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ARTICLE INFO ABSTRACT

Keywords: RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the
RNA modification core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine,
RNA . and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs
FD::nii;;?fting (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly

modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-
transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an exten-
sive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within
tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while
others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifi-
cations in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in
ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the
importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that
individual ASL modifications can differentially influence discrete steps in the translation pathway. This review
examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading
frame maintenance to ensure the rapid and accurate translation of proteins.

Translation

1. Introduction 1-methyladenosine) incorporated by a single enzyme, to complex ring

additions requiring multiple enzymes to install (e.g. Wybutosine (yW) is

Transfer RNAs (tRNAs) are key adaptor molecules in protein syn-
thesis, shuttling amino acids into the ribosome in an order dictated by
the genetic code. The ability of tRNAs to “read” messenger RNA (mRNA)
blueprints during translation is essential for ensuring that amino acids
are linked together in the correct order to generate functional proteins.
One feature that distinguishes tRNAs from other types of RNA molecules
is the large number and variety of post-transcriptional modifications
enzymatically incorporated into their scaffolds. Typically, 10-20% of
tRNA nucleobases are modified, and the chemical diversity of these
modifications range broadly in complexity from methyl additions (e.g.

added in a 7-step enzymatic pathway) [1]. Given the substantial effort
that biology makes to incorporate and maintain modifications in all
organisms, it is unsurprising that post-transcriptional modifications play
essential roles in tRNA function — affecting their structure, stability,
aminoacylation, and mRNA decoding capabilities [2].

The significance of modifications in tRNAs is underscored by wide-
spread observations that alterations in tRNA modification status dras-
tically impact protein homeostasis [3,4]. This is exemplified during
cellular stress, when changes to the overall modification landscape of
tRNAs can reprogram tRNAs to control selective translation, as well as

Abbreviations: ASL, Anticodon stem loop; aa-tRNAs, amino-acyl tRNAs; tRNAs, transfer RNAs; mRNA, messenger RNA; s°C, 2-thiocytidine; y, pseudouridine;
nem®U, 5-carbamoylmethyluridine; nem’s?, 5-carbamoylmethyl-2-thiouridine; mem®U, 5-methoxycarbonylmethyl-uridine; mem®s®U, 5-methoxycarbonylmethyl-2-
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5-taurinomethyluridine; xm®U, class of position 5 uridine modifications [tm°U, ncm®U, mem®U, mem®s?U, mnm®U, mnm®s?U, emnm®s?U] —; cmo®U, uridine 5-oxy-
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Fig. 1. Modifications to the anticodon stem loop of tRNAs impact ability to recognize codons. (A) Cloverleaf representation of a tRNA, in 5’ to 3’ directionality, with
regions highlighted. (B) Isolated Anticodon stem loop from (A) consisting of nucleotides 26-44 with modifications that commonly impact translation listed. Mod-
ifications discussed in this work are installed at positions 34 (green), 35 (purple), and 37 (yellow) as part of, or just adjacent to, the anticodon which impact direct
codon recognition. Other modifications are installed as part of, or just adjacent to (blue), the stem loop and impact ASL stability. (C) Summaries of numbered
positions modifications and their general effect to the ASL and codon recognition. Modifications at position 34 (green) stabilize the codon N1-, anticodon N34 base
pair and often expand degeneracy. Pseudouridine, ¥, at position 35 (purple) in tRNA™" in eukaryotes allows for UA(A/G) stop codon suppression. Modifications at
position 37 (yellow) serve a dual purpose based on extent of modification (i.e. t°A37 vs ms?t®A37). These can be broadly summarized as stabilizing and decreasing
flexibility of the ASL by preventing intra-loop hydrogen bonding and improving N1-N34 codon-anticodon A-U base pairs via mRNA-tRNA cross-strand stacking, both
of which improve codon recognition. Modifications at the base and adjacent to the stem loop (blue) improve ASL stability and codon recognition by allowing for
additional hydrogen bonding in the stem-loop or ASL, or by introducing base-stacking elements to reduce flexibility — often being integral in formation of the U-turn
motif in tRNAs which improves decoding. ¥ can be installed at one or more of the following positions in the ASL: 32, 38, and/or 39.

