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Abstract. Single-cell multimodal datasets have measured various characteristics of individual cells,1

enabling a deep understanding of cellular and molecular mechanisms. However, multimodal data gen-2

eration remains costly and challenging, and missing modalities happen frequently. Recently, machine3

learning approaches have been developed for data imputation but typically require fully matched mul-4

timodalities to learn common latent embeddings that potentially lack modality specificity. To address5

these issues, we developed an open-source machine learning model, Joint Variational Autoencoders6

for multimodal Imputation and Embedding (JAMIE). JAMIE takes single-cell multimodal data that7

can have partially matched samples across modalities. Variational autoencoders learn the latent em-8

beddings of each modality. Then, embeddings from matched samples across modalities are aggregated9

to identify joint cross-modal latent embeddings before reconstruction. To perform cross-modal impu-10

tation, the latent embeddings of one modality can be used with the decoder of the other modality.11

For interpretability, Shapley values are used to prioritize input features for cross-modal imputation12

and known sample labels. We applied JAMIE to both simulation data and emerging single-cell mul-13

timodal data including gene expression, chromatin accessibility, and electrophysiology in human and14

mouse brains. JAMIE significantly outperforms existing state-of-the-art methods in general and prior-15

itized multimodal features for imputation, providing potentially novel mechanistic insights at cellular16

resolution.17

Keywords: Multimodal · Single-cell · Variational autoencoder · Deep learning · Data imputation · Data18

integration19

1 Introduction20

Understanding of molecular mechanisms at cellular resolution provides deeper insights into cellular function,21

development, and disease progression, but remains elusive. To this end, single-cell multimodal datasets have22

recently emerged by new sequencing technologies to measure various characteristics of single cells and identify23

cell functions (e.g., cell types). For instance, patch-seq [1] simultaneously measures gene expression and24

identifies electrophysiology, and morphological features (beyond omics), e.g., for the mouse visual cortex over25

4,000 cells from several brain cell types [2]. [3] profiles single-cell gene expression and chromatin accessibility26

in the human developing brain. Thus, an integration of single-cell multimodal datasets can significantly aid27

in our understanding of biological mechanisms contributing to cell types and diseases through the automated28

discovery of inter-modal relationships.29

Many methods have been developed to integrate multimodal datasets to improve prediction of cell types30

and cellular phenotypes (an outline of the process can be seen in Figure 1a). For instance, our recent31

DeepManReg [4] approach performs interpretable deep manifold learning which both improves phenotype32

prediction and is applicable to align single-cell multimodal data. Although these approaches primarily focus33

on prediction, the underlying idea can be extended to predict data present in separate modalities, referred34

to as cross-modal imputation going forward (a visual representation can be seen in Figure 1b). Cross-modal35

imputation is not new, but has been increasingly explored with the advent of deep learning. For instance,36

BABEL [5] focuses on conversion between RNA and ATAC-seq data matrices through the use of dual autoen-37

coders, which have the particular advantage of being reusable. Moreover, autoencoders allow for flexibility38
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in latent space formulation. Polarbear [6] utilizes a similar approach, focusing on a conversion network be-39

tween independently generated latent spaces for each modality. Both methods, however, focus specifically40

on multi-omics data such as scRNA-seq and scATAC-seq and thus don’t consider high nonlinearity from ad-41

ditional single-cell modalities like electrophysiology. Moreover, they require fully correspondent multimodal42

data (matched cells), limiting their capabilities with regards to data with missing modalities.43
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Figure 1. Challenges for multimodal data integration and imputation. (a) Using multimodal data to e↵ectively pre-
dict missing phenotypes (e.g. cell types from multimodal single-cell data) is di�cult due to heterogeneous features
across modalities. Identifying similar latent spaces across modalities enables cross-modal comparison and, by exten-
sion, missing phenotype prediction. Machine learning (ML) can be used to discover similar cross-modal latent spaces
and enable comparison and phenotype prediction. (b) Certain modalities are cost-prohibitive but may lend signifi-
cant insight into biological mechanisms. As examples, scATAC-seq data for cell type epigenomics is expensive and
electrophysiological data at single-cell resolution is di�cult to produce. Imputing one modality from another using
ML can alleviate these constraints.

Also, analyzing multimodal datasets incurs additional di�culties, including heterogeneous distributions,44

multicollinearity, and varying reliability. Several approaches have been thus utilized in aligning multimodal45

datasets (an outline of the process can be seen in Figure 1b). For instance, Unioncom [7] infers correspondence46

information from each modality’s distance matrices, then use a modified tSNE method for the final mapping.47

MMD-MA [8] minimizes an objective function to maximize distribution similarity between datasets while48

minimizing distortion. ScGLUE [9] uses an autoencoder model to map di↵erent modalities onto the same49

latent space. ScDART [10] learns a latent space and cross-modal relationships simultaneously by predicting50

gene activity across modalities before projecting to a single latent space. ScAEGAN [11] utilizes dual au-51

toencoders in tandem with cycleGAN [12] to provide aligned latent representations for di↵erent modalities.52

Certain methods rely on user-provided correspondence information to help inform alignment. For example,53

CLUE [13] assumes completely aligned samples and introduces the impetus for aggregating correspondent54

latent-space embeddings. ManiNetCluster [14] takes a user-provided correspondence matrix as input and55

implements nonlinear manifold alignment (NLMA) by solving an eigenvalue problem. ManiNetCluster also56

implements CCA [15] as a manifold alignment solution for multimodal data. If only partial correspondence57

information is known, however, existing methods are limiting, and few are designed for such a use-case.58

To address these issues, we developed Joint variational Autoencoders for Multimodal Imputation and59

Embedding (JAMIE). An outline of JAMIE’s capabilities can be found in Supplementary Table 1. JAMIE60
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trains a reusable joint variational autoencoder model to project available multimodalities onto similar latent61

spaces (but still unique for each modality), allowing for enhanced inference of single-modality patterns [16].62

To perform cross-modal imputation, data may be fed into an encoder, then the resultant latent space may63

be processed by the decoder of the other modality. JAMIE is able to use partial correspondence information.64

JAMIE combines the reusability and flexible latent space generation of autoencoders with the automated65

correspondence estimation of alignment methods. We compared JAMIE to state-of-the-art methods on sim-66

ulation and emerging single-cell multimodal data using gene expression, chromatin accessibility, and elec-67

trophysiology in human and mouse brains. We found that JAMIE significantly outperforms other methods68

(see evaluation in Section 2) and prioritized important multimodal features for multimodal imputation, also69

providing potentially novel mechanistic insights at cellular resolution.70

2 Results71

As shown in Figure 2a, JAMIE utilizes a joint autoencoder model for data integration and imputation (see72

details in Section 4. As input, JAMIE takes two data matrices X and Y of modalities X and Y as input.73

Optionally, an additional correspondence matrix F may be provided when the samples from two modalities74

are partially corresponding (e.g. derived from the same single-cells). Encoders in JAMIE transform X and75

