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Bayesian Observational Learning in Mean-Field Games with Imperfect
Observations

Pawan Poojary and Randall Berry

Abstract— There are many settings in which agents learn
from observing the actions of other agents. Bayesian obser-
vational learning models provide a framework for studying
such situations and have been well-studied in settings where
agents sequentially choose Bayes’ optimal actions by learning
from the actions of previous agents. Here, we consider such
observational learning in a mean-field game setting, in which
agents repeatedly choose actions over time to maximize an
infinite horizon discounted pay-off. This pay-off depends on
the underlying mean-field population state, which agents do
not know and only have a prior common belief over it. At the
end of each time-step, agents observe a common signal which
is an imperfect observation of the mean-field action profile
played in that time-step and use this to update their beliefs.
We give a sequential decomposition of this game that enables
one to characterize Markov perfect equilibria of the game. We
then focus on a particular sub-class of these games which can
be viewed as a mix of coordination/anti-coordination players.
Using the sequential decomposition, we characterize the impact
of varying the observation quality on the outcome of the game
and show that this can exhibit non-monotonic behaviour, where
in many instances, poorer observations lead to better expected
total discounted pay-offs.

I. INTRODUCTION

Bayesian observational learning models provide a frame-
work for studying situations in which Bayesian agents seek
to learn from observing the actions of other agents. Early
models for such settings include [1]-[3], which considered
a setting in which a homogeneous set of Bayesian rational
agents sequentially take binary actions to optimize a pay-off
that depends on an unknown binary state of the world. Each
agent privately receives an independent binary signal about
this state of the world and also observes the actions of
previous agents, which may provide additional information
about the private signals those agents received. A key re-
sult in these models is that a herding behavior can occur,
where at some point in time, it is optimal for an agent to
ignore its private signal and follow the action taken by the
majority of previous agents. Subsequent agents then follow
suit due to their homogeneity; hence learning stops. There
have been many variations of this basic model subsequently
studied including [4]-[12]. In particular, we highlight work
on models in which the observations available to agents are
imperfect due to the presence of observation noise [13] or
“fake” agents that do not correctly report their actions [14].
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The aforementioned papers all consider settings in which
agents sequentially take an action, and each agent only
acts once. Instead, in this paper, we consider observational
learning in a mean-field game setting [15] in which players
repeatedly take actions in a discrete-time mean-field game
with an infinite horizon discounted pay-off. Each player has a
private type and its pay-off depends on the underlying mean-
field type distribution of the players, which is not known
to the players. We assume that the players instead have a
common prior belief over this type distribution. Further, after
each time-slot, the players obtain an imperfect observation
of the mean-field action profile, which they can use to update
their beliefs. We study how these belief updates evolve. This
type of imperfect observation of players’ actions can also
be viewed as a form of imperfect public monitoring [16].
To this end, we first show a sequential decomposition of
this game as in [17], which also considers mean-field games
with private types. However, the mean-field action profile is
perfectly observed in [17], while in our work this observation
is imperfect. Other related sequential decompositions for
dynamic games include [18]-[20].

We next consider a specific class of games in which there
are two types of players choosing binary valued actions: one
type seeks to coordinate its action with the other players,
while the other type seeks to anti-coordinate.! Further, we
assume that the mean-field type distribution takes one of two
possible values over which the players have a common prior
belief. After each time-slot, the players receive a common
binary valued signal regarding the resulting mean-field action
profile. We use our sequential decomposition to characterize
the possible Markov perfect equilibria of this game and for
two particular choices of equilibria, we characterize how the
players’ beliefs evolve over time. Similar to the sequential
models for observational learning, we show the possibility
of “herding” behavior. Here, herding corresponds to all
players choosing their actions independent of their private
types, so that the resulting signals obtained do not convey
any information about the mean-field type distribution, and
thus learning stops. We also characterize how changing the
observation quality impacts the players’ expected discounted
total pay-offs and show that, as in [13], [14], in several cases
“better” information leads to lower pay-offs.

A. Notation

We use uppercase letters for random variables and
lowercase for their realizations. We use notation —i to

IThis is related to models of mixed coordination and anti-coordination
games, e.g. [21]
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represent all players other than player ¢, ie., —i =
{1,2,...,i — 1,i + 1,...,N}. Similarly, we use a; "’ to
mean (a},a?,...,ai" ai™ ... alN). We use notation a;.;
to represent the vector (ay,as,...,a;). We denote the indi-
cator function of any set A by 1{A}. For any set S, P(S)
represents the space of probability measures on S. We denote
the probability measure generated by (or expectation with re-
spect to) a strategy profile o by P? (or E?). For a probabilis-
tic strategy profile of players (cr;)ie[ ~] where probability of
action a} conditioned on (01.¢, ") is given by o} (at|o1.¢, "),
we use the short-hand notation o, *(a; ‘|o1.4,27°) to rep-
resent the probablity [, .; of(at|oy., z7) of action a;’
conditioned on (01.;,z7*). All equalities and inequalities
involving random variables are to be interpreted in a.s. sense.