perturb overall protein levels [5,6]. There is a wealth of rapidly
expanding literature supporting the notion that the dysregulation of
tRNA modifications has deleterious outcomes on cellular and human
health [1,3,7,8]. Depletion of tRNA modifications and the enzymes that
install them results in a wide range of pathologies, or “RNA modo-
pathies”, including cancers, neurological disorders, and mitochondrial
diseases [9,10]. In light of their central role in maintaining protein
levels, it is important to understand how tRNA modifications impact
protein synthesis at the molecular level. This is a complicated endeavor
given the sheer variety of tRNA modifications reported in biology (>
90). Nonetheless, a clear picture is beginning to emerge about how a
limited subset of modifications influence translation. While chemically
altered nucleosides are incorporated throughout the tRNA structure
(Fig. 1 A), modifications localized in the anticodon stem loop (ASL)
region (Fig. 1B) near the site of mRNA:tRNA interaction are notable
because they are often essential for guaranteeing that the translational
machinery rapidly and faithfully decodes mRNA sequences [11]. In this
review, we discuss the current state of our molecular-level knowledge
surrounding how tRNA ASL modifications influence codon recognition,
translational fidelity, and ribosome reading frame maintenance.

2. tRNA modifications impact codon decoding during
translation

Aminoacylated tRNAs (aa-tRNAs) must faithfully decode mRNA
codon sequences to enable the ribosome to rapidly and accurately

106

synthesize proteins. For the 61 sense codons, there are over 1000 known
tRNA sequences across phylogeny, most of which share a high level of
structural conservation [12]. Despite their shared structures, different
tRNAs and their isoacceptors (tRNAs that encode for the same amino
acid but have different anticodons) typically recognize between one and
four codon sequences. Codon recognition requires the formation of
stable interactions between mRNA nucleobases and the ASL region of
tRNAs. The ability of a given tRNA sequence to interact (or not) with a
variety of codons is partially dictated by the modification status of the
tRNA anti-codon stem loop (ASL; Fig. 1 A,B); as reviewed in [13].

The ASL contains the highest density of modifications within tRNA
sequences. Over 20 varieties of modifications have been reported within
tRNA ASLs, and tRNA positions 32, 34, 37, 38, and 39 are most
commonly modified (Fig. 1). These modifications typically enhance the
loop stability and mRNA recognition, though their identity and role at
each ASL position varies between organisms and tRNA isoacceptors
(Fig. 1B) [2,14,15]. Positions 34 and 37 tend to have the most chemi-
cally complex modifications on tRNAs (and more broadly within RNA
biology), and generally enhance crucial steps in the translation elon-
gation pathway. The significance of these modifications is underscored
by the observation that some of the enzymes that incorporate them are
essential for cell viability — as illustrated by the requirement of human
cells for the tRNA-specific adenosine deaminase 2 (ADAT2)-ADAT3
complex that catalyzes the conversion of adenosine to inosine at position
34 [9]. However, while genetic studies reveal the importance of many
ASL modifications to cellular and human health, our understanding of
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precisely how individual modifications assert their function rely on
molecular-level biochemical and/or structural investigations. Below we
examine how modifications in tRNA ASL regions impact amino acid
addition, codon recognition, and mRNA:tRNA interactions, with an
emphasis on their mechanism of action.

2.1. Position 34 modifications enhance (and sometimes expand) codon
decoding by tRNAs

Position 34 in tRNAs base pairs with the 3rd nucleotide, or “wobble
position” in an mRNA codon (Fig. 1 C). A wider variety of interactions
are permitted between nucleotides at tRNA position 34 and the wobble
base, including several types of non-Watson—Crick base pairs. While
position 34 is not always modified, non-canonical wobble:tRNA in-
teractions are largely facilitated by modifications to all four nucleotides
at tRNA position 34. Uracil bases at this position possess some of the
largest, most diverse modifications and are often essential for mRNA
decoding. For example, at U34, tRNAs are commonly post-
transcriptionally modified with xm®: 5-methylaminomethyl [mnm®]
and 5-methylaminomethyl-2-thio [mnm®s?] in bacteria, and 5-carba-
moylmethyl [nem®], 5-carbamoylmethyl-2-thio [nem’s?], 5-methoxy-
carbonylmethyl [mcm®], 5-methoxycarbonylmethyl-2-thio [mem3s?]
in yeast and higher eukaryotes [16,17]. The xm® class of modifications is
important for tRNA association and accommodation in the ribosome A
site, and cells lacking U34 modifications become dysfunctional as a
consequence of changes in mRNA decoding rates that alter protein ho-
meostasis [10,18,19]. In vitro and cell-based studies of tRNALyS(UUU),
tRNASINUU®) and tRNASMUYUO demonstrate that mem® and s? at U34
stabilize tRNA binding and are indispensable for efficient translation on
mRNAs enriched with AAA, CAA, or GAA codons [19-22]. Although
mem?®, mem®s?, or nem®s? promote the recognition of codons ending in A
or G, these modifications do not appear to be required (at least in yeast)
for U-G wobble decoding of the AAG, CAG, and GAG codons synony-
mous to AAA, CAA and GAA [22-24].

