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Abstract

A common thread of retrieval-augmented meth-
ods in the existing literature focuses on re-
trieving encyclopedic knowledge, such as
Wikipedia, which facilitates well-defined en-
tity and relation spaces that can be modeled.
However, applying such methods to common-
sense reasoning tasks faces two unique chal-
lenges, i.e., the lack of a general large-scale
corpus for retrieval and a corresponding ef-
fective commonsense retriever. In this paper,
we systematically investigate how to leverage
commonsense knowledge retrieval to improve
commonsense reasoning tasks. We proposed
a unified framework of Retrieval-Augmented
Commonsense reasoning (called RACO), in-
cluding a newly constructed commonsense cor-
pus with over 20 million documents and novel
strategies for training a commonsense retriever.
We conducted experiments on four different
commonsense reasoning tasks. Extensive eval-
uation results showed that our proposed RACO
can significantly outperform other knowledge-
enhanced method counterparts, achieving new
SoTA performance on the CommonGen1 and
CREAK2 leaderboards. Our code is available
at https://github.com/wyu97/RACo.

1 Introduction

Recent work has shown that scaling language mod-
els with considerably more data and parameters,
such as GPT3-175B (Brown et al., 2020), could
drive significant advances in commonsense reason-
ing tasks. Nevertheless, such models make predic-
tions by only “looking up information” stored in
their parameters, making it difficult to determine
what knowledge is stored or has been already for-
gotten by the neural network (Guu et al., 2020).
Besides, storage space is limited by the size of the
neural network. In order to memorize more world

1
https://inklab.usc.edu/CommonGen/

leaderboard.html

2
https://www.cs.utexas.edu/~yasumasa/

creak/leaderboard.html

knowledge, one must train ever-larger networks,
which can be prohibitively expensive and slow.

The solution that may seem obvious at first
glance is to grant language models free access to
open-world sources of commonsense knowledge
in a plug-and-play manner, instead of memorizing
all world knowledge. To achieve this capability,
language models must be able to retrieve relevant
commonsense knowledge from an unbounded set
of situations. Then, the language models can lever-
age the input text, as well as the retrieved informa-
tion to produce the desired output.

Compared with the large-scale language model
counterparts, e.g., UNICORN (Lourie et al., 2021),
retrieval-augmented methods have three remark-
able advantages: first, the knowledge is not stored
implicitly in the model parameters, but is explic-
itly acquired in a plug-and-play manner, leading
to great scalability; second, the paradigm gen-
erates text based on some retrieved references,
which alleviates the difficulty of generating from
scratch (Li et al., 2022); third, knowledge corpus
can be constantly edited and updated by experts,
making the model aware of the latest information.
Besides, compared with knowledge graph infer-
ence model counterparts, e.g., QA-GNN (Yasunaga
et al., 2021), retrieval-augmented methods allow
more flexibility in accessing and using knowledge
from different sources, because of the nature of
commonsense knowledge, which cannot all be con-
tained in a single knowledge graph defined by a
certain schema (Yu et al., 2022b).

A common thread of retrieval-augmented meth-
ods in the existing literature focuses on retriev-
ing encyclopedic knowledge such as Wikipedia,
which lends itself to a well-defined space of enti-
ties and relations that can be modeled (Karpukhin
et al., 2020; Lewis et al., 2020b; Yu et al., 2022a).
However, retrieval-augmented methods for com-
monsense reasoning have been rarely studied in the
literature. In this paper, we propose a unified frame-
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RACO ARISTOROBERTA RE-T5 KFCNET OPENCSR
(this work) (Mihaylov et al., 2018) (Wang et al., 2021) (Li et al., 2021) (Lin et al., 2021)

Number of corpus types 3 1 1 1 1
Number of commonsense tasks 4 1 1 1 1
Number of docs for retrieval 20M 5K 0.8M 0.8M 1M

Table 1: Comparison of RACO to a few recent commonsense retrieval works in the field. Our work provides a more
comprehensive and larger-scale multi-source commonsense corpus that can generalize to various tasks.

work of Retrieval-Augmented Commonsense rea-
soning (RACO) to solve various commonsense
tasks. RACO first retrieves relevant commonsense
documents from a large-scale corpus, then com-
bines the input text with the retrieved documents
to produce the desired output. However, there are
two main challenges in training a RACO model.

The first challenge to address is what common-
sense knowledge to retrieve. Different from en-
cyclopedic knowledge used in open-domain QA
tasks, commonsense knowledge is very diverse,
containing everyday events and their effects, facts
about beliefs and desires, and properties of objects
in human’s daily life. Since commonsense involves
various aspects including human interaction and ob-
ject properties in everyday life, we collected a over
20 million commonsense documents collection
from both open-domain knowledge sources (e.g.,
OMCS) that cover multiple domains of common-
sense, and domain-specific sources (e.g., ATOMIC)
that focus on particular commonsense types.

