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Robust Zero Modes in Non-Hermitian Systems without Global Symmetries

Jose D. H. Rivero®,'? Courtney Fleming 2 Bingkun Qi,'"? Liang Feng,3 and Li Ge

1,2

'College of Staten Island, CUNY, Staten Island, New York 10314, USA
*The Graduate Center, CUNY, New York, New York 10016, USA
3Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

® (Received 5 June 2023; accepted 2 November 2023; published 29 November 2023)

We present an approach to achieve zero modes in lattice models that do not rely on any symmetry or
topology of the bulk, which are robust against disorder in the bulk of any type and strength. Such
symmetry-free zero modes (SFZMs) are formed by attaching a single site or small cluster with zero mode(s)
to the bulk, which serves as the “nucleus” that expands to the entire lattice. We identify the requirements on
the couplings between this boundary and the bulk, which reveals that this approach is intrinsically non-
Hermitian. We then provide several examples with either an arbitrary or structured bulk, forming spectrally
embedded zero modes in the bulk continuum, midgap zero modes, and even restoring the “zeroness” of
coupling or disorder-shifted topological corner states. Focusing on viable realizations using photonic
lattices, we show that the resulting SFZM can be observed as the single lasing mode when optical gain is

applied to the boundary.
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Zero modes occupy an indisputable place of interest in
physics at many different levels: They appear as localized
boundary states in topological insulators [1,2], Majorana
fermions in superconductors and semiconductors [3-5],
corner states in higher-dimensional multipole insulators
[6-8], single-mode lasers with narrow spectral lines [9—13],
and localized defect modes in photonic crystals [14—18].
Many advantages come with the ability to excite these
states in the middle of band gaps, and the symmetry or
topological properties of the underlying system can be
judiciously implemented to protect those states.

It is widely accepted that symmetries play a special role
in the construction of these zero modes in complex
systems, as they introduce a privileged energy (i.e., “zero
energy”’) that serves as a reference for all the energies of the
system. In condensed matter systems, this zero energy is
often the Fermi energy [19], and in coupled photonic
systems, the resonant frequency of interest in a single
cavity or waveguide. Two well-known symmetries that
warrant zero modes in Hermitian systems are chiral and
particle-hole symmetries, which lead to a symmetric energy
spectrum about zero [20]. The study of non-Hermitian
physics has also exploited and extended these two sym-
metries in the presence of dissipation, where gain and loss
can be engineered to produce zero modes with unique
properties [21]. As the spectrum becomes complex, chiral
symmetry [22-26], as well as pseudochirality [27], still
hosts paired modes with energy E and —FE; particle-hole
symmetry [9,28-31], along side anti-PT symmetry [32,33]
and pseudo-anti-Hermiticity [34], now produces mode
pairs with energy E and —E*, where the asterisk denotes
the complex conjugation as usual.
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As these symmetries are global properties of the under-
lying system, the zero modes they induce are easily lifted in
the presence of local perturbations that do not preserve
these symmetries. For example, the zero modes of a chiral-
symmetric lattice disappear in the presence of strong on-
site disorder. While a lattice with non-Hermitian particle-
hole symmetry has enhanced protection in comparison
from gain and loss disorder [9], its zero modes are still
eliminated with on-site frequency detunings. Although one
may mitigate the problem by employing topological
protection [35-38], the resulting modes typically still have
energy shifted away from zero, causing uncertainties in the
identification and characterization of the zero modes.

Meanwhile, a zero mode in a single site or a small cluster
is relatively easy to form, since the zero energy, for example
in a photonic lattice, is chosen as that of a resonant fre-
quency in a single cavity as previously mentioned. There-
fore, can one utilize such a zero mode as the “nucleus” and
expand it to the entire lattice?

In this Letter, we elucidate this vastly different approach
to realize a robust zero mode in lattice models, which does
not depend on the symmetry or topological properties of the
bulk. By attaching the aforementioned nucleus to an
arbitrary bulk and referring to the former as the boundary,
we identify the conditions needed on the bulk-boundary
couplings to form such a symmetry-free zero mode
(SFZM). It is worth noting that non-Hermiticity is intrinsic
in our approach, either in the form of asymmetric couplings
[39-43] or a non-Hermitian boundary.