High resolution NMR and X-ray structural studies support
biochemical and cellular findings that tRNAYS (YUY xm>s?U34 modifi-
cations increase the ability of human and E. coli tRNAY*VYY to decode
both AAA and AAG. In humans, tRNAY*(VYY) mem®s? undergoes a tau-
tomerization to form a U-G Watson-Crick like base-pair, while the
mnm®s? in E. coli tRNAWYS(UUY) similarly adopts a zwitterionic form
[25-27]. The s?> modification appears to be particularly important in
tRNA™® decoding as it is involved in hydrogen bonding when pairing
with G (in AAG codon), and increases binding affinity of tRNAMS when
pairing with A (in AAA codon) [27-29]. In addition, kinetic studies of
the translation pathway indicate that tRNAM(UUY) possessing hypo-
modified mem®U34 (lacking s%) have slower EF-Tu rearrangement and
P; release following GTP hydrolysis (~6-fold), exhibit faster dissociation
between the codon-recognition complex (~5-fold), and increase the rate
constant for tRNALYS(UUD rejection (~3-fold). Furthermore, sz-depletion
from tRNAYSUYUY) also modestly impedes ribosome translocation when
compared to the natively mem®s?U34 modified tRNAMYSVUY) [29 30].
Similarly, the s> modification within E. coli tRNA®™(VY® mnm5s21y34
enhances binding affinity to cognate codons (CAA and CAG), and in-
creases the rate constant for GTP hydrolysis by EF-Tu during translation
(~5-fold) [31]. Furthermore, xm?s?U34 modifications are essential in
frameshifting/frame maintenance (see Section 2.1).

U34 modifications beyond xm>U have similar effects, enhancing
weaker mRNA:tRNA basepairing interactions to allow for expanded
codon decoding by a single tRNA species. Examples include one of the
most prevalent U34 modifications in tRNA, cmo°U34, and the mito-
chondrial E. coli tRNAY(UUR tm5U34 modification. Mitochondrial
E. coli tRNA""UY® reads both UUA and UUG codons. UUG (but not
UUA) decoding strictly requires the tm®U34 modification because it
enables the tRNA to form a non-wobble Watson-Crick like U-G base pair
[32-34]. cmo0°U34 also facilitates tRNA interactions with a wide array of
codons, as highlighted by the ability of E. coli and S. typhirium tRNA
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species possessing ¢cmo°U34 to recognize all four codons in their
four-fold degenerate codon boxes (tRNAA, tRNAS", tRNA™, tRNAP™,
tRNA"2. with tRNA'®" having six codon degeneracy), while tRNAs from
other species lacking the modification do not [35,36]. In vitro studies in
E. coli demonstrate the tRNAﬁl;a(CGU) cmo°U34 modification permits the
efficient recognition of both the cognate codon (GCA) and non-cognate
Ala (GCG) codons, with the U-G pairing treated as an almost-correct
base-pair versus a mismatch [28,37,38]. NMR studies further reveal
that cmo°U34 is important to pre-order anticodon stem loops, promot-
ing the binding of E. coli tRNAV23VAS) 14 all four valine codons (instead
of one codon, like the un-modified tRNAV23VA9)  further suggesting
that cmo®U34 is important for both stabilizing and expanding codon
reading [39].