II. MODEL AND MPE SOLUTION

We consider an infinite-horizon discrete-time large popu-
lation sequential game G as follows. There are a countably
infinite number of homogenous players. Let [N] = {1,2,...}
denote this set of players and [T] = {1,2,...} be the set of
discrete time indices. To begin with, each player i € [N]
observes its private type ' € X = {1,2,---, N, }. Let the
mean-field of player types be z = (2(1),2(2),...,2(Nz)),
where z(z) denotes the fraction of population having type

T e X, ie.,
N

z(x) := lim %; {z' = «}, (1
and Zfi’”l z(i) = 1. Thus, z € Z, where Z is the (N, — 1)-
dimensional probability simplex. Further, we assume that at
time ¢t = 1, players do not know the mean-field z, but have
a common prior belief 71 € P(Z) over it.

Now, at time ¢ € [T'], each player i € [N] takes an action
ai € A=1{1,2,---,N,} which similarly generates a mean-
field of players’ actions: y: = (y:(1),y:(2),...,4:(Na)).
Here y;(a) denotes the fraction of actions having type a € A

at time ¢, i.e.,
N

1 i
lim N Z 1{a; = a}, (2)

Yt (a) o N—o00 P

and Zf\[:“l y:(i) = 1. Players do not observe other’s actions
or the resulting y;, but instead observe a common signal
ot € O which partially reveals y; through a noisy channel
represented through the kernel, o; ~ Q(-|y;). Here, con-
ditioned on {y:}2;, the sequence of observations {o;}$2;
are assumed to be mutually independent. Each player ¢ then
receives a reward R(z%,al,y;) which is a function of its
private type %, action a! and the action mean-field y;. The
rewards are assumed to be bounded and unobservable to the
players during the course of the game.

Remark 1: In this game, the mean-field of player types
does not evolve over time; however, players’ common belief
about it will evolve based on their observations.

Let O'—1 denote the space of observations 07.;—; com-
monly observed before time ¢. At time ¢, player ¢’s observa-
tion history is denoted by hi = (01,41, z"). The player then

takes action a’ according to a behavioral strategy o = (o?);,
where o} : O'~! x X — P(A). We denote the space of such
strategies as K7. This implies A% ~ o¢(:|01.4—1,2"). For the
game G, each player i wants to play a strategy o' € K7,
that maximizes its expected total discounted reward over an
infinite-time horizon, with discount factor 0 < ¢ < 1, which
is given by

J=E

> 6IR(a', AL V) m,xi]. 3)
t=1

A. Solution concept: MPE

The Nash equilibrium (NE) of G is defined as strategies
& = (6%);eqn that satisfy, for all i € [N],

E@E 57 [Z STIR(2t, Al Yt)}
= @)

> g6 [Zét_lR($i, Al Y;&)},
t=1

For sequential games, however, a more appropriate equi-
librium concept is Markov perfect equilibrium (MPE) [22],
which we use in this paper. We note that an MPE is also
a Nash equilibrium of the game, although not every Nash
equilibrium is an MPE. An MPE (&) satisfies sequential
rationality such that, for any history hi = (01,41, %), and
for any i € [N],¢ € [T],

E(&?‘&*T")[ia”*tR(:vi,ALYn) Ol:t—lvﬂ
n=t - (5)
> R [25”4}{(:1:1',14;,3/") 01;&1@1-

n=t

We now provide an MPE solution for G. We consider a
Markovian equilibrium strategy for each player ¢, which at
time ¢, depends on the common information 0y.;—; through
a belief m; (defined below in (7)) on the mean-field of player
types, and on the player’s private type x’. Equivalently,
player i takes action of the form A} ~ oi(-|m;,x%). Similar
to the common agent approach in [23], an alternate and
equivalent way of defining the strategies of the players is
as follows. We first generate a prescription 7; : X —
P(A) as a function of the belief m; through an equilibrium
generating function 6} : P(Z) — (X — P(A)) such that
v = 0i[m;]. Then, action A! is generated by applying the
prescription 4} on player i’s private type %, i.e. Al ~
~vi(-|z*). Thus, A} ~ o}(:|ms, x*) = 0i[me](-|z*). We only
consider symmetric equilibria of such games. We can thereby
drop the dependence of i on the functions #; and 7}, and have
A} ~ i (cfat) = Oe[me] (-|2°).

We now define some pre-requisites for the MPE solution.
At time ¢, given the mean-field of player-types z, the
action mean-field y; that results from the players applying a
symmetric prescription function ~; can be computed as:

yi(a) = Z vi(alz)z(z), VacA,

reX
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which we represent by function f such that

yr = f(2,7). (6)

Further, let the common belief on z € Z at time ¢, denoted
by m; be defined as:

m(2) £ P(Z = z|71:4-1, 01:4-1), @)

with 7; being the initial common belief of the players. Then,
m; can be updated according to:

Te41 = @7, Y, 01, (®)
where the update function ¢ is described as follows:
Q(ot|ys)m(2)
Ti41(2) = — —, VzeZ )
) = S Qailim ()

with y» = f(z,%) and §: = f(Z,v). Lastly, note that
through (6), the belief m; on the mean-field of player-types
translates to the belief Py (-|m;, ;) on the action mean-field

yt’

