: dt < dth. In this case,

as per (21), players play the strategy [q̃, r̃]H = [1/2, 1/2],
which is evidently independent of the players’ private types,

i.e., players are herding (Definition 1). This implies that no

information about the true mean-field value z gets conveyed

by Ot. Therefore, dt stops updating and players continue

herding to the stratgey [q̃, r̃]H = [1/2, 1/2] (Property 1).
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Property 2: In game GE, under MPE strategy [q̃, r̃]H given

in (21), herding begins only when dt < dth (or Bt < 0.5).

To better understand the dynamics of mean-field belief dt,
we instead consider its likelihood ratio function: lt(dt) :=
P[(1−p1, p1)|dt) /P((1−p0, p0)|dt] = dt/(1−dt). Also, let

lth := dth/(1−dth) be the the threshold likelihood ratio. Then,

the updates for dt stated in (22) when dt ≥ dth translate to

the following updates on lt when lt ≥ lth:

lt+1 =

{

( u
1−u

) lt, if Ot = H,

( 1−u
u
) lt, if Ot = L.

(23)

Now, if the players have not herded at time t, then they also

did not herd at any prior time (Property 1), i.e., ln ≥ lth for

all n ≤ t. Then, as a result of the above updates, lt can be

shown to depend only on the number of H’s (denoted by nH)

and L’s (denoted by nL) in the observation history o1:t−1.

Specifically, lt = l1
(

u
1−u

)ht

where ht is the difference

between the number of H’s and the number of L’s,

ht = nH − nL. (24)

Property 3: Until herding occurs, ht defined in (24) is a

sufficient statistic of the information contained in the past

observations o1:t−1.

We now make the following assumption on the players’

prior belief d1 on the mean-field of their private types.

Assumption 2: To understand the dynamics of learning,

we assume that at the start of the game, players are not

herding, i.e., d1 ≥ dth, where d1 is the prior mean-field belief.

Herding of players begins at the first instance when

dt < dth (Property 2), which implies lt < lth. Applying

the expression for lt in this inequality yields the equivalent

condition on the integer-valued sufficient statistic ht, which

is ht < −k, where

k =

⌊

[

log
(

d1
1− d1

)

− log
(

dth

1− dth

)]

/ log
(

u

1− u

)

⌋

. (25)

It follows that until herding occurs, ht ∈
{−k, . . . ,−1, 0, 1, . . .} for all such times t, and the

update rule for ht is given by

ht+1 =

{

ht + 1, if Ot = H,

ht − 1, if Ot = L.
(26)

Whereas, once ht = −(k + 1), herding begins and ht stops

updating (Property 2). More specifically, equation (26) shows

that, until herding occurs, {ht} is a random walk (r.w.) that

moves to the right by 1 w.p. P(Ot = H |z) or to the left by 1
w.p. P(Ot = L|z), with the walk starting from State 0. The

random walk is depicted in Figure 2 where pz , P(Ot =
H |z) denotes the probability of a H being observed given

the true value of the mean-field, z. Depending on the mean-

field’s true value, pz = u for z = (1−p1, p1), whereas pz =
1−u for z = (1−p0, p0). Note that for z = (1−p1, p1), this

random walk will have a drift to the right and so there will

be a non-zero probability that it never reaches the absorbing

(herding) state.

Rz RzRz0

0 1−1−(k+1)

pz pzpz

1− pz1− pz1− pz1− pz

. . . . . . . . . . . . . . . . . .

Fig. 2: Transition diagram with state rewards for random walk
{ht}, under strategy [q̃, r̃]H and mean-field z. Absorption in State:
−(k + 1), with k defined in (25).

A. Aggregate Reward for each player

We now look at the total reward accrued by each player-

type xi under strategy [q̃, r̃]H and a prior belief d1, which

we denote by V H(d1, x
i) and is defined as per (20). Ho-

mogeneity within players of the same type implies that they

would receive equal total rewards. To obtain this, we first

assign a per-time reward to each state in Figure 2, which

could be occupied by r.w. {ht}. Note that for all transient

states, i.e., {−k, . . . , 0, . . .}, we have Bt ≥ 0.5, which as

per (21) means [q̃, r̃]H = [0, 1] is being played. Then as

per (15), yt(1) = p1 if the mean-field of players’ types z
has the true value z = (1 − p1, p1), whereas yt(1) = p0 if

z = (1− p0, p0). By applying these values of yt(1) in (14),

it follows that every transient state provides a reward Rz for

every player (of both types), where

Rz =

{

(2p1 − 1), if z = (1− p1, p1),

(2p0 − 1), if z = (1− p0, p0).
(27)

However, for the sole absorption state −(k + 1), the MPE

strategy changes to [q̃, r̃]H = [1/2, 1/2]. This gives yt(1) =
1/2 and a 0 reward for both player-types, for any z. The

reward Rz for the transient states and reward 0 for the

absorption state are indicated above their respective state

nodes in Figure 2. Note that as the rewards are identical for

both player types, we have V H(d1, 1) = V H(d1,−1), and

henceforth, we refer to this common value by V H(d1, x
i).