Y into latent spaces which are aggregated using available corresponding information. Decoders in JAMIE76

then predict reconstructions fX and eY of the original modalities. Please see more details of JAMIE including77

training, validation, and evaluation in Section 4.78

After training a JAMIE model, its encoder for modality X and decoder for modality Y can be used79

sequentially to impute from one modality to another (Figure 2b). Also, the latent spaces from the JAMIE80

model can be used for phenotype prediction. Furthermore, the use of Shapley Additive Explanation values [17]81

and similar importance evaluation methods then allows us to prioritize multi-modal features for imputation,82

as in Figure 2c. These applications are further documented in Subsection 4.12.83

2.1 Simulated Multimodal Data84

We first tested JAMIE on simulated single-cell multimodal data [8]. The simulation data was generated85

by sampling from a Gaussian distribution on a branching manifold (Figure 3a). We found that the latent86

embeddings of two modalities in JAMIE preserve the branching structure of the manifold while aligning87

the cells of the same type in either modality and maintains cell type separation (Figure 3b). To quantify88

the integration quality, we utilize two metrics: label transfer accuracy (LTA) [7,29], which measures cross-89

modal phenotype separation, and fraction of samples closer to the true match (FOSCTTM), which measures90

cross-modal alignment. More details can be found in Subsection 4.9. For separating cell types, JAMIE91

(LTA= 0.976, FOSCTTM= 0.001) outperforms state of the art alignment methods NLMA (LTA= 0.970,92

FOSCTTM= 0.001) in LTA and UnionCom (LTA= 0.947, FOSCTTM= 0.079) in both LTA and FOSCTTM93

(Figure 3c).94

Also, we found that the imputed feature values by JAMIE are consistent with the measurements. For95

instance, as shown in Figure 2d, the imputed values of Modality 1 features have high distribution similarity96

with the measured values across cell types with average JS distance of 0.428 ± 0.097 (Figure 3d). Two97

features with high similarity are highlighted with average JS distances 0.278 and 0.281 (Figure 3e), also98

showing a preservation of expression changes across cell types (i.e., cell type 1 has a lower value than both99

other cell types). The imputation performance is compared to a baseline method through correlation and100

AUROC in subfigure f of each results figure. Each dot represents a cell and the axes are the performance101

for each method. The red line is the space of equal performance between methods. For imputing the first102

modality, we also see that JAMIE outperforms the baseline KNN using a two-tailed binomial test for 1, 490103

versus 466 features (p < 1e-100) in terms of AUROC and 1, 147 versus 853 features (p < 6e-11) in terms104

of correlation (Figure 3f). JAMIE exhibits similar outperformance for AUROC when imputing the second105

modality (Supplementary Figure 1). We see that JAMIE is able to reliably predict features (See select cells106

in Supplementary Figure 2).107

We tested JAMIE on non-Gaussian simulation data [18] as well and found that JAMIE performed better108

than the majority of state-of-the-art methods (Supplementary Figure 3). JAMIE achieved an LTA of 0.952109

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 13, 2023. ; https://doi.org/10.1101/2022.10.15.512388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.512388


4 N. Cohen Kalafut et al.

… …

…

…
…

Cross-Modal 
Correspondence

Fe
at

ur
es

�𝒀𝒀
𝑑𝑑𝒀𝒀 × 𝑛𝑛𝒀𝒀

�𝑿𝑿
𝑑𝑑𝑿𝑿 × 𝑛𝑛𝑿𝑿

Fe
at

ur
es

Latent Space

i
k

Fe
at

ur
es

𝒀𝒀
𝑑𝑑𝒀𝒀 × 𝑛𝑛𝒀𝒀

𝑿𝑿
𝑑𝑑𝑿𝑿 × 𝑛𝑛𝑿𝑿

Fe
at

ur
es i

𝐿𝐿𝑿𝑿
𝑔𝑔 × 𝑛𝑛𝑿𝑿𝑓𝑓𝐸𝐸𝑋𝑋

𝑓𝑓𝐸𝐸𝑌𝑌

𝑓𝑓𝐷𝐷𝑋𝑋

𝑓𝑓𝐷𝐷𝑌𝑌

𝑭𝑭

Cells

… …

Fe
at

ur
es

�𝒀𝒀
𝑑𝑑�𝒀𝒀 × 𝑛𝑛𝑿𝑿∗

𝑿𝑿∗
𝑑𝑑𝑿𝑿∗ × 𝑛𝑛𝑿𝑿∗

Fe
at

ur
es

𝐿𝐿𝑿𝑿∗
𝑔𝑔 × 𝑛𝑛𝑿𝑿∗

𝑓𝑓𝐸𝐸𝑋𝑋 𝑓𝑓𝐷𝐷𝑌𝑌

a Joint Variational Autoencoders for Multimodal Imputation and Embedding

b Cross-Modal Imputation

Aggregate Latent 
Space

c Feature Interpretation
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
…
𝑎𝑎𝑑𝑑

𝒃𝒃𝟏𝟏
𝑏𝑏2
𝑏𝑏3
…
𝑏𝑏𝑑𝑑

i

k

i

k
𝔼𝔼 𝑓𝑓 𝒛𝒛 𝔼𝔼 𝑓𝑓 𝒛𝒛 |𝑧𝑧1 = 𝑎𝑎1𝔼𝔼 𝑓𝑓 𝒛𝒛 |𝒛𝒛 = 𝒙𝒙𝑖𝑖

𝑓𝑓 ⋅ = 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽
𝒛𝒛 = 𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑

k

i

Correlation-
Based Latent 
Aggregation

𝝁𝝁, log𝝈𝝈𝟐𝟐

𝝁𝝁, log𝝈𝝈𝟐𝟐

𝝁𝝁,𝟎𝟎

i

k k

𝐿𝐿𝒀𝒀
𝑔𝑔 × 𝑛𝑛𝒀𝒀

𝐽𝐽𝑿𝑿
𝑔𝑔 × 𝑛𝑛𝑿𝑿

𝐽𝐽𝒀𝒀
𝑔𝑔 × 𝑛𝑛𝒀𝒀

𝐽𝐽�𝒀𝒀
𝑔𝑔 × 𝑛𝑛𝑿𝑿∗

…

Figure 2. Joint variational Autoencoders for Multimodal Imputation and Embedding (JAMIE) uses variational
autoencoders with a novel latent space aggregation technique in order to generate similar latent spaces for each
modality. (a) As input, two data matrices X,Y are provided with optional user-provided cross-modal correspondence

matrix F . These data matrices are fed through encoding layers fX
E (·), fY

E (·) which provide µX
i ,�X

i and �Y
j ,µY

j for
all samples i in X and j in Y , respectively. Then, LX

i ⇠ N (µX
i ,�X

i ) and LY
j ⇠ N (µY

j ,�Y
j ) are sampled for all i

and j to produce the latent spaces LX ,LY . Latent spaces are aggregated using F to make MX ,MY . Finally, the
decoding layers produce a reconstructed version of the original modalities fX = fX

D (MX), eY = fY
D (MY ). The latent

embeddings LX ,LY of the two modalities can be used in tandem for missing phenotype prediction. (b) The trained
model can be reused for cross-modal imputation through coupling of encoders and decoders from di↵erent modalities.
(c) The imputing function f(x) = fY

D (LX) = y, x 2 RdX , y 2 RdY is assessed using Shapley Additive Explanation
values [17] which estimate contribution of each input feature by selectively masking the input feature vector with the
background.

and FOSCTTM of < 0.001. The second-best performing method (NLMA) had an LTA of 0.886 and FOS-110

CTTM of 0.002, similar to the performance of JAMIE with only 75% correspondence information provided111

(LTA= 0.876, FOSCTTM= 0.016, Supplementary Figure 4). Further details on this dataset can be found in112