Y, ~ Py (y|me, ve) - (10)

Z]l{y FzaoyTe(2).

z€EZ

With the above pre-requisites, we can now provide a
symmetric MPE of G. Note that since G has an infinite-time
horizon, there exist MPE solution functions ét and 7; that are
stationary, thus the dependence on ¢ is dropped. Then, the
equilibrium strategy is defined as A ~ F(:|z*) = 0[m,](-|z?).
In addition, we generate a reward-to-go function V' : P(Z) x
X — R. Then (5,V) are obtained as solutions of the
following fixed-point equations, for all z° € X', 7, € P(Z):

3(-Ja’) € argmax EYC1+) {R(Ii, ALLY)
(- lz?)
+5V(¢(7Tt7’)7taot)7xi) ’ﬂ—taxz}a (113)
V(m,a') 2 BV [ R(at, 43, Y))
+ 3V (6 (w51 0n), ') | 7’| (1)

where the expectations in (11) are with respect to the
random variable (r.v.) (A% Y;,0;) through the measure
v(agl') Py (yelme. 7) Q(oelye)-

Note that within the expectation in (11a), the second term
does not have any dependence of 7(-|z*). This implies that
4(-|z*) can be obtained without knowing the V function
defined in (11b), by simply solving the fixed point equation:

3(-]z*) € arg max E7C1#) [R(

2IQED)

Remark 2: A solution of eq. (12) is in fact a NE of the

static version of game G, with a common mean-field belief
m; on the player types.

Thus, with 5(-|z%) = 0[r,](-|2") defined as per (12) for
each m; € P(Z), the MPE strategy at time ¢ is defined as

13)

o ALY, | m,at] . (12)

&g(aﬂwtv xz) = ’7(@“‘%'1)7

where 4 = 0[m;]. The next theorem shows that the strategy

obtained by (12) and (13) is an MPE of the game.

Theorem 1: A strategy (&) obtained by solving (12) and
defined as per (13) is an MPE of game G, i.e., it satisfies the
sequential rationality property stated in (5), for any history
hi = (01.4_1,2%), for all i € [N],t € [T].

Refer to the Appendix for a detailed proof. We now define
an important phenomenon that may occur during the course
of the game.

Definition 1: Herding is said to occur when the common
mean-field belief m; becomes such that the players’ MPE
strategy v = 6 [m¢] is independent of their private types.

A consequence of Definition 1 is as follows. If players
herd at time ¢ under belief 7, then the signal o, observed
by the players does not convey any new information about
the true value of the mean-field z. As a result, belief m;
stops updating and players continue to play the strategy v =
é[wt] for all 7 > t. Therefore, from the onset of herding,
the players’ actions do not reveal any information about the
mean-field; hence learning stops.

Property 1: Once herding of players occurs, it lasts for-
ever.

III. AN EXAMPLE GAME

In this section, we consider a particular example Gg of
the dynamic game G, as follows. Let each player i € [N]
have a private type x* € X = {—1,1}. Then, the mean-field
of player types is the probability vector z = (z(—1), z(1)).
We assume that this mean-field takes only two possible
values, that is 2 € Z = {(1 — po,po), (1 — p1,p1)},
where 0 < pg < p1 < 1. We further assume that this is
common knowledge, i.e., every player knows that the mean-
field will take on only one of these values. In this case,
players’ prior common belief on z, i.e., m € P(Z) can
be parameterized by di € (0,1), where di = mi[z =
(1 — p1,p1)]- Now, at any time ¢ € [T], each player 7 takes
action a! € A = {—1,1}. This then generates the action
mean-field y; = (y:(—1),y:(1)) which is not observable
to players. Instead, the players observe a common signal
o € {H (high), L (low)}. This signal, as shown in Figure
1, partially reveals whether y:(1) > 0.5 through a binary
symmetric channel (BSC) with crossover probability 1 — u,
where u € (0.5,1] is the signal quality. Each player ¢ then
receives a reward:

(2(1) — 1) 2'aj, (14)

which implies that a player of type x* = 1 prefers the action
that will be taken by the greater fraction of the population.
Whereas, a player of type x! = —1 prefers to take the action

Yi(1) > 0.5 H
' Oy
Yi(1) < 0.5 L

u

R(wi,ai,yt) =

Fig. 1: The BSC through which players receive the common signal
o+ at each t, where u € (0.5, 1] denotes the signal quality.
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that will be taken by the lesser fraction of the population.
Games with such a reward function relate to the work on
mixed coordination and anti-coordination games [21].

