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A B S T R A C T

We propose to combine the Carleman estimate and the Newton method to solve an inverse
problem for nonlinear parabolic equations from lateral boundary data. The stability of this
inverse problem for determination of initial condition is conditionally logarithmic. Hence,
numerical results due to the conventional least squares optimization might not be reliable. In
order to enhance the stability, we approximate this problem by truncating the high frequency
terms of the Fourier series that represents the solution to the governing equation. By this, we
derive a system of nonlinear elliptic PDEs whose solution consists of Fourier coefficients of the
solution to the parabolic governing equation. We solve this system by the Carleman-Newton
method. The Carleman-Newton method is a newly developed algorithm to solve nonlinear PDEs.
The strength of the Carleman-Newton method includes (1) no good initial guess is required and
(2) the computational cost is not expensive. These features are rigorously proved. Having the
solutions to this system in hand, we can directly compute the solution to the proposed inverse
problem. Some numerical examples are displayed.

1. Introduction

This paper belongs to a series of works to solve inverse problems for nonlinear partial differential equations [1–3]. In particular,
we aim to globally solve an inverse problem for reconstruction of the initial condition for a nonlinear parabolic equation. By
‘‘globally’’, we mean that our algorithm does not require a priori knowledge of the true solution. This feature is a significant strength
of our method in comparison to the widely-used methods based on least square optimizations, which are locally convergent. Let
d g 2 be the spatial dimension. Let F : Rd ùRùRd ô R be a function in the class C1(⌦) and T be a positive number. Consider the
following initial value problem of nonlinear parabolic equation of a function u À H1(⌦ ù (0, T ))

T
ut = �u + F (x, u,(u) (x, t) À Rd ù (0, T ),
u(x, 0) = p(x) x À Rd .

(1.1)

Here, p represents the initial state of the solution. Let ⌦ be an open and bounded domain of Rd . Assume that ⌦ has a smooth
boundary )⌦. Denote by ⌦T and )⌦T the set ⌦ ù (0, T ) and )⌦ ù (0, T ) respectively. We are interested in the problem of computing
the initial condition p from the measurement of lateral information of the function u. More precisely, we solve the following problem.
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Problem 1.1. Given the lateral data
g0(x, t) = u(x, t) and g1(x, t) = )⌫u(x, t) (1.2)

for all (x, t) À )⌦T , determine the function p(x) for x À ⌦.

We only solve Problem 1.1 under the condition that (1.1) is uniquely solvable and its solution is bounded in C1.
More precisely, we impose the following condition on solution to (1.1).

Assumption 1.1. Assume the function p and the nonlinearity F are such that

u(x, t) + (u(x, t) fM (1.3)

for a.e. (x, t) À ⌦T and for some number M depending only on p and F .

In general, due to the presence of the nonlinearity F , the well-posedness and regularity results for (1.1) are not guaranteed. In
other words, Assumption 1.1 might not hold true. Some special conditions on F and p should be imposed. For completeness, we
provide here a set of conditions that guarantees that (1.1) has a unique and bounded solution. Assume that p(x) is in H2+↵(Rd ) for
some ↵ À [0, 1 + 4_d]. Assume further for all x À Rd , t À [0, T ], s À R, and ⇠ À Rd ,

F (x, s, ⇠) f C max
�
(1 + ⇠)2, 1 + s� (1.4)

for some positive constant C. Then, due to Theorem 6.1 in [4, Chapter 5, §6] and Theorem 2.1 in [4, Chapter 5, §2], problem (1.1)
has a unique solution with a bounded C1 norm. In this circumstance, Assumption 1.1 holds.

Definition 1.1. Fix a nonlinearity F . Denote by P the set of all functions p À H1(⌦) such that Assumption 1.1 holds true.

In practice, the solution p(x), x À ⌦, to Problem 1.1 might represent the initial distribution of the temperature or the initial stage
of the pollutant. Therefore, computing p is important in many real-world applications, e.g., determination of the spatially distributed
temperature inside a solid from the boundary measurement of the heat and heat flux in the time domain [5]; determining the level
of pollutant on the surface of the rivers or lakes [6]; effective monitoring the heat conduction processes in steel industries, glass
and polymer-forming and nuclear power station [7]. When F is of the form u(1 * u) (or, more generally F (u) = u(1 * u↵) for some
↵ > 0), the parabolic equation in (1.1) becomes the high dimensional version of the well-known Fisher (or Fisher-Kolmogorov)
equation [8]. We note that, such a nonlinearity F does not satisfy condition (1.4), however, it does not lead to any difficulty
in numerical computations. Recall that the Fisher equation occurs quite naturally in mathematical models studied in ecology,
physiology, combustion, crystallization, plasma physics, and in general phase transition problems, see [8]. Thus, the problem of
determining the initial conditions of parabolic equations is of great practical significance and has been studied in the literature
intensively. The uniqueness of Problem 1.1 for linear model was proved in [9], while the logarithmic stability results were rigorously
proved in [5,7]. Due to the presence of the nonlinear term F (x, u,(u) in (1.1), the uniqueness and stability of Problem 1.1 will need
to be proved, especially when the nonlinearity F might growth faster than the nonlinearity in [5,7]. This task can be done by
combining Theorem 1 in [5] and a truncation technique. Since the proof is not complicated, we present this result here in this
paper for the convenience of the reader.

Regarding the constructive method, the widely used methods to solve inverse problems like Problem 1.1 are based on
optimization. In such methods, one typically optimizes a cost functional based on the problem. A prototypical example of a cost
functional is

J (p) =  
T

0  )⌦
⌅L(p)(x, t) * g0(x, t)2 + )⌫L(p)(x, t) * g1(x, t)2

⇧
d�(x)dt + a regularization term

where L(p) = u is the solution to (1.1). The minimizer of the cost functional serves as the computed solution to the inverse problem.
Using this technique is challenging because the inverse problem to find the initial conditions for parabolic equations is severely
ill-posed. The known stability is conditionally logarithmic (see [5, Theorem 1] and [7]), which is weaker than logarithmic. As a
result, the reliability of numerical solutions due to these approaches might not be guaranteed, especially, in the case when significant
noise is involved in the measured data. Another challenge in solving Problem 1.1 is the presence of the nonlinear term F (x, u,(u),
making the cost functional nonconvex. The cost functional might have multiple local minima and ravines. Hence, in general, to
solve Problem 1.1, a good initial guess of the true solution is necessary. On the other hand, the expensive computational cost is
another drawback of the optimization-based methods. The new numerical approach proposed in this paper relaxes all the drawbacks
above. It is applicable to the data containing up to 20% of (multiplicative) noise. We name it Carleman-Newton method because it
is suggested by Carleman estimates and the well-know Newton method in solving nonlinear equations.