A distinct property of SFZMs is their robustness against
any type of disorder in the bulk Hamiltonian. Furthermore,
they can exist in systems both with and without a bulk
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energy gap at zero energy, which enables us to freely form
spectrally embedded zero modes similar to bound states in
the continuum (BIC) of the bulk [44,45], midgap zero
modes, and even restore the “zeroness” of coupling or
disorder-shifted topological corner states. Therefore, while
the mechanism we introduce to achieve a zero mode in the
bulk does not rely on global symmetries, it can be applied
to systems with global symmetries and topological pro-
tection as well. In this case, our approach provides addi-
tional robustness to the underlying system, stabilizing its
energy against symmetry-breaking perturbations. Focusing
on viable realizations using photonic lattices, we also show
that an SFZM can be observed as the single lasing mode
when optical gain is applied to the boundary. Such an
approach can benefit many applications, especially those in
optics and photonics that rely on a source of a fixed
frequency for spectroscopy, metrology, and sensing.
Below we consider the following Hamiltonian

H %
(rh) o
U H,
consisting of the bulk (Hp), the boundary (H), and their
couplings U, V. Our boundary serves as the nucleus and
hosts zero mode(s) itself (condition 0), i.e., Hy¢; = 0. By

partitioning the wave function of the whole system as
Y = wp @ vy, a zero mode of the system satisfies

wp=—Hp'Vyo.  (2)

Our goal is to achieve zero mode(s) inside a bulk without
preexisting ones, and hence we have taken Hp to be
invertible. We also note that the second relation in
Eq. (2) indicates that the zero-mode wave function in
the bulk (i.e., yp) can be obtained by propagating, via the
bulk Green’s function Ggz(E) = (E — Hp)™! at the zero
energy, the couplings from the boundary.

To identify a set of general conditions that enables an
SFZM, we use the property that a Hamiltonian always has
paired left and right eigenstates of the same energies
[46,47]. The first relation in Eq. (2) is then satisfied if
we can construct a simple left eigenstate of H{, with E = 0,
which should be independent of the bulk Hamiltonian Hp.
This goal can be achieved by requiring (,7),TU = 0 (condition
1), where g?ﬁ,T is the left eigenstate of a boundary zero mode,
defined by ¢! H, = 0. This condition can be easily verified
by noting ¢! (Hy — UH3'V) = 0. In other words, ¢/ and
W are the left and right eigenstates of Hj, with E = 0. In
contrast, we note that the (right) boundary zero mode ¢;
and the SFZM inside the boundary (i.e., ) are not simply
related in general.

The resulting zero mode of H, however, has a vanished
amplitude in the bulk if V¢; = 0: V¢; = 0 indicates that
Hyp; =0, i.e., the right eigenstate of H{ with E =0,
denoted by v in Eq. (2), is simply given by ¢;. Using
Vo=V, =0 in Eq. (2), we then find wp =0.
Therefore, to achieve an SFZM that extends to the bulk,
we require V¢, # 0 (condition 2). An alternative derivation

Hyyo=(Ho—UH3'V)yy =0,

of conditions 1 and 2 is given in Ref. [48] using the Jordan
normal form of H,, where the case with a preexisting bulk
zero mode is also discussed.

Conditions 1 and 2 imply that the system that hosts an
SFZM is intrinsically non-Hermitian: If the opposite were

f

true, then H, must be Hermitian as well, leading to ¢/ = P;.
At the same time, we would also have U = V', and by taking
the Hermitian conjugate of condition 1, we find V¢, = 0 that
violates condition 2. Similarly, conditions 1 and 2 also imply
that H is asymmetric, which does not necessarily require
non-reciprocal couplings; a pair of complex-conjugate
couplings also render our non-Hermitian H asymmetric,
and this complex pair can even exist just in the boundary
(e.g., see Fig. 1(b) and the discussion of Eq. (S18) in
Ref. [48]), leaving the bulk-boundary coupling Hermitian
and real. This asymmetric property of H means that the left
and right eigenstates of the SFZM are distinct, and this
observation provides an intuitive understanding of the
SFZM: By imposing condition 1, we achieve not just a left
zero mode of H{, but also that of H, with the simple wave
function ¥ = 0 @ ¢! that vanishes in the bulk and satisfies
$TH = 0. The corresponding and distinct right eigenstate of
H is then the SFZM, which extends to the bulk under
condition 2.

As an example, we first consider the simplest case where
the proposed SFZM appears [Fig. 1(a)]. It features a single
boundary site with H, = 0, satisfying condition 0 with a
boundary zero mode given by ¢; = ¢; = 1. Then condition
1 dictates that the coupling U must be a zero row vector,
i.e.,, no couplings from the bulk to the boundary. The
existence of a zero mode in the whole system is then
apparent: the bulk cannot act back on the boundary, and
hence the frequency of the latter’s zero mode is unchanged.