A. MPE solution

Now, to provide the MPE solution for this game, first let
the prescription v : X — P(A) be represented as v =
lg,7] == [y(1] = 1),v(1|1)], where g, € [0,1]. In other
words, ¢ () is the probability that that a type —1 (1) player
chooses action 1. If the symmetric prescription [g,r] acts
upon the belief d; of the mean-field z, then as per (10), the
action mean-field is a r.v. Y; such that

Yi(1) = {(1 —p1)g+pir, wp. di, (15)
(1 —po)g+por, w.p. (1—dy).
The expectation of Y; is then
El[Y,(1) | d] = Ber + (1 — By,
By := pidi + po(1 — di) € (po, p1)- (16)

Here, B; is the expected value of z(1) under belief d;. Also,
let A; := 1 — B;. By applying this expectation to (14), each
player i, which chooses action a! as per strategy [q, 7], then
receives the expected reward:

E [R(a’, af, o) [ de] =

PRI, 4] -1} @r—1), forsf=1, (7
[2EI Y31

)|de] =1} (1—2g), fora’=—1.

The MPE solution of this game, 5 := [, 7] for a given
belief d; can then be obtained by applying the fixed point
equation in (12) for 2 = 1 and —1, which are respectively
given by

f:argmax{m[wl (1) | di] —1}(27’—1), (18a)
argmax{2E[q’T] Yi(1) | dy] —1}(1—2q). (18b)

When B; < 0.5, it can be shown that the only possible
solutions to these fixed point equations are for ¢ and 7 to
be chosen such that the term El%7I[Y;(1) | d;] = 1/2, which
results in all players’ expected rewards, given in (17), to be
zero. Any such choice of [, 7] is a MPE. When B; > 0.5,
such a choice of [, 7] is again a MPE as well as setting [, 7]
to be either [0,1] or [1,0]. We can then summarize the set
of MPEs as:

{[g,7:q="22L 7 €[0,1]}, for B, < 0.5,

MPE = { {[g, 7] : 7 = 25 qu ,G€[0,1]}  for B, > 0.5.
u{[1, ],[0,1]},

(19)

The corresponding fixed point equation for the reward-to-go
function V, given by (11b), simplifies for ' = 1 and —1 as

given below.
V1) = 2By (1) [d,] - 1} (27 - 1),

£ OBV (drr, 1) ). (200

V(di,~1) = {2B7[vi(1) | ] - 1} (1 - 2.
+ 0BT [V (dyyr, —1) | dy).

Here, d;+1 = ¢(dy, [q, 7], 0¢), which is a simplified represen-
tation of the belief update equation in (8).

In the next section, we analyze the game Gpg under an
MPE strategy, that exhibits herding. We denote this strategy
by [, 7], where the superscript indicates that players could
herd under this strategy. From this analysis, we aim to
understand how herding, which stifles learning, impacts the
aggregate reward accrued by each player and how is it
affected by varying the quality of the observation signals.

(20b)

IV. LEARNING DYNAMICS UNDER [g, 7]

We now analyze the dynamics of the sequence of mean-
field belief states {d; }$°, for the game G, where all players
play strategy [G, 7], which we define as follows:

- — {[1/2,1/2], for

[ 7 B; < 0.5,
© [0, 1], for

21
B; > 0.5. 1)

Now, as per the definition of B; in (16), the inequality
B, < (>) 0.5 translates to d; < (>) dy. Here dy :=
(0.5—po)/(p1 —po) refers to a threshold belief, which when
crossed results in players switching their strategies, as per the
MPE strategy profile in (21), and more generally in (19). We
then make the following assumption on the parameters of the
game to ensure that such a threshold exists, which thereby
ensures that both herding and non-herding belief states exist.

Assumption 1: Let pg < 1/2 < p; for the set of possible
mean-field values: Z = {(1 — po,po), (1 — p1,p1)}, as it
ensures that the threshold belief dy, exists.

We now compute the updates on d;, brought about by
observing the common signal o;. First, consider the case d; >
dun, which is when players play the strategy [§, 7] = [0, 1].
Applying this strategy in (15) generates a random Y;(1) such
that Y;(1) = p1 when z = (1—p1, p1), which occurs w.p. dy;
otherwise Y;(1) = po. As pp < 1/2 < p; (Assumption 1),
this implies that Y;(1) > 0.5 w.p. d;; otherwise Y;(1) < 0.5.
Now, applying Y;(1) as input to the BSC shown in Figure
1 and then observing the output O, yields the following
updates for d;.

Udt .
, if O, =H
gy = Judi+ (1=l —dy) ! @)
+1 = _
(1~ w)d, if O,=1L

(1 — u)dt + u(l — dt)’

where P(O; = H|z,d; > dyn) = u if the true value of
the mean-field, z = (1 — p1,p1), and equals 1 — u if 2z =
(1 = po, po). Next, consider the case: d; < dy. In this case,
as per (21), players play the strategy [q,7]7 = [1/2,1/2],
which is evidently independent of the players’ private types,
i.e., players are herding (Definition 1). This implies that no
information about the true mean-field value z gets conveyed
by O;. Therefore, d; stops updating and players continue
herding to the stratgey [, 7] = [1/2,1/2] (Property 1).
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Property 2: In game G g, under MPE strategy [g, 7] given
in (21), herding begins only when d; < dy, (or B; < 0.5).