We draw the reader’s attention to the Carleman contraction principle, see [1,10–12] to solve related problems to Problem 1.1.
Like the proposed Carleman-Newton method, the Carleman contraction principle is very powerful since it can quickly solve nonlinear
inverse problems without requesting a good initial guess. The new point of our paper in comparison to the cited publications above
is that we allow F to depend on (u and we study the case when data contains noise. The case when F depends on (u arises from
the field of Hamilton–Jacobi equations of the form ut = ✏�u+F (x, u,(u), 0 < ✏ ~ 1 where the term ✏�u serves as the viscosity term.
Hamilton–Jacobi equations are important in many fields; e.g. game theory and light propagation. Therefore, this gradient dependent
case is worth studying. Rather than using the Carleman contraction principle as in [1,10–12], we develop the Carleman-Newton
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method to solve the inverse problem under consideration. The Carleman-Newton method in this paper is stronger than the one
introduced in [13]. In fact, we can prove a Lipschitz stability result of our proposed method with respect to the H2 norm while the
convergence in the cited papers above, as well as [13], is with respect to the H1 norm. Another new point of this paper is that in
the current paper, we study the noise analysis, which was missing in [13].

As mentioned, the best stability result for Problem 1.1 is conditionally logarithmic. Therefore, solving it is extremely challenging.
To overcome this difficulty, we propose to solve Problem 1.1 in the Fourier domain truncating all high frequency components.
The truncation serves as a regularization step to decrease the ill-posedness of the problem, making it numerically solvable. More
precisely, we derive a system of elliptic PDEs whose solution consists of a finite number of the Fourier coefficients of the solution
to the parabolic equation (1.1). We solve the above system to compute the function u(x, t), which is then evaluated at t = 0 to
give a solution to the inverse problem. The numerical solution of the nonlinear system is found by applying the Carleman-Newton
method devised in [13]. To begin the iterative process, we find the initial solution by solving the system obtained by removing the
nonlinearity in the term F , see Section 6 for details. Furthermore, we consider a suitable linearization of the non-linear system.
At every step of the iteration, solution is updated by solving the resulting (approximate) linear system. By using a new Carleman
estimate, we are able to show that the iterations converge exponentially fast. Furthermore, we also provide numerical evidence for
the fast convergence of the proposed method.

Some papers closely related to the current one are [1,11,12,14]. We will like to note that the coefficient inverse problem for
parabolic equations is also of great interest to the research community, and we draw the reader’s attention to [15–21] for important
numerical methods and results. In addition, the problem of determining the initial conditions for the hyperbolic equation is also of
great interest as it arises in many real-world applications, such as, in thermo- and photo-acoustic tomography. We refer the reader
to some important works in this field [22–24]. Applying the Fourier transform, one can reduce the problem of reconstructing the
initial conditions for hyperbolic equations to some inverse source problems for the Helmholtz equation, see [25–29] for some recent
results.

The paper is organized as follows. In Section 2, we prove the uniqueness and the conditionally logarithmic stability results for
Problem 1.1. In Section 3, we introduce an approximation context of Problem 1.1. In Section 4, we recall the Carleman-Newton
method in [13]. In Section 5, we prove our main theorem about the convergence of the Carleman-Newton method. In Section 6,
we present some numerical examples. Section 7 is for concluding remarks.

2. The uniqueness of Problem 1.1

In this section, we study the unique determination of the function p from the given data. We have the following theorem.

Theorem 2.1. Let p1 and p2 be in the set P . Let u1 and u2 be solutions to (1.1) with p being replaced by p1 and p2 respectively. Let M1
and M2 be the numbers in the right hand side of (1.3) that correspond to p1 and p2 respectively. Let B = max{M1,M2}. Then, there exists
a constant C such that for all � À (0, 2), we can find a number ✏0 > 0 such that

Òp1 * p2ÒL2(⌦) f C
� ln[ B✏0e ]

Ò((p1 * p2)ÒL2(⌦) + C
⇠ B
✏0

⇡�
e2*� (2.1)

where

e = Òu1 * u2ÒH1()⌦T ) + Ò)⌫ (u1 * u2)ÒL2()⌦T ). (2.2)

represents the difference of two data corresponding to two functions p1 and p2.

Corollary 2.1 (The Uniqueness of Problem 1.1). It follows from (2.1) that by letting e tend to 0, we obtain p1 = p2, which is basically the
uniqueness of Problem 1.1.

Proof of Theorem 2.1. Let �B : ⌦ ù R ù Rd ô [0, 1] be a cut off function in the class Cÿ that satisfies

�B(x, s,p) =
<
1 0 f s + p f B
0 s + p > 2B. (2.3)

Define

FB(x, s,p) = �B(x, s,p)F (x, s,p), for all (x, s,p) À ⌦ ù R ù Rd . (2.4)

Since Assumption 1.1 holds true for p1 and p2, we have

ui(x, t) + (ui(x, t) fMi f B

for (x, t) À ⌦T , i À {1, 2}. Hence, both u1 and u2 satisfy the ‘‘cut off’’ parabolic equation

ut = �u + FB(x, u,(u) for all (x, t) À ⌦T . (2.5)

Since FB is smooth and has compact support, it is Lipschitz. There exists a constant CF ,B depending only on F and B such that

FB(x, s1,p1) * FB(x, s2,p2) f CF ,B(s1 * s2 + p1 * p2) (2.6)
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for all x À ⌦, s1, s2 À R and p1,p2 À Rd . Define h = u1 * u2. Due to (2.5) and (2.6),

ht(x, t) * �h(x, t) = FB(x, u1(x, t),(u1(x, t)) * FB(x, u2(x, t),(u2(x, t))
f CF ,B(h(x, t) + (h(x, t)) (2.7)

for all (x, t) À ⌦T . It is obvious that

e = ÒhÒH1()⌦T ) + Ò)⌫hÒL2()⌦T ).

Fix � À (0, 2). Using (2.7) and applying Theorem 1 in [5] for the function h, we can find a constant C > 0 and a number ✏0 À (0, 1)
such that

Òh(x, 0)ÒL2(⌦) f C
� ln[ B✏0e ]

Ò(h(x, 0)ÒL2(⌦) + C
⇠ B
✏0

⇡�
e2*� . (2.8)

Estimate (2.1) is a direct consequence of (2.8). ∏

Remark 2.1. Although estimate (2.1) guarantees the uniqueness of Problem 1.1 (see Corollary 2.1), it does not lead to a reliable
numerical approach to solve Problem 1.1. In fact, due to the presence of the term Ò((p1*p2)ÒL2(⌦) in the right hand side of (2.1), we
cannot obtain a stability result for Problem 1.1. Therefore, methods to solve Problem 1.1 based on optimization might not provide
reliable solutions.

By Remark 2.1, rather than employing the optimization approach, to numerically solve Problem 1.1, we propose to regularize
and approximate the inverse problem by truncating the high frequency components of the solution to (1.1). This idea was introduced
in [30]. Then, it was successfully used in many projects of our research group; see e.g. [1,31,32]. Details will be given in the next
section.

3. A numerical method to solve Problem 1.1

Our method to stably solve Problem 1.1 consists of two stages. In stage 1, following the truncation technique in [1], we derive
a ‘‘Garlekin-Fourier’’ approximation model of (1.1). In stage 2, we solve that approximate model by the Carleman-Newton method,
first introduced in [13]. Stage 1 is presented in this section while we will develop a numerical method for Stage 2 in Sections 4 and
5.