Supplementary Section 2.113

2.2 Mouse Neuronal Gene Expression and Electrophysiology114

We applied JAMIE to infer cross-modal embeddings and impute gene expression and electrophysiological115

(ephys) data (inhibitory neuronal types: Lamp5, Serpinf1, Sst, Vip, Pvalb, Sncg) neuronal cells in the mouse116

visual cortex ([2], Figure 4a).117
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Figure 3. Simulated multimodal data [8]. (a) UMAP of original spaces colored by cell types.(b) UMAP of JAMIE
latent spaces. (c) Fraction of samples closer to the true mean (x-axis) and label transfer accuracy (y-axis) of JAMIE
and state-of-the-art methods for cell type separation using all correspondence information available. CCA: canonical
correlation analysis [15,14], LMA: linear manifold alignment [14], MMD-MA [8], NLMA: nonlinear manifold alignment
[14], UnionCom [7]. (d) Cumulative distributions of similarity (1 � JS distance) between measured and imputed
feature values in Modality 1. The black line indicates the average similarity across cell types while the colored lines
each correspond to a single cell type. (e) Measured (top) and imputed (bottom) values of two select features in
Modality 1 across cell types (n = 300). Boxes span from the upper to lower quartiles and a line indicates the median.
Whiskers extend to extremes up to 1.5 times the interquartile range from the upper and lower quartiles. Any outliers
beyond this range are plotted individually. (f) Imputation performance for Modality 1 of JAMIE versus a baseline
KNN by AUROC and correlation. We utilize a two-tailed binomial test to generate p-values.

We found that both gene and ephys embeddings identified by JAMIE can e↵ectively separate those cell118

types (Figure 4b). Further, JAMIE (LTA= 0.944, FOSCTTM= 0.002) outperforms other alignment methods119

in both LTA and FOSCTTM, e.g., LMA (LTA= 0.907, FOSCTTM= 0.072) and UnionCom (LTA= 0.887,120

FOSCTTM= 0.124) (Figure 4c).121

Also, JAMIE performs imputation consistently across cell types and generally maintains ephys changes122

across cell types with an average JS distance of 0.537 ± 0.115 (Figure 4d). Two ephys features with high123

similarity demonstrate this preservation with average JS distances 0.314 and 0.316 (Figure 4e). Finally, ephys124

features are imputed significantly better than the baseline KNN, with 33 of 39 features (p < 2e-5) performing125

better on JAMIE for both AUROC and correlation (Figure 4f). The imputation performance is visualized126

for select cells in Supplementary Figure 2.127

JAMIE was able to generalize to phenotypes beyond cell type, achieving a relatively high LTA (0.650)128

when predicting cortical layers compared to other state-of-the-art methods (Supplementary Figure 5). For129

reference, NLMA achieved an LTA of 0.663 while LMA, the next best, only achieved an LTA of 0.515.130

In addition to the mouse visual cortex, we also tested JAMIE on gene expression and ephys features in the131

mouse motor cortex. JAMIE maintains cell type separation in the latent space (Supplementary Figure 6b).132

JAMIE (LTA= 0.899, FOSCTTM= 0.002) outperforms several methods in both LTA and FOSCTTM, e.g.,133

LMA (LTA= 0.897, FOSCTTM= 0.044) (Supplementary Figure 6c). Unioncom (LTA= 0.248, FOSCTTM=134

0.445), CCA (LTA= 0.273, FOSCTTM= 0.366), and MMD-MA (LTA= 0.246, FOSCTTM= 0.478) are135

unable to align the datasets.136

JAMIE also preserves ephys changes across cell types, with average JS distance 0.497±0.244 (Supplemen-137

tary Figure 6d). Two ephys features with high similarity demonstrate the preserving nature of JAMIE with138

JS distances 0.380 and 0.405 (Supplementary Figure 6e). Finally, JAMIE significantly outperforms the base-139

line KNN using a two-tailed binomial test with 22 of 29 features for correlation (p < 9e-3) (Supplementary140

Figure 6f).141

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 13, 2023. ; https://doi.org/10.1101/2022.10.15.512388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.512388


6 N. Cohen Kalafut et al.

0.7

0.8

0.9

1.0

0.00.10.20.30.40.5

0.3

0.4

FOSCTTM

L
T
A

 (
k
=

5
)

JAMIE

NLMA

LMA

CCA

MMD-MA

UnionCom

2 4 6 8 10 12

UMAP-1

−4

−2

0

2

4

6

U
M

A
P
-2

JAMIE - Gene Expression

2 4 6 8 10 12

UMAP-1

−4

−2

0

2

4

6

U
M

A
P
-2

JAMIE - Electrophysiology

2 4 6 8 10
UMAP-1

−8

−6

−4

−2

0
U

M
AP

-2
Gene Expression

2.5 5.0 7.5 10.0 12.5
UMAP-1

−10

−8

−6

−4

−2

0

U
M

AP
-2

Electrophysiologya

threshold_i_ramp ri

−1.7

0.4

2.4

4.5

M
ea

su
re

d

Sample Feature Distributions (Electrophysiology)

threshold_i_ramp ri

−1.1

−0.2

0.7

1.7

Im
pu

te
d

0.6 0.7 0.8 0.9

KNN

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

JA
M

IE

33

6

p-value: 1.43E-05

AUROC - Electrophysiology

0.0 0.2 0.4 0.6 0.8

KNN

0.0

0.2

0.4

0.6

0.8

JA
M

IE

33

6

p-value: 1.43E-05

Correlation - Electrophysiology

0.0 0.2 0.4 0.6 0.8 1.0

Percentile

0.0

0.2

0.4

0.6

0.8

1.0

E
le

c
t
r
o
p

h
y

s
io

lo
g

y
 S

im
il
a
r
it

y

Lamp5

Pvalb

Serpinf1

Sncg

Sst

Vip

Cumulative

Lamp5

Pvalb

Serpinf1

Sncg

Sst Vip

b

c

d

e

f
Lamp5

Pvalb

Serpinf1

Sncg

Sst Vip

Figure 4. Gene expression and electrophysiological features in the mouse visual cortex [2]. (a) UMAP of single cells
by gene expression data (left) and electrophysiological features (right), colored by cell types (inhibitory neuronal
types). (b) JAMIE latent spaces of (a). (c) Fraction of samples closer to the true mean (x-axis) and label transfer
accuracy (y-axis) of JAMIE and state-of-the-art methods for cell type separation using all correspondence information
available. CCA: canonical correlation analysis [15,14], LMA: linear manifold alignment [14], MMD-MA [8], NLMA:
nonlinear manifold alignment [14], UnionCom [7]. (d) Cumulative distributions of similarity (1 � JS distance) between
measured and imputed electrophysiological features by gene expression. The black line indicates the average similarity
across cell types while the colored lines each correspond to a single cell type. (e) Measured (top) and imputed (bottom)
values of two electrophysiological features across cell types (n = 3, 654). Boxes span from the upper to lower quartiles
and a line indicates the median. Whiskers extend to extremes up to 1.5 times the interquartile range from the
upper and lower quartiles. Any outliers beyond this range are plotted individually. (f) Performance for imputing
electrophysiological features of JAMIE versus a baseline KNN by AUROC and correlation. We utilize a two-tailed
binomial test to generate p-values.