The second challenge is to address how to re-
trieve relevant commonsense knowledge from the
corpus. Different from training a dense retriever on
Wikipedia (Karpukhin et al., 2020), the heuristic
of taking “documents containing correct answers”
as positive candidates cannot be used because the
output answer in commonsense reasoning tasks is
usually not a substring of retrieved documents. For
example, in binary question answering, the answer
is True or False but it does not appear in the re-
trieved documents. Therefore, we propose novel
strategies to construct question-document pairs for
commonsense dense retriever training.

Overall, our main contributions in this work can
be summarized as follows:

1. We collected and publicized a collection of
over 20 million documents from three knowledge
sources for commonsense knowledge retrieval.
2. We presented a unified framework of Retrieval-

Augmented Commonsense reasoning (RACO),
and proposed novel strategies for training a strong
commonsense knowledge retriever.

3. We evaluated our RACO on four types of
commonsense reasoning tasks. Our experiments
showed RACO can significantly outperform other
knowledge-enhanced counterparts, achieving new
SoTA on CommonGen and CREAK leaderboards.

2 Related Work

Though large-scale language models yield state-of-
the-art performance on many commonsense rea-
soning tasks, their pre-training objectives do not
explicitly guide the models to reason with common-
sense knowledge such as the relation and compo-
sition of daily concepts in our lives (Zhou et al.,
2021), leading to unsatisfactory performance in
many real-world scenarios (Talmor et al., 2021;
Zhu et al., 2022). Existing work has mainly ex-
plored two directions to improve their common-
sense reasoning ability. The first is to pre-train
or post-train a language model on commonsense
corpora (Bosselut et al., 2019; Lourie et al., 2021;
Zhou et al., 2021). When the commonsense ma-
terials are appropriately selected, this simple strat-
egy could demonstrate significantly superior per-
formance than vanilla pre-trained language mod-
els (Zhou et al., 2021). Notable methods include
COMET (Bosselut et al., 2019), CALM (Zhou
et al., 2021), UNICORN (Lourie et al., 2021), etc.
Nonetheless, these methods still suffer from the
same drawbacks as the pre-trained language mod-
els introduced in §1. The second is to explicitly
introduce external knowledge from commonsense
knowledge graphs to augment the limited textual
information. (Lin et al., 2019; Ji et al., 2020). A
KG often provides comprehensive and rich entity
features and relations so models can easily traverse
links to discover how entities are interconnected to
express certain commonsense knowledge. Notable
methods include KagNet (Lin et al., 2019), GRF (Ji
et al., 2020), QA-GNN (Yasunaga et al., 2021),
GreaseLM (Zhang et al., 2022), etc. However,
commonsense knowledge lies at an unbounded set
of facts and situations that usually cannot be cov-
ered by a single knowledge graph defined by a cer-

4365



tain schema. Reasoning over multiple knowledge
graphs is a challenging task.

Retrieval-augmented method is a new learn-
ing paradigm that fuses pre-trained language
models and traditional information retrieval tech-
niques (Lewis et al., 2020b). A few recent methods
have explored retrieving in-domain commonsense
documents from a task-relevant corpus to improve
commonsense reasoning performance (Mihaylov
et al., 2018; Wang et al., 2021; Li et al., 2021). We
provide a detailed comparison in Table 1. Differ-
ent from existing methods that focus on retrieving
knowledge from in-domain corpus, our proposed
RACO leverages a much larger and general com-
monsense corpus collected from multiple sources
that provide supportive evidences for various com-
monsense reasoning tasks. Meanwhile, we pro-
posed several novel strategies for training a com-
monsense retriever that can be generalized to dif-
ferent commonsense reasoning tasks.

3 Proposed Method

In this section, we elaborate on how to leverage
commonsense knowledge retrieval from a large-
scale corpus to improve various commonsense rea-
soning tasks, including commonsense corpus con-
struction (§3.1), commonsense document retriever
(§3.2) and commonsense document reader (§3.3).
The architecture of RACO is shown in Figure 1.

3.1 Commonsense Corpus Construction
Commonsense knowledge includes the basic facts
about situations in everyday life, which is shared by
most people and implicitly assumed in communi-
cations (Li et al., 2022). Commonsense knowledge
has two important properties: large and diverse.

Regarding the scale of knowledge, many com-
monsense corpus contains millions of statements.
For example, Wiktionary has more than one million
word definitions and descriptions in English. Mean-
while, the commonsense knowledge is diverse, in-
volving various aspects including human interac-
tion and object properties. For example, OMCS3

covers multiple domains of commonsense such as
everyday events and their effects (e.g., mop up
the floor if we split food over it), facts about be-
liefs and desires (e.g., study hard to win scholar-
ship), and properties of objects (e.g., goat has four
legs). The diversity of knowledge is beneficial for
retrieval-augmented methods because it enables

3
https://en.wikipedia.org/wiki/OMCS

Commonsense corpus (20M+)

Query: Only after learning you can gain knowledge.

Answer: True

Human annotated facts (HAF)

Benchmark
data (CBD)

Relevant web
corpus (CRC)

Why do people learn? Obtain knowledge

Learning causes you to gain knowledge.