Non-uridine modifications at position 34 can also act to expand the
genetic code. The 5-formylcytidine (f°C34) modification in human
mitochondrial, but not cytosolic, tRNAMUCAY) (hmt- tRNAMEUCAY)) s 5
classic example of this [40]. In the mitochondria, hmtRNAMe(CAD) go_
codes both initiator AUG codons, and incorporates Met amino acids onto
the universal Ile codon, AUA, during elongation with high efficiency;
80% of Met residues installed during elongation occur on AUA codons
[41]. The ability of f°C34-containing hmtRNA to decode codons at both
the ribosome A- and P-sites is accomplished through a prototropic tau-
tomerization. This tautomerization permits the formation of
Watson-Crick f°C-A base-pair, along with the ASL U-turn needed for
A-site binding on AUA codons [42]. Notably, E. coli tRNAJECAD pos-
sesses a modified lysidine (k2C34) at the same position that seemingly
functions in the opposite manner of hmtRNAMUCAY) £5C34 enhancing
Ile-decoding AUA and restricting AUG decoding [43,44]. In conjunction
with t9A37, k2C34 facilitates base stacking to enhance ASL stability and
shifts codon recognition from AUG to AUA [43,45]. The opposing im-
pacts of f°C and k2C modifications at position 34 on codon recognition
demonstrate the significance tRNA ASL nucleotide variations can have
on adaption and the continued evolution of the genetic code.

Inosine (I), formed by the deamination of adenosine, was the first
ASL modification discovered. The addition of inosine into tRNA at po-
sition 34 expands codon degeneracy by enabling tRNAs to productively
decode three different nucleosides (A, U, and C) in an mRNA codon
wobble position [46]. While inosine is widely considered a standard
Crick nucleotide, it has only been reported in two E. coli tRNAs (tRNAJ™
(ACS) and tRNAZ™BACE) and 8 cytosolic eukaryotic tRNAs [1,47,48].
When harboring just a single 134 modification, both E. coli tRNAABACS)
isoacceptors decode all three synonymous codons for arginine (CGU,
CGA, and CGG), while their unmodified versions can only bind CGU
[49]. Notably, tRNALBACY) and (RNASEACDpossess additional modi-
fications at s°C32 and m?A37, respectively, within their ASLs, which
drive them to prefer binding either CGU or CGC binding, and drastically
reduce CGA decoding [13,49,50]. The combinatorial effect of modifi-
cations may help to explain codon bias against CGA in some organisms’
mRNAs as well as begin to highlight the interplay that tRNA modifica-
tions have in the evolution of genetic code degeneracy [51,52]. When
combined, structural and biochemical studies suggest that modifica-
tions, especially those at U34, are imperative in proper ASL formation
and accurate decoding of mRNA (Fig. 1 C).

2.2. Position 37 modifications stabilize codon:anticodon interactions

Nucleotides at position 37 of tRNAs are adjacent to the 3’ of the
anticodon sequence, and not directly involved in making mRNA:tRNA
hydrogen bonding interactions (Fig. 1). Nonetheless, these nucleotides,
which are universally purines, are often modified and can modulate ASL
structure to stabilize codon:anticodon interactions. N6-threonylcarba-
moyladenosine (t°A) is among the modifications most commonly
incorporated into A37 of tRNAs decoding ANN codons in all domains of
life. t5A promotes tRNA binding and decoding of codons in the ribosome
A site, as well as helps to maintain efficient translocation and the ribo-
some reading frame [53,54]. This is accomplished through a network of
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involved in enhancing or suppressing frameshifting when installed at positions 34 or 37. Colored sections of nucleobases and their abbreviations indicate that various
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frameshifting — green: () mnm®(s?)U34, red: mnm®(s?>)U34, blue: mnm®U34 — as shown in (B). (B) Visualization of basepairing between codon and anti-codon
positions during — 1 and + 1 frameshifting. (C) Modifications at position 34 or 37 that enhance or suppress frameshifting. The modification mnm®(s?>)U34 can

enhance or suppress — 1 frameshifting depending on the codon context in bacteria.

