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Albedo change from snow algae blooms can
contribute substantially to snow melt in the
North Cascades, USA
Shannon M. Healy1 & Alia L. Khan 1,2✉

Snow algae are ubiquitous in the Pacific Northwest cryosphere in the summer where

snowmelt is an important contribution to regional watersheds. However, less attention has

been given to biological impurities as drivers of snowmelt compared to inorganic light-

absorbing particles. Here we map snow algae near Mt. Baker with a multispectral camera on

an uncrewed aerial vehicle using (1) principal components and (2) spectral indexing. The two

approaches are tested under differing bloom states and verified with coincident algal pigment

and cell count data. During high bloom intensity we found an average instantaneous radiative

forcing of 237Wm−2 with a maximum of 360Wm−2. This translated to 1,508 ± 536m3 of

melted snow water equivalent in the 0.1 km2 basin. These results demonstrate snow algae

contribute to snowmelt at mid-latitudes and the potential for uncrewed autonomous vehicles

to map snow algae over expansive areas of the cryosphere.
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The highly reflective snow surfaces of the world contribute
substantially to maintaining the energy balance of the
earth. Clean snow surfaces reflect as much as 99% of

incoming solar radiation, protecting our atmosphere from
warming1. Even a small-scale reduction in snow cover extent or
snow albedo will drastically reduce the protective properties of
the cryosphere and contribute to a warming climate2,3.

A variety of microorganisms grow in snowpacks across the
cryosphere, including bacteria4,5, annelids6,7, chytrids8, fungi9,
and algae10–14. Snow algae bloom on the surface of the snowpack
during the summer months when there is sufficient interstitial
water to provide the necessary habitat for the algae. They develop
colored photoprotective pigments to protect the cells from intense
solar radiation present at the surface of the snowpack15–17. These
photoprotective pigments, primarily astaxanthin, color the snow
red where they bloom and cause the albedo of the snow to
decrease by around 20%18–20. Quantifying the impacts of this
reduced albedo across glaciers and snowfields would be prohi-
bitive with in situ studies. With the increasing capabilities
of uncrewed aerial vehicles (UAV), we can evaluate the pre-
valence and albedo influence of snow algae across large,
inaccessible areas.

Previous studies have utilized UAVs to evaluate a variety of
research questions in the cryosphere. The advances in Structure-
from-Motion (SfM) technology allow researchers to construct
high-resolution digital elevation models (DEMs) from UAV
imagery. This approach has been applied as a means to evaluate
snow and glacier ablation21–24, assess glacier dynamics25–29, and
retrieve snow depth30–37. While there have been studies that use
the UAV to study glacier algae on the Greenland Ice Sheet38,39,
the remote detection of snow algal blooms in mid-latitudes using
UAVs have received little attention.

One of the first studies to remotely estimate snow algae was
conducted by the National Air and Space Administration/Jet
Propulsion Laboratory Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) flown on a twin otter in the Sierras40. The
current research on the remote detection of snow algae has largely
been focused on using satellite images40–45. One of the most
prevalent indices developed thus far is the red (610–680 nm) to
green (500–590 nm) SPOT satellite reflectance ratio developed by
Takeuchi et al.45. The Takeuchi index has been applied to other
satellites, including Landsat46 and Sentinel-2A44. However,
satellite images are less likely to have closely corresponding
ground validation data and usually have limited spectral or spatial
resolutions sufficient to capture the snow algae. Current and
upcoming spaceborne imaging spectroscopy missions, such as the
Italian Space Agency’s PRecursore IperSpettrale della Missione
Applicativa, Hyperspectral PRecursor of the Application Mission
(PRISMA), the German hyperspectral Environmental Mapping
and Analysis Program (EnMAP) and NASA’s Surface Biology
and Geology (SBG) mission, feature instruments with high
spectral resolution, such as 30 m ground sampling distance,
which is sufficient to detect algae in snow47. Along with the high
spectral resolution of the recent and upcoming spaceborne ima-
ging spectrometers described above, hyperspectral sensors
mounted on UAVs may be able to detect subtle spectral features
such as algae absorption in snow. For example, there is potential
to use hyperspectral data to retrieve physical quantities in order
to develop snow models that incorporate algal cell absorption,
which could then facilitate the analysis of temporal evolution of
snow algae blooms. This study seeks to downscale the red/green
index utilized in previous satellite remote sensing of snow algae
studies to the UAV level and validate the approaches with cou-
pled in situ snow algae data. The new methods and approaches
described here could be applied to the plethora of hyperspectral

sensors that are coming on the market at more approachable
prices to researchers.

Principal component analysis (PCA) is a proven remote sen-
sing approach to differentiate spectral groups from multispectral
imagery. The technique has been utilized to retrieve the spatial
distribution of snow cover from MODIS and Sentinel-1 data48, to
map avalanche debris from Sentinel-1 images49, and to conduct
wetland change detection using a combination of Landsat MSS
and TM images50. PCA allows researchers to identify land objects
by utilizing the information in all bands of data instead of using a
select few in an index approach. This band reduction approach
can be a great help when analyzing hyperspectral and multi-
spectral data51. While PCA has been thoroughly documented in
other applications, to the author’s knowledge, it has yet to be
applied to detect snow algae in the cryosphere. By utilizing the
information in all bands of multispectral imagery through the
PCA approach we may be able to extract snow algae coverage
with greater precision and with the potential to guide future
spectral classifications through the examination of the loading
patterns in the principal components (PCs). By evaluating the
band loading patterns of the PCs that are most useful in distin-
guishing snow algae we can design a more effective spectral index.

The snowpack of the North Cascades has been declining as a
result of climate change with the average spring snowpack pro-
jected to decrease by 38–46% by 205052. This reduction in snow
cover will cause glacier ice to be exposed to solar radiation for
longer periods of time, exacerbating glacier melt. Snow algae are
likely contributing to this increased snowmelt by decreasing the
albedo of the snow19,53,54. Yet, they are not currently included in
regional watershed melt models. In addition, the habitat extent of
snow algae is expected to expand with a warming climate and a
lengthened melt season55. Understanding and evaluating the
extent and impacts of the snow algae at a large scale will aid our
ability to predict the stability of the North Cascades snowpack.

Radiative transfer models have been previously established for
clean snow, such as the Two-streAm Radiative TransfEr in Snow
(TARTES)56. However, modeling the influence of biologically
active snow algae on the albedo of the snow has only recently
been established. The SNow, ICe, and Aeosol Radiative (SNI-
CAR) model3 has been well validated as a tool to model the
spectral albedo of snow with light-absorbing impurities and has
been used in the International Panel on Climate Change
assessments57–60. This model has been updated as the first of its
kind to include the contribution of snow algae to albedo in a
unified code base61.