Now, to obtain the aggregate reward V H(d1, x
i), we first

evaluate its conditional value [V H(d1, x
i)|z] under the true

mean-field z and then average this value over the prior belief

d1 on z.

V H(d1, x
i) = [V H(d1, x

i)|z = (1− p1, p1)]d1

+ [V H(d1, x
i)|z = (1− p0, p0)](1 − d1). (28)

To obtain [V H(d1, x
i)|z], consider the random walk {ht}

with state rewards, shown in Figure 2. Here, starting from

state 0, at each time t, reward Rz is accrued with a dis-

count factor of δt−1. Therefore, with r.v. T defined as the

discounted time to absorption (herding) into state −(k+1),
we have:

[V H(d1, x
i)|z] = RzE

z[T ], (29)

where Ez[T ] is the expected value of T under z. Note that

the r.v. T satisfies: 1 ≤ T < (1 − δ)−1 as it would take at

least 1 time-step and at most an infinite number of time-steps

for players to herd. Applying (29) in (28) then yields

V H(d1, x
i) = (2p1 − 1)E(1 − p1, p1)[T ]d1

+ (2p0 − 1)E(1 − p0, p0)[T ](1− d1). (30)
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Property 4: Equation (30) explicitly relates the expected

discounted time for herding to the players’ aggregate reward,

given a prior belief d1 on the mean-field.

The expected value of T given true mean-field z can be found

by solving the following system of linear equations:
{

gs = 0, for s = −(k + 1),

gs = 1 + δ [pz gs+1 + (1− pz)gs−1], for s ≥ −k,

(31)

with variables {gs}
∞
s=−(k+1). Here, gs refers to the expected

discounted time to herd, starting from State s, given z. We

omit the dependence of gs on z for notational convenience

and emphasize that the system in (31) depends on z through

the transition probability pz . Now, as the r.w. {ht} starts

from state 0, we have

E
z[T ] = g0, z ∈ Z.

For the sake of numerical computations, we restrict (31) to

a finite number of equations (and variables) by converting

the transient state M , for some integer M ≫ 0, into

an absorption state. We then assign the value 1/(1 − δ)
to variable gM , which is the discounted time elapsed if

absorption (herding) to state −(k + 1) never happens. This

is indeed the case starting from state M , in the limit as

M → ∞.

B. Comparison with an “Oracle” game, Go

Now, to understand the effects that an uncertainty on the

true value of the mean-field has on the players’ aggregate

reward, we compare GE with a reference game Go, as

follows. Game Go shares the same prior belief d1 as in GE ,

except that here, an oracle informs players of the true value

of the realized mean-field z, at time t = 1. Once this is

revealed, there is no uncertainty in the repeated game and

so players can simply adopt a fixed strategy for all time.

Note that Bt in (21) gets replaced by either p0 or p1 as per

the realization of z. Then, as p0 < 1/2 < p1 (Assumption

1), players play the MPE strategy: [q̃, r̃]H = [1/2, 1/2] if

z = (1 − p0, p0) which is when they receive 0 reward

per time. Otherwise, players play [q̃, r̃]H = [0, 1] if z =
(1−p1, p1) and receive reward (2p1− 1) per time. Then the

aggregate reward in this scenario, denoted by Vo(d1, x
i), for

both xi ∈ {−1, 1} is given by:

Vo(d1, x
i) = (2p1 − 1)(1− δ)−1d1 + 0 · (1− d1). (32)

By comparing eq. (32) with eq. (30), it follows that when

z = (1−p1, p1), players would benefit from herding as late as

possible (ideally never), since each time-step until absorption

yields a positive reward of (2p1−1), as p1 > 1/2. Whereas,

when z = (1 − p0, p0), players would benefit from herding

as soon as possible (ideally in an instant), since each time-

step until absorption yields a negative reward of (2p0 − 1),
as p0 < 1/2.

0.5 0.6 0.7 0.8 0.9 1
18.8

19

19.2

19.4

19.6

19.8

20

Fig. 3: Expected discounted time given z = (1 − p1, p1) as a
function of signal quality u for p0 = 0.4, p1 = 0.8, d1 = 0.85,
δ = 0.95. Values at thresholds {ur} are marked by ◦.