2.3 Gene Expression and Chromatin Accessibility in Human Brain142

To further investigate the emerging single-cell multiomics data on gene regulation, we apply JAMIE to the143

gene expression and chromatin accessibility data of the developing human cerebral cortex (scRNA-seq and144

scATAC-seq by 10x Multiome) [3] (Figure 5a). The chromatin accessibility data measures the accessibility145

of open chromatin regions (OCRs) by peak signals. OCRs play key epigenomic roles in regulating gene146

expression.147

JAMIE embeddings separate cell types, in contrast to UMAP alone (Figure 5a-b). In comparison of cell148

type separations, JAMIE (LTA= 0.959, FOSCTTM< 0.001) also outperforms all other methods in both149

LTA and FOSCTTM compared with NLMA (LTA= 0.767, FOSCTTM= 0.002) and LMA (LTA= 0.775,150

FOSCTTM= 0.002) (Figure 5c). CCA (LTA= 0.544, FOSCTTM= 0.930) and UnionCom (LTA= 0.458,151

FOSCTTM= 0.494) failed to align due to the complexity of the data. We note that JAMIE with provided152

75% correspondence information (LTA= 0.951, FOSCTTM= 0.047) and 50% correspondence information153

(LTA= 0.936, FOSCTTM= 0.106) also outperform all other methods in terms of LTA (Supplementary154

Figure 4).155

Moreover, we used JAMIE to impute gene expression from OCRs (peaks) and vice versa. Imputed gene156

expression values are preserved across cell types with average JS distance 0.484 and standard deviation157

0.245 (Figure 5d). We observe wider distributions in the measured data when compared with the imputed158

data, likely leading to relatively high JS distance with a large number of cell types. We highlight two genes159

with specifically high similarity, having JS distances 0.260 and 0.332 (Figure 5e). Finally, JAMIE significantly160

outperforms the imputation baseline using a two-tailed binomial test, better imputing 18, 478 of 19, 071 genes161

for AUROC (p < 1e-100) and 20, 140 of 22, 592 genes for correlation (p < 1e-100) from OCRs (Figure 5f).162

JAMIE exhibits similar imputation performance when imputing ATAC features from RNA (Supplementary163

Figure 7). Imputation of OCRs from gene expression also outperforms the KNN baseline using the same164

statistical measure (p < 1e-100) (Supplementary Figure 7).165
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Figure 5. Gene expression and chromatin accessibility of single cells in the developing brain at 21 postconceptional
weeks [3]. (a) UMAP of single cells in the human developing brain by gene expression (left) and the accessibility
activities of open chromatin regions (right), colored by cell type. (b) JAMIE latent space of a. (c) Fraction of samples
closer to the true mean (x-axis) and label transfer accuracy (y-axis) of JAMIE and state-of-the-art methods for cell
type separation using all correspondence information available. CCA: canonical correlation analysis [15,14], LMA:
linear manifold alignment [14], NLMA: nonlinear manifold alignment [14], UnionCom [7]. (d) Cumulative distributions
of similarity (1 � JS distance) between measured and imputed gene expression by chromatin accessibility. The black
line indicates the average similarity across cell types while the colored lines each correspond to a single cell type. (e)
Measured (top) and imputed (bottom) values of two genes across cell types (n = 8, 981). Boxes span from the upper
to lower quartiles and a line indicates the median. Whiskers extend to extremes up to 1.5 times the interquartile
range from the upper and lower quartiles. Any outliers beyond this range are plotted individually. (f) Performance
for imputing genes of JAMIE versus a baseline KNN by AUROC and correlation. We utilize a two-tailed binomial
test to generate p-values.

A strong integration method we mentioned in Section 1 is scGLUE [9], which utilizes a combined au-166

toencoder and graph model. To facilitate a comparison between scGLUE and JAMIE, we also ran both167

methods on [19], which was utilized in [9]. We found that JAMIE (LTA= 0.859 and FOSCTTM< 0.001)168

outperformed scGLUE (LTA= 0.854 and FOSCTTM= 0.038) in both LTA and FOSCTTM (Supplementary169

Figure 8). NLMA (LTA= 0.259 and FOSCTTM= 0.035) was unable to achieve cell type separation.170

2.4 Gene Expression and Chromatin Accessibility in Colon Cancer171

To further test imputation performance, we compared JAMIE to BABEL [5] using scRNA-seq and scATAC-172

seq data in colon adenocarcinoma COLO-320DM cells in Supplementary Figure 9 [20]. JAMIE significantly173

outperforms BABEL in imputing both modalities by a two-tailed binomial test. In particular, JAMIE was174

better on 12, 309 (p < 1e-100) and 13, 334 (p < 1e-100) genes by AUROC and correlation, respectively,175

for gene expression imputation from chromatin accessibility (scATAC-seq, OCR peaks) (Supplementary176

Figure 9a). For imputing OCRs from gene expression, JAMIE was better on 28, 120 (p < 1e-100) and 49, 936177

(p < 1e-100) features by AUROC and correlation, respectively (Supplementary Figure 9b).178

2.5 Biological Interpretability for Cross-Modal Imputation179

To avoid the black-box nature of many deep learning models, we applied SHAP [17] to prioritize features180

for cross-modal imputation (Section 4.12). Specifically, this analysis gives top features in one modality for181

imputing a given feature in another modality.182

As shown in Figure 6a, JAMIE prioritized open chromatin regions (OCRs) for imputing the gene,183

DENND1B, which is a gastric cancer related gene on chromosome 1 [21]. Further, keeping OCRs closer184

to the location of DENND1B generally results in better imputation performance. For instance, removing185
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Figure 6. Feature prioritization for cross-modal imputation and embedding. (a) Top left - JAMIE imputation of
DENND1B gene with select open chromatin regions removed in colon cancer data [20]. The x-axis is the correlations
of the imputed gene expression data with and without select open chromatin regions removed. Aside from the same

chromosome and genome-wide results, all distributions have significantly di↵erent means using a one-tailed t-test
(All p < 2e-10). Top right - LTA for JAMIE with select genes removed in the mouse visual cortex [2]. Bottom left -
LTA for JAMIE with select genes removed in the developing brain [3]. Bottom right - LTA for JAMIE with select
genes removed in the mouse motor cortex [30]. For each, 14 of the most significant values are displayed along with 6
randomly sampled genes for background. Red Line: Baseline value with no chromatin regions or genes removed. (b)
Waterfall plot of select important genes for imputing electrophysiological feature fast trough t long square in mouse
visual cortex patch-seq dataset [2]. X-axis: SHAP importance values, Red: Positive SHAP value, Blue: Negative SHAP
value.