Motivated by [1] and Remark 2.1, we solve Problem 1.1 by establishing a system of quasi-linear partial differential equations
with Cauchy boundary data. This system will be solved later by the method proposed in [13]. Let { n}ng1 be an orthonormal basis
of L2(0, T ). We approximate the solution u to (1.1) by truncating its Fourier expansion with respect to the basis { n}ng1 as follows

u(x, t) =
ÿ…
n=1

un(x) n(t) Ù
N…
n=1

un(x) n(t) (3.1)

for (x, t) À ⌦T where

un(x) =  
T

0
u(x, t) n(t)dt (3.2)

for some ‘‘cut off’’ number N . The cut-off number N will be numerically chosen later, see Section 6.1 and an illustration in Fig. 1.
We also approximate ut(x, t), (x, t) À ⌦T , by

ut(x, t) Ù
N…
n=1

un(x) ®
n(t). (3.3)

In (3.3), we need to choose the basis { n}ng1 such that  n is in the class C1([0, T ]) for all n g 1. This requirement is also helpful later
in (5.7) in which  n(0), n g 1, is needed to be well-defined. From now on, we assume that the approximations in (3.1) and (3.3) are
valid in the sense that the resulting errors are sufficiently small. This assumption is acceptable in computation. It somewhat similar
to the main principle in Galerkin approximation, in which we approximate the function u(x, �) by using a finite number of elements
in the orthonormal basis { n}ng1 of L2(0, T ). Plugging (3.1) and (3.3) into (1.1), we obtain

N…
n=1

un(x) ®
n(t) =

N…
n=1

�un(x) n(t) + F
⇠
x,

N…
n=1

un(x) n(t),
N…
n=1

(un(x) n(t)
⇡

(3.4)

for all (x, t) À ⌦T . For each m À {1,… ,N}, we multiply the function  m to both sides of (3.4) and the integrate the resulting equation
with respect to t. We obtain

N…
n=1

un(x) 
T

0
 ®
n(t) m(t)dt =

N…
n=1

�un(x) 
T

0
 n(t) m(t)dt

+ 
T

0
F
⇠
x,

N…
n=1

un(x) n(t),
N…
n=1

(un(x) n(t)
⇡
 m(t)dt (3.5)
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for all x À ⌦. For m, n À {1,… ,N} and x À ⌦, define

smn =  
T

0
 ®
n(t) m(t)dt, (3.6)

fm(x,U ,(U ) =  
T

0
F
⇠
x,

N…
n=1

un(x) n(t),
N…
n=1

(un(x) n(t)
⇡
 m(t)dt (3.7)

where U = (u1, u2,… , uN )T. Denote by S and F (x,U ,(U ) the matrix (smn)Nm,n=1 and the vector (fm(x,U ,(U ))Nm=1 respectively. Since

 
T

0
 n(t) m(t) =

<
1 m = n,
0 m ë n,

it follows from (3.5) that

�U * SU + F (x,U ,(U ) = 0 for all x À ⌦. (3.8)

On the other hand, due to (1.2) and (3.2), we have for all m À {1,… ,N} and x À )⌦,

um(x) =  
T

0
g0(x, t) m(t)dt, (3.9)

)um(x) =  
T

0
g1(x, t) m(t)dt. (3.10)

For x À )⌦, define

G0(x) =
⇠
 

T

0
g0(x, t) m(t)dt

⇡N
m=1

, (3.11)

G1(x) =
⇠
 

T

0
g1(x, t) m(t)dt

⇡N
m=1

. (3.12)

It follows from (3.8)–(3.12), the vector U satisfies the Cauchy like boundary problem

h
n
l
nj

�U * SU + F (x,U ,(U ) = 0 x À ⌦,

U (x) = G0(x) x À )⌦,

)⌫U (x) = G1(x) x À )⌦.

(3.13)

In the next section, we combine a Carleman estimate and the Newton method to compute a solution U to (3.13). Once this step
is done, Problem 1.1 is solved. In fact, having U in hand, we can compute u(x, t) via (3.1). The desired function p(x) is given by
u(x, 0) for all x À ⌦.

Remark 3.1. Due to the cut-off in (3.1), system (3.13) is not exact. We called it an approximation model. As mentioned in
Remark 2.1, directly solving the inverse problem with the optimization method may be problematic since the stability is just
conditionally logarithmic. To deal with this challenge, by a step of approximation, we derive a system of elliptic equations with
Cauchy data. The stability in solving elliptic equations with given full boundary data promises the success of our numerical study.
This cut-off technique was used to solve several different types of inverse problems; see e.g. [1,2,19,20,31,33–35]. In contrast,
proving the convergence of (3.13) as N ô ÿ is extremely challenging. Studying the behavior of (3.13) as N ô ÿ is out of the
scope of the paper.

4. The Carleman-Newton method

Currently, there are at least three different Carleman based methods to solve (3.13):

1. The convexification method. The main idea of the convexification method to solve (3.13) is to minimize the Carleman weighted
functional

U ≠  ⌦ W�(x)�U * SU + F (x,U ,(U )2dx + a regularization term (4.1)

subject to the given boundary conditions for some Carleman weight function W�(x). With suitable choice of W�(x) and the
regularization term, one can prove that the functional in (4.1) is strictly convex in any bounded set of Hs(⌦)N where
s > ‰d_2Â + 2. The strict convexity implies that the minimizer is unique. Two other important theoretical results for the
convexification method are (1) the minimizer can be obtained by using the conventional gradient descent method and the
(2) the minimizer is an approximation of the desired solution to (3.13). The original idea about the convexification method
is introduced in [36]. See [31,32,37,38] for follow-up results. Although effective in delivering good numerical solutions, the
convexification method is computationally expensive. We therefore do not employ the convexification method in this paper.
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2. The Carleman contraction method. The main idea of the contraction method to solve (3.13) is to begin with an arbitrary function
U0 À H2(⌦)N . Then, assuming that Un is known, we compute Un+1 by solving

h
n
l
nj

�Un+1 * SUn+1 + F (x,Un,(Un) = 0 x À ⌦,

Un+1(x) = G0(x) x À )⌦,

)⌫Un+1(x) = G1(x) x À )⌦.

(4.2)

by using the quasi-reversibility method [39] combining with a suitable Carleman weight function as in [1]. One can follow
the arguments in [1,40] to prove the convergence of the constructed sequence {Un}ng0 to the true solution to (3.13). For
more details, see the following papers [1,2,12,40]. This method was used to solve an inverse problem similar to Problem 1.1.
We therefore do not repeat it in this paper.

3. The Carleman method combined with linearization [13]. We name this method Carleman-Newton method. Details of this
method will be given in this section.

All three methods above are effective in solving quasi-linear PDEs. In this paper, we use method 3. We choose method 3 because it
is quite powerful and has been successfully applied it to compute viscosity solutions to a large class of Hamilton–Jacobi equations
in [13].

