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Editorial on the Research Topic

Deciphering population neuronal dynamics: from theories to experiments

Animals experience sensory stimuli and exhibit behaviors with many timescales.

Therefore, their brains must integrate information across such temporal scales. Groups of

neurons also exhibit diverse temporal and spatial scales of coordinated population activity,

which may enable multiscale brain function.

Various approaches are used to investigate the many temporal and spatial scales of

neuronal population activity, even in the absence of external stimuli. One traditional

approach is to examine activity in particular frequency bands which represents synchronized

oscillations across the population. For instance, gamma frequency oscillations (30–100Hz)

have been observed in multiple brain regions and have been correlated with processes such

as sensory perception (e.g., Womelsdorf et al., 2012) or attention and working memory

(e.g., Lundqvist et al., 2018). These oscillations are hypothesized to play an essential role

in promoting long-range communication among different brain regions and to facilitate

cognitive functions (Fries, 2009).

Another approach to studying multiscale neural activity is motivated by the criticality

hypothesis, which posits that a neuronal network poised at a tipping point between order

(synchrony) and disorder (asynchrony) exhibits diverse spatiotemporal scales of activity

(Plenz et al., 2021; Beggs, 2022). At criticality, temporal and spatial activation distributions

have power law scaling. Previous work suggests that the diverse timescales of criticality are

directly linked to the diverse timescales of behavior (Stringer et al., 2019; Jones et al., 2023)

and integration of information across brain regions (Fagerholm et al., 2016).

Characterizingmultiscale population dynamics and studying their mechanisms is crucial

to understanding how the brain processes multiscale sensory information and generates

multiscale behavior. The articles in this issue report progress toward this goal: they

investigate neuronal dynamics, at specific or multiple scales, with and without sensory

stimuli, and propose theoretical frameworks for modeling these dynamics.
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The work of Mariani et al. examined whether multi-unit

spiking events and field potentials in the cortex of anesthetized rats

follow power law scaling. Recently it was realized that there are

multiple caveats with judging whether such experimental data truly

exhibits criticality. The present study takes on board many of the

precautions that were proposed. The work concludes that under

the investigated conditions the neuronal activity is consistent with

the criticality hypothesis. Interestingly, the authors reproduced

the recently reported finding that the ratio between spatial and

temporal exponents in spiking avalanches is∼1.28 (Fontenele et al.,

2019). Additionally, the authors found brief synchronization of the

network after an external sensory stimulus. The origins of power

law scaling in cortical networks and the modulation of cortical

dynamics by sensory stimuli remain open questions for further

theoretical work.

What are the network mechanisms that may explain such

dynamical activities observed at the levels of individual neurons

and neuronal populations? It is known that balanced excitation

(E) and inhibition (I) within a network is crucial for efficient

information processing. For a single neuron, balanced E/I

means that excitatory and inhibitory synaptic inputs closely

track each other, leading to irregular firing. At the population

level, the E/I balance is usually manifested as stable activity

propagation among different neurons, avoiding either run-away

or diminishing activities and leading to rich collective behaviors

such as avalanche dynamics and oscillations. However, it is unclear

how asynchronous firings of individual neurons can coexist with

synchronous population activities in an E/I balanced state. Liang

et al. built a neuronal network model that exhibits irregular firing,

oscillations, and critical avalanche dynamics through changes in

only the inhibitory synaptic decay timescale. Importantly, through

a mean-field analysis, the authors showed that such an E/I

balance is characterized by a stable state associated with a Hopf

bifurcation process. These results provide mechanistic insight into

how the interaction between excitation and inhibition in a network

will determine microscopic and macroscopic dynamics, thereby

affecting information processing in the brain.

Liang et al. examined how networks of neurons can exhibit

oscillations and other coordinated dynamics. However, properties

of individual neurons may also contribute to such dynamics. In

particular, Li et al. explored an unusual mechanism that could

regulate gamma oscillations, namely the potential role of autapse.

The autapse, or auto-synapse, refers to a synaptic connection of

a neuron onto itself. Autapses have been found in a number of

brain regions, including the cerebral cortex, hippocampus and

striatum (e.g., Tamás et al., 1997; Bekkers, 2003), however, their

functional roles remain a mystery. By modeling excitatory and

inhibitory autapses as excitatory and inhibitory self-feedback loops,

the authors conducted simulation and theoretical analyses to

explore their influence on gamma oscillations. The authors found

that excitatory self-feedback connections promote the generation

of gamma oscillation, while excitatory and inhibitory self-feedback

connections regulate oscillation frequency in a complementary

manner. This work provides new insights into the neuronal basis

of gamma oscillation and suggests a functional role for autapses.

The modeling analyses of Li et al. focused primarily on

neural activity in the absence of sensory stimuli. However,

sensory stimuli also shape neural network dynamics. The work

of Hashemnia et al. explored the similarities and differences

between the temporal dynamics of human EEG and a recurrent

neural network (RNN) model named Deep Speech performing

the same speech recognition task. It examined whether the

success of deep learning methods in recognizing natural human

speech could be attributed to their ability to use time-dependent

features, similar to the mechanisms observed in humans during

speech perception. By presenting identical speech stimuli to

both human listeners and the Deep Speech, the authors found

that units, particularly in the recurrent layer, tracked envelope

fluctuations of the speech signal in a similar way to the EEG

signals measured at frontocentral electrodes. Furthermore, a

Representational Dissimilarity Analysis suggested that both human

EEG and Deep Speech Clustered similarities between sentence

representations in the same way. Uncovering shared informational

architectures in biological brains and artificial neural networks

is important because it helps us understand the computational

principles underlying brain dynamics (Richards et al., 2019; Luczak

et al., 2022).

All these studies integrated experimental findings with

theoretical modeling insights to provide new knowledge on the

structure of neural dynamics. We hope that these results inspire

further research of neural dynamics, including new theories and

experiments to test them.
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