intra-ASL hydrogen bonding interactions that enhance base-stacking
and facilitate tRNA:mRNA associations [2,55]. t°A is incorporated
alone or in conjunction with additional chemical moieties, as is the case
in the human tRNAlgyS(UUU) which contains an ms? group (m52t6A37)
[56]. In either form (t6A or msZtGA), this modification stabilizes A-U
basepairs formed between the mRNA and tRNA (A1:U36 or U1:A36) in
the A site by stacking over the codon:anticodon basepair. The stacking
propagates up the 3’ side of the ASL, and promotes an initial cross-strand
stack that increases ASL flexibility. It should be noted that mnm®s?U34
(or mem’s? in eukaryotes) is also required for the correct decoding of
AAA and AAG lysine codons, as binding is weaker with the UUU anti-
codon when either modification is absent [25,57,58]. The ms® modifi-
cation is not present on all t°A37 modifications in tRNAs, however it
appears to improve decoding of AAG by tRNAY*UUY) through dehy-
dration of the ASL as well as the codon-anticodon interaction when it is
installed [27,59,60]. In E. coli and several yeast species, t°A37 can also
be further cyclized to an oxazolone ring (ct°A37) that ensures proper
decoding by generating an additional hydrogen-bond with an A1 codon
nucleotide in addition to the stacking effect the modification provides
[61,62]. While tOA exists in all organisms and the enzymes that incor-
porate it are essential in many bacteria and eukaryotes, the orthologs
function in distinct complexes and it is unclear how cells have evolved
divergent strategies to maintain the modification [58,63].

Isopentyladenosine (i6A) and the (msz)i6A modification are also
frequently incorporated in tRNAs at A37. Much like t®A, i®A modifica-
tions stabilize U1:A36 base pairing during UNN codon decoding [64].
Lack of (ms?)i®A in E. coli tRNAPM(GAY) (RNALeUUUR) (RNACYS(GCA) ang
tRNATYQUA) decreases the ability of tRNAs to recognize their cognate
codons [65-68]. In eukaryotes (msz)i6A37 appears to ensure both ac-
curate decoding in the manners detailed above, as well as the efficiency
of suppressor tRNAs that decode the UGA stop codon [69,70]. Collec-
tively, (ms»)t®A37 and (msz)i6A37 help to maintain ASL structure by
preventing hydrogen bonding between tRNA positions U33 and A37 and
stabilizing the adjacent A-U Watson-Crick base pairs [2].

The other purine, guanosine, is commonly modified to N1-
methylguanosine (m'G), wyosine (imG) and wyosine derivatives at
position 37 in tRNAs. These modifications facilitate proper decoding by
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maintaining mRNA:tRNA interactions in the both the ribosome A and P
sites [71-75]. m'G is especially important for tRNA™, where it stabi-
lizes tRNA:mRNA interactions to increase the speed of peptide bond
formation and modulate ribosome frameshifting [71-74] (see Section
2.2). The more chemically complicated wyosine modification enhances
base stacking with adjacent bases to reduce ASL flexibility, further
supporting the role that modification to purines at position 37 in tRNAs
have in the pre-structuring and decoding capability of the ASL (Fig. 1 C).