In this study, we utilize the high-spectral and -spatial resolu-
tion MicaSense Dual camera system mounted on a UAV to map
snow algae in a basin in the North Cascades under differing
bloom conditions and employing two separate approaches with
the first approach being exploratory in nature and the second
being based on established spectral properties. In the first
approach, we reduced the 10-band multispectral imagery into
three components by conducting a principal components analysis
and classifying the snow algae using the resulting components. In
this way, we were able to utilize the information in all ten bands
of the original imagery to classify the snow algae and determine
which bands were important in the classification. Second, we
tested a spectral indexing approach using only the red and green
bands to map the snow algae and correlate the cell concentration
to the proposed index. This second approach utilized previously
established spectral properties of snow algae to guide the spectral
classification. Our in situ snow algae data were then used to
model the spectral albedo of the snow algae using the SNICAR
model and compare the modeled spectra to the UAV-derived
spectra. Finally, we quantified the radiative forcing of the snow
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algae across the entire study area using the UAV-derived snow
algae map and calculated the resulting impact on snowmelt.

Results and discussion
Bloom conditions: cell counts and pigment concentrations.
UAV flights and coincident ground sampling campaigns were
conducted with the DJI M210 and MicaSense Dual Camera on
July 2, 2021 and July 30, 2021. Four additional ground sampling
campaigns occurred on 26 June, 9 July, 18 July, and July 22, 2021.
At the time of the additional four ground campaigns, a MAPIR
near-infrared camera was flown on a DJI Phantom 3. However,
the MAPIR camera does not have the resolution needed to
spectrally discriminate snow from snow algae (Supplemental
Fig. 1). Therefore, we focus here only on the MicaSense Dual
Camera results. The snow algae cell concentrations, determined
by Guava Flowcytometry from the field samples, were almost
eight times higher during the first flight on 2 July vs. 30 July
(average cell concentrations 431,000 ± 398,000 cells/mL and
55,000 ± 60,000 cells/mL, respectively.) There were two outlying
data points in the 30 July cell concentration results that increased
the error in the second survey (Supplementary Table 1). More-
over, chlorophyll A concentrations were 29 times higher at the
time of the 2 July survey than the 30th July survey and based on
ground-based sampling and analysis of pigments and cell con-
centrations between the two flights, the 2 July flight was during a
peak in bloom intensity (Fig. 1).

All sample pigment concentrations decrease between the two
MicaSense overflight dates, 2 July and 30 July, with the average
concentration of lutein decreasing the most in the samples from

51.23 ± 38.16 µg/L on 2 July to 1.73 ± 3.23 µg/L on 30 July
(Supplementary Table 2). There were numerous non-detect
samples for lutein in the second survey that reduced the average
concentration and increased the standard deviation (Supplemen-
tary Table 1). Normalizing the pigment concentrations relative to
chlorophyll a, the cells have a much higher astaxanthin to
chlorophyll a ratio on the second survey than on the first survey
(Fig. 2). This shift is also associated with a decrease in the ratio of
lutein to chlorophyll a while the ratios of chlorophyll b and beta
carotene to chlorophyll a remain similar between the two surveys
(Fig. 2).

The increase in the ratio of astaxanthin to chlorophyll a, the
decrease in the ratio of lutein to chlorophyll a, and the associated
decrease in snow algae cell concentration suggest that the bloom
is reducing its photosynthetic pigment production and increasing
its photoprotective pigment production in the later survey. This
could indicate that the algae bloom during the early-season
survey of 2 July was considerably more intense than during the
second survey when the peak bloom has passed. This shift in
pigments could also be due to a change in species composition,
however, this type of analysis was outside the scope of this study.
There also could potentially be a difference in the selected
sampling locations between the two dates that is being reflected in
the pigment shift, though we attempted to control for this as
much as possible.

Principal component thresholding development. The ordina-
tion process reduced the variation in the 10-band imagery to
explain 99.67% of the variation with the first PC, 0.30% with the

Fig. 1 Average cell and pigment concentrations. Average cell (a) and primary and secondary pigment concentrations of (b) Astaxanthin, (c) Lutein, (d)
Chlorophyll A, (e) Chlorophyll B, and (f) Beta Carotene (n= 10 per date) collected where snow algae were present in Bagley Basin between June 26, 2021
and July 30, 2021. Boxes and lines represent the quartiles of the data with the dots being outlying data as defined as points beyond 1.5 times the
interquartile range.
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second PC, and 0.01% with the third for the 2 July survey
(Supplementary Table 5). For the 30 July survey, the ordination
reduced the 10 bands with the first PC explaining 99.78% of the
variation, the second PC explaining 0.19%, and the third PC
explaining 0.01% (Supplementary Table 5). This PCA approach
was an exploratory analysis to identify which bands can be used
to explain the most variation in the data and to sufficiently dis-
tinguish snow algae without limiting ourselves to the typical snow
algae bands.

The first PC of the 2 July survey equally weights all ten original
MicaSense bands and acts essentially as an index of the overall
image brightness. The second PC has negative correlations with
the red edge and near-infrared bands and positive correlations
with the rest of the bands (Table 1). This PC contrasts the
brightness in the visible bands with the red edge and near-
infrared wavelengths. This contrast is likely accounting for the
variation between the snow pixels and the rest of the image where
most of the variation in the snowpack is seen in the visible
wavelengths. Plotting these first two PCs against each other using
the training points provided clear separation between the snow
algae and the snow classes (Fig. 3).

The ordination of the 30 July survey created a first PC that is
composed of all 10 bands equally weighted, representing the
overall image brightness (Table 1). The second PC contrasts a
strong correlation with the near-infrared band and the red edge
bands that is balanced against the visible bands. This PC
compares the visible wavelengths with the infrared wavelengths
while weighting the near-infrared and the blue bands the
strongest and in opposite directions. Note that while the sign of
the loadings for the first and second PCs for 2 July and 30 July are
reversed, the loading patterns are the same and that is ultimately
most important in the ordination process. The third PC weights
the blue band, green-2 band, and red edge-3 band against the red-
1, red-2, and red edge-1 bands (Table 1).