OCRs within 10kb produces lower correlation than elsewhere within the chromosome, suggesting the possi-186

ble capability of JAMIE to reveal the importance of genomic proximity from chromatin accessibility to gene187

expression.188

For the developing brain, JAMIE identifies several important genes, including MIA and BBC3 (Both189

LTA= 0.889) for contributing JAMIE embeddings to separate the cell types. MIA has been linked to increased190

risk for neurodevelopmental disorders [22] and BBC3 has been linked to cell death in the adult brain [23].191

Additionally, JAMIE identifies the gene SST (LTA= 0.423) as an important gene in the mouse visual cortex.192

SST is known to be directly related to visual discrimination [24]. Many cell type marker genes were found193

within the top 200 prioritized genes, with all possible found within the top 400.194

3 Discussion195

JAMIE is a novel deep neural network model for cross-modal estimation. It works for complex, mixed, or196

partial correspondence multimodal data facilitated by a novel latent embedding aggregation methodology197

reliant on a joint variational autoencoder structure. In addition to its outperformances as above, JAMIE198

is also computationally e�cient and requires little memory usage (Supplementary Table 2). Moreover, the199

pretrained model along with learnt cross-modal latent embeddings may be reused for downstream analyses.200

We evaluated JAMIE using the evaluation metrics that were designed for the alignment methods such201

as FOSCTTM and LTA. Despite JAMIE not being explicitly designed to provide common latent spaces202

in each modality like alignment, JAMIE’s FOSCTTM remains comparable to, and in many applications203

better than, existing methods in this paper. In addition, LTA appears to be better under complex use cases204

featuring unfiltered and noisy data. This suggests that the use of modality-specific and aggregated latent205

spaces in JAMIE allows for flexibility in forming the latent embeddings for better separate cell types from206

noisy samples.207

In cases with low user-provided correspondence, we found that the alignment loss becomes more impor-208

tant. As seen in Supplementary Figure 10a, imputation performance is aided through the inclusion of align-209

ment loss with low (50%) user-provided correspondence. In highly-correspondent applications, the alignment210

loss may be disregarded to speed up computation by eliminating the computation time of eF (Supplementary211

Table 2).212
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We have demonstrated the capability of JAMIE to impute between two modalities bidirectionally. In213

practice, imputing a biological outcome from the source modality is likely to be more useful than imputing214

a source modality from a biological outcome. Examples include imputing electrophysiological features from215

gene expression and gene expression from epigenomic regulation (e.g., chromatin accessibility). However,216

our analyses for partial correspondence provide another imputation use case. As stated in our introduction,217

missing modalities occur frequently when measuring single-cell multimodal data due to its process complexity.218

This generates data with partial correspondence, i.e., with unmatched cells between modalities. In this case,219

we showed that JAMIE with partial correspondence is able to outperform a baseline KNN imputation method220

with full correspondence (using all samples). For instance, as shown in Supplementary Figure 10b, JAMIE221

imputation using 50% of user-provided correspondence significantly outperforms the baseline by a two-tailed222

binomial test using all user-provided correspondence while imputing electrophysiological features from gene223

expression in the mouse visual cortex (p < 2e-3).224

JAMIE started as a vanilla deterministic autoencoder but was later changed to be variational because of225

the superior performance of VAEs regarding interpolation in the latent space [25]. Intuitively, the continuous226

latent space allows for easy sampling and interpolation [26]. Additionally, the proposed aggregation method227

in Subsection 4.2 relies on the interpolation of latent representations and is improved after switching to a228

continuous latent space. Though VAEs perform random sampling in the latent space, the process does not229

add any noticeable randomness to the prediction. Given the same input, the encoder indeed can generate230

di↵erent latent variables due to random sampling during training, but our decoder still reproduces very231

similar reconstructions. This is because the decoder is trained to map latent samples referring to the same232

input to very close reconstructions [26]. On the topic of random sampling, the dropout layers do not add233

randomness to the prediction. They only serve to generalize the model and prevent overfitting by adding234

redundancy. We chose a default value of p = 0.6 to maximize generalizability without adversely a↵ecting235

performance with default hyperparameters. From Supplementary Figure 11 we see that dropout values of236

0.4 and 0.6 have roughly equivalent mean performance while 0.8 has slightly degraded results.237

We can split JAMIE into Preparation and Training phases. The former is preprocessing, PCA, and cal-238

culating the inferred correspondence matrix while the latter is the joint VAE model detailed in Figure 2.239

Supplementary Table 2 shows the consumed time and memory of each phase in seven datasets. For larger240

datasets, most computation time is spent on the Preparation phase. We see that Training time scales primar-241

ily with cell count while peak memory usage generally scales with both cell count and number of features.242

Over the course of runtime, we also found that the KL-divergence dictated the pace of training, as the243

other losses converge quickly alone (Supplementary Figure 12). Visually, we also see that, as  (Subsec-244

tion 4.3) increases, an e↵ect can be seen in the alignment and combination losses while the reconstruction245

loss steadily declines, indicating that the reconstruction and KL losses dominate the training. Without KL-246

annealing, we found that other losses were unable to converge, even with the KL-loss having a relatively low247

weight. This was computed on our non-Gaussian simulation data [18].248

Training variational autoencoders is time consuming for larger datasets. Thus, prior feature selection249

such as the automated PCA in JAMIE helps alleviate time requirements. Data preprocessing is also crucial250

to avoid large or repeated features that can disproportionately shape the features of the low-dimensional251

embedding, due to the use of reconstruction loss. For cross-modal imputation specifically, the diversity of252

the training dataset has to be carefully considered to avoid biasing the final model, and negatively a↵ecting253

the generalizability. JAMIE could also potentially be extended to align datasets from di↵erent sources rather254

than di↵erent modalities, such as gene expression measured under di↵erent conditions. Because the novel255

contributions of JAMIE are mainly in the processing of the latent space, many changes in structure and256

datatype are straightforward to achieve.257

4 Methods258

Figure 2a shows the training process of JAMIE. Two numeric data matrices of modalities X and Y are259

used as input. X 2 RdX⇥nX is a data matrix of modality X with dX features and nX samples. The ith260

column of X, i.e. xi 2 RdX , is the feature vector of the ith sample of modality X. Y 2 RdY ⇥nY is a data261

matrix of modality Y with dY features and nY samples. Similarly, the jth column of Y , i.e. yj 2 RdY , is262

the feature vector of the jth sample of modality Y . Each row of X and Y is standardized, e.g., mean = 0263

and standard deviation = 1. If available, a user-provided correspondence matrix F 2 RnX⇥nY
�0 is used to aid264
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construction of the similar latent spaces during training, where Fij = 1 implies one-to-one correspondence265

(i.e. same cells di↵erent modalities) between cell i in modality X and cell j in modality Y , Fij = 0 implies266

no known correspondences, and 0 < Fij < 1 implies partial confidence of correspondence.267

Jamie utilizes joint variational autoencoders to learn similar latent spaces for each of the two modalities,268

LX 2 Rg⇥nX and LY 2 Rg⇥nX , where g is the selected dimensionality of the latent space. Higher g will269

lead to better reconstruction loss, but the features will not be as dense information-wise. Lower g will270

condense information more e�ciently, but at the cost of reconstruction and imputation performance. We271

experimentally found g = 32 to be robust across multiple datasets, and use this as the default for JAMIE.272

During training, we utilize correlation-based latent aggregation. In order to learn these latent spaces, JAMIE273

minimizes the following losses:274

`total = `kl + ↵`combination + �`reconstruction + �`alignment. (1)275

`kl takes the Kullback-Leibler (KL) divergence between the inferred distribution of our variational au-276

toencoders (VAEs) and the multivariate standard normal, aiding with the continuity of the latent space.277

`combination enforces similarity of correspondent samples and takes the weight ↵. `reconstruction is the summed278

mean squared error between the reconstructions and original data matrices and is assigned the weight �.279

`alignment uses inferred cross-modal correspondence to shape the resultant latent space and is assigned the280

weight �. The weights are user-defined and their default values are detailed in Subsection 4.8. An overview281

of the JAMIE algorithm can be seen in Figure 2.282

The default hyperparameters work for a wide variety of cases, and are used for our applications unless283

otherwise mentioned, but may be customized to the user’s preference.284

`kl a↵ects the continuity of the latent space and aids in interpolation and stability. This is particularly285

important for imputation applications. Although this e↵ect is not obvious from the integrated space itself286