2.3. Modifications at further positions within the ASL make diverse
contributions to tRNA maturation and function

Direct structural and biochemical investigations of ASL modifica-
tions at tRNA positions beyond 34 and 37 remain limited, though in-
terest in them is growing. Modifications at these positions can act
synergistically to impact decoding (e.g. s°C32 and 134 of tRNAXC® (see
Section 1.1)), direct the efficient installation of other nearby modifica-
tions (e.g. yeast tRNAS®" where i®A37 appears as a pre- or co-requisite of
successful m>C32 modification) and influence protein homeostasis
[76-78]. Currently, pseudouridine (¥), an isomer of uridine, is among
the most well studied modifications within tRNA ASLs. It can be incor-
porated throughout the ASL, and regardless of its location ¥ appears to
be important for pre-structuring the ASL to enhance tRNA decoding.
Indeed, ¥ modifications frequently incorporated into E. coli and
eukaryotic tRNAs at positions U32, U38 and U39 are involved in
maintaining proper intra-ASL base-pairing and structuring of the
stem-loop (Fig. 1 C) [79,80]. For example, on E. coli tRNAPREGAN) 39
base-pairs with A31, strengthening the stability of stem-loop, while ¥32
forms a bifurcated hydrogen-bond with A38 to stabilize the U-turn motif
and open-loop structure required for efficient decoding at the ribosomal
A-site [27,81-83]. More directly involved in codon recognition, ¥35 in
the tRNATY YA of multiple organisms is indispensable for both UAA
and UAG stop codon suppression [84]. Strikingly, this modification does
not change normal UAU and UAC decoding by tRNATY"C¥A) suggesting
that the purpose of ¥35 is primarily to expand the genetic code. Simi-
larly, ¥35 in tRNA™CGYY) decodes a near cognate lysine codon (AAA)
but does not affect normal asparagine decoding (AAC/U) (Fig. 1 C) [69,
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Table 1 Table 1 (continued)
iSIl:lI;larzltaI(;};l tzi :E;I;\tir;lridlﬁcatlons in the anticodon stem loop of tRNAs and their ASL‘ . Modification  Enzyme(s) Reported 301% n References
Position Frame Maintenance
ASL Modification ~ Enzyme(s) Reported Roles in References and/or Translation
Position E;?;:rl\'ﬂr:::;:é:;e K% Tils® Restricts AUG (Met) [43-45]
decoding of tRNA™®
32 $2C IscS?, TteA®  Prevents 134 wobble  [49,50,121] (©AD in bacteria;
with adenosine and Enhances base-
limits CGA decoding stacking to stabilize
of tRNA} /8060 ASL
v RluA%; H-bonding and U-turn ~ [82,122] Q Tgt™ Suppresses -1 [102,106,
Pus9p® formation for ASL Qtrt1,2¢ frameshifting 130]
stability and 35 W Pus7® Allows tRNATyr(©¥» [69,87]
improved decoding to function as a UAA/
34 nem®U Elp Promotes decoding of ~ [16,17,23] UAG nonsense
complexb NNA and NNG suppressor
codons; Supresses -1 37 t°A TsaC?, Stabilize A-U base [63,106,
frameshifting at split- TsaD? Tcsl-  pairs between N1 of 124]
box codons; Supresses 7° codon and N34 of
+1 frameshifting anitcodon; suppress -1
mem®U Elp Promotes decoding of  [16,17,23, frameshifting;
complex®, NNA and NNG 100,101] ct°A TsaC?, Stabilize A-U base [61,62]
Trm9® codons; Supresses -1 TsaD?, pairs between N1 of
frameshifting at split- TedA% codon and N34 of
box codons; Supresses Ted1,2° anitcodon
+1 frameshifting (msHt°A TsaC?, Stabilize A-U base [27,59,60,
mem®s?U Elp Promotes decoding of  [16,25,57, TsaD?, pairs between N1 of 131]
complex”, NNA and NNG 100,101, TrmO% codon and N34 of
Trm9®, codons; Supresses -1 123,124] Cdkal® anitcodon; Improves
Nes2-6” frameshifting at split- decoding of AAG;
box codons; Supresses stabilizes ASL
+1 frameshifting; i°A MiaA?, Stabilize A-U base [65,67,69,
Increases rates and MiaB? pairs between N1 of 70]
association of ModSpb codon and N34 of
translation anitcodon; Enhance
mnm°U mnmE? Promotes decoding of ~ [25-27,92, decoding of cognate
NNA and NNG 98] codons
codons; Suppresses -1 (ms?)i®A MiaA?, Stabilize A-U base [68,132]
frameshifting at split- MiaB? pairs between N1 of
box codons; codon and N34 of
Suppresses +1 anitcodon; Enhance
frameshifting decoding of cognate
mnm®s*U mnmA?, Promotes decoding of  [27,92,98, codons
mnmE? NNA and NNG 124] (ms?)io®A MiaA?, Stabilize A-U base [120]
codons; Suppresses MiaB?, pairs between N1 of
and enhances -1 MiaE* codon and N34 of
frameshifting at split- anitcodon; Enhance
box codons in a decoding of cognate
sequence dependent codons
manner; Suppresses m'G TrmD?, Suppress -1 [102-104,
+1 frameshifting; Trm5" frameshifting; Supress ~ 116]
Increases rate of GTP +1 frameshifting,
hyrolysis of EF-Tu stabilizes ASL
(¢)mnm®s?U  mnmA?, Promotes decoding of ~ [31,125] imG Trm5”, Suppress -1 [133]
mnmE-G* NNA and NNG Tywlb, frameshifting;
codons; Suppresses -1 Tyw3® Enhance codon
frameshifting at split- recognition; Enhance
box codons; base-stacking to
Suppresses +1 stabilize ASL
frameshifting yWw Trm5P, Suppress -1 [133]
cmo®U CmoA® *; Expands codon [36-38,114, Tyw1-4° frameshifting;
CmoB® * degeneracy - pairing 126] Enhance codon
with NN(U/A/C/G); recognition; Enhance
Pre-orders ASL; base-stacking to
enhances +1 stabilize ASL
frameshifting (in 38 ] TruA?; Increases ASL stability ~ [83,134]
absence of m'G) Deg1® and improves
m°U Mto1¢+# Improves decoding of ~ [34,127] decoding
UUA and UUG codons 39 7] TruA?; H-bonding with [83,124,
1 TadA?; Expands codon [47,48,128, Deg1” position 31 and stem- ~ 134]
ADAT1-3"¢ degeneracy - pairing 129] loop formation for
with NNU, NNA, and ASL stability and
NNG codons improved decoding
°c hmtRNA? # Allows hmtRNAM®! [41,42]