4.1. A heuristic approach based on the Newton method

To express the idea behind numerical method 3, we recall here the well-known Newton method to solve nonlinear algebraic
equation f (x) = 0 for x À R. In applying this method, one begins by choosing an initial guess for the solution, say x0. Let l0 be the
tangent line to the graph of the function f at x0. One finds the intersection of l0 to the x * axis, called x1. Let l1 be the tangent
line to the graph of the function f at x1. One finds the intersection of l1 to the x-axis, called x2. Continuing this procedure, one can
obtain a sequence {xn}ng0. Under the usual convexity assumptions on f , this sequence converges to the solution to the equation
f (x) = 0. We combine the idea of the Newton method and a Carleman estimate to solve nonlinear PDEs of the form (3.13). It is
important to mention that this combination is fairly powerful in the sense that the convergence of the constructed sequence to the
true solution to (3.13) is guaranteed regardless of the distance from initial guess to the true solution.

We solve (3.13) in the strong sense. That means we compute a vector valued function U in H2(⌦)N that is the ‘‘best fit’’ (3.13).
In the analysis, we will use the notation

H =
�
V À H2(⌦)N : V )⌦ = G0 and )⌫V )⌦ = G1

�
. (4.3)

and

H0 =
�
V À H2(⌦)N : V )⌦ = 0 and )⌫V )⌦ = 0

�
. (4.4)

The set H is called the set of admissible solutions and the set H0 is clearly a closed subspace of H2(⌦)N . Define the operator

L(U ) = �U * SU + F (x,U ,(U ) (4.5)

for all vector valued function U À H . Heuristically, we want to solve the equation LU = 0 in H . Let U0 be an arbitrary initial
function U0 À H . Based on the Newton method, we set U1 = U0 + h1 À H where h1 solves

h
n
l
nj

L(U0) + �h1 * Sh1 +DF (x,U0,(U0)(h1) = 0 x À ⌦,

h1 = 0 x À )⌦,

)⌫h1 = 0 x À )⌦.

(4.6)

In (4.6),

DF (x, b,A)(h1) =
⇠
(bfm(x, b,A) � h1 + (Afm(x, b,A) : (h1

⇡N
m=1

(4.7)

for all b À RN and A À RNùd . In (4.7), the notations ‘‘ � ’’ and ‘‘ : ’’ are the usual inner products in RN and in RNùd respectively.
Repeating the process replacing U0 by U1, we can find U2 À H and then a sequence {Un}ng0 À H . More precisely, for each n g 1,
we define Un = Un*1 + hn where hn solves

h
n
l
nj

L(Un*1) + �hn * Shn +DF (x,Un*1,(Un*1)(hn) = 0 x À ⌦,

hn = 0 x À )⌦,

)⌫hn = 0 x À )⌦.

(4.8)

Due to both Dirichlet and Neumann boundary conditions, both problems (4.6) and (4.8) are over-determined. They might not
have a solution. However, this difficulty does not lead to any error in our analysis. The main reason is that we only need to find
their ‘‘best fit’’ solutions by the Carleman quasi-reversibility method. See Section 4.2 for a brief discussion about the Carleman
quasi-reversibility method.
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Remark 4.1. In general, since we do not impose any special structure for the nonlinearity F , the vector F has no special structure,
either. In this general case, there is no guarantee for the convergence of the sequence {Un}ng0 to the true solution to (3.13), especially
when U0 is far away from the true solution to (3.13). However, we have figured out in [13] that when we employ the Carleman
quasi-reversibility method to solve (4.8) to construct the sequence {Un}ng0, the desired convergence is true. In Section 5, we improve
convergence result in [13] in the sense that the new convergence is in the H2 norm while the similar convergence in [13] is with
respect to the H1 norm. On the other hand, in this paper we study a noise analysis, which was not done in [13]. Since this method
is based on a Carleman estimate and is inspired by the Newton method, we name our approach the Carleman-Newton method.

4.2. A Carleman estimate and the Carleman quasi-reversibility method

We recall a Carleman estimate, which serves as an important tool to prove the convergence of the Carleman Newton method to
solve Eq. (3.13). We have the following lemma.

Lemma 4.1 (Carleman Estimate, See [1]). Let x0 be a point in Rd ‰⌦ such that r(x) = x * x0 > 1 for all x À ⌦. Let b > maxxÀ⌦ r(x) be
a fixed constant. There exist positive constants �0 depending only on b, x0, ⌦ and d such that for all function v À C2(⌦) satisfying

v(x) = )⌫v(x) = 0 for all x À )⌦,

the following estimate holds true

 ⌦ e2�b
*� r� (x)�v(x)2dx g C

��7_4b*�  ⌦ e2�b
*� r� (x)r2� (x)D2v(x)2dx

+C�3�4b*3�  ⌦ r2� (x)e2�b
*� r� v(x)2dx

+C��1_2b*�  ⌦ e2�b
*� r� (x)(v(x)2dx (4.9)

for � g �0 and � g �0. Here, D2v = (vxixj )
d
i,j=1 is the Hessian matrix of v, �0 = �0(b,⌦, d, x0) > 1 is a positive number with �0b*� ∏ 1 and

C = C(b,⌦, d, x0) > 1 is a constant. These numbers depend only on listed parameters.

Corollary 4.1. Recall �0 and �0 as in Lemma 4.1. Fix � = �0 and let the constant C depend on x0, ⌦, d and �. There exists a constant
�0 depending only on x0, ⌦, d and � such that for all function v À H2(⌦) with

v(x) = )⌫v(x) = 0 on )⌦,

we have

 ⌦ e2�b
*� r� (x)�v(x)2dx g C�*1  ⌦ e2�b

*� r� (x)D2v(x)2dx

+C�3  ⌦ e2�b
*� r� v(x)2dx + C� ⌦ e2�b

*� r� (x)(v(x)2dx (4.10)

for all � g �0.

We will now explain the Carleman quasi-reversibility method to solve (4.8). Let �0 and �0 be as in Corollary 4.1. Fix � = �0. For
� > �0, given a vector valued function Un*1 À H , n g 1, we say that

hn = argmin
'ÀH0

⌧
 ⌦ e2�b

*� r� (x)ÛÛÛ�' * S' +DF (x,Un*1,(Un*1)(') + L(Un*1)ÛÛÛ
2
dx

+✏ÒUn*1 + 'Ò2H2(⌦)N

�
(4.11)

is the solution to (4.8) due to the Carleman quasi-reversibility method. The number ✏ À (0, 1) is called the regularization parameter.
The presence of the Carleman weight function e2�b*� r*� (x) is the key for us to establish the convergence result in this paper. The
important role of this Carleman weight function suggests the name Carleman quasi-reversibility method. The quasi-reversibility
method without the presence of a Carleman weight function was first introduced in [39]. The convergence of the quasi-reversibility
method as ✏ ô 0 was proved in [19].

Remark 4.2. The unique minimizer in (4.11) can be proved by using the same arguments as in [12, Theorem 4.1]. For brevity, we
do not repeat the proof here. By using the Carleman quasi-reversibility method, we do not find the exact solution to (4.8). Rather,
we compute the best fit solution hn. This feature is important because (4.8) might not have a solution. When (4.8) does have a
solution, the reader can find the proof of the convergence of this best fit solution to the true solution as ✏ ô 0 in [19].