To better understand the dynamics of mean-field belief d,
we instead consider its likelihood ratio function: l;(d;) :=
P[(1=p1,p1)ldi) / P((1=po, po)ld:] = di/(1—d;). Also, let
lh := din/(1—dp) be the the threshold likelihood ratio. Then,
the updates for d; stated in (22) when d; > dy, translate to
the following updates on I; when l; > li:

(221, if O, = H,
liy1 =

(23)
(=) 1, if Oy =L.

Now, if the players have not herded at time ¢, then they also
did not herd at any prior time (Property 1), i.e., l,, > I for
all n < t. Then, as a result of the above updates, /; can be
shown to depend only on the number of H’s (denoted by n )
and L’s (denoted by ny) in the observation history 01.4—;.
Specifically, I; = [y ( ﬁ)ht where h; is the difference
between the number of H’s and the number of L’s,

hy =ng —nr. (24)

Property 3: Until herding occurs, h; defined in (24) is a
sufficient statistic of the information contained in the past
observations 071.;_1.

We now make the following assumption on the players’
prior belief d; on the mean-field of their private types.

Assumption 2: To understand the dynamics of learning,
we assume that at the start of the game, players are not
herding, i.e., d; > dy,, where d; is the prior mean-field belief.

Herding of players begins at the first instance when
dy < dy (Property 2), which implies [; < ly. Applying
the expression for [; in this inequality yields the equivalent
condition on the integer-valued sufficient statistic h;, which
is h; < —k, where

o= | on (+257) - e (+22) o () |- @9

It follows that wuntil herding occurs, h; S
{-k,...,—1,0,1,...} for all such times ¢, and the
update rule for h; is given by
hy+1, if O,=H
I (26)
ht — 1, if Ot =L.

Whereas, once hy = —(k + 1), herding begins and h; stops
updating (Property 2). More specifically, equation (26) shows
that, until herding occurs, {h;} is a random walk (r.w.) that
moves to the right by 1 w.p. P(O; = H|z) or to the left by 1

P(O; = L|z), with the walk starting from State 0. The
random walk is depicted in Figure 2 where p, = P(O; =
H|z) denotes the probability of a H being observed given
the true value of the mean-field, z. Depending on the mean-
field’s true value, p, = u for z = (1 —p1,p1), whereas p, =
1—w for z = (1—po, po). Note that for z = (1—pq, p1), this
random walk will have a drift to the right and so there will
be a non-zero probability that it never reaches the absorbing
(herding) state.

Rz Pz Rz Pz RZ Pz

B OO Ry

1—p. 1—p. 1-p. 1—p.

Fig. 2: Transition diagram with state rewards for random walk
{h+}, under strategy [§, 7)™ and mean-field z. Absorption in State:
—(k + 1), with k defined in (25).

A. Aggregate Reward for each player

We now look at the total reward accrued by each player-
type x' under strategy [§,7]” and a prior belief d;, which
we denote by VH (dy, %) and is defined as per (20). Ho-
mogeneity within players of the same type implies that they
would receive equal total rewards. To obtain this, we first
assign a per-time reward to each state in Figure 2, which
could be occupied by r.w. {h;}. Note that for all transient
states, i.e., {—k,...,0,...}, we have B; > 0.5, which as
per (21) means [§,7]7 = [0,1] is being played. Then as
per (15), y:(1) = p;y if the mean-field of players’ types z
has the true value z = (1 — pq, p1), whereas y:(1) = pg if
z = (1 —po,po)- By applying these values of y;(1) in (14),
it follows that every transient state provides a reward R, for
every player (of both types), where

_ (2p1_1)a
e = {<2po— 1),

However, for the sole absorption state —(k + 1), the MPE
strategy changes to [, 7]% = [1/2,1/2]. This gives y;(1) =
1/2 and a 0 reward for both player-types, for any z. The
reward R, for the transient states and reward O for the
absorption state are indicated above their respective state
nodes in Figure 2. Note that as the rewards are identical for
both player types, we have V" (dy,1) = VH(d;,—1), and
henceforth, we refer to this common value by V' (dy, z%).

Now, to obtain the aggregate reward V¥ (dy, 2%), we first
evaluate its conditional value [V (dy,2?)|z] under the true
mean-field z and then average this value over the prior belief
dy on z.

VH(dl,Ii) = [VH(dl,.IZ”Z = (1 _plypl)]dl
+ [V (dr,2")|z = (1 = po,po)](1 = d1). (28)

To obtain [V (dy,x%)|2], consider the random walk {h;}
with state rewards, shown in Figure 2. Here, starting from
state 0, at each time ¢, reward R, is accrued with a dis-
count factor of §*~'. Therefore, with r.v. T defined as the
discounted time to absorption (herding) into state —(k + 1),
we have:

if z= (1 _p17p1)7

27
if 2= (1 - po,po). @0

[V (dy,a")|z] = R.E*[TY, (29)

where E*[T] is the expected value of 7" under z. Note that
the r.v. T satisfies: 1 < T < (1 —4)~! as it would take at
least 1 time-step and at most an infinite number of time-steps
for players to herd. Applying (29) in (28) then yields

VH(dy, ") = (2p1 — 1)E 77 [T)d,
+ (2po — 1)EC 72 [T)(1 — dy). (30)
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Property 4: Equation (30) explicitly relates the expected
discounted time for herding to the players’ aggregate reward,
given a prior belief d; on the mean-field.