Knowledge is very important, and you 
should learn as much as you can.Query

Query

Query

BERT

BE
RTX

Open Mind Common Sense (OMCS)

Commonsense QA 1.0 (QID: 9415)

ARC challenge corpus (AI2)

T5
En

co
de

r

Fusion in T5 Decoder

Reader
Retriever

Figure 1: RACO has two major components: (i) a docu-
ment retriever and (ii) a document reader. Specifically,
the document retriever aims to fetch a handful of rele-
vant documents from a large document collections. The
document reader takes the input text, as well as the
support documents to produce the desired output.

Corpus # Instance Avg. Word

HAF-corpus 3,561,762 11.06 ± 5.86
CBD-corpus 2,881,609 12.78 ± 9.31
CRC-corpus 14,587,486 17.76 ± 10.4

Table 2: Statistics for the commonsense corpus. The
total size of these corpora exceeds 20M documents.

relevance comparison across different sources, and
offers textual knowledge to easily augment the in-
put of generation models by concatenation. To
build a large-scale commonsense corpus covering
diverse sources, we collected commonsense doc-
uments from the following three aspects: (i) hu-
man annotated facts; (ii) commonsense benchmark
datasets; (iii) commonsense relevant web corpus.
The statistics can be found in Table 2.
Human annotated facts (HAF). It contains fac-
tual commonsense either annotated by human an-
notators or written by domain experts, including
OMCS (Havasi et al., 2010), ATOMIC (Sap et al.,
2019a), Wiktionary (Meyer and Gurevych, 2012).
Commonsense benchmark datasets (CBD). It in-
cludes training data from 19 commonsense bench-
mark datasets, such as ↵-NLI (Bhagavatula et al.,
2020). See Appendix A.1 for more details.
Commonsense relevant corpus (CRC). It con-
sists of raw statements about commonsense from
the web, usually after some simple filtering. We
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obtained a filtered version from AI2 commonsense
corpus, which is a merged corpus collected from
ARC (Clark et al., 2018), QASC (Khot et al., 2020)
and GenericsKB (Bhakthavatsalam et al., 2020).

3.2 Commonsense Document Retrieval
Given a collection of M commonsense documents,
the goal of our retriever is to map all the docu-
ments in a low-dimensional vector, such that it can
efficiently retrieve the top-k documents relevant to
the input text. Note that M can be very large (e.g.,
over 20 million in our experiments) and k is usually
small (e.g., 10 or 20 in our experiments).

In this work, we follow the neural document re-
triever DPR (Karpukhin et al., 2020) to employ
two independent BERT (Devlin et al., 2019) mod-
els to encode the query and the document sepa-
rately, and estimate their relevance by computing
a single similarity score between their [CLS] to-
ken representations. Specifically, the document
encoder ED(·) which maps any text document to a
low-dimensional real-valued vectors and builds an
index for all the M documents used for retrieval.
At runtime, it applies a different query encoder
EQ(·) that maps the input question to a vector of
the same dimension as the document vector, and
retrieves top-k documents of which vectors are the
closest to the question vector. The similarity be-
tween the question and the document is calculated
by the dot product of their vectors.

sim(q, d) = EQ(q)
TED(d). (1)

Recent efforts have shown that DPR transfer
poorly to other domains (Li and Lin, 2021; Kul-
shreshtha et al., 2021). Thus, the primary challenge
of training a strong commonsense retriever is to
appropriately construct positive pairs and hard neg-
ative pairs (Karpukhin et al., 2020; Xiong et al.,
2021). To do this, we propose novel strategies to
construct question-document pairs that can be used
for training a strong commonsense retriever.

3.2.1 Positive Training Pairs
In open-domain document retrieval, it is often the
case that positive training pairs are available explic-
itly. For example, DPR treated Wikipedia docu-
ments that contain the correct answer as positive
documents (Karpukhin et al., 2020). However, such
training pairs might not be applicable on common-
sense reasoning tasks because the output (e.g., True

/ False in a binary question answering) is not sup-
posed to be a sub-string of retrieved documents.

In order to train a strong commonsense dense
retriever, we propose two novel strategies to con-
struct positive training pairs, as described below.

Explanation as positive document. The first
method for constructing positive training pairs is
to take human annotated explanations as positive
documents. For examples, taking the question

“Where do people go to pray? (A) church” from
CommonsenseQA1.0 as input, the explanation an-
notated in Aggarwal et al. (2021) is “People go

to a church to pray”; similarly, a positive docu-
ment for the question “When food is reduced in

the stomach, nutrients are being deconstructed” in
OpenBookQA (Mihaylov et al., 2018) could be

“Digestion is when stomach acid breaks down food”.
The explanations have two important properties.
First, they contain commonsense knowledge, such
as people praying in church, in the form of natural
language. Second, they can be used to help select
the correct choice in commonsense reasoning tasks.
So, we take advantage of the high correlation of
natural language explanations with the input query,
defining the input query as q and the corresponding
generated explanation as d to train the retriever.