Inspired by the heuristic arguments in Section 4.1, we propose Algorithm 1 to numerically solve (3.13). The main aim of this
section is to prove the efficiency of this algorithm.
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Algorithm 1 The procedure to compute the numerical solution to (3.13)
1: Choose a regularized parameter 0 < ✏ ~ 1, a Carleman weight function e2�b*� r� , and a threshold number 0 < 0 ~ 1.
2: Choose an initial solution U0 À H .
3: Set n = 1.
4: Let Un = Un*1 + hn where hn À H0 is the minimizer of Jn*1 : H0 ô R defined as

Jn*1(') =  ⌦ e2�b
*� r� (x)ÛÛÛ�' * S' +DF (x,Un*1,(Un*1)(') + L(Un*1)ÛÛÛ

2
dx + ✏ÒUn*1 + 'Ò2H2(⌦)

for all ' À H0.
5: if ÒUn * Un*1ÒLÿ > 0 then
6: Reassign n := n + 1.
7: Go back to step 4.
8: else
9: Set the computed solution U comp = Un.
10: end if

5. The global convergence of the Carleman-Newton method

The following result is one of the main theorems of this paper. We first consider the case when F has a finite C2 norm. If
ÒFÒC2 = ÿ, we can apply the truncating technique in the proof of Theorem 2.1 to reduce the problem to the former case, see
Remark 5.4 for details.

In this section, we consider the case when the observed data of Problem 1.1 are noisy. As a result, the values of the boundary
data of (3.13) are not exact. Denote by G�0 and G

�
1 the noisy data with the noise level �. It is worth mentioning that Eq. (3.13) with

G0 and G1 replaced by G�0 and G
�
1 , respectively, might not have a solution. Let G

<
0 and G

<
1 be the noiseless versions of G0 and G1

respectively. By noise level �, we mean that

inf
�E À H2(⌦)N : E)⌦ = G�0 * G

<
0 and )⌫E)⌦ = G�1 * G

<
1
� f �. (5.1)

Due to (5.1), there is a vector valued error function E satisfying
h
n
l
nj

ÒEÒH2(⌦) < 2�,
E)⌦ = G�0 * G

<
0 ,

)⌫E)⌦ = G�1 * G
<
1 .

(5.2)

Remark 5.1. The existence of the error function E in (5.2) implies that the noise must be the restriction of a vector valued function
in H2(⌦) onto )⌦. Hence, the noise must be in H3_2()⌦). This assumption might not be realistic since the noise in measurement
might be not smooth. There are several techniques to smooth out the noise; for e.g., the Tikhonov method and the b-spline method.
However, in this paper, we do not have to apply one of these techniques to obtain numerical results. The proposed method works
with nonsmooth data. That means, the Carleman-Newton method is stronger than what we can rigorously prove.

Given the noisy data, the set of admissible solutions H , defined in (4.3), becomes

H� =
�
V À H2(⌦)N : V )⌦ = G�0 and )⌫V )⌦ = G�1

�
. (5.3)

Since G<
0 and G

<
1 contain no noise, we can assume that

h
n
l
nj

�U< * SU< + F (x,U<,(U<) = 0 x À ⌦,

U<(x) = G<
0(x) x À )⌦,

)⌫U<(x) = G<
1(x) x À )⌦

(5.4)

has a unique solution U<.

Theorem 5.1. Assume that the function p is in the class P and assume that ÒFÒC2 < ÿ. Let U0 be a vector valued function in H� . Let
{Un}ng0 be the sequence constructed in Algorithm 1. Assume that (5.4) has a unique solution U<. For � > �0 and � = �0 as in Corollary 4.1,
we have

 ⌦ e2�b
*� r� (x)��*2D2(Un * U<)2 + Un * U<2 + ((Un * U<)2�dx

f ⇠C
�

⇡n+1
 ⌦ e�b

*� r� (x)��*2D2(U0 * U<)2 + U0 * U<2 + ((U0 * U<)2�dx

+
⇠C
�

⇡n+1
 ⌦ e�b

*� r� (x)��*2D2E2 + E2 + (E2�dx
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+ C_�
1 * C_�

⌧
 ⌦ e2�b

*� r� (x)ÛÛÛ�E * SEÛÛÛ
2
dx + ✏ÒEÒ2

H2(⌦)N + ✏ÒU<Ò2
H2(⌦)N

�
(5.5)

where C is a constant depending only on b, ⌦, d and x0.

Corollary 5.1. Fix � > �0 such that ✓ = C_� À (0, 1). It follows from (5.5) that

ÒUn * U<Ò2
H2(⌦)N f ✓n+1ÒU0 * U<Ò2

H2(⌦)N + C✓
1 * ✓ (�

2 + ✏ÒU<Ò2
H2(⌦)N ). (5.6)

Hence, the sequence {Un}ng0 strongly converges to U< in the H2 norm regardless of the initial distance from U0 to U<. The error caused by
the noise and the regularization technique is O(� +

˘
✏).

Estimate (5.6) guarantees the convergence of Algorithm 1.

Corollary 5.2. Let U comp = Un where n is as in Step 9 of Algorithm 1. Write U comp = (ucomp
1 ,… , ucomp

N )T and U< = (u<1 ,… , u<N )T. Define

pcomp(x) =
N…
m=1

ucomp
m (x) m(0) and p<(x) =

N…
m=1

u<m(x) m(0) (5.7)

for all x À ⌦. Due to (5.6), we have

Òpcomp * p<Ò2
H2(⌦)N f C✓n+1ÒU0 * U<Ò2

H2(⌦)N + C✓
1 * ✓ (�

2 + ✏ÒU<Ò2
H2(⌦)N ). (5.8)

Remark 5.2. Due to (5.8), the convergence of the method is O(✓n) as nô ÿ, which is exponentially fast. Hence, the computational
cost is not expensive. On the other hand, the error in computation is O(� +

˘
✏) as (�, ✏) ô (0, 0). This error estimate is the key

difference of Theorem 5.1 with the main result in [13].

Remark 5.3. The proof of Theorem 5.1 is similar to that of [13, Theorem 4.1] with suitable modifications. These modifications
are to improve the quality of the convergence. In fact, the new convergence is with respect to the H2 norm while the convergence
in [13, Theorem 4.1] is with respect to the H1 norm. Moreover, no noise analysis was done in [13, Theorem 4.1] while the Lipschitz
stability with respect to the noise is shown in (5.6).