For the 2 July flight, the first two PCs provide the best
distinction between the snow algae and the clean snow (Fig. 3 and
Supplementary Fig. 4). Based on the training data, we set PC
thresholds to classify snow algae as pixels that have a PC1 value
greater than −90,000 and a PC2 value less than −2500 (Fig. 3).
This index indicated that 1% of the surface snow was covered by
snow algae (Supplementary Table 4).

For the 30 July survey, the first and the third PC demonstrate
the best separation of the snow algae from the clean snow.
Plotting the first and the second PC against each other revealed

substantial overlap of the clean snow and the snow algae training
points while the first and the third PC provided sufficient
separation to develop classification thresholds (Supplementary
Fig. 4). Based on the training points, pixels with a value less than
50,000 for the first PC and less than −500 for the third PC were
classified as snow algae (Fig. 3). This classification resulted in a
larger separation between the snow algae and snow classification
points for the 2 July survey (Fig. 3). This index estimated that
2.06% of the remaining surface snow was covered by snow algae
(Supplementary Table 4).

PCA offers a valuable way to extract spectrally unique features
from multispectral imagery, yet it has not been widely used in
snow algae remote sensing applications, due to limited coincident
ground observations. This approach is most useful when there is
associated classification training data. Without the training data it
would be difficult to apply this approach at large scales unless the
snow algae bloom is so distinct from the rest of the snowpack that
it can be visually confirmed in the imagery. Here, snow algae cell
counts, pigments, and associated GPS data enabled the develop-
ment of principal component thresholds used to map the snow
algae with the multispectral imagery.

The PCA method provided plenty of separation between the
Snow Algae and the Snow and Other classes on the 2 July survey.
Here, “Other” is used as a bulk term to incorporate other light-
absorbing particles such as mineral dust and black carbon, which
were not quantified in this study. During this survey, most of the
study area was snow-covered at an average depth of about 2 m.
Where the snow algae were not blooming, the snow was
considerably clean with very few visible impurities like dirt, dust,
or other debris. In comparison, on the 30 July survey, the
snowpack thickness was reduced with an average depth of less
than 1 m. As the snow melts, impurities in the snowpack
aggregate at the surface, lowering the snow albedo as the season
progresses. Though the ground-measured impurity content from
the snow algae samples remained the same between the two
surveys (Supplementary Table 3), the surrounding snow could
have increased in impurity content and contributed to the less
distinct separation between the Snow Algae and the Snow classes
in the PCA ordination process for the 30 July survey.

The PCAs for the two surveys were independent ordinations
and the difference between the results of each could point to
biological shifts in the algal blooms. An evolution of the algal
species composition could result in a difference in absorption
features for the snow algae due to the associated change in relative

Fig. 2 Distribution of snow algae pigment concentrations relative to chlorophyll a for each survey date. Boxes and lines represent the quartiles of the
data where the dots are outlying data as defined as points beyond 1.5 times the interquartile range.
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pigment concentrations. In addition, the maturation and
stabilization of the snow algae bloom towards the later end of
the season could present different spectrally than young, early-
season blooms and, therefore, impact the ordination results.

The PCA approach was independent from the optimized red/
green band index development and intended to be exploratory.
The relatively less effective classification developed based on the
ordination of the 30 July flight could also be due to the reduced
snowpack coverage of the basin and increased vegetation
coverage. The ordination process encompasses as much of the
variation in the 10-band orthomosaic into as few principal
components as possible. The orthomosaic of the 2 July survey was
composed almost completely of snow and rocks, with some areas
of water and minimal patches of vegetation. Whereas the 30 July
orthomosaic consisted primarily of vegetation, rock, and water
with less than half the image being snow-covered. For the 30 July
survey, the ordination process was driven by the variation in the
vegetated portion of the survey area instead of the variation in the
snow-covered portion of the image. Though we achieved
sufficient separation of the training point classes by analyzing
the entire survey area, future studies could attempt to mask the
portions of the image that are not relevant to the analysis prior to
ordinating the data for further distinction.

Optimized red/green band index development. The second
approach, to develop an optimized red/green band index, was a
separate approach from the exploratory PCA approach described
above. On July 2, 2021 survey, there is a distinct separation
between snow algae and clean snow with multiple band combi-
nations providing sufficient separation for snow algae classifica-
tion (Supplementary Fig. 2). While there could potentially be
more than one applicable band combination, we proceeded with
the red (642–658 nm) to green (524–538 nm) ratio since that one
cleanly distinguished the snow algae classification points from the
others (Fig. 4) and falls within the established red (610–680 nm)
to green (500–590 nm) band ratio previously developed for snow
algae mapping with the SPOT satellite45.

A snow mask was developed based on the classification points
(Fig. 4) and applied to the image so that only the snow-covered
portions of the study area were analyzed. Snow-covered area was
defined as pixels that had a red band reflectance greater than 0.3:

RλB5
> 0:3 ð1Þ

Similarly, an optimized red/green band index was developed
based on the training points. The original red/green band index
classifies snow algae as any pixel with a red/green ratio greater
than 1.0245. When we apply the original red/green band index to
our training points, this captures the “clean snow” or snow algae-
free classified training points, as well as the snow algae training
points. We then use our classification points, derived from
coincident ground sampling, to produce an optimized red/green
band index. This enables us to then distinguish algae-free snow
from snow with algae. These pixels are identified based on their
reflectance (R) at a specific wavelength (λ) in a particular band
(B). For example, here in the red (RλB5

) and the green band (RλB3
)

as follows:

RλB5
� 0:015

1:02 ´RλB3

>1 ð2Þ

We then apply the optimized red/green band index (Eq. (2)) in
order to quantify the area of snow that has algae (total snow
algae-covered area) in the UAV survey image orthomosaics
(Supplementary Table 4). Equation (2) detects the presence of
snow algae based on the snow algae optical properties. Snow algae
pigments absorb more in the green range than in the red resultingT
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in an index value greater than 1. Clean snow absorbs similarly in
both the red and the green wavelengths causing the index to be
equal or less than 1. The optimized red/green band index (Eq. (2))
seemed to be less effective in separating the snow algae from the
rest of the snow on the 30 July survey than on the 2 July survey
(Fig. 4).

This process revealed that on July 2, 2021, 1.16% of the snow in
the study area was covered by snow algae for a total of 1352.18 m2

(Supplementary Table 4). For the 30 July survey, there is a visible
reduction in snow coverage (Fig. 5) from 116,226.95 m2 of snow
on 2 July to 40,593.57 m2 on 30 July (Supplementary Table 4).
However, snow algae covered a slightly higher percentage of the
snow, 1.37%, on the 30 July survey for a total of 556.07 m2 of
snow algae (Supplementary Table 4).