Ground truth output as positive document. The
second method for constructing positive training
pairs is to directly use ground truth outputs in gen-
eration tasks as positive documents. The ground
truth output can be seen as a natural positive docu-
ment that the retriever should retrieve. For example,
in the CommonGen (Lin et al., 2020) dataset, the
ground truth output for an input concept set {dance,

kid, room} is “a group of kids are dancing around

a living room”. We define the input sequence in a
generation task as q and its corresponding ground
truth output as d to train the retriever. During train-
ing, the vector distance between them are mini-
mized. During inference, though the ground truth
documents are no longer in the commonsense cor-
pus, the retriever can still fetch relevant documents
similar to the ground truth output such as “a cou-

ple of kids are dancing on the floor (ARC corpus)”,
which provides relevant contexts describing the
potential reaction between the input concepts “kid”

and “dance”, hence helps generate desired outputs.

3.2.2 Negative Training Pairs
For negative pairs, we adopt the trick of in-batch
negatives, which has been shown as an effective
strategy for learning a dual-encoder model and used
in the many recent dense retrieval models (Lee
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et al., 2019; Karpukhin et al., 2020).

3.3 Commonsense Document Reader
After retrieving commonsense documents, the
reader takes the input text along with the retrieved
documents to produce the desired output. Sequence
classification tasks are considered as a target se-
quence of length one. In our work, we use the
fusion-in-decoder (FiD) (Izacard and Grave, 2021)
model as the reader. Specifically, each retrieved
document is concatenated with the input text, then
independently encoded by the T5 (Raffel et al.,
2020) encoder. Then, the T5 decoder performs
cross-attention over the concatenation of the result-
ing representations of all the retrieved documents.

4 Experiments

4.1 Tasks and Datasets

Multi-choice question answering. Give a ques-
tion, an intelligent system is asked to select one
correct answer from the choices offered as a
list. We conducted experiments on Common-
senseQA1.0 (Talmor et al., 2019) and Open-
BookQA (Clark et al., 2018). CommonsenseQA1.0
(CSQA1.0) contains 12,102 questions with one cor-
rect answer and four distractor answers. Open-
BookQA (OBQA) consists of 5,957 elementary-
level questions with one correct answer and three
distractor answers. For evaluation, the primary
metric on these two tasks is accuracy (ACC.).

Commonsense fact verification. Given a com-
monsense claim, an intelligent system is expected
to verify the statement in natural text against facts.
For example, the statement "A pound of cotton has

the same weight as a pound of steel" in the Com-
monsenseQA2.0 (Talmor et al., 2021) should be
identified as true. We conducted experiments on
two commonsense fact verification datasets, includ-
ing CommonsenseQA2.0 (Talmor et al., 2021) and
CREAK (Onoe et al., 2021). CommonsenseQA2.0
was collected via gamification, which includes
14,343 assertions about everyday commonsense
knowledge. CREAK is designed for commonsense
reasoning about entity knowledge, which consists
of 13,000 assertions about entities. For evaluation,
the primary metric is accuracy (ACC.).

Constrained commonsense generation. Given
a set of concepts such as “dog, frisbee, catch,

throw”, the task is to generate a coherent sentence
describing an everyday scenario such as “a man

throws a frisbee and his dog catches it”. Our
experiments were conducted on the benchmark
dataset Commongen (Lin et al., 2020). It consists
of 79,000 commonsense descriptions over 35,000
unique concept-sets. The average input / output
length is 3.4 / 10.5 words. All examples in the
dataset have 4-6 references. The task is evalu-
ated by SPICE (Anderson et al., 2016), BLEU-
4 (Papineni et al., 2002), ROUGE-L (Lin, 2004),
CIDEr (Vedantam et al., 2015), in which SPICE is
the primary metric for leaderboard ranking.

Counterfactual explanation generation. Given
a counterfactual statement, the task is to generate
reasons why the statement does not make sense.
Our experiments were conducted on the benchmark
dataset ComVE from SemEval-2020 Task 4 (Wang
et al., 2020). It contains 11,997 examples. The
average input/output length is 7.7 / 9.0 words. All
ground truth have 3 references. The task is eval-
uated by SPICE (Anderson et al., 2016), BLEU-
4 (Papineni et al., 2002), ROUGE-L (Lin, 2004),
CIDEr (Vedantam et al., 2015), in which BLEU-4
is the primary metric for leaderboard ranking.

4.2 Baseline Methods
We compared our RACO with various kinds of
baseline methods. In addition of comparing with
pre-trained language models, such as BART (Lewis
et al., 2020a) and T5 (Raffel et al., 2020), we also
compared with three kinds of commonsense knowl-
edge augmented methods as introduced below.
Commonsense-aware language models (CLM).
They are trained with external commonsense cor-
pus or datasets, in order to embed commonsense
knowledge into their parameters. During fine-
tuning, the language models make predictions with-
out accessing to any external corpus. In the experi-
ments, we compared our model with CALM (Zhou
et al., 2021) and UNICORN (Lourie et al., 2021).
Knowledge graph reasoning models (KGM).
KGs are incorporated into models for augmenting
the limited information in the input texts. We com-
pared our model with KagNet (Lin et al., 2019),
GRF (Ji et al., 2020), KG-BART (Liu et al., 2021),
QA-GNN (Yasunaga et al., 2021), MoKGE (Yu
et al., 2022c) and GreaseLM (Zhang et al., 2022).
Retrieval augmented models (RAM). We com-
pared with a recent retrieval-augmented method
named KFCNet (Li et al., 2021) for constraint com-
monsense generation. In addition, we also com-
pared with using sparse retriever such as BM25
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Methods # K-type CommonGen ComVE
BL-4 RG-L MET CIDEr SPICE⇤ BL-4⇤ RG-L MET CIDEr SPICE