Proof of Theorem 5.1. Fix n g 1. Since hn defined in Step 4 of Algorithm 1 is the minimizer of Jn*1 in H0, by the variational
principle, the Fréchet derivative DJn*1(hn)(') vanishes for all ' À H0. We have

 ⌦ e2�b
*� r� (x)⌅�hn * Shn +DF (x,Un*1,(Un*1)(hn) + L(Un*1)⇧� ⌅ �' * S'

+DF (x,Un*1,(Un*1)(')
⇧
dx + ✏ÍUn*1 + hn,'ÎH2(⌦)N = 0 (5.9)

for all ' À H0. Due to the definition of Un in Step 4 of Algorithm 1, we have hn = Un * Un*1. This, together with the definition of
the operator L in (4.5) and the identity (5.9), gives

 ⌦ e2�b
*� r� (x)⌅�Un * SUn + F (x,Un*1,(Un*1) +DF (x,Un*1,(Un*1)(Un * Un*1)

⇧

�
⌅
�' * S' +DF (x,Un*1,(Un*1)(')

⇧
dx + ✏ÍUn,'ÎH2(⌦)N = 0 (5.10)

for all ' À H0. On the other hand, since U< is a solution to (5.4), we have

 ⌦ e2�b
*� r� (x)⌅�U< * SU< + F (x,U<,(U<)

⇧
�
⌅
�' * S' +DF (x,Un*1,(Un*1)(')

⇧
dx = 0 (5.11)

for all ' À H0. Combining (5.10) and (5.11), we obtain

 ⌦ e2�b
*� r� (x)

⌧
�(Un * U<) * S(Un * U<)

+F (x,Un*1,(Un*1) +DF (x,Un*1,(Un*1)(Un * Un*1) * F (x,U<,(U<)
�

�
⌧
�' * S' +DF (x,Un*1,(Un*1)(')

�
dx + ✏ÍUn,'ÎH2(⌦)N = 0. (5.12)

Let 'i = Ui * U< * E À H0 for all i g 1 where E is the vector in (5.2). Using the test function ' = 'n in (5.12) gives

 ⌦ e2�b
*� r� (x)

⌧
�('n + E) * S('n + E) +DF (x,Un*1,(Un*1)('n) + F (x,Un*1,(Un*1)

*F (x,U<,(U<) *DF (x,Un*1,(Un*1)('n*1)
�
�
⌧
�'n * S'n +DF (x,Un*1,(Un*1)('n)

�
dx

+✏Í'n + E + U<,'nÎH2(⌦)N = 0. (5.13)
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It follows from (5.13) that

 ⌦ e2�b
*� r� (x)ÛÛÛ�'n * S'n +DF (x,Un*1,(Un*1)('n)

ÛÛÛ
2
dx + ✏Ò'nÒ2H2(⌦)N

+✏ÍE ,'nÎH2(⌦)N + ✏ÍU<,'nÎH2(⌦)N =  ⌦ e2�b
*� r� (x)

⌧ F (x,U<,(U<) * F (x,Un*1,(Un*1)

+DF (x,Un*1,(Un*1)('n*1)
�
�
⌧
�'n * S'n +DF (x,Un*1,(Un*1)('n)

�
dx

+ ⌦ e2�b
*� r� (x)

⌧
�E * SE� � ⌧�'n * S'n +DF (x,Un*1,(Un*1)('n)

�
dx. (5.14)

Using the inequality ab f a2 + 1
4 b

2 and (5.14), we have

 ⌦ e2�b
*� r� (x)ÛÛÛ�'n * S'n +DF (x,Un*1,(Un*1)('n)

ÛÛÛ
2
dx + ✏Ò'nÒ2H2(⌦)N + ✏ÍE ,'nÎH2(⌦)N

+✏ÍU<,'nÎH2(⌦)N f C  ⌦ e2�b
*� r� (x)ÛÛÛF (x,U<,(U<) * F (x,Un*1,(Un*1)

+DF (x,Un*1,(Un*1)('n*1)
ÛÛÛ
2
dx + C  ⌦ e2�b

*� r� (x)ÛÛÛ�E * SEÛÛÛ
2
dx. (5.15)

Recall the inequality (a * b)2 g 1
2a

2 * b2. We have

 ⌦ e�b
*� r� (x)ÛÛÛ�'n * S'n +DF (x,Un*1,(Un*1)('n)

ÛÛÛ
2
dx

g 1
2  ⌦ e�b

*� r� (x)ÛÛÛ�'n
ÛÛÛ
2
dx *  ⌦ e�b

*� r� (x)ÛÛÛ * S'n +DF (x,Un*1,(Un*1)('n)
ÛÛÛ
2
dx. (5.16)

On the other hand, since ÒFÒC2 < ÿ, we can find a constant C such that
ÛÛÛF (x,U<,(U<) * F (x,Un*1,(Un*1) +DF (x,Un*1,(Un*1)('n*1)

ÛÛÛ
f C

�'n*1 + ('n*1
�
, (5.17)

and
ÛÛÛ * S'n +DF (x,Un*1,(Un*1)('n)

ÛÛÛ f C
�'n + ('n

�
(5.18)

for all x À ⌦. Combining (5.15)–(5.18) and the inequality ab f 1
2a

2 + 1
2 b

2 gives

 ⌦ e2�b
*� r� (x)ÛÛÛ�'n

ÛÛÛ
2
dx + ✏Ò'nÒ2H2(⌦)N f C  ⌦ e�b

*� r� (x)('n2 + ('n2 + 'n*12

+('n*12)dx + C  ⌦ e2�b
*� r� (x)ÛÛÛ�E * SEÛÛÛ

2
dx

+C✏ÒUÒ2
H2(⌦)2 + C✏ÒEÒ2H2(⌦)N + C✏Ò'nÒ2H2(⌦)N ,

which implies

 ⌦ e2�b
*� r� (x)ÛÛÛ�'n

ÛÛÛ
2
dx f C  ⌦ e2�b

*� r� (x)('n2 + ('n2 + 'n*12 + ('n*12)dx

+C  ⌦ e2�b
*� r� (x)ÛÛÛ�E * SEÛÛÛ

2
dx + C✏ÒEÒ2

H2(⌦)N + C✏ÒU<Ò2
H2(⌦)N . (5.19)

We now apply the Carleman estimate in Corollary 4.1. Using (4.10) for each component of the vector 'n, we have

 ⌦ e2�b
*� r� (x)�'n2dx g C�*1  ⌦ e2�b

*� r� (x)D2'n
2dx

+C�3  ⌦ e2�b
*� r� 'n2dx + C� ⌦ e2�b

*� r� (x)('n2dx (5.20)

Using (5.19) and (5.20), we have

�*1  ⌦ e2�b
*� r� (x)D2'n

2dx + �3  ⌦ e2�b
*� r� 'n2dx + � ⌦ e2�b

*� r� (x)('n2dx

f C  ⌦ e�b
*� r� (x)('n2 + ('n2 + 'n*12 + ('n*12)dx

+C  ⌦ e2�b
*� r� (x)ÛÛÛ�E * SEÛÛÛ

2
dx + C✏ÒEÒ2

H2(⌦)N + C✏ÒU<Ò2
H2(⌦)N . (5.21)

Since � is large, we can write (5.21) as

�*1  ⌦ e2�b
*� r� (x)D2'n

2dx + �3  ⌦ e2�b
*� r� 'n2dx + � ⌦ e2�b

*� r� (x)('n2dx
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f C  ⌦ e�b
*� r� (x)('n*12 + ('n*12)dx + C  ⌦ e2�b

*� r� (x)ÛÛÛ�E * SEÛÛÛ
2
dx

+C✏ÒEÒ2
H2(⌦)N + C✏ÒU<Ò2

H2(⌦)N . (5.22)

It follows from (5.22) that

 ⌦ e2�b
*� r� (x)��*2D2'n

2 + 'n2 + ('n2
�
dx

f C
�  ⌦ e�b

*� r� (x)�'n*12 + ('n*12
�
dx + 1

2� ✏ÒUÒ2
H2(⌦)2

f C
�  ⌦ e�b

*� r� (x)��*2D2'n*1
2 + 'n*12 + ('n*12

�
dx

+ C
�

⌧
 ⌦ e2�b

*� r� (x)ÛÛÛ�E * SEÛÛÛ
2
dx + ✏ÒEÒ2

H2(⌦)N + ✏ÒU<Ò2
H2(⌦)N

�
. (5.23)