C. Effects of varying the signal quality

In this section, we consider the effects of varying the

quality u ∈ (0.5, 1] of the signals {Ot}, which the players

observe through the BSC in Figure 1. First, we define a

decreasing sequence of signal quality thresholds: {ur}
∞
r=0,

which is characterized in the following lemma.

Lemma 1: For r = 0, 1, . . . define the decreasing se-

quence of thresholds {ur}
∞
r=0, where the rth threshold ur

is given as:

ur =
α

1
r

1 + α
1
r

, where α :=
d1(1− dth)

dth(1− d1)
. (33)

Define Ir := (ur+1, ur] as the rth u–interval. Then for all

u ∈ Ir, the index k in Figure 2 equals r. Thus, at least r+1
consecutive L’s are necessary for a herd to begin.

Lemma 1 implies that when u marginally exceeds thresh-

old ur, the absorption state index in Figure 2 abruptly

increases from −(r + 1) to −r. The proof of Lemma 1

follows by noting that integer k in (25) increases in steps

from k = 0 at u = 1 to k = ∞ at u = 0.5. Then, ur is the

value of u at which k = ⌊r⌋ = r. Solving this equality for

u yields ur in (33).

We now observe the effects of varying u. Figures 3 and 4

show the plots of Ez[T ] with respect to u for z = (1−p1, p1)
and z = (1−p0, p0), respectively. The game parameters are:

p0 = 0.4, p1 = 0.8, d1 = 0.85, δ = 0.95. Observe that

the abrupt drops in Ez [T ] (marked by ◦) in both figures

occur exactly at the threshold values {ur}
∞
r=1, and are an

effect of the abrupt change in the number of consecutive L’s

required for herding at these values (Lemma 1). Further, the

constant level of (1−δ)−1 in these figures indicates the upper

bound on T and Ez[T ], i.e., the discounted time elapsed

when herding never occurs. Interestingly, Ez [T ] for both z’s

tends to (1− δ)−1 as u → 0.5. This is to be expected as in

this case, the herding state −(k+1) tends to −∞ and the drift

of the r.w. tends to 0. Varying u also effects the dynamics of

{ht} (see Fig. 2). Under z = (1 − p1, p1), an increase in u
has two opposing effects on the r.w., namely, an increase
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Fig. 4: Expected discounted time given z = (1 − p0, p0) as a
function of signal quality u for p0 = 0.4, p1 = 0.8, d1 = 0.85,
δ = 0.95. Values at thresholds {ur} are marked by ◦.

in the drift away from the herding state and a reduced

number of conseutive L’s required for herding. For this

reason, E(1 − p1, p) [T ] in Fig. 3 increases with u, over every

interval (ur+1, ur], but abruptly drops at thresholds {ur}.

On the contrary, under z = (1− p0, p0) the corresponding

effects do not oppose but align with each other. This causes

E(1 − p0, p0)[T ] in Fig. 4 to monotonically decay to 1 despite

the discontinuities, as u increases.

Lastly, Fig. 5 plots the aggregate reward V H(d1, x
i) with

respect to u and compares it with the baseline Vo(d1, x
i),

which is the aggregate reward under game Go (with the

oracle). We see that, within each interval (ur+1, ur], the

aggregate reward is increasing in the signal quality, u. But,

counter to expectation, a slight increase in u beyond ur

causes an abrupt and significant decrease in the aggregate

reward. Also observe that as u → 0.5, V H(d1, x
i) tends

to a limiting value, indicated as a constant level, which

can be computed to be (2B1 − 1)(1 − δ)−1. This limiting

value of V H(d1, x
i) is obtained by putting limu→0.5 E

z[T ] =
(1−δ)−1, for both z’s, in the corresponding limit of eq. (30).
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Fig. 5: Aggregate rewards for the indicated cases as a function of
signal quality u for p0 = 0.4, p1 = 0.8, d1 = 0.85, δ = 0.95.
Values at thresholds {ur} are marked by ◦.

V. CONCLUSIONS AND FUTURE WORK

We considered a mean-field game model in which

Bayesian agents, each having a private type, update beliefs

about the underlying mean-field of population types from

imperfect observations of the mean-field action profile. We

gave a sequential decomposition of this type of game and

used this to study a particular class of games with a mix

of coordinating and anti-coordinating players. We showed

that for a particular choice of equilibrium strategies, a type

of herding behavior can emerge in which players no longer

learn from their observations. We found that each player’s

expected total discounted reward over the infinite horizon

relates to the expected discounted time taken for herding

to occur. Lastly, we illustrated how “better” observations

may in several cases, lead to worse expected outcomes for

the players, similar to what has been observed in sequential

Bayesian observational learning models.

Possible future directions include considering other games

that fit within this framework and other types of observation

models.
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APPENDIX

We provide the following lemma which is required for

proving Theorem 1 and defer the detailed proof to [24].