The expected value of T' given true mean-field z can be found
by solving the following system of linear equations:
for s =—(k+1),
for s > —k,

€19

gs = Oa
gs =1+ 5[pz gs+1+ (1 _pZ)gs—l]v

with variables {gs}° . +1)- Here, g, refers to the expected
discounted time to herd, starting from State s, given z. We
omit the dependence of gs; on z for notational convenience
and emphasize that the system in (31) depends on z through
the transition probability p,. Now, as the r.w. {h;} starts
from state 0, we have

E*[T] = go, z€ Z.

For the sake of numerical computations, we restrict (31) to
a finite number of equations (and variables) by converting
the transient state M, for some integer M > 0, into
an absorption state. We then assign the value 1/(1 — 0)
to variable gjs, which is the discounted time elapsed if
absorption (herding) to state —(k + 1) never happens. This
is indeed the case starting from state M, in the limit as
M — .

B. Comparison with an “Oracle” game, G,

Now, to understand the effects that an uncertainty on the
true value of the mean-field has on the players’ aggregate
reward, we compare Gp with a reference game G,, as
follows. Game G,, shares the same prior belief d; as in Gg,
except that here, an oracle informs players of the true value
of the realized mean-field z, at time ¢ = 1. Once this is
revealed, there is no uncertainty in the repeated game and
so players can simply adopt a fixed strategy for all time.
Note that B, in (21) gets replaced by either py or p; as per
the realization of z. Then, as pp < 1/2 < p; (Assumption
1), players play the MPE strategy: [g,7]7 = [1/2,1/2] if
z = (1 — po,po) which is when they receive 0 reward
per time. Otherwise, players play [§,7]7 = [0,1] if z =
(1 —p1,p1) and receive reward (2p; — 1) per time. Then the
aggregate reward in this scenario, denoted by V,,(dy, %), for
both z* € {—1,1} is given by:

Vo(dy,z') = (2p1 — 1)(1 = 8)"'dy +0- (1 —dy). (32)

By comparing eq. (32) with eq. (30), it follows that when
z = (1—p1, p1), players would benefit from herding as late as
possible (ideally never), since each time-step until absorption
yields a positive reward of (2p; — 1), as p1 > 1/2. Whereas,
when z = (1 — po, po), players would benefit from herding
as soon as possible (ideally in an instant), since each time-
step until absorption yields a negative reward of (2pg — 1),
as po < 1/2.
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Fig. 3: Expected discounted time given z = (1 — p1,p1) as a
function of signal quality u for po = 0.4, p1 = 0.8, di = 0.85,
d = 0.95. Values at thresholds {u,} are marked by o.

C. Effects of varying the signal quality

In this section, we consider the effects of varying the
quality u € (0.5,1] of the signals {O;}, which the players
observe through the BSC in Figure 1. First, we define a
decreasing sequence of signal quality thresholds: {u,}52,
which is characterized in the following lemma.

Lemma 1: For r = 0,1,... define the decreasing se-
quence of thresholds {u,}°,, where the 7 threshold w,.
is given as:

(33)

Define Z, := (u,41,u,] as the 7™ u—interval. Then for all
u € I, the index k in Figure 2 equals r. Thus, at least 7+ 1
consecutive L’s are necessary for a herd to begin.

Lemma 1 implies that when « marginally exceeds thresh-
old wu,, the absorption state index in Figure 2 abruptly
increases from —(r+ 1) to —r. The proof of Lemma 1
follows by noting that integer k£ in (25) increases in steps
from k =0atu=1to k = oo at u = 0.5. Then, u, is the
value of u at which k = |r| = r. Solving this equality for
u yields u, in (33).

We now observe the effects of varying u. Figures 3 and 4
show the plots of E#[T] with respect to u for z = (1—p1, p1)
and z = (1 — po, po), respectively. The game parameters are:
po = 0.4, p1 = 0.8, di = 0.85, § = 0.95. Observe that
the abrupt drops in E*[T] (marked by o) in both figures
occur exactly at the threshold values {u,}52,, and are an
effect of the abrupt change in the number of consecutive L’s
required for herding at these values (Lemma 1). Further, the
constant level of (1—4)~! in these figures indicates the upper
bound on T and E*[T], i.e., the discounted time elapsed
when herding never occurs. Interestingly, E#[T'] for both 2’s
tends to (1 —&)~! as u — 0.5. This is to be expected as in
this case, the herding state — (k1) tends to —oo and the drift
of the r.w. tends to 0. Varying u also effects the dynamics of
{h+} (see Fig. 2). Under z = (1 — p1,p1), an increase in u
has two opposing effects on the r.w., namely, an increase
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Fig. 4: Expected discounted time given z = (1 — po,po) as a
Sfunction of signal quality u for po = 0.4, p1 = 0.8, di = 0.85,
0 = 0.95. Values at thresholds {u,} are marked by o.

in the drift away from the herding state and a reduced
number of conseutive L’s required for herding. For this
reason, E!' ~7-»[T] in Fig. 3 increases with u, over every
interval (w,1,u,], but abruptly drops at thresholds {u,}.
On the contrary, under z = (1 — po,po) the corresponding
effects do not oppose but align with each other. This causes
E® ~#0.2)[T] in Fig. 4 to monotonically decay to 1 despite
the discontinuities, as u increases.