The wavelengths of the MicaSense Dual camera system align
closely with those of the Sentinel 2A and Landsat 8 satellites,
providing the future ability to directly upscale the UAV-derived
and ground-validated indices to satellite platforms. The similarity

in spectral bands and the ability to closely couple ground
validation samples with survey flights could greatly advance the
capabilities of satellite remote sensing for detecting spectrally
subtle features like snow algae. The MicaSense camera systems
have been employed by previous studies that used the spectral
capabilities to map a variety of research focuses, including
mapping submerged vegetation62, wetland functions63, arctic
vegetation64, and glacier algae38,39. However, to the authors’
knowledge, this is the first dedicated application of the UAV and
the MicaSense Dual camera system to map snow algae.

The 10 bands of the MicaSense imagery all gather useful
information but parsing out which band combinations are
superior depends on a robust ground validation dataset. For this
study, we sought to explore the band combinations that were
already established in the literature to assess their efficacy from a
UAV platform with coincident ground truth data. Our study
found the most success by using an optimized red/green index,
originally developed for the SPOT satellite45. Based on our

Fig. 3 Principal component classification points. Classification points for the (a) July 2, 2021 and (b) July 30, 2021 surveys with their associated principal
component values. Dashed lines represent the threshold values used for snow algae classification, for 2 July these values were PC1=−90,000 and
PC2=−2500 and for July 30, 2021 these values were PC1= 50,000 and PC3=−500.

Fig. 4 MicaSense reflectance in Band 5 (642–658 nm) versus Band 3 (524–538 nm). MicaSense reflectance in Band 5 (642–658 nm) versus Band 3
(524–538 nm) for the classification training points on (a) July 2, 2021 and (b) July 30, 2021. The dashed line represents the equation: Band 5= 1.02(Band
3)+ 0.015.
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ground data, we added in a red band reflectance threshold and
fine-tuned the index by incorporating multipliers into the ratio.
Previous studies that have used the original red/green ratio have
classified snow algae pixels as those that have a ratio greater than
one46. Our optimized red/green index classifies snow algae pixels
as those that have a red band reflectance greater than 1.02 times
the green band reflectance plus 0.015 (Eq. (2)). The improved
spectral classification of the optimized red/green index is enabled
by the increased spectral resolution of the MicaSense camera
bands vs. the SPOT satellite, for which the original red/green
index was developed. This increased spectral resolution further
helps to distinguish algae-free snow pixels from snow algae pixels,
particularly late in the melt season when the surrounding snow
algae blooms contain other impurities that are spectrally similar
to the snow algae pigments, especially within the spectral
resolution of the SPOT satellite. Again, this methodology points
towards the potential for increased spectral classification of snow
impurity types with hyperspectral sensors.

The optimized red/green index provided a clear distinction in
the Snow and Snow Algae training points on the 2 July survey,
likely because of the comparatively clean, early melt season snow
that is spectrally distinct from any dark snow algae patches. The
average inorganic impurity concentration was the same for both
survey dates indicating that the impurities were not playing a role
in the efficacy of the classification approach and instead the water
content of the snow could be responsible (Supplementary
Table 3). The optimized index did not clearly separate debris-
covered snow from snow algae. This could provide a challenge for
future studies that seek to classify snow algae in heavily debris-
covered areas. However, the applications of imagers with more
bands, such as hyperspectral imagers, may have the ability to
further discern snow algae in debris-covered snow.

Based on the 100 randomly located points, both the principal
component thresholding and the optimized red/green index
approaches indicated that there was a slightly higher percent of

snow algae covering the snow in the 30 July survey compared to
the 2 July survey. The percentage of snow algae coverage was
quite similar for the principal component thresholding and the
optimized red/green index approach for the 2 July survey, 1.01%
and 1.16%, respectively. However, they slightly differed in their
results on the 30 July survey where the principal component
thresholding approach determined that 2.06% of the snow surface
contained snow algae compared to 1.37% determined by the
optimized red/green index approach.

The difference between the results of the two approaches
supports the dependency of index development on the snow algae
bloom conditions, where early-season peak intensity blooms are
more consistently detected than late-season post-peak blooms.
Future studies should acknowledge the influence that the algal
bloom state and the age of the snowpack have on these remote
sensing indices when attempting to map snow algae without
ground data and further coupled studies are needed to refine the
temporal evolution of these parameters.

Optimized red/green band index correlations. When regressing
the optimized red/green band index with the snow algae cell
concentrations there is a nonsignificant relationship between the
index value and the natural log of the snow algae cell con-
centration, with the index value only explaining 16% of the var-
iation in the cell concentration (F1,17= 3.232, P= 0.09, r2= 0.16)
(Fig. 6). Separating out the two survey dates, the 2 July index
explains more variation in the natural log of the cell concentra-
tion in comparison to examining both surveys together (30% and
16%, respectively), but the relationship is still nonsignificant
(F1,7= 3.038, P= 0.13, r2= 0.30) (Fig. 6). The relationships are
much stronger with the 30 July survey index. Examining only the
30 July data, there is a significant relationship between the opti-
mized red/green band index and the natural log of the snow algae
cell concentration, where the index explains 86% of the variation

Fig. 5 MicaSense true color orthomosaics derived from UAV imagery.MicaSense true color orthomosaics derived from UAV imagery on (a) July 2, 2021
and (b) July 30, 2021. Areas in pink represent snow algae detected using the Eq. (2) optimized red/green band index. Results for the PCA mapping are
similar to the optimized red/green index results displayed here.
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in the cell concentration (F1,8= 50.23, P < 0.001, r2= 0.86)
(Fig. 6).

There is also a significant positive correlation between the
optimized red/green band index and the ratio of astaxanthin to
chlorophyll a, however, the index only explains 24% of the
variation in the ratio of astaxanthin to chlorophyll a (F1,17= 5.30,
P= 0.034, r2= 0.24) (Supplemental Fig. 5). This relationship is
not improved by analyzing the two survey dates separately.