BART-large - 26.30 41.98 30.90 13.92 30.60 19.22 44.86 27.10 11.04 35.14
T5-large - 28.60 42.97 30.10 14.96 31.60 22.77 51.83 26.66 11.42 34.62
CALM CLM 29.50 - 31.90 15.61 33.20 23.50 52.56 27.41 11.87 35.23
UNICORN CLM 39.86 44.56 34.52 17.26 30.20 24.46 52.75 27.88 12.40 35.79
KG-BART KGR 30.90 44.54 32.40 16.83 32.70 - - - - -
GraphRF KGR - - - - - 22.07 44.32 25.96 11.62 33.09
MoKGE KGR - - - - - 22.87 52.03 27.01 11.75 34.88
KFCNet RAM 41.97 46.13 36.22 17.39 33.11 - - - - -
BM25+FiD RAM 42.17 47.95 35.57 18.74 33.16 24.39 52.76 28.26 12.67 35.28
RACO RAM 42.76 48.19 35.80 18.89 33.89 25.30 53.29 28.62 12.76 36.37

Table 3: Compared with commonsense-aware language models (CLM) and knowledge graph reasoning models
(KGR) counterparts, our retrieval-augmented commonsense reasoning (RACO) can outperform the baseline methods
and achieved state-of-the-art performance on the CommonGen and ComVE benchmarks. *: primary metric.

Methods # K-type CSQA1.0 OBQA
ACC. ACC.

T5-large - 70.14 66.02
UNICORN CLM 71.60 70.02
KagNet KGR 69.00 -
QA-GNN KGR 73.40 67.80
GreaseLM KGR 74.20 66.90
BM25+FiD RAM 74.12 67.75
RACO RAM 75.76 71.25

Table 4: RACo achieves better performance than other
knowledge-enhanced method counterparts.

Methods # K-type CSQA2.0 CREAK
ACC. ACC.

T5-large - 54.60 77.32
UNICORN CLM 54.90 79.51
GreaseLM KGR - 77.51
BM25+FiD RAM 58.75 83.03
RACO RAM 61.75 84.17

Table 5: RACO outperforms the baseline methods and
achieved state-of-the-art performance on the CREAK.

to retrieve knowledge from our constructed com-
monsense corpus and use FiD (Izacard and Grave,
2021) as generator to produce outputs.

4.3 Automatic Evaluation
4.3.1 RACO v.s. Baseline Methods
Comparison with non-retrieval methods. To ob-
serve the effectiveness of retrieval on commonsense
reasoning tasks, we first compared model perfor-
mance with and without commonsense retrieval.
As shown in Table 3-5, compared with BART and
T5 that directly encode the input query and pro-
duce output without using external knowledge, our
proposed RACO can improve the commonsense

Retriever
in RACO #

CSQA1.0 OBQA
Hit@5 Hit@10 Hit@5 Hit@10

BM25 46.33 50.93 50.21 60.24
DPRWiki 4.40 5.78 28.41 37.58
DPRRACO 61.71 65.68 75.23 85.41

Table 6: Retrieval accuracy on dev sets, measured
as the percentage of retrieved documents that contain
the ground truth document, which is annotated in Mi-
haylov et al. (2018); Aggarwal et al. (2021). In addition,
DPRWiki directly uses the DPR trained on Wikipedia for
commonsense retrieval without any fine-tuning process.
DPRRACo trains the commonsense dense retrieval using
our proposed training pairs construction strategy.

reasoning performance by a large margin. Specifi-
cally, RACO improved BLEU-4 by +8.44% on the
commonsense generation tasks, improved accuracy
by +5.43% on the multiple choice question answer-
ing tasks, and improved accuracy by +6.15% on
the commonsense verification tasks. Therefore, we
concluded that RACO can leverage the retrieval
of relevant references from commonsense corpora
to help language models produce better outputs in
various commonsense reasoning tasks.
Comparison with other knowledge-enhanced
methods. As mentioned in the §4.2, the common-
sense reasoning ability of a language model can be
enhanced by fine-tuning on commonsense corpora
or reasoning over multi-hop relations on knowl-
edge graphs. As indicated by Table 3-5, compared
with commonsense-aware language models (CLM),
retrieval augmented model explicitly leverage rele-
vant commonsense knowledge, demonstrating su-
perior performance on all datasets. Compared with
knowledge graph reasoning methods (KGR), it can
achieve better performance on all six datasets.
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Retriever CSQA1.0 OBQA CSQA2.0 CREAK CommonGen ComVE Avg.training set # ACC. ACC. ACC. ACC. BL-4 SPICE⇤ BL-4⇤ SPICE

OBQA 71.09 69.55 57.57 81.47 33.70 33.83 27.55 38.29 58.67
CommonGen 73.36 66.34 57.49 83.15 38.34 36.71 27.71 37.79 59.46
CSQA1.0 74.84 71.56 59.76 82.85 35.29 35.05 27.28 35.05 60.50
All datasets 75.08 70.40 60.21 84.01 37.26 36.03 28.05 38.17 60.80

Table 7: Model performance (on dev sets) of using commonsense retrievals trained on different datasets. Training
with question-document pairs from all datasets yield the best average performance on six tasks. *: primary metric.