Lemma 2: For any t ∈ [T ], i ∈ [N ], hi
t ∈ Hi

t and σi,

V (πt, x
i) ≥ W σi,T

t (hi
t), (34)

where the reward-to-go function W σi,T
t (·) is defined later in

(35b) and Hi
t denotes the space of history (o1:t−1, x

i).

Proof of Theorem 1:

Proof: The proof comprises of two parts. First, we show

that the function V obtained in (11b) is at least as big as any

reward-to-go function. Second, we show that V is in fact the

reward-to-go under the MPE strategy σ̃ defined in (13). Note

that hi
t := (o1:t−1, x

i).
Part 1: For any i ∈ [N ] and strategy σi, define the

following reward-to-go functions at time t:

W σi

t (hi
t) = E

σi,σ̃−i

{

∞
∑

n=t

δn−tR(xi, Ai
n, Yn) | h

i
t

}

(35a)

W σi,T
t (hi

t) = E
σi,σ̃−i

{ T
∑

n=t

δn−tR(xi, Ai
n, Yn)

+ δT+1−tV (ΠT+1, x
i) | hi

t

}

(35b)

Since X ,A are finite sets, the reward R is absolutely

bounded, the reward-to-go W σi

t (hi
t) is finite ∀ i, t, σi, hi

t.

For any i ∈ [N ], hi
t ∈ Hi

t,

V
(

πt, x
i
)

−W σi

t (hi
t) =

[

V
(

πt, x
i
)

−W σi,T
t (hi

t)
]

+
[

W σi,T
t (hi

t)−W σi

t (hi
t)
]

(36)

By applying Lemma 2 the term in the first bracket in RHS

of (36) is non-negative. Using (35), the term in the second

bracket is

(

δT+1−t
)

E
σi,σ̃−i

{

−

∞
∑

n=T+1

δn−(T+1)R(xi, Ai
n, Yn)

+V (ΠT+1, x
i) | hi

t

}

.

The summation in the expression above is bounded by a

convergent geometric series. Also, V is bounded. Hence, the

above quantity can be made arbitrarily small by choosing

T appropriately large. Now, since the LHS of (36) does not

depend on T , we have

V
(

πt, x
i
t

)

≥ W σi

t (hi
t). (37)

Part 2: Since the equilibrium strategy σ̃ generated

in (13) is such that σ̃i
t depends on hi

t only through πt and

xi, the reward-to-go W σ̃i

t , at strategy σ̃, can be written (with

abuse of notation) as

W σ̃i

t (hi
t) = W σ̃i

t (πt, x
i) (38)

= E
σ̃

{

∞
∑

n=t

δn−tR(xi, Ai
n, Yn) | πt, x

i

}

. (39)

For any hi
t ∈ Hi

t,

W σ̃i

t (πt, x
i
t) = E

σ̃
{

R(xi, Ai
t, Yt)

+ δW σ̃i

t+1

(

φ(πt, θ[πt], Ot)), x
i
)

| πt, x
i
}

(40a)

V (πt, x
i) = E

σ̃
{

R(xi, Ai
t, Yt)

+ δV
(

φ(πt, θ[πt], Ot)), x
i
)

| πt, x
i
}

. (40b)

Repeatedly applying the above for the next (n−1) successive

time periods gives:

W σ̃i

t (πt, x
i) = E

σ̃

{

t+n−1
∑

m=t

δm−tR(xi, Ai
t, Yt)

+ δnW σ̃i

t+n

(

Πt+n, x
i
)

| πt, x
i

}

, (41a)

V (πt, x
i) = E

σ̃

{

t+n−1
∑

m=t

δm−tR(xi, Ai
t, Yt)

+ δnV
(

Πt+n, x
i
)

| πt, x
i

}

. (41b)

Next, we take the difference as follows:

W σ̃i

t (πt, x
i)− V (πt, x

i)

= δnEσ̃
{

W σ̃i

t+n

(

Πt+n, x
i
)

− V
(

Πt+n, x
i
)

| πt, x
i
}

. (42)

Taking absolute value of both sides, then using Jensen’s

inequality for f(x) = |x| and finally taking supremum over

hi
t reduces (42) to

sup
hi

t

∣

∣W σ̃i

t (πt, x
i)− V (πt, x

i)
∣

∣

≤ δn sup
hi

t

E
σ̃
{

∣

∣W σ̃i

t+n(Πt+n, x
i)− V (Πt+n, x

i)
∣

∣ | πt, x
i
}

.

Now using the fact that Wt+n and V are bounded and that we

can choose n arbitrarily large, we get suphi

t

|W σ̃i

t (πt, x
i)−

V (πt, x
i)| = 0, which implies V (πt, x

i) = W σ̃i

t (πt, x
i).
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