We developed the regression model to predict algal concentra-
tion from the UAV imagery with the goal of estimating the algal
abundance over the entire survey area. However, this study
showed that the ability of the optimized red/green index to
predict snow algal concentration varies greatly depending on the
time of the year. During the early summer season, the algal
blooms have much greater range in cell and pigment concentra-
tions that does not correlate well with the proposed index. Yet,
later in the summer season, the algal blooms seem to stabilize
with lower variation in the cell and pigment concentrations
allowing for the proposed index to have greater predictive power.
The difference in the predictive power of the index could also be
due to a shift in algal species composition in the snowpack and an
associated change in relative pigment concentrations. When both
surveys are combined, the optimized red/green index only
explains 16% of the variation in the natural log of cell
concentration—not enough to confidently apply the index at
large scales without associated ground data. Though, future
studies could collaborate with numerical modeling to simulate
snow algal blooming and further develop this methodology65.

The results of this study demonstrate that imagery and
sampling must be closely coupled when developing algorithms
to map snow algae. Over the three weeks between our two
surveys, the predictive ability of the index shifts greatly. While the
optimized red/green index can be used to capture the presence/
absence of snow algae, the variation in cell and pigment
concentration reveals the need for the development of multiple
indices to predict snow algae bloom intensity and/or the need for
high-resolution spectral data from hyperspectral sensors to enable
quantitative retrieval of algal concentration based on other
methods, such as, model inversion. In addition, ingestion of these
observational data into numerical models that simulate snow
algal blooming (i.e., Onuma et al.65) could be powerful in order to

further extrapolate radiative transfer impacts on snowmelt across
larger domains, such as at the watershed level.

Albedo modeling. The SNICAR-modeled spectral albedo varies
greatly with cell concentration in the visible part of the spectrum
(Fig. 7). As to be expected, increasing snow algae cell con-
centration is associated with a decrease in albedo within the
visible portion of the spectrum, 350–750 nm. There is a much
greater variation in the spectral albedo and cell concentration
within the first survey on 2 July, as compared to the 30 July
survey. Associated with the decrease in cell concentration
between the survey dates, the average spectral albedo increased
within the 205–750 nm range of the spectrum shifting from
0.56 ± 0.17 on 2 July to 0.82 ± 0.09 on 30 July (Fig. 7).

Although not directly comparable, the spectrally integrated
snow algae modeled albedo simulated with the SNICAR model
resembles the shape of our directional surface reflectance
measured by the MicaSense camera on both UAV survey dates
(Fig. 8). On the 2 July survey, the shape of the snow algae curve is
much more exaggerated in the SNICAR output than in the
MicaSense data. The snow algae SNICAR curve shape on July 30,
2021 survey more closely matches that of the MicaSense, but with
about a 0.25 vertical shift in reflectance (Fig. 8).

The 10-band spectral resolution of the MicaSense imagery
provides insight into the observed directional reflectance shifts of
the snowpack from July 2, 2021 to July 30, 2021 under similar
observation conditions. The Snow Algae classification points tend
to absorb more strongly in the 400–600 nm range and reflect
more in the 600–900 nm range (Fig. 8). In comparison, the Snow
class reflects more in the lower wavelengths and absorbs more in
the higher wavelengths (Fig. 8). To capture the snow algae
spectral signature, the mean directional reflectance of the
444–560 nm MicaSense bands was calculated and compared to
the mean reflectance in the 650 to 842 nm bands. In both survey
dates, the mean directional reflectance of the Snow Algae class
increases from 0.56 ± 0.10 on 2 July and 0.55 ± 0.12 on 30 July in
the lower wavelengths to 0.69 ± 0.10 on 2 July and 0.62 ± 0.07 on
30 July in the higher. Comparatively, the reflectance of Snow class
decreases from 0.91 ± 0.11 on 2 July and 0.69 ± 0.09 on 30 July in
the low wavelengths to 0.83 ± 0.10 on 2 July and 0.62 ± 0.08 on 30

Fig. 6 Correlation between the optimized red/green band index with the natural log of the cell concentration by date. The black dashed line represents
the linear regression of all the points where ln(y)= 4.488x+ 6.188 (F1,17= 3.232, P= 0.09, r2= 0.16), the red solid line represents the linear regression of
just July 2, 2021 points where ln(y)= 8.185x+ 3.038 (F1,7= 3.038, P= 0.13, r2= 0.30), and the blue solid line represents the linear regression of just July
30, 2021 points where ln(y)= 5.0575x+ 4.4519 (F1,8= 50.23, P < 0.001, r2= 0.86). Gray shading represents the result of local polynomial regression
fitting for each date.
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July in the high wavelengths (Fig. 8). There is more separation
between the Snow and the Snow Algae classes in the mean
directional reflectance of the 650 to 842 nm bands in the 2 July
survey than compared to the 30 July survey where they are both
0.62 (Fig. 8).

Radiative forcing. Modeling the radiative forcing of the snow
algae revealed an average IRF of 236.56 ± 79.55Wm−2 on 2 July
and 88.86 ± 40.96Wm−2 on July 30, 2021 (Table 2). Taking the
MicaSense index estimated snow algae-covered area for each
survey date and the IRF of the snow algae, we calculated an
average daily RF by snow algae of 18,290 ± 6150MJ on 2 July and
2671 ± 1231MJ on 30 July. If 0.334MJ melts 1 kg of snow66, and
we assume a wet snow density of 600 kg m3 that is typical this
time of year, then we calculate that the presence of snow algae

caused 91 ± 31 m3 of snow to melt on 2 July and 13 ± 6 m3 of
snow to melt on 30 July.

In comparison to previous studies of snow algae radiative
forcing, the calculated IRF values of the first survey in this study
were greater than twice those calculated in previous studies of red
snow algae (Table 2). The maximum IRF reported for snow algae
in previous studies was from green snow algae in Antarctica and
was still less than the average IRF of the first survey in this
study19. The average IRF of snow algae calculated in this study is
more comparable to the IRF of dust in the European Alps and the
San Juan Mountains, U.S.67,68.

Our RF calculations demonstrate the substantial impact that
snow algae have on snowmelt in mid-latitude snow through their
snow-darkening effects. The snow algae patches can produce an
IRF of up to 360Wm−2 during peak bloom, far greater than
previous observations of red snow algae at higher latitudes that

Fig. 7 Spectral profile of the snow algae samples as simulated by the SNICAR model. Solid lines represent the samples from July 2, 2021 survey and
dashed lines represent the July 30, 2021 survey. The darker red the line, the higher concentration of snow algae cells were in the sample. The gray bars
align with the ten MicaSense camera bands with the darker bars noted with arrows corresponding to the green (524–538 nm) and red (642–658 nm)
bands that were used in the optimized red/green band analysis.