Corpus Corpus name Dataset name
size # HAF CBD CRC CSQA2.0 CREAK

0 (no retrieval) 53.80 77.32
3.56M X 56.57 78.91
2.88M X 56.65 78.93
13.6M X 56.86 82.82
6.44M X X 57.46 79.09
17.1M X X 58.16 82.52
16.5M X X 58.39 82.98
20.1M X X X 59.66 83.85

Table 8: Performance on dev sets of retrieving common-
sense knowledge from different size of corpus.

4.3.2 Effects on Commonsense Retriever
To evaluate the effectiveness of commonsense re-
trieval, we compare the performance of different re-
triever training settings, including BM25, DPRWiki,
and DPRRACo. Specifically, DPRWiki directly uses
the DPR trained on Wikipedia for commonsense
retrieval without any fine-tuning process. DPRRACo
trains the commonsense dense retrieval using our
our proposed training pairs construction strategy.
As shown in Table 6, we can observe DPRWiki per-
forms the worst among all retrievers. Our proposed
DPRRACo can significantly improve the retrieval
performance, compared to BM25. It is important
to note that the performance of retrieval is not nec-
essarily linearly related to the performance of final
output. However, in general, the more relevant the
retrieved content, the more helpful it is to produce
better outputs during the reading step. The obser-
vation can also be drawn from the comparison of
BM25+FiD and RACO in Tables 3-5.

4.3.3 Effects on Multi-dataset Training
As shown in Table 7, we compare the model
performance of retrievers trained by different set
of question-document pairs. For example, the
first line represents the retriever is trained with
only question-document pairs (5,000 in total) from
the OBQA dataset. The last line represents us-
ing question-document pairs from all six datasets.

From the table, we can observe when the retriever
is trained on only one dataset, it might not work
well on other datasets because of differences in
data distribution. Instead, training with multiple
datasets demonstrates better generalizability.

4.3.4 Effects on Commonsense Corpus
To validate the effect of the number and content
of corpora on our proposed method, we test the
corresponding model performance under different
corpora, including choosing a corpus, or any combi-
nation of multiple corpora. In Table 8, we show the
performance of CSQA2.0 and CREAK on different
commonsense corpora. It is worth noting that com-
pared with other data, CSQA2.0 and CREAK can
more realistically reflect the impact of different cor-
pora on model performance, mainly because these
two datasets are not based on any commonsense
knowledge source during the collection process, so
the coverage of the problem is much wider than
other four datasets that are collects from a certain
knowledge source. For example, CSQA1.0 and
CommonGen are collected based on ConceptNet.

4.3.5 Effects on Number of Documents
We also compared model performance with differ-
ent numbers of retrieved documents. As shown
in Figure 2, as the number of retrieved documents
increases, the model performance of RACO on the
CommonGen dataset first increases and then re-
mains unchanged on BLEU-4 or even decreases
on SPICE (the primary metric on the CommonGen
leaderboard), but the GPU memory consumption in-
creases significantly. This is mainly because when
the number of retrieved documents increases, more
noisy information might be included in the model,
which could hurt the performance of the model.
Thus, with reasonable computational overhead, we
only use 10 documents in our experiments.

4.4 Human Evaluation
We randomly sample 50 generated outputs from
the CommonGen dev set (as the test set is not pub-
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Figure 2: As the number of retrieved documents in-
creases, the model performance of RACO on the Com-
monGen dataset first increases and then remains un-
changed on BLEU-4 or even decreases on SPICE (the
primary metric on the CommonGen leaderboard).

CommonGen ComVE
Fluency Accuracy Fluency Accuracy

T5 2.86 2.78 2.94 2.74
CALM 2.85 2.81 2.93 2.78
UNICORN 2.88 2.84 2.95 2.78
RACO 2.90 2.96* 2.94 2.86*

Table 9: Human evaluations by independent scoring
based on accuracy and fluency. * indicates p-value <
0.05 under paired t-test between RACO and baselines.

lic) and 50 generated outputs from the ComVE
test set. All evaluations were conducted on Ama-
zon Mechanical Turk (AMT), and each evaluation
form was answered by three AMT workers. The
generated outputs are evaluated by fluency and ac-

curacy. Fluency is assessed on the grammatical
correctness and readability of the generated out-
puts disregarding the input text. Besides, accuracy
evaluates whether the output generated is correct
and reasonable given the input text of each task.