(€A to decode AUG
(Met) and AUA (Ile)

H
a
b

* - Enzyme is part of a pathway for installation that has not been fully elucidated
- Currently unknown what enzymes are involved in installation of modifiation.

- Known enzyme(s) for installation of modification in Escherichia coli

- Known enzyme(s) for installation of modification in Saccharomyces cer-

evisiae
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¢ - Enzyme(s) for installation in eukaryotes
d_ Modifications that have been chemically synthesized

84]. While it is clear that the inclusion of ¥ throughout the ASL is
important for ASL structure and codon recognition, continued mecha-
nistic studies of further modifications (e.g. m3C32, m3U32) will be
required to understand the contributions of stem-loop stability and
modification cross-talk to tRNA decoding.

3. tRNA modifications influence ribosome reading frame
maintenance

Since mRNA codons are made up of 3 nucleotides, there are inher-
ently 3 potential translation reading frames the ribosome can decode
(Fig. 2). tRNA modifications play a critical role in helping the ribosome
to maintain proper reading frame during elongation to ensure the cor-
rect synthesis of gene-encoded protein products. While the translation
machinery is generally exceptional at maintaining reading frame, the
ability to promote frameshifting can be situationally advantageous. Vi-
ruses exemplify this idea by robustly employing programmed shifting to
move the ribosome into different reading frames in order to recognize
alternative start sites and bypass or recode termination sites (Fig. 2)
[85]. mRNA:tRNA interactions are integral to maintaining proper frame,
and it stands to reason that tRNA ASL modifications affect not just
decoding, but also frameshifting.

3.1. ASL modifications modulate — 1 frameshifting events

The ribosome spontaneously slips (shifts) into the — 1 reading frame
once every 10*-10° codons. However, some genes encode sequences that
increase the frequency of — 1 frame slippage to produce multiple pep-
tide products during translation [86,87] (Fig. 2B). These mRNAs typi-
cally possess structural elements, such as a hairpin or pseudoknot, and a
“slippery” heptanucleotide sequence: X XXY YYZ (in which XXX and
YYY are triplets of the same nucleotide, but different codons) [85,88]. In
bacterial systems, a 5’-Shine Dalgarno sequence is also commonly found
near the slippery sequence [86,89]. — 1 frameshifting occurs when the
ribosome has the Y(YY/Z) split-box codon positioned in the A site, and
the tRNA anticodon briefly dissociates before recognizing the new — 1
frame [90,91]. The propensity of a tRNA to dissociate from YYZ and
instead decode the — 1 frame, YYY, can be influenced by the modifi-
cation state of the tRNA’s ASL at positions 34 and 37 (Table 1, Fig. 2 A)
[16,17].

Xm®U34-containing tRNAs typically suppress — 1 frameshifts. For
example, mem®s?U34 modifications in tRNAABUCY) RNACIMUUS) 4nq
tRNASMUYO 1imit — 1 ribosome movements on split-box codons (Y(YY/
7)) (Fig. 2 C) [92-94]. However, in bacteria, mnm®U34 and s?U34
modifications on tRNAYSUUY have different effects depending on the
sequences that they are decoding. These modifications limit — 1 fra-
meshifting in AAA/A split codon boxes, and increase — 1 frameshifting
on analogous AAA/G sequences. These observed differences are due to
the increased affinity of hypomodified tRNA¥*(UU) for U-G binding the
A-site tRNA (Fig. 2 C) [95-97]. This suggests the possibility that one
reason that eukaryotes possess two distinct isoacceptors for lysine co-
dons (tRNAYSUUD) and tRNAMSUUCY could be to limit such frame-
shifting events and more finely control translation fidelity [98].