Lastly, Fig. 5 plots the aggregate reward V (dy, 2%) with
respect to u and compares it with the baseline V,(d;,z?%),
which is the aggregate reward under game G, (with the
oracle). We see that, within each interval (u,y1,u,], the
aggregate reward is increasing in the signal quality, u. But,
counter to expectation, a slight increase in v beyond wu,
causes an abrupt and significant decrease in the aggregate
reward. Also observe that as u — 0.5, VH(dy, x') tends
to a limiting value, indicated as a constant level, which
can be computed to be (2B; — 1)(1 — §)~L. This limiting
value of V#(dy, x") is obtained by putting lim,,_,o 5 E*[T] =
(1—0)~1, for both 2’s, in the corresponding limit of eq. (30).
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Fig. 5: Aggregate rewards for the indicated cases as a function of
signal quality u for po = 0.4, p1 = 0.8, di = 0.85, § = 0.95.
Values at thresholds {u,} are marked by o.

V. CONCLUSIONS AND FUTURE WORK

We considered a mean-field game model in which
Bayesian agents, each having a private type, update beliefs
about the underlying mean-field of population types from
imperfect observations of the mean-field action profile. We
gave a sequential decomposition of this type of game and
used this to study a particular class of games with a mix
of coordinating and anti-coordinating players. We showed
that for a particular choice of equilibrium strategies, a type
of herding behavior can emerge in which players no longer
learn from their observations. We found that each player’s
expected total discounted reward over the infinite horizon
relates to the expected discounted time taken for herding
to occur. Lastly, we illustrated how “better” observations
may in several cases, lead to worse expected outcomes for
the players, similar to what has been observed in sequential
Bayesian observational learning models.

Possible future directions include considering other games
that fit within this framework and other types of observation
models.

REFERENCES

[1] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads,
fashion, custom, and cultural change as informational cascades,”
Journal of political Economy, vol. 100, no. 5, pp. 992-1026, 1992.

[2] A. V. Banerjee, “A simple model of herd behavior,” The quarterly
Journal of economics, vol. 107, no. 3, pp. 797-817, 1992.

[3] 1. Welch, “Sequential sales, learning, and cascades,” The Journal of
finance, vol. 47, no. 2, pp. 695-732, 1992.

[4] L. Smith and P. Sgrensen, “Pathological outcomes of observational
learning,” Econometrica, vol. 68, no. 2, pp. 371-398, 2000.

[5] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” The Review of Economic Studies, vol. 78,
no. 4, pp. 1201-1236, 2011.

[6] 1. H. Lee, “On the convergence of informational cascades,” Journal of
Economic theory, vol. 61, no. 2, pp. 395-411, 1993.

[7]1 Y. Wang and P. M. Djuri¢, “Social learning with bayesian agents and
random decision making,” IEEE Transactions on Signal Processing,
vol. 63, no. 12, pp. 3241-3250, 2015.

[8] T.Le, V. Subramanian, and R. Berry, “Quantifying the utility of noisy
reviews in stopping information cascades,” in IEEE CDC, 2016.

[9] T. N. Le, V. G. Subramanian, and R. A. Berry, “Bayesian learning
with random arrivals,” in 2018 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2018, pp. 926-930.

[10] P. Poojary and R. Berry, “Observational learning with negative ex-
ternalities,” in 2022 IEEE International Symposium on Information
Theory (ISIT). 1EEE, 2022, pp. 1495-1496.

[11] I. Bistritz and A. Anastasopoulos, “Characterizing non-myopic infor-
mation cascades in bayesian learning,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 2716-2721.

[12] G. Schoenebeck, S. Su, and V. G. Subramanian, “Social learning with
questions,” CoRR, vol. abs/1811.00226, 2018. [Online]. Available:
http://arxiv.org/abs/1811.00226

[13] T. N. Le, V. G. Subramanian, and R. A. Berry, “Information cascades
with noise,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 3, no. 2, pp. 239-251, 2017.

[14] P. Poojary and R. Berry, “Observational learning with fake agents,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2020, pp. 1373-1378.

[15] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japanese journal of
mathematics, vol. 2, no. 1, pp. 229-260, 2007.

[16] D. Fudenberg, D. K. Levine, and E. Maskin, “The folk theorem with
imperfect public information.” Econometrica,, vol. 62, 1994.

[17] D. Vasal, “Sequential decomposition of mean-field games,” in 2020
American Control Conference (ACC),, 2020, pp. 5388-5393.

[18] Y. Ouyang, H. Tavafoghi, and D. Teneketzis, “Dynamic games with
asymmetric information: Common information based perfect bayesian
equilibria and sequential decomposition,,” IEEE Transactions on Au-
tomatic Control, vol. 62, no. 1, pp. 222-237, Jan. 2017.