As shown in Table 9, our model significantly
outperforms baseline methods in terms of accuracy
and fluency on both datasets. In particular, the ac-
curacy of the generated output is greatly improved
due to the incorporation of the retrieved common-
sense knowledge. Furthermore, since all baseline
models are pre-trained on large-scale corpora, they
all produce outputs with great fluency. However,
compared with baseline methods, the outputs gen-
erated by our model on the CommonGen dataset
still have better fluency. This is mainly because
the retrieved references are semantically complete
sentences with good fluency, which might mitigate
grammatical errors during the generation process.

1. CSQA2.0 Statement – A private college is usually
smaller than a public university in attendance. (True)
Retrieved evidence – #1 Private schools are usually
small and are worth the cost. #2 University’s are larger
then most colleges. #3 Colleges considered “small”
have fewer than 5,000 students

Predictions – T5 and UNICORN: False RACO: True

2. ComVE Statement – The sun made my t-shirt wet.
Retrieved evidence – #1 The sun can dry wet clothes.
#2 The sun can dry something that is wet.

Generated outputs – T5: The sun is hot. UNICORN:
The sun does not make clothes wet. RACO: The sun
would dry a t-shirt but not make a t-shirt wet.

3. Commongen Input Words – eye look move
Retrieved evidence – #1 She moves her eyes around.
#2 The eye looks towards the peaks. #3 A woman
looks at the camera as she moves each eye individually.
#4 His eyes move across the paper.

Generated outputs – T5: Someone looks at someone,
then moves his eyes. UNICORN: Someone looks at
her and moves her eyes. RACO: A man moves his
eyes to look at the camera.

Table 10: Case study. RACo corrects the erroneous
predictions of baseline models (e.g., T5 and UNICORN)
using the retrieved commonsense knowledge.

4.5 Case Study
Table 10 shows two examples with predictions from
different models. We demonstrate a “comparison”
statement from CSQA2.0 as the first example. As
shown in the table, both T5 and UNICORN make
wrong predictions, demonstrating a lack of com-
monsense knowledge. By leveraging the retrieved
evidence from commonsense corpus, our proposed
RACO can tell the statement “private college is
usually smaller than a public university in atten-
dance” is true. In addition, we show an example
from counterfactual explanation generation task
as the second example. Among the three outputs
shown, the explanation generated by T5 is less as-
sociated with the input statement. Compared with
the generated outputs from UNICORN, our model
can generate a semantically richer and more rea-
sonable explanation. This is mainly because the
references retrieved provide strong evidence from
the perspective of the sun dries things out.

5 Epilogue

Conclusions. Retrieval-augmented methods have
been widely used in many NLP tasks such as open-
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domain question answering. However, applying
this approach to commonsense reasoning has been
neglected in the existing literature. In this paper,
we systematically investigate how to leverage com-
monsense knowledge retrieval to improve common-
sense reasoning tasks. We collected a common-
sense corpus containing over 20 million documents,
and proposed novel strategies for training a com-
monsense retriever. Extensive experiments demon-
strate our method can effectively improve the per-
formance of various commonsense reasoning tasks,
achieving new state-of-the-art performance on the
CommonGen and CREAK leaderboards.
Future work. A natural extension of this work is
to leverage heterogeneous knowledge to improve
commonsense reasoning tasks, such as combining
structured (i.e., knowledge graph) and unstructured
(i.e., retrieved text) knowledge. Such a model will
require building a graph reasoning module and a
textual reasoning module, and merging the knowl-
edge learned from both, which is a challenging task.
The second future direction is to learn a common-
sense dense retriever without question-document
pairs. For example, in binary question answering,
the labels are True / False that cannot be used to
train a commonsense retriever.
Limitations. There are two main limitations. First,
RACO retrieves documents from a large-scale cor-
pus, then leverage the retrieved documents to make
predictions. So, compared with baseline methods
such as T5 and UNICORN, RACO consumes more
time and computing resources. Second, due to the
diversity and multi-source nature of commonsense
knowledge, the retrieved evidence might contain
noisy information that can even hurt model per-
formance. A fine-grained filtering or re-ranking
module could be a future work.
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A Appendix
A.1 Commonsense Retrieval Corpus
We use a combination of 19 commonsense datasets
for our largest scale training data retrieval. The
datasets include ↵-NLI (Bhagavatula et al., 2020),
SWAG (Zellers et al., 2018), RACE (Lai et al.,
2017), CODAH (Chen et al., 2019), Common-
senseQA1.0 (Talmor et al., 2019), Common-
senseQA2.0 (Talmor et al., 2021), WinoGrade (Sak-
aguchi et al., 2021), ARC (Clark et al., 2018),
CREAK (Onoe et al., 2021), OBQA (Mihaylov
et al., 2018), PhysicalIQA (Bisk et al., 2020),
QASC (Khot et al., 2020), SocialIQA (Sap
et al., 2019b), CosmosQA (Huang et al., 2019),
MNLI (Williams et al., 2018), VATEX (Wang et al.,
2019), Activity (Krishna et al., 2017), SNLI (Bow-
man et al., 2015) STSB (Cer et al., 2017).