Fig. 8 MicaSense measured directional reflectance values. MicaSense measured directional reflectance values for the Snow Algae, Snow, and Other
classes on (a) July 2, 2021 and b July 30, 2021. Lines represent the local polynomial regression with shaded areas representing the standard error.
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measured up to 186Wm−2 in the Antarctic Peninsula19 and
88Wm−2 in Alaska69. This suggests that snow algae might play a
larger role in snowmelt at mid-latitudes than at higher latitudes.
The mid-latitude range may provide more optimal snow algae
growing conditions due to the greater amounts of incoming solar
radiation and longer melt season, though further studies should
examine this trend with standardized sampling and analysis.

We calculated the RF of the snow algae over the coinciding
survey day, indicating that over the month of July snow algae
contributed between 91 and 13m3 of snowmelt each day.
Assuming the snow algae RF scales linearly over the 29 days
between the surveys, we can integrate the snowmelt over each day
and estimate that there was a total of 1508 ± 536 m3 of snow
algae-caused snowmelt in the 0.1-km2 basin. DEM differencing
reveals a total 8,000,000 m3 of snowmelt in the study area
between the two surveys. While only 1% of the snow in the study
area was covered by snow algae, the snow algae contributed to
0.02% of the total snowmelt in the basin. However, the timing of
snowmelt and feedbacks between temperature (i.e., heatwaves
which are becoming more common in the PNW), snow algal
bloom conditions, and snowmelt should be furthered explored.
More frequent flights capturing the bloom conditions between the
two aerial surveys, such as what were conducted with the
insufficient MAPIR camera, could help us fill in these gaps. In
addition, partitioning of the feedbacks and relative contributions
of snow algae vs. other impurities should also be explored. Given
the importance of seasonal snowmelt to downstream ecosystems
and water resources across the North Cascades, RF attributed to
snow algae should be considered in future watershed melt models
as they may also play a role in the timing of peak snowmelt, as
demonstrated by large dust loadings in SW Colorado70.

Conclusion. Here, we show the ability to remotely detect and
map snow algae in mid-latitudes using UAVs affixed with a
multispectral camera and that remote detection optimization
differs based on bloom conditions. The two approaches presented
in this study show great potential to remotely detect snow algae
with a UAV. The PCA approach demonstrates the potential of
multispectral and hyperspectral imagery to detect snow algae by
using the information in all bands of data instead of a select few.
In addition, the PCA approach allowed us to explore which bands
may be useful to incorporate in future indices that may not have
been previously considered. These methods could be applied to
current and upcoming high-resolution spaceborne imaging
spectroscopy missions, along with hyperspectral sensors mounted
on UAVs in order to advance our ability to detect subtle spectral
features such as algae absorption in snow and feed them into
physically based radiative transfer models.

Both the principal component thresholding and the optimized
red/green band indexing approaches provide clear separation
between snow algae and the rest of the snowpack for the first
survey date. By the second survey date, both approaches had less

distinct separation between the classes that complicated the
classification. In addition, the variation in snow algae cell and
pigment concentration enabled a comparison of the approaches
for differing bloom intensities. However, given our finding that
the success of the spectral classification depends heavily on algae
bloom intensity, careful consideration should be given when
applying algorithms to other UAV and satellite imagery,
demonstrating the need for further coupled ground validation.

Combining our mapping results with the ground data and
spectral modeling, we calculated the RF for snow algae and scaled
this across the mapped snow algae extent to estimate the
cumulative impact on RF. The RF implications of snow algae have
been documented previously in Antarctica19 and Alaska69, yet
this is the first study to evaluate snow algae RF in the mid-latitude
range of the North Cascades. Our results demonstrate the
potential to map snow algae and assess the RF over expansive
areas of the cryosphere using UAV technology.

The influence of snow algae on albedo in the cryosphere is not
currently included in water resource and global climate models.
Considering the substantial RF of snow algae demonstrated in
this study, there is need for the inclusion of snow algae in both.
Being able to predict the temporal and spatial distribution of
snow algae could improve melt models and better prepare us for a
warming future. These findings are also applicable to other
mountain ranges with seasonal snow that feed large basins and
have snow algae present in spring and summer, such as the
Colorado Rockies and Sierra Nevada in California, among others.
Not much is known about the extent of snow algae habitat,
however, snow algae blooms are expected to expand in their
range with warming temperatures55. Being able to reliably map
snow algae will greatly enhance our understanding of the RF
implications caused by snow algae across the cryosphere.

Methods
Study site. The Bagley Lakes are a set of snowmelt-fed lakes located in the Mount
Baker-Snoqualmie National Forest (48.854°N, −121.692°W, 1277 m above sea
level). The basin area remains snow-covered until late in the summer and has
consistent blooms of snow algae every year. Only red snow algae were present
during our surveys. The basin covers an area of 0.1 km2 consisting of a flat marshy
expanse and a large lake nestled in a cirque with steep rocky sides (Supplementary
Fig. 3). Beneath the larger, upper lake is a connected, smaller lake that flows into a
tributary of the North Fork Nooksack River. The snowmelt-fed Nooksack River
supports agricultural irrigation, drinking water, and salmon spawning in the
region. The local Tribes have relied on the snowmelt from the North Cascades to
replenish the rivers and support the salmon populations since time immemorial.
After the winter of 2020 to 2021, the area had an early May snowpack thickness of
4 m71. The basin receives its snowpack both through direct precipitation and
through avalanching events from the steep walls of the basin that deliver snow and
debris to the bottom of the basin. The area is reasonably accessible from the road
during the late summer months, making it an ideal site for repeat surveys. A
portion of the study area lies within an avalanche runout zone and, due to
numerous winter avalanching events, there debris is common in this area. For this
analysis, we chose to remove the avalanche runout zone from the study due to the
steepness of the terrain, as well as the complex spectral properties that would make
it unlikely to detect snow algae in the patches of snow within the debris-covered
area. The lake area was also removed from the analysis since the photogrammetric
process does not perform well over water surfaces and due to our inability to safely

Table 2 Instantaneous radiative forcing of snow algae, dust, and other light-absorbing impurities across the crysophere from this
study and previous studies.

Study Location Impurity type Date Average IRF (W m−2) Maximum IRF (W m−2)

This study Washington, U.S. Red snow algae July 2, 2021 236.56 359.95
July 30, 2021 88.86 156.9

Ganey et al.69 Alaska, U.S. Red snow algae August 17, 2014 21.6 87.9
Khan et al.19 West Antarctic Peninsula, AN Red snow algae January 2018 88.0 185.6

Green snow algae January 2018 179.7 227.5
Di Mauro et al.67 European Alps Dust March 14, 2014 128.6 153
Painter et al.68 Colorado, U.S. Light-absorbing impurities June 15, 2011 215 400
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retrieve validation samples from the lake when it was snow-covered. This also
focused our algorithms specifically on snow-covered with snow algae.