It follows from (5.23) and by induction, we have

 ⌦ e2�b
*� r� (x)��*2D2'n

2 + 'n2 + ('n2
�
dx

f ⇠C
�

⇡n+1
 ⌦ e�b

*� r� (x)��*2D2'0
2 + '02 + ('02

�
dx

+ C_�
1 * C_�

⌧
 ⌦ e2�b

*� r� (x)ÛÛÛ�E * SEÛÛÛ
2
dx + ✏ÒEÒ2

H2(⌦)N + ✏ÒU<Ò2
H2(⌦)N

�
(5.24)

Recall 'i = Ui * U< * E , i g 0. Using (5.24) and inequalities (a * b)2 g 1
2a

2 * b2 and (a + b)2 f 2a2 + 2b2, we obtain (5.5). ∏

Theorem 5.1 and Corollary 5.2 suggest Algorithm 2 to solve Problem 1.1 under consideration. The convergence of Algorithm 2
is guaranteed by estimate (5.8).

Algorithm 2 The procedure to compute the numerical solution to Problem 1.1

1: Choose a basis { n}ng1 of L2(0, T ). Choose a cut-off number N > 0. See Section 6.1 and Fig. 1 for a reasonable choice of N .
2: Compute the vector valued functions G0 and G1 as in (3.11) and (3.12).
3: Apply Algorithm 1 to compute a numerical solution U comp to (3.13).
4: Reconstruct the function pcomp by the first formula in (5.7).

Remark 5.4 (The Case When ÒFÒC2 = ÿ). The condition ÒFÒC2 < ÿ in Theorem 5.1 is too strong. It can be relaxed in the context
when the forward problem has a unique and bounded solution as in Assumption 1.1. Assume that p< À P , see Definition 1.1 for the
definition of P . Then, we can apply the truncation technique as in the proof of Theorem 2.1 to compute U<. Since solution of the
forward problem is bounded as in Assumption 1.1, it follows from (3.2) that the true solution U< to (5.4) is bounded, namely,

U< + (U< < B

for some number B. Define �B as in (2.3) and FB = �BF . Clearly, the vector valued function U< satisfies

h
n
l
nj

�U< * SU< + FB(x,U<,(U<) = 0 x À ⌦,

U<(x) = G<
0(x) x À )⌦,

)⌫U<(x) = G<
1(x) x À )⌦

(5.25)

Since FB has a bounded C2 norm, we can apply Algorithm 1 for (5.25) to compute U<.

Remark 5.5. In practice, the boundary data G0 and G1 of (3.13) are always perturbed by noise. This implies that we need to solve
(3.13) when G0 and G1 are substituted by G�0 and G

�
1 , respectively. Under this circumstance, problem (3.13) might have no solution.

However, the approximating sequence {Un}ng0 is always present, given that it is defined via the unique minimizer of a strictly
convex functional in (4.11). The strength of Theorem 5.1 and its consequence (5.6) is the convergence of {Un}ng0 to a vector-valued
function in a neighborhood of the true solution U< with a computed error O(� +

˘
✏), see Remark 5.2.

6. Numerical simulations

In this section, we will illustrate the theoretical results by some numerical examples. For simplicity, we implement Algorithms
1 and 2 in 2D and in the finite difference scheme. The set ⌦ is the square (*R,R)2 where R = 1. We solve the forward problem on
a larger domain ⌦1 := (*R1,R1)2 where R1 = 6 We will use the notation x = (x, y) to represent points on ⌦. We arrange a uniform
N1

x ùN1
x grid, named as G, on ⌦1 as follows

G1 = �
(xi, yj ) : xi = *R1 + (i * 1)hx , yj = *R1 + (j * 1)hx , i, j = 1,… ,N1

x
�



Journal of Computational and Applied Mathematics 445 (2024) 115827

12

A. Abhishek et al.

Fig. 1. The graphs of the functions eN (x, t), (x, t) À � ù (0, T ). In the figure, the x-axis runs from *1 to 1 and the y-axis is from 0 to 1.5. It is evident that when
N = 35, the error function eN is sufficiently small, say ÒeNÒLÿ < 5 ù 10*2.

where N1
x = 240 and hx = 2R1_(N1

x * 1). We also choose T = 1.5 and divide the interval [0, T ] uniformly into Nt = 3000
uniform subintervals. For the forward data generation, we solve (1.1) by the explicit method. We then collect the (noiseless) data
g0(x, t) = u(x, t) and g1(x, t) = )⌫u(x, t) on the lateral boundary )⌦T . Noise is then added to the data using the following expression:

g�i (x, t) = gi(x, t)[1 + �(*1 + 2⌘(x, t))], i = 0, 1 (6.1)

where � denotes the noise level and ⌘(x, t) generates uniformly distributed numbers in the interval [*1, 1]. The implementation of
Algorithm 2 to reconstruct the function p from the noisy data is given in the next subsection. We would also like to remark here
that the inversion algorithm has been implemented on the uniform grid G = G1 „⌦.
6.1. Implementation

We now describe the steps to implement Algorithm 2 which enable us to reconstruct the function p in Problem 1.1.
Step 1: Following the arguments laid out in Section 3, (also see [1, Section 5.2]), in Step 1 of Algorithm 2, we choose the special

basis functions { n}ng1 of the space L2(0, T ), which was originally introduced by Klibanov in [30]. We recall that Klibanov’s basis is
obtained by applying the Gram–Schmidt orthogonalization process for the sequence of functions {�n(t)}ng1 where �n(t) = tn*1et*T _2.

Remark 6.1. A comparative advantage of this special basis over traditional trigonometric Fourier basis is that the first term of the
trigonometric basis being a constant, vanishes on taking the derivatives. As such, there will be no contribution from the coefficient
of the first basis function on the left hand side of Eq. (3.4), i.e. the information from u1(x) ®

1(t) is lost, while this information is
retained if we use Klibanov’s basis.

To choose the cut off number N , we take the data u(x, t) for x À � and t À (0, T ) where

� = {x = (x, y = R) : x f R} œ )⌦.

We then compute the function

eN (x, t) = u(x, t) *
N…
n=1

un(x) n(t)

where un is as in (3.2). This step of choosing N by evaluating eN for different values of N is illustrated in Fig. 1. Here, u solves
Eq. (1.1) with p given as in test 2 below.

Step 2: Once the basis terms { m}Nm=1 are found out, one can easily evaluate the integrals given by Eqs. (3.9) and (3.10). The
computation of the (vector) data term as per Eqs. (3.11) and (3.12) is straight forward.