Further modifications, including wybutosine (yW37)-related modi-
fications, suppress — 1 frameshifts (Fig. 2 C) to different degrees (m'G >
imG > yW) [99-101]. Another complex G34 modification, Queuosine
(Q34), also limits the “shiftiness” of tRNA*", although the effects of Q
depend on the modification status of nucleobases in further tRNA re-
gions. [102,103]. This is in line with observations made on other tRNAs,
which demonstrate that t°A37 can reduce — 1 frameshifting on lysine
codons [104,105]. These data showcase the importance of the interplay
of modifications across the tRNA ASL in frame maintenance.
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3.2. ASL modifications generally suppress + 1 frameshifting events

In addition to moving backwards by a single nucleotide (—1 frame-
shifting), ribosomes can also slip forwards to alter their reading frame
(+1 frameshifting) (Fig. 2B). Bacteria take advantage of this and use + 1
frameshifting to “fix” errors in their DNA sequences. In this process,
specialized tRNAs allow bacteria to overcome insertion and deletion
mutations in their DNA by causing the ribosome to skip ahead along an
mRNA sequence by 1 nucleotide, thereby changing the decoding reading
frame [106,107]. These tRNAs are collectively referred to as “+ 1
frameshift suppressors”, since they suppress DNA mutations. Classic
examples of + 1 frameshift suppressors include tRNAS“fD, a derivative of
tRNASHY(GGO) and tRNASUAC 4 derivative of tRNAP™CED RNASUP and
tRNASU® possess an additional nucleotide inserted in their ASL adja-
cent to position 37, creating a “position 37.5” [108-111]. m!G is
required at 37.5 for tRNASUA® 1o promote + 1 frameshifting, as the
modified m'G37.5 base flips during elongation to weaken mRNA:tRNA
interactions [111,71,74,112-114].

When canonical (i.e. not suppressor) tRNAs are translating, + 1
frameshifting events are generally repressed by ASL modifications
(Fig. 2 C). The removal of modifications from ASL positions 34 and 37
increases + 1 frameshifting in a wide range of tRNAs. This is consitent
with findings (see Sections 1.1, 1.2 and 2.1) that both of these ASL po-
sitions are generally important for tRNA decoding. In particular,
xm°U34 modifications mitigate + 1 frameshifts [113,115,116] (Table 1,
Fig. 2 C). Similarly, other modifications at position 34, such as Q34 in
tRNATY"CUA) 4150 limit + 1 frameshifting [117]. Examples of position 37
modifications that suppress + 1 frameshifts include ms®i0®37 of tRNAPP
(GAA) and m'G37 in tRNAP™ in E. coli, as well as t°A37 and (c)t°A/t°A37
in yeast tRNAs [1,99,104,118,119]. The function of m!G37 is particu-
larly significant, as it is essential for mitigating + 1 and + 2 frameshifts
promoted by a second tRNAP™WUVS®) modification, cmo®U34, in its
absence [112]. This example highlights the interplay of cross-tRNA
modifications in expanding codon recognition (cmo°U34 allows
tRNAPWUED to recognize all 4 proline encoding codons) while guar-
anteeing proper frame maintenance. In general, tRNA ASL modifications
are crucial for ensuring that ribosomes translate the desired mRNA
reading frame during protein synthesis.

4. Conclusions

It is evident that tRNA modifications are vital maintainers of trans-
lation efficiency and fidelity across all domains of life. These modifica-
tions offer nature an atomic-level mechanism to fine-tune protein
synthesis. The potential of a single tRNA modification to have an
outsized physiological impact is tremendous given that modifications
can influence intra- and intercellular signaling, and the incorporation of
further tRNA modifications [77,120]. Gaining a molecular-level picture
of how each of the chemically diverse tRNA modifications impact
translation will be needed to uncover the roles of tRNA modifications in
gene regulation, define the mechanisms of tRNA-mediated drug resis-
tance, and develop therapeutic strategies to treat diseases arising from
the dysregulation of tRNA modifications.
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