(Supplementary Figure 13a), the imputation performance is significantly improved with this loss (Supple-287

mentary Figure 13b).288

`combination controls the focus on similarity between correspondent features across modalities. A higher289

weight will result in closer cross-modal cell representations at the risk of losing per-modality detail. `reconstruction290

controls the ability of the latent space to encode raw information from each modality. A larger weight will291

make cell representations more adherent to their single-modal representations at the cost of cross-modal rep-292

resentation similarity of correspondent samples. The e↵ects of these losses are very pronounced when removed293

from the training process, and result in lower integrated space reliability (Supplementary Figure 13a).294

Finally, `alignment is primarily helpful for low-correspondence applications where the shape of the latent295

space is not clear from context. A higher weight will increase the similarity of cross-modal correspondent296

cell representations by changing the shape of the resultant latent space. This can come at the cost of cell297

type mixing and cluster accuracy but can result in better imputation performance in low-correspondence298

applications (Supplementary Figure 10a).299

The latent dimension g can be lowered for more compressed representations, potentially at a loss in300

accuracy (Supplementary Figure 14a). This can be useful in applications which present overfitting, normally301

when the dataset has very few features or samples. The number of principal components used in the JAMIE302

model can be adjusted to change model size, which can speed up calculation at the cost of performance303

(Supplementary Figure 14b). This may also be lowered to avoid overfitting.304

4.1 Distribution of Latent Space Features305

Intermediate feed-forward neural networks are utilized to generate distributions for each feature in the306

g-dimensional latent space for each modality. These will be henceforth referred to as encoders, denoted307

fX
E (·), fY

E (·) for each modality. The variational encoders have four hidden layers. The encoder of modality308

X transforms the feature dimension as follows: nX ! 2nX ! nX ! g ! 2g. For modality X, the top309

half of the fourth layer output corresponds to means and the bottom half corresponds to log variance per310

sample and feature as in Equation 2a. The encoder is similar for Y . Batch normalization and leaky ReLU311

activations are included wherever possible, and dropout layers are added (p = 0.6) for imputation models.312
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For each sample xi and yj , we sample the multivariate Gaussian313

⇥
fX
E (X)

⇤
i
=


µX

i

�X
i

�
LX

i ⇠ N (µX
i , diag(�X

i )) µX
i ,LX

i 2 Rg �X
i 2 Rg

>0 i 2 {1, 2, . . . , nX}, (2a)314

⇥
fY
E (Y )

⇤
j
=


µY

j

�Y
j

�
LY

j ⇠ N (µY
j , diag(�Y

j )) µY
j ,LY

j 2 Rg �Y
j 2 Rg

>0 j 2 {1, 2, . . . , nY }, (2b)315

316

where
⇥
fX
E (X)

⇤
i
and

⇥
fY
E (Y )

⇤
i
are the encoded results of xi and yj , respectively, and diag(·) is a diagonal317

matrix generated from a vector. LX
i and LY

j are sampled from the multivariate Gaussian distributions318

indicated above. We define LX
i 2 Rg as the ith column of LX , representing the feature vector of the ith319

sample. LY
j 2 Rg is defined similarly.320

The VAE is able to approximately map any non-Gaussian input data onto the multivariate Gaussian321

latent space (using the encoder) and reconstruct the input data from the space using the decoder [26].322

Therefore, the multimodal input to JAMIE is not restricted to a Gaussian distribution.323

4.2 Aggregation of the Latent Spaces324

Using our user-provided correspondence matrix F 2 RnX⇥nY , we can perform an aggregate calculation to325

combine the latent space vectors of known aligned points. In particular,326

MX =
�
LX + �LY F T

�
(diag (1 + �F1nY ))

�1 , (3a)327

MY =
�
LY + ��1LXF

� �
diag

�
1 + ��1F T1nX

���1
, (3b)328

329

where the aggregate feature vector MX 2 Rg⇥nX has g features and nX samples and MY 2 Rg⇥nY has g330

features and nY samples. 1nx 2 Rnx and 1ny 2 Rny are vectors of all ones. � refers to the relative weighting331

between modalities X and Y in the aggregation function. We learn � over the course of training. A value332

� < 1 implies that X is weighted more than Y during aggregation, while � > 1 implies the opposite. The333

construction of MX ,MY is shown visually in Figure 2a in the formulation of the blue vector. Figure 2a334

shows the case Fik = 1 with all other entries in row i and column k being 0, which results in simply averaging335

the latent feature vectors of xi and yk.336

The linear aggregation technique is backed by the nonlinear transformation of the encoder, which is able337

to account for varying timings, magnitude changes, and distributions due to its deep structure. In Figure 2,338

this is the blue latent space vector combination of correspondent samples. We term the technique correlation-339

based latent aggregation. This moves correspondent latent embeddings in similar directions over the course340

of training and is key in the formation of similar latent spaces. Correlation-based latent aggregation is the341

primary motivation for the use of the variational autoencoder framework, as it allows for this intuitive342

representation of partially aligned datasets. We can now adjust our low-dimensional data embeddings by343

using aggregates wherever possible to produce our final aggregate latent spaces MX and MY .344

4.3 Continuity of the Aggregate Latent Spaces345

Continuous LX and LY facilitate imputation, thus, we adopt the VAE architecture [25] and the correspond-346

ing KL loss:347

`kl =


g

gX

k=1

dk, (4)348

where dk takes the KL divergence of the kth feature between the distribution of our latent space estimate349

and a multivariate standard normal as the targeted distribution:350

dk =� 1

2nX

nXX

i=1

�
1 + 2 log([�X

i ]k)� ([µX
i ]k)

2 � ([�X
i ]k)

2
�

� 1

2nY

nYX

j=1

�
1 + 2 log([�Y

j ]k)� ([µY
j ]k)

2 � ([�Y
j ]k)

2
�
.

(5)351
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The parameter  is slowly increased from 0 to 1 over the course of training to accelerate convergence [27],352

further detailed in Subsection 4.7. This process is further referred to as KL-annealing. KL divergence is353

described in Subsection 4.7.354

`kl will lower to zero as the latent space’s distribution approaches the standard multivariate Gaussian.355

This encourages a continuous latent space through the nonzero standard deviations. The mean approaching356

zero encourages a small, clustered latent space. This will negatively a↵ect metrics such as silhouette distance,357

but can aid in imputing outlier or unseen single-cell data.358

4.4 Similarity of the Original and Aggregate Latent Spaces359

The structure alone with JAMIE already produces shared latent spaces MX and MY . To balance LX and360