Authorized licensed use limited to: Northwestern University. Downloaded on February 13,2024 at 01:41:30 UTC from IEEE Xplore. Restrictions apply.



[19] D. Tang, H. Tavafoghi, V. Subramanian, A. Nayyar, and D. Teneketzis,
“Dynamic games among teams with delayed intra-team information
sharing,” Dynamic Games and Applications, vol. 13, no. 1, pp. 353—
411, 2023.

[20] D. Vasal, A. Sinha, and A. Anastasopoulos, “A systematic process for
evaluating structured perfect bayesian equilibria in dynamic games
with asymmetric information,” IEEE Transactions on Automatic Con-
trol, vol. 64, no. 1, pp. 81-96, 2018.

[21] L. Arditti, G. Como, F. Fagnani, and M. Vanelli, “Equilibria and
learning dynamics in mixed network coordination/anti-coordination
games,” in 60th IEEE Conference on Decision and Control (CDC),
2021, pp. 4982-4987.

[22] E. Maskin and J. Tirole, “Markov perfect equilibrium: I. observable
actions,” Journal of Economic Theory, vol. 100, pp. 191-219, 2001.

[23] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic
control with partial history sharing: A common information approach,”
IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1644—
1658, 2013.

[24] P. Poojary and R. Berry, “Supplementary material with detailed
proofs,” 2023. [Online]. Available: https://drive.google.com/file/d/
1-kZM3PR--i6hdlbwzwKsyUACJ612-dve/view 2usp=sharing

APPENDIX

We provide the following lemma which is required for
proving Theorem 1 and defer the detailed proof to [24].

Lemma 2: For any t € [T, i € [N], hi € Hi and o7,

V(m,at) > W T (hi), (34)
where the reward-to-go function Wfl’T(-) is defined later in
(35b) and H! denotes the space of history (01,41, 2%).

Proof of Theorem 1:

Proof: The proof comprises of two parts. First, we show
that the function V' obtained in (11b) is at least as big as any
reward-to-go function. Second, we show that V' is in fact the
reward-to-go under the MPE strategy o defined in (13). Note
that hg = (Ol:t_l,l'i). _

Part 1: For any ¢ € [N] and strategy o*, define the
following reward-to-go functions at time ¢:

— R ian tR(z, Al

n=t

Wy (hz) Y,) | hit (35a)

] i o~ —i T . .
Wi () =B { SO R A V)
n=t

+ 6T (g, o) | h;} (35b)

Since X, A are finite sets, the reward R is absolutely
bounded, the reward-to-go W' (hi) is finite V i,t, 0%, h}.
For any ¢ € [N], hi € M,
V(meat) = We' (hi) = [V (meat) = W77 ()]
+ W7 ) - wi )] @6
By applying Lemma 2 the term in the first bracket in RHS

of (36) is non-negative. Using (35), the term in the second
bracket is

> o THOR@ ALY,
n=T+1

V[, ) | h;’}.

(5T+1—t) Eai,&*i{ _

The summation in the expression above is bounded by a
convergent geometric series. Also, V' is bounded. Hence, the
above quantity can be made arbitrarily small by choosing
T appropriately large. Now, since the LHS of (36) does not
depend on 7', we have

V (i, 2i) > W7 (kD). (37)

Part 2: Since the equilibrium strategy o generated
in (13) is such that &; depends on h{ only through m; and
x*, the reward-to-go W', at strategy &, can be written (with
abuse of notation) as

Wt&i(hi) Wt (Wta ) (38)
=E7¢) "' R(a’, AL, Y, | 2 (39)
n=t

For any hi € Hi,
W' (m,at) = E°{ R(z', 4}, Y))
+ W7 (6, 0], O1)), 2) |7Tt,a:1} (40a)
V(m, ') = E7{R(z', 4, Y)
+ 6V (¢(ms, 0[m), Oy)), 2 |7rt,xi}. (40D)

Repeatedly applying the above for the next (n—1) successive
time periods gives:

t+n—1 . )
> 0mTIR(a', AL Y:)

m=t

W?' (my,2') = E?

+ W (g, 2?) | 7,2t p,  (4la)
) ~ t+n—1 ) )
V(m,2') =E7 Z ST R(2, ALLY)
m=t
+ 6"V (W, ') | e, (41b)

Next, we take the difference as follows:
Wt (7Tt, ) - V(ﬂ-ta Il)
v {W;;n (M, ) = V (T, 2) | 7o, :v} .42

Taking absolute value of both sides, then using Jensen’s
inequality for f(z) = |z| and finally taking supremum over
hi reduces (42) to

sup ’Wt&l (e, ") = V(my, ")
hi
< §" sup E? {|ijn(nt+n,xi) — V(I 2] | wt,:ci} .

hi
Now using the fact that W, ,, and V' are bounded and that we
can choose n arbitrarily large, we get supy,; Wt (7, 2t —

V (ms, 2*)| = 0, which implies V (7, 2%) = W7 (7, ).
|
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