A.2 Implementation Details

Retriever. We employed two independent pre-
trained BERT-base models with 110M parame-
ters (Devlin et al., 2019) as query and document
encoders. BERT-base consists of 12 Transformer
layers. For each layer, the hidden size is set to 768
and the number of attention head is set to 12. All
dense retrievers were trained for 40 epochs with a
learning rate of 1e-5. We used Adam (Kingma and
Ba, 2015) as the optimizer, and set its hyperparame-
ter ✏ to 1e-8 and (�1,�2) to (0.9, 0.999). The batch
size is set as 32 on 8x32GB Tesla V100 GPUs.
Reader. We employed the FiD (Izacard and Grave,
2021) model that is built up on T5-large (Raf-
fel et al., 2020). For model training, we used
AdamW (Loshchilov and Hutter, 2019) with batch
size 32 on 8x32GB Tesla V100 or A100 GPUs.
We experimented with learning rates of 1e-5/3e-
5/6e-5/1e-4 and we found that in general the model
performed best when set to 3e-5. All reader models
were trained with 20,000 steps in total where the
learning rate was warmed up over the first 2,000
steps, and linear decay of learning rate.

A.3 Additional Related Work
Pre-training a language model on commonsense
corpora is the most straightforward way to learn
commonsense knowledge. Meanwhile, it also
helps avoid overfitting when fine-tuned on down-
stream tasks. When the commonsense materi-
als are appropriately selected, this simple strat-
egy could demonstrate significantly superior per-
formance than vanilla pre-trained language mod-

els (Zhou et al., 2021). Notable methods include
COMET (Bosselut et al., 2019), CALM (Zhou
et al., 2021), Unicorn (Lourie et al., 2021) and
etc. For example, COMET initialized its parame-
ters from GPT-2 and post-trained on ATOMIC to
adapt its learned representations to knowledge gen-
eration, and produces novel knowledge tuples that
are high quality (Bosselut et al., 2019). Unicorn
initialized its parameters from T5 and performed a
multi-task training on six commonsense question
answering datasets (Lourie et al., 2021). While this
development is exhilarating, such commonsense-
aware language models still suffer from the fol-
lowing drawbacks: first, they are usually trained
offline, rendering the model agnostic to the latest
information, e.g., Covid-19 is a disease caused by
a coronavirus discovered in 2019. Second, they
make predictions by only “looking up information”
stored in its parameters, leading to inferior inter-
pretability (Shuster et al., 2021).

Incorporating knowledge graph (KG) is essential
for many commonsense reasoning tasks to augment
the limited textual information. A KG often pro-
vides comprehensive and rich entity features and
relations so models can easily traverse links to dis-
cover how entities are interconnected to express cer-
tain commonsense knowledge. Some recent work
explored using graph neural networks (GNN) to
reason over multi-hop relational KG paths, yielding
remarkable performance on many commonsense
reasoning tasks, such as commonsense question
answering (Lin et al., 2019; Yasunaga et al., 2021;
Zhang et al., 2022), abductive reasoning (Ji et al.,
2020; Yu et al., 2022c), and chit-chat dialogue sys-
tems (Zhou et al., 2018; Zhang et al., 2020). The
most frequently used KG is ConceptNet. For ex-
ample, Ji et al. (2020) enriched concept representa-
tions in the input text with neighbouring concepts
on ConceptNet and performed dynamic multi-hop
reasoning on multi-relational paths so the knowl-
edge can be embedded into the hidden represen-
tations. Nevertheless, the type of commonsense
knowledge is restricted by the relations defined in
a knowledge graph schema. Meanwhile, common-
sense knowledge lies at an unbounded set of facts
and situations that usually cannot be covered by a
single knowledge graph. Reasoning over multiple
knowledge graph is a challenging task.

A.4 Case Study on CSQA2.0
Figure 3 demonstrates the accuracy of T5 and
our RACO for different statement types on the
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Figure 3: Performance of T5 and our RACO on different
commonsense statement types in CSQA2.0.

CSQA2.0 dataset. First, compared to T5, our
model can improve by 8.3% accuracy on all dev
data (shown in the first column). However, on
different statement types, the model performance
is different. For example, from the predicted re-
sults of T5, the performance on "comparison" state-

ments and "condition" statements is below-average.
By introducing the retrieved commonsense knowl-
edge, RACO demonstrated significantly better per-
formance on these two sub-categories, achieving
15.3% and 18.5% improvement, which is signifi-
cantly higher than the average 8.3% improvement.
Nevertheless, we also observe the retrieved evi-
dence might provide noisy information, resulting
in performance degradation, such as “reason” re-
lated statements. We show an example in Table 10.
Statements under these categories are often descrip-
tions or comparisons of factual commonsense, the
retrieved documents can thus well complement the
necessary knowledge of a given statement. How-
ever, some statements require the model to reason
in a given scenario, so making correct predictions
requires the model to use commonsense knowledge
to understand the local contexts. In these state-
ments, retrieved knowledge might even contradict
the assumptions, hurting the model performance.
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