UAV surveys. Over the summer of 2021, three survey flights were completed of
the Bagley Lakes basin. The first two surveys were flown to collect data during the
snow algae bloom, one on July 2, 2021 and a second survey on July 30, 2021. The
third survey was flown on September 24, 2021 to acquire snow-free ground ele-
vation data. The UAV surveys were conducted with a DJI Matrice 210 equipped
with a MicaSense Dual camera system comprised of both the RedEdge MX and the
RedEdge MX Blue sensors. Combined, the two sensors acquire data in the coastal
blue (430–458 nm), blue (459–491 nm), green-1 (524–538 nm), green-2 (546–
574 nm), red-1 (642–658 nm), red-2 (661–675 nm), red edge-1 (700–710 nm), red
edge-2 (711–723 nm), red edge-3 (731–749 nm), and near-infrared (813–871 nm)
(www.micasense.com). The cameras captured RAW (12-bit) images every 1 s. Prior
to UAV takeoff, the MicaSense cameras captured an image of the MicaSense
camera calibration panel to later convert the imagery to reflectance. The DJI
Matrice 210 was flown as close to solar noon as possible where the entire survey
area was under direct sunlight and the UAV followed a flight plan designed and
executed in the DJI Pilot application. Flight altitude was set at 90 m above ground
level with a camera view angle of 90° and the flight lines were set for a 75% sidelap
and frontlap, generating a ground resolution of 7 cm/pixel. The survey area flight
took ~20 min to complete with the Matrice and required 2–3 batteries.

Prior to takeoff for each survey flight, a base station was established with an
EMLID Reach RS2 RTK GNSS receiver in RTK mode that logged its location for
the entirety of the field survey and communicated GPS corrections to the rover
GPS. The base was stationed where it would have a clear view of the sky and within
range of the rover to transmit corrections. Targets to be used as Ground Control
Points (GCPs) and Ground Validation Points (GVPs) were spread out over the
entire survey area and the GPS coordinates were collected with the rover EMLID
Reach RS2 RTK GNSS receiver in RTK mode.

Positional accuracy. The orthomosaic image accuracy is derived from the ground
control points (GCP) and ground validation points (GVPs) for each survey date.
On the 2 July survey, there were 12 total targets, 9 that were used as control points
and 3 as validation points. This resulted in a total GVP accuracy of 0.37 m. The 30
July survey only used 10 targets instead of 12 that were divided into 7 GCPs and 3
GVPs. Even though there were only 7 GCPs to guide the SfM image processing, the
total error of the GVPs was less than that of the 2 July survey at 20.69 cm. The
orthomosaics produced in the SfM process generated pixel sizes of 7 cm. Since the
XY error is less than the pixel size, 1.64 cm for 2 July and 1.36 cm for 30 July, the
lateral error is encompassed within the pixel.

Sample collection. Immediately following each UAV survey, snow algae blooms
were identified, and the GPS coordinates were acquired with the rover GPS
receiver. For the first survey, 9 snow algae samples were collected (n= 9) and
10 snow algae samples were collected for the second survey (n= 10), both with
associated GPS data. The samples were collected opportunistically across a range of
bloom intensities dispersed throughout the study area to characterize the hetero-
geneity of the snow algae bloom intensities and to test the proposed indices. In
addition to the coincident samples collected after the flights on 2 July and 30,
additional ground samples were collected on June 26 (n= 5), July 9 (n= 10), July
18 (n= 10), and July 22 (n= 10) 2021. The samples were collected from a 0.1 m by
0.1 m square to a depth of 2 cm using a metal spatula and stored in WhirlPak bags.
The samples were immediately placed in a black trash bag to prevent continued
photosynthesis. The coordinates of the center of the sample locations were
acquired and the samples were melted in the dark at ambient temperature over
24 h. The next day, the melted samples were processed for pigment composition
(three replicate filters), cell concentration, and ash-free dry mass (AFDM). The
pigment and ash-free dry mass samples were vacuum filtered through pre-ashed
and -weighed 0.47-µm glass fiber filters. The filters were folded in half, wrapped in
tin foil, and stored at −20 °C until they were ready to be processed for further
analysis.

Pigment analysis. The frozen filters (triplicates per homogenized sample) were
processed for pigment composition by high-pressure liquid chromatography
(HPLC) and quadrupole time of flight (QTOF) following a modified method based
on Remias and Lutz72. The filters were shock frozen in liquid nitrogen for 10 min
before being ground in a mortar and pestle until disintegrated. The ground filter
was then resuspended in 1 mL dimethylformamide (DMF) and shaken on a vortex
mixer for 10 min with 1.0-mm glass beads. The samples were centrifuged for
10 min at 4700 rpm and the resulting supernatant was extracted and filtered
through a 0.2-µm Nylon filter. The internal standard, trans-beta-Apo-8’-carotenal,
was added to the sample to a constant concentration.

The samples were stored frozen and run within 24 h of processing on an Agilent
HPLC 1290 Infinity 2 with an Agilent Advanced Bio 6545XT LC-QTOF and
Agilent Eclipse + C18 RRHD. Two running buffers were used: buffer A was
isopropyl alcohol:acetonitrile at 90:10 with 0.1% formic acid, and buffer B was
nanopure water:acetonitrile at 60:40 with 0.1% formic acid. The buffers were run at
a flow rate of 0.35 mL/min with the following gradient: from 0 to 12 min 80%

buffer A and 20% buffer B, from 12 to 15 min 30% buffer A and 70% buffer B, from
15 to 15.1 min 5% buffer A and 95% buffer B, from 15.1 to 20 min 80% buffer A
and 20% buffer B.

QTOF force settings were set to 2000 nozzle voltage, 3500 capillary voltage,
sheath gas flow rate of 11 L/min, sheath gas temperature of 350 °C, drying gas flow
rate of 10 L/min, drying gas temperature of 325 °C. The charge source was a Dual
AJS ESI. We acquired MS/MS with a collision energy of 6.5 (m/z)/100+ 2. Samples
were quantified for the following pigments and their associated masses: beta
carotene 536.87 g/mol, lutein 568.43 g/mol, astaxanthin 597.39 g/mol, chlorophyll a
893.54 g/mol, and chlorophyll b 929.50 g/mol. The presence of the pigments were
verified by the presence of qualifying mass fragments averaged across replicates.
Measurements were taken from distinct samples with replicates used for error
quantification.