LY and keep both latent spaces the same scale, we implement a loss proportional to the square norm of the361

di↵erence between each latent space and its aggregated matrix M :362

`combination =
1

gnX
||LX �MX ||2F +

1

gnY
||LY �MY ||2F . (6)363

The combination loss makes the aggregate matrices as similar as possible to the originals while still main-364

taining cross-modal corresponding cell representation similarity. In practice, as long as the two modalities365

contain unique information and are non-trivially corresponding, the combination and reconstruction losses366

will balance each-other out, as the reconstruction loss ensures that information unique to each modality is367

encoded in the latent representations. This balance allows JAMIE to form the latent space flexibly while368

preserving as much single-modal detail as possible.369

4.5 Similarity of the Original and Reconstructed Data Matrices370

Decoders are structured in the reverse manner as encoders. It uses fully connected layers to transform the371

feature dimension as follows: g ! nX ! 2nX ! nX . The structure is similar for Y . Batch normalization and372

leaky ReLU are included where possible, and dropout layers are added (p = 0.6) for imputation models. We373

denote the decoders fX
D (·), fY

D (·) for each modality and use each to get an estimate of the original datasets374

fX = fX
D (MX) 2 RdX⇥nX and eY = fY

D (MY ) 2 RdY ⇥nY . The quality of the reconstruction, and thereby375

the information retained in the latent space, can be evaluated by:376

`reconstruction =
1

dXnX
||X � fX||2F +

1

dY nY
||Y � eY ||2F . (7)377

4.6 Correspondence of the Aggregate Latent Spaces378

We find the optimal inferred correspondence matrix eF 2 RnX⇥nY
�0 by solving the following optimization379

problem:380

min
↵,F

||↵KX � FKY F
T ||2F

s.t. F � 0, ↵ � 0,

F1ny = 1nx , F
T
1nx  1ny ,

(8)381

where [KX ,KY ] = [dist(X), dist(Y )] are the intra-dataset distance. This generally uses geodesic distance382

and is similar to the quadratic assignment problem.383

The procedure originates from an extension on [28], which optimized a similar expression but assumed384

one-to-one correspondence on inter-dataset cell pairs. [7] extended this to the concept of one-to-many corre-385

spondence between modalities and created the implementation in Equation 8.386

Once solved, eFij denotes the probability that sample xi is matched with sample yj . The objective of eF387

is to provide complete correspondence information. F will generally contain only one-to-one relationships,388

while true inter-modal relationships are often layered and complex. In practice, we may consider combining389

F and eF by a weighted average if the user-provided correspondence is especially low (see Algorithm 1).390

To ensure that correspondent samples have similar aggregate latent representations we introduce `alignment.391

This metric relies on our inferred correspondence eF rather than the user-provided correspondence matrix392
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F . Unlike F , our inferred correspondence eF contains information about samples which are likely to not393

correspond. We can utilize this dense information to shape our latent space such that contributing samples394

are clustered:395

`alignment =
1

gnX
||MX �MY eF T ||2F . (9)396

The alignment loss is primarily e↵ective when the user-provided correspondence is weak (containing few397

highly-correspondent pairs). This loss shapes the integrated latent spaces and aids in obtaining cross-modal398

latent similarity by inferring correspondence using unsupervised manifold alignment. Any unsupervised cor-399

respondence method may be substituted for eF .400

4.7 Early Stopping and KL Annealing401

Early stopping is performed by keeping track of the best `total over the course of training. JAMIE is given402

a minimum number of epochs (default, 2, 500) over which time no early stopping can take place. Over this403

period,  is gradually increased from 0 to 1. The concept originates from [27]. Once this period is over, the404

training continues until the algorithm does not produce a new best loss for a set number of epochs (default,405

500) or until the maximum number of epochs is achieved (default, 10, 000). This process is further detailed406

in Algorithm 1.407

4.8 JAMIE Algorithm408

In Algorithm 1, datasets X and Y are provided pre-standardized along with an optional correspondence409

matrix F as described in Section 4. The user-given variables are ⌧min (default, 2, 500) ⌧max (default, 10, 000),410

which are the minimum and maximum number of epochs for training. bs (default, 512) is the batch size.411

(↵,�, �) are the weights for the model with defaults (1000, 31.25, 31.25). ⌧max lapses (default, 500) `min change412

(default, 1e-8) control the behavior of the early-stopping algorithm.413

⇢ is an experimental feature which controls how much the inferred correspondence matrix is utilized414

over the user-provided correspondence. The weighted average ⇢F + (1 � ⇢) eF is used in Equation 3a and415

Equation 3b. By default, ⇢ = 1. This is not explored in-depth within the paper, but is a useful feature for416

low-correspondence applications.417

4.9 Performance Evaluation418

Label Transfer Accuracy (LTA): To assess phenotype (e.g., cell type, cortical layer) separation, we419

use label transfer accuracy (LTA) [7,29]. LTA measures the phenotype-identification accuracy of a nearest420

neighbor classifier trained on the second modality and evaluated on the first. Higher values generally indicate421

better phenotype separation.422

Fraction of Samples Closer to the True Match (FOSCTTM): We use this metric to evaluate the423

average fraction of samples closer to the truly aligned sample (in both modalities) than its actual pairing.424

This provides an estimate of how closely the two modalities are aligned. Lower values generally indicate425

closer cross-modal alignment.426

Pearson Correlation: We use Pearson correlation mainly to compare imputed and measured feature427

values, providing an estimate of how well the imputation method captures the variance of the measured428

feature values. For the purposes of imputation, higher values usually indicate better performance.429

Area under the ROC curve (AUROC): We use AUROC to evaluate imputed features for prediction430

of high or low measured expression values. To test this, we use AUROC on the median-binarized measured431

data, that is, each feature value above the feature median is treated as 1, and all others are treated as 0.432

Jensen-Shannon Distance (JS distance): It is also important that an imputation method preserves433

individual cell type distributions. We use JS distance, which is the square root of the Jensen-Shannon434

divergence. Jensen-Shannon divergence is the average KL divergence between two distributions and their435

average (a symmetrized version of KL divergence). KL divergence measures the di↵erence between two436

probability distributions, and increases proportionally. As a baseline for imputation performance, a KNN437

model (k = 5) is used to generate new multimodal data based on the average of nearest neighbors in the438

training set.439
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Algorithm 1 JAMIE
Input: X,Y ,F
Params: ⌧min, ⌧max, bs, (↵,�, �), ⇢, ⌧max lapses, `min change

Output: fX
E (·), fY

E (·), fX
D (·), fY

D (·),LX ,LY

1: [KX ,KY ] = [dist(X), dist(Y )]

2: eF = argmin↵,F ||↵KX � FKY F
T ||2F

3: F  ⇢F + (1� ⇢) eF
4: `best  1, ⌧lapses  0
5: ⌧current  0
6: Initialize fX

E , fY
E , fX

D , fY
D with random weights

7: while ⌧current < ⌧max and ⌧lapses < ⌧max lapses do

8: Randomly sample Xs 2 RdX⇥bs from X 2 RdX⇥nX and Ys 2 RdY ⇥bs from Y 2 RdY ⇥nY

9: Extract submatrix Fs 2 Rbs⇥bs from F 2 RnX⇥nY and eFs 2 Rbs⇥bs from eF 2 RnX⇥nY

10: Optionally transform Xs,Ys using PCA trained on X,Y
11: Normalize columns of Fs and eFs to summation 1
12: Randomly sample LXs

i from distributions fX
E (Xs) and LYs

j from distributions fY
E (Ys) for i, j 2 {1, 2, . . . , bs}

13: MXs  
�
LXs + �LYsF T

s

�
(diag (1 + �Fs1bs))

�1

14: MYs  
�
LYs + ��1LXsFs

� �
diag

�
1 + ��1F T

s 1bs

���1

15: fXs  fX
D (MXs) and eYs  fY

D (MYs)

16: If Xs,Ys were transformed using PCA, perform inverse transform on fXs, eYs

17:  
⇣
1 + exp

⇣
�5(⌧current�0.5⌧min)