To ensure that the resulting SFZM extends into the bulk,
condition 2 requires that the coupling V is not a zero vector,
which would otherwise isolate the boundary from the bulk.
We also note that the required unidirectional couplings
from the boundary to the bulk can be realized, for example,
using spiral waveguides evanescently coupled to micro-
ring resonators [43]. For easy implementation, coupling the
boundary cavity to one in the bulk [e.g., the Nth cavity in
Fig. 1(a)] is sufficient to warrant the SFZM. Importantly,
the bulk Hamiltonian Hz can be completely arbitrary and
does not affect the existence of the SFZM [Fig. 2(a)].

(b)

Bulk Boundary Bulk Boundary

FIG. 1. Schematics of systems hosting an SFZM, where the
boundary is a single cavity in (a) and a small cluster in (b).
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FIG. 2. (a) Representative complex energy spectrum for the

configuration shown in Fig. 1(a) with 30 bulk lattice sites. Both
on-site energy and couplings in the bulk are uniformly distributed
in [—g/2, g/2], whereas on-site loss is uniformly distributed in
[-g/10,0]. Black and orange dots mark the SFZM and bulk
nonzero modes. Black arrow shows the trajectory of the SFZM
when the cavity loss in the boundary is gradually compensated by
an increasing pump. (b) Spatial profiles of the SFZM and the
circled bulk mode in (a). Shaded area shows the bulk.

We note that this SFZM is the only eigenstate of the
whole system that has a finite amplitude at the boundary
site. The other eigenstates are simply given by all the N
eigenstates of the bulk, with a zero amplitude at the
boundary [see, for example, the dashed line in Fig. 2(b)],
due to the prohibited couplings from the bulk to the
boundary. These properties facilitate the observation of
the SFZM in an active device (e.g., a laser [21]), which
exhibits mode(s) with the smallest loss or highest gain.
Here by including sufficient loss in the bulk, whether
uniform or distributed, all the nonzero modes in the whole
system are in the lower half of the complex energy plane
[Fig. 2(a)]. As a result, only the SFZM is on the real axis
and similar spectrally to a BIC, especially as the density of
states increases with the bulk size.

This picture, of course, is simplified because we have not
included the cavity loss in the boundary cavity itself.
However, even when we consider a decay rate in this
cavity comparable to the bulk modes (x/g = —0.05i), the
SFZM can be observed directly as the only lasing mode in
this system. This behavior is shown by the black arrow in
Fig. 2(a): We pump only this cavity that reduces its
effective cavity decay, i.e., k = x —y. When the gain y
compensates this cavity loss, i.e., y = k, the SFZM reach its
lasing threshold, i.e., Im[E] = 0, while the bulk modes do
not move upward at all towards their respective lasing
thresholds in this process, since their wave functions
do not extend into the boundary cavity where the gain is
applied.

As another example, consider a three-cavity boundary

0g0 0k
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FIG. 3. Same as Fig. 2 but with a three-site boundary and

another arbitrary bulk. k = g, K = —g, and ¢ = 2g are used.

The boundary zero mode is given by ¢; = ¢; = [1,0, —1]7,
and we have required asymmetric couplings k' # k to meet
condition 2 (instead of unidirectional couplings as in the
previous example). In this case, the SFZM is no longer
the only state with finite amplitudes in the boundary [see
Fig. 3(b)], but we can still achieve a BIC-like spectrum [see
Fig. 3(a)] by including sufficient loss in the bulk. This
SFZM can then again be observed as the single lasing mode
when only the optical cavities in the boundary are pumped
to compensate for their losses, which makes the imaginary
parts of the diagonal elements in H, back to zero. Some of
the bulk nonzero modes, due to their finite amplitudes in
the boundary cavities, experience reduced losses in this
process [see the short vertical black lines in Fig. 3(a)], but
they are still far away from their lasing thresholds (i.e., the
real axis) [48].

In both examples above, we have used non-Hermitian
couplings to couple an effectively Hermitian boundary to
the bulk. Below we present another example where the
bulk-boundary couplings are Hermitian but the boundary
itself is non-Hermitian instead. Consider the schematic
shown in Fig. 1(b), where the boundary consists of two
cavities at zero frequency. These two cavities have opposite
gain and loss (i.e., £ig) and are connected by couplings of
the same strength (4-ig). Together with the last cavity in the
bulk, we denote the Hamiltonian of this subsystem by