Cell concentration. Melted snow algae samples were homogenized and a 12 mL
aliquot of whole sample was collected. The sample was fixed with 50% glutar-
aldehyde to 2% final concentration and stored at −20 °C. The samples were run on
a Guava easyCyte flow cytometer equipped with a blue laser. Bead checks were
conducted at the beginning of each sample run to ensure consistency between run
dates. Four replicates of 200 µL were analyzed for total of 800 µL per sample and
cells with high red fluorescence and high forward scatter were counted as red snow
algae as validated by optical microscopy. The sample was run through the Guava
for 120 s. Measurements were taken from distinct samples with each separate
sample measured four times in 200 µL increments.

Ash-free dry mass. The AFDM of the snow algae samples was determined fol-
lowing the method described in ref. 73. The frozen filters were dried for 1 h at
104 °C and left to cool in a desiccator before being weighed. The filters were then
combusted in the muffle furnace for 1 h at 550 °C and left to cool in the desiccator
before being weighed again. The AFDM (Supplementary Table 2) was calculated as
the difference between the weight of the filter before and after combustion divided
by the sample volume to reveal the AFDM as mg organic material per liter.
Measurements were taken from distinct samples with replicates used for error
quantification.

Image processing. The flight images were refined to only include in-survey
images. Images acquired during takeoff, landing, and transit were removed from
the analysis. The MicaSense images were calibrated to surface reflectance based on
the calibration panel images within the Agisoft Metashape Professional Software
version 1.6.4 following MicaSense processing procedures74. The altitude of the
images was adjusted with an open-source Python script to represent meters above
sea level based on the launch elevation and the flight altitude (Agisoft LLC, 2017)75.
The Image Quality, or sharpness, was estimated and blurry images, defined as those
with a quality below 0.5, were removed from the rest of the analysis to improve
photogrammetric processing following the guidelines in the Agisoft Metashape
Professional Edition User Manual (Agisoft LLC, 2021)76. Each set of images was
aligned separately with high accuracy, 500,000 key point limit, and 0 tie point limit.
All points with a reprojection error greater than 0.5 pixels and any obvious outlier
points were removed from the sparse point cloud.

The GCPs and GVPs were manually marked in at least 6 images where the
target was most visible. The target coordinates were loaded, and the sparse point
cloud was updated. The camera positions were optimized before constructing the
dense point cloud with high-quality and aggressive depth filtering. The DEM was
constructed based on the dense point cloud and the orthomosaic was constructed
based on the DEM.

Principal components analysis. The first approach reduced the 10-band Mica-
Sense orthomosaic to three principal component bands using the Forward PCA
Rotation New Statistics & Rotate tool in the ENVI software version 5.6. The
efficacy of the ordination was tested with 100 randomly located points that were
visually classified as Snow or Other (i.e., rock, water, vegetation) in addition to the
in situ snow algae locations that were collected in the field. These points were
plotted with respect to the first three principal component bands to assess which
combination of bands best distinguishes the snow algae from clean snow.
Threshold limits were developed based on these points and applied to the entire
orthomosaic.

Red/green band index development. In the second approach, snow algae
detection indices were developed based off the MicaSense bands for both the 2 July
and the July 30, 2021 surveys. The 100 training points for each day were used to
assess the efficacy of the indices and determine which MicaSense band pairs
separated the snow algae from the snow the best for both survey dates. The
developed indices were chosen based on literature-proposed indices and based on
the bands that most closely aligned to those of satellite platforms.

Albedo and radiative forcing. The albedo of the snow algae-covered snow and
clean snow was simulated using the SNICAR model. The snow algae cell and
pigment concentration data collected in the field was used as input parameters for
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the model. Our pigment dry mass fractions, calculated following Flanner et al.61,
fell below the allowable range set by the SNICAR model. To fit SNICAR model
parameters, the percent dry mass of each pigment was calculated and that percent
was taken of 0.05 µg to fit in the allowable dry mass range. To fit SNICAR model
parameters, pigment dry mass fractions were scaled by a factor of 0.05 to reach the
low end of the allowable range. Thus far, the SNICAR parameterization has been
established based on the primary glacier algae pigments, as opposed to snow algae
pigments. After conversations with the developer of SNICAR, we decided to scale
up our values to be usable inputs to the current version of the model (M. Flanner,
Personal communication, February 25, 2022). Average cell diameter was set at
15 µm based on optical microscope analyses conducted on snow algae samples
collected from the same study area the previous year. The solar zenith angle was
estimated as 40° on 2 July and 43–50° on 30 July using the NOAA Solar Zenith
Calculator based on the sample date, time, and location (gml.noaa.gov/grad/sol-
calc/azel.html) (Supplementary Table 3). Snowpack thickness was derived by dif-
ferencing the UAV generated DEMs from the snow algae UAV surveys with the
snow-free UAV survey and snowpack density was set to 600 kg/m3 based on the
literature values for the North Cascades region77. The snow grain shape was set to
spheroids, snow grain effective radius was set to 100 µm and the rest of the
parameters, including the dust parameters, were set as the default or zero. As the
output of this model, the broadband snow albedo is calculated as well as the albedo
and fraction of incident irradiance within each spectral band at 10 nm spaced
intervals. Clean snow albedo was modeled using the same parameters described
above, but without any of the snow algae inputs.

The instantaneous radiative forcing (IRF) of the snow algae was calculated as:

IRF � ∑
850

350
Ed λð Þ Rclean λð Þ � Ralgae λð Þ

� �
4λ ð3Þ

where IRF is calculated as the sum of the wavelength-specific downward flux, Ed,
multiplied by the wavelength interval and the difference between clean snow
reflectance, Rclean, and snow algae-covered snow reflectance, Ralgae, over the
wavelengths 350–850 nm. The downward flux was retrieved from https://www.
pvlighthouse.com.au (last access: February 2, 2022)19,69.

Data availability
Upon publication, all data and corresponding code will be publicly accessible on the
research groups GitHub page: https://github.com/wwu-cryo/COMMSenv_SnowAlgae_
PNW_2023.

Code availability
Upon publication, all data and corresponding code will be publicly accessible on the
research groups GitHub page: https://github.com/wwu-cryo/COMMSenv_SnowAlgae_
PNW_2023.
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