0.5⌧min

⌘⌘�1

18: Calculate `kl via Equation 4
19: Calculate `combination via Equation 6
20: Calculate `reconstruction via Equation 7
21: Calculate `alignment via Equation 9
22: `total  `kl + ↵`combination + �`reconstruction + �`alignment

23: if ⌧current � ⌧min then

24: if `total < `best � `min change then

25: `best  `total
26: ⌧lapses  0
27: else

28: ⌧lapses  ⌧lapses + 1
29: end if

30: end if

31: Update fX
E , fY

E , fX
D , fY

D using gradient descent on `total
32: ⌧current  ⌧current + 1
33: end while

34: LX  fX
E (X), LY  fY

E (Y )

p-Values: When we compare two methods in terms of imputation performance, we utilize the two-tailed440

binomial test with the null hypothesis that both methods have an equal probability of imputing better on441

any given feature.442

4.10 Hyperparameters and Validation443

Principal Component Analysis (PCA) is used to lower the dimensionality of data with many features. The444

default value for this preprocessing is 512 features, and is automatically inverted when applying imputation.445

The hyperparameters used for all experiments in the paper are the default losses detailed in Section 4, the446

minimal and maximal iterations detailed in Subsection 4.7, and a batch size of 512.447

When performing integration in Section 2, no data is withheld, hyperparameters are left at default, and448

dropout is set to p = 0 to facilitate maximal learning of single-modal nuances, regardless of dataset specificity.449

This is done because many alignment methods are unable to be reused, and perform integration only once450

before having to be recalculated. For imputation, hyperparameters are left unchanged but dropout is set451

at p = 0.6 to facilitate generalization. 20 percent of cells within each dataset are withheld at random. Any452

imputation performance calculations, such as those in Figure 3f, are performed on this withheld data.453
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4.11 Datasets and Preprocessing454

We applied JAMIE to four main single-cell multimodal datasets: (1) simulated multimodal data generated by455

sampling from a Gaussian distribution on a branching manifold in MMD-MA (N=300, 3 cell types) [8]; (2)456

Patch-seq gene expression and electrophysiological features of single neuronal cells in the mouse visual cortex457

(N=3, 654, 6 cell types) [2] and mouse motor cortex (N=1, 208, 9 cell types) [30]; (3) 10x Multiome gene458

expression and chromatin accessibility data of 8, 981 cells in the human developing brain (21 postconceptional459

weeks, covering 7 major cell types in human cerebral cortex) [3]; (4) scRNA-seq gene expression and scATAC-460

seq chromatin accessibility data of 4,301 cells from the COLO-320DM colon adenocarcinoma cell line (which461

was also analyzed by BABEL [5]) [20]. The input datasets to JAMIE were standardized (mean = 0, standard462

deviation = 1) across features and large numbers of input features were reduced dimensionality by PCA to463

512 PCs as needed for e�cient computation.464

4.12 Applications465

Phenotype Prediction from Multimodal Data: Integration on multimodal datasets can improve classi-466

fication, knowledge of phenotype, and understanding of complex biological mechanisms. Given two datasets467

X,Y and correspondence F , we generate LX ,LY from the trained encoders fX
E (·), fY

E (·) as in Subsec-468

tion 4.1. Clustering can be performed or classification methods may be directly built atop the reusable latent469

space. Clustering on these latent spaces confers several advantages, the main of which being the incorpo-470

ration of both modalities in the process of feature generation. We can then actively predict which samples471

correspond (if not already known) and perform related tasks such as cell type prediction. On partially-472

annotated datasets, cells in similar clusters should be of similar cell type. There is generally no need to473

use a complicated clustering or classification algorithm, as JAMIE should do most of the separation as a474

part of the latent space generation. The networks may be further analyzed to provide a clearer picture of475

the relationship between data features and phenotype. To visualize this cell type clustering, UMAP [31] is476

performed on high-dimensional data for visualization.477

Cross-Modal Imputation: There are several methods to perform cross-modal imputation, but many478

methods are not able to prove that they have learned underlying biological mechanisms for the purpose of479

imputation. When utilized for cross-modal imputation, we can predict our missing data with a more rigorous480

foundation than that o↵ered by a feed-forward network or linear regression. Given training data X,Y , we481

can train the model. With new data X⇤ 2 RdX⇥nX⇤ , we can predict its correspondent latent embedding482

bY = fY
D (LX⇤

) 2 RdY ⇥nX⇤ which has true values Y ⇤. Then, we have predicted correspondent cells using a483

latent space which likely confers understanding of the relationship between data features and phenotype.484

This has motivation within the given losses. The alignment loss incentivizes the low-dimensional embed-485

dings for each modality to be on the same latent space. Additionally, since we are predicting correspondent486

cells, F = I. Ideally then, LX⇤
= MX⇤

= MY ⇤
= LY ⇤

. So, if we assume perfect and total alignment,487

fY
D (LX⇤

) = fY
D (LY ⇤

). This prediction is shown in Figure 2b. Of course, this ideal scenario is not always the488

case. The e�cacy of this cross-modal imputation method is explored within the results section of this paper,489

where 20 percent of the data is taken as validation, and the model is trained on the remainder.490

Latent and Imputed Feature Interpretation: For interpretation of our trained model, we employ491

[17], henceforth referred to as SHAP. SHAP looks at individual predictions produced by a model and will492

assess importance of various input features through sample modulation. This can be used for a variety of493

interesting applications. If a target variable is easily separable by phenotype, SHAP can determine relevant494

features for further study. Additionally, if we perform imputation, SHAP can expose inter-modal linkages495

learned by the model. Given a model f and sample x 2 Rn, SHAP values �0, . . . ,�n�1 are learned such496

that E[f(z)] +
P

i={j,...,m} �i = E[f(z)|zj = xj , . . . , zm = xm] for a background feature vector z 2 Rn. If497

{j, . . . ,m} = {0, 1, . . . , n � 1}, then the sum of SHAP values and the background output will equal f(x),498

with each �i proportional to the impact of xi on the model output.499

Another useful technique involves choosing a key metric for classification (e.g., LTA) or imputation500

(e.g., Correspondence between imputed and measured features) and evaluating the metric with each feature501

sequentially removed (replaced with its background) from the model. Then, if the key metric becomes worse,502

it suggests that the removed feature is more important to the outcome of the model.503
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5 Data Availability504

The MMD-MA simulation dataset can be downloaded from https://noble.gs.washington.edu/proj/505

mmd-ma/. Our simulation data may be downloaded from https://github.com/daifengwanglab/JAMIE.506

Processed Patch-seq gene expression and electrophysiological features for the mouse visual and motor507

cortices are available at https://github.com/daifengwanglab/scMNC. Raw Patch-seq datasets are avail-508

able at [30,2]. Single-cell RNA-seq and ATAC-seq data on the human developing brain can be down-509

loaded at https://github.com/GreenleafLab/brainchromatin/blob/main/links.txt under the head-510

ing Multiome. Single-cell RNA-seq and ATAC-seq of colon adenocarcinoma data can be found at https:511

//github.com/wukevin/babel. Processed datasets for SNARE-seq adult mouse cortex data can be down-512

loaded from https://scglue.readthedocs.io/en/latest/data.html.513

6 Code Availability514

All code was implemented in Python using PyTorch and the source code is publicly available at https:515

//github.com/daifengwanglab/JAMIE [32]. Since Code Ocean provides an interactive platform for compu-516

tational reproducibility [33], we have also provided an interactive version of our code for reproducing results517

and figures at [34].518
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