Step 3: The implementation of Step 3 of Algorithm 2 or equivalently Algorithm 1 follows closely from that in [13]. In Step
1 of Algorithm 1, we need to choose the artificial parameters. The parameters for the Carleman weight function used in step 4
of Algorithm 1 are given by r = x * x0 where x0 = (0, 1.5), b = 5, � = 40 and � = 10. The regularization parameter used was
✏ = 10*7. These values are chosen by a manual trial and error process. We use test 1 below as the reference test. We modify
✏, �, b, �, x0 until we obtain a satisfactory solution with noiseless data. These parameters are used for all other tests with all
noise levels. In Step 2 of Algorithm 1, we compute the initial term of the sequence {Un}ng0, i.e., U0. This function is found by
solving the problem (3.13) wherein we use only the linear part of the term F (x,U ,(U ) denoted by Flin(U ). The (vector) termFlin(U ) is computed from (3.7) by evaluating for each m in the following way: Suppose the term F (x, u,(u) appearing in the
integral in (3.7) is given by F (x, u,(u) = Flin(u) + non-linear terms. For example, for the first test given in the next subsection,
F (x, u,(u) = u(1 * u) = u

Ǿ̈
linear part

* u2
Ǿ̈

non-linear part

. Similarly, for the second test, F (x, u,(u) = u
Ǿ̈

linearpart

+
˘
((u2 + 1)
≠́≠≠≠≠Ø≠≠≠≠≠̈
non*linearpart

. Thus for both the
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Fig. 2. Test 1. (a) contains the true phantom ptrue. (b) is the reconstruction of the phantom from noisy data after 6 iterations. (c) shows the convergence of the
method by plotting ÒUn * Un*1Òÿ against the number of iterations n. Noise level used in this experiment was 20%.

tests, we take Flin(u) = u which is then used in (3.7) in place of F (x, u,(u) to get Flin(U ). Now to generate the initial guess we solve
the following system:

h
n
l
nj

�U * SU + Flin(U ) = 0 x À ⌦,
U (x) = G0(x) x À )⌦,
)⌫U (x) = G1(x) x À )⌦.

(6.2)

Next, the minimizer of the corresponding (strictly) convex linear functional Jn(�) appearing in Step 4 of algorithm 1 can be found by
solving the corresponding Normal equation. For brevity, we do not describe the finite difference implementation of various operators
appearing in the expression for the Normal equation corresponding to Jn(�) as these are similar to those discussed elsewhere, see
e.g. [1, section 5.3]. We briefly mention that the matrix forms of all such operators is necessarily stored as sparse matrices. Solution
to this Normal equation is then found by using the MATLAB function ‘lsqlin’ which in turn is the minimizer of the functional Jn(�)
on H0. We let the iterative algorithm 1 run for six iterations, i.e. n = 6 as it was observed that ÒU6 * U5ÒLÿ was small enough in
all numerical experiments.

Step 4: From the computed solution Ucomp = U6, one can reconstruct the function pcomp as described in Step 4 of Algorithm 2.

6.2. Numerical examples

Test 1. The true function p is given by:

ptrue =
T

8, if x2 + (y * 0.32) f 0.452

0, otherwise

The nonlinearity considered in this case is given by:

F (x, u,(u) = u(1 * u).

We notice that the position of the inclusion is correctly identified. Furthermore, the maximal computed value in the reconstruc-
tion at 20% noise level is 6.89 for a relative error of 13.87% in the reconstruction.

Test 2. The true initial term p is given by:

ptrue =

h
n
n
n
l
n
n
nj

12, if (x * 0.5)2 + (y * 0.5)2 f 0.352

10, if (x + 0.5)2 + (y + 0.5)2 f 0.352

14, if (x * 0.5)2 + (y + 0.5)2 f 0.352

9, if (x * 0.5)2 + (y * 0.5)2 f 0.352

0, otherwise

The nonlinearity considered in this case is given by:

F (x, u,(u) = u +
˘
((u2 + 1).

Again, we notice, that the positions of all four inclusions are correctly identified. The maximal computed values in the
reconstructions of the four inclusions at 20% noise level are 10.66 (up, right), 12.01 (down, right), 7.33 (up, left) and 8.60 (down,
left), for relative errors of 11.16%, 13.57%, 8.37% and 14% respectively.
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Fig. 3. Test 2. (a) contains the true phantom ptrue. (b) is the reconstruction of the phantom from noisy data after 6 iterations. (c) shows the convergence of the
method by plotting ÒUn * Un*1Òÿ against the number of iterations n. Noise level used in this experiment was 20%.

Fig. 4. The true phantom (dashed, black), reconstruction at 5% noise level (red, -*) and reconstruction at 20% noise level (solid, blue) on the vertical line
passing through x = 0.5 in phantom for test 2. The horizontal axis in the plot refers to the y-axis of the phantom and the vertical axis gives the pixel values.
Reconstruction at 20% noise level is only very slightly worse than that at 5% noise level.

Remark 6.2. In our numerical experiments, we tried several noise levels from 1% to 20% with the quality of reconstruction not
deteriorating by any appreciable amount at higher levels of noise. We have provided the reconstructions at 20% noise level here.
This shows a very high degree of the robustness of our reconstructions compared to the noise-level. This fact is also borne out by
Fig. 4 in which we have compared the quality of reconstruction across the pixels lying on the vertical line passing through x = 0.5
for the phantom in Test 2.

We recall two main facts to interpret the strong stability of our method with respect to noise, see (6.1). The first one is that we
have truncated all high frequency components of the data while the lower frequency components are not sensitive with the noise.
The second fact is that we have reduced the inverse problem to the problem of solving elliptic equations given boundary data, which
is known to be stable. The stability is guaranteed by Theorem 5.1, Corollary 5.1 and the estimate (5.6).

It is remarkable that in the tests above, the value of the function p inside the inclusions is high. Hence, the locally convergent
approaches based on optimization, which require a good initial guess of the true solution, might not be applicable. Unlike this, our
methods provide reliable solutions.

Remark 6.3. The computational cost of the Carleman-Newton method is not expensive. In fact, we only need to compute solutions
to 6 linear systems to obtain the desired solutions in the tests above. We observe that the computation cost of the Carleman-Newton
method is compatible with (similar to) the speed of the Carleman contraction method in [1,12]. Both methods numerically converge
only after a few iterations. This can be illustrated by the similarity of Figs. 2(c)–3(c) and [1, Figure 2e]. Furthermore, these two
methods considerably outpace the Carleman convexification method from [13]. The computational Carleman convexification method
is expensive since it involves a heavy procedure of minimizing a cost functional with a small second derivative using the gradient
descent method.
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7. Concluding remarks

In this paper, we introduce an iterative method to solve an inverse problem of determining the initial conditions for nonlinear
parabolic equations. This method can be considered as the combination of Carleman estimates and the Newton method in solving
nonlinear equations. In the first step, we truncate the Fourier series of the solution to the governing equation to derive a system
of nonlinear elliptic equations. The computed solution to this system yields directly the solution for the inverse problem. In order
to compute such a solution, we repeatedly solve the linearization of this system. By using a Carleman estimate, we prove the
convergence of the sequence of obtained solutions to the desired solution. The strength of our numerical method is that it quickly
provides a good approximation to the true solution. Furthermore, it does not require any knowledge of the true source function.
This means a good initial guess is not necessary.

The method was implemented in finite difference. Numerical results were shown.

Data availability

Data will be made available on request.
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