H;=| t —ig ig |, (3)
t —ig ig

where wy is the mode frequency in the last bulk cavity (V)
and 7 is its coupling to the two boundary cavities. Since the
latter are not coupled to other cavities in the bulk, the rest of
U and V are all zero. Conditions 0-2 are again satisfied,
with the boundary zero mode given by the left and right
eigenstates ¢! = [1,—1], ¢; = [1,1]7. Clearly, H, (and H)
has a vanished determinant due to the repeated rows, and in
turn, also an SFZM. We note that although in this case the
boundary zero mode is at the exceptional point (EP) [51] of
H,, this condition is not required by Hermitian bulk-
boundary couplings [48]. Furthermore, even when the
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FIG. 4. (a) Schematics of a breathing Kagome lattice, with the
non-Hermitian boundary attached. (b),(c) Band diagram without
and with the boundary. g = ¢ = 1, and 20 rows of cavities are
used. (d) Symmetric higher-order corner state in the topological
gap at t,/t, = 0.4 without the boundary. (e),(f) The wave
functions of the SFZMs at t,/t, = 0.4, 2.5 [open and closed
dots in (c)]. 10 rows of cavities are used in (d)—(f) for a compact
illustration.

boundary zero mode is at an EP, the formed SFZM is
not an EP in general, as can be easily checked using H,
given above.

Below we exemplify SFZMs in this configuration using
a triangular “breathing” Kagome lattice [52—54], which has
alternate nearest-neighbor couplings 7, , [see Fig. 4(a)]
that enable topologically protected higher-order corner
states. Because of the lack of chiral symmetry and the
finite length of their tails, they couple and have energies
slightly off £ = 0, represented by the thick red line in the
band diagram when ¢,/1, < 0.5 [Fig. 4(b)]. A trivial band
gap also opens for 7,/t, 2 1.

With the non-Hermitian boundary attached, it is
expected that some defect modes will appear, and they
are shown as the dashed lines in Fig. 4(c). Most noticeably
though, now there is a zero mode independent of the value
of ¢, (thin red line), whether it is in the topological gap on
the left [Fig. 4(e)], through the bulk band in the middle, or

FIG. 5. (a) Wave function of a near-zero mode without the
boundary and with disorder. On-site and coupling disorders are
uniform in the ranges [-0.1, 0.1]z, and [-0.4, 0.4]7,, respectively.
(b) Corresponding SFZM with the boundary at the top.

in the trivial gap on the right [Fig. 4(f)]. In addition, unlike
the original midgap states whose energies are shifted from
zero [e.g., E = 0.01¢, for the symmetric one in Fig. 4(d) at
t,/t, = 0.4], this SFZM is exactly at E = 0. In other
words, this process of boundary nucleation in fact restores
the zeroness of one topological corner state, with (essen-
tially) the same wave function in the bulk [55].

To further stress that the energy of the SFZM is robust
against any disorder in the bulk, we now introduce both on-
site and coupling disorders to the bulk and focus on the
configuration with r,/t, = 0.4. Before we attach the
boundary, the mode closest to £ =0 in one disorder
realization is shown in Fig. 5(a). It resembles the corner
state shown in Fig. 4(d) without disorder because of its
topological protection, with the highest amplitude now at
just one corner due to the break of the C;, symmetry. Its
energy E/t, = —0.0365 is negative, partly due to mixing
with a hexagon plaquette right beneath the apex, which
corresponds to one localized compact state in the flat band
at E = —(1, + t,,) in the absence of disorder. Despite these
changes to its wave function, the attached boundary again
restores the zeroness of this disorder-shifted state, while
maintaining its spatial profile in the bulk [Fig. 5(b)]. The
latter occurs because this disordered state is mainly
propagated by the bulk Green’s function [see Eq. (2)] from
the top corner, with or without the boundary cluster, and the
energy difference in these two cases is small.

In summary, we have introduced an approach to realize
zero modes in lattice models that do not rely on any
symmetry or topology of the bulk. They originate from
boundary with zero mode(s) that serve as the nucleus of
these SFZMs, and they are robust against disorder of any
kind and strength in the bulk Hamiltonian. While certain
perturbations in the bulk can also change bulk-boundary
couplings [48] beyond the lattice model, the system is
much less error-prone with the addition of the proposed
boundary cluster, given the potentially vast number of
lattice sites in the bulk versus the small numbers of
boundary sites and bulk-boundary couplings we utilize.
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We have exemplified these SFEZMs using both arbitrary
and structured bulks. Though not shown in the latter, these
SFZMs can be observed as the single lasing mode on an
active photonic lattice. We also note that if there are n
boundary zero modes with distinct wave functions, then
each can serve as a nucleus and form an SFZM, leading to a
maximum of n SFZMs simultaneously. We have also
excluded bulks with preexisting zero mode(s) because they
may leave the system without an SFZM [48], unlike the
near-zero modes in Figs. 4 and 5. Our finding provides a
different perspective on zero modes in both mundane and
topological systems, which can also be used to restore the
zero energy of coupling or disorder-shifted topological
states.
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