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Abstract

Never before has the detection and characterization of exoplanets via transit photometry been as promising and
feasible as it is now, due to the increasing breadth and sensitivity of time domain optical surveys. Past works have
made use of phase-folded stellar lightcurves in order to study the properties of exoplanet transits because this
provides the highest signal that a transit is present at a given period and ephemeris. Characterizing transits on an
individual, rather than phase-folded, basis is much more challenging due to the often low signal-to-noise ratio of
lightcurves, missing data, and low sampling rates. However, by phase folding a lightcurve we implicitly assume
that all transits have the same expected properties, and lose all information about the nature and variability of the
transits. We miss the natural variability in transit shapes, or even the deliberate or inadvertent modification of
transit signals by an extraterrestrial civilization (for example, via laser emission or orbiting megastructures). In this
work, we develop an algorithm to search stellar lightcurves for individual anomalous (in timing or depth) transits,
and we report the results of that search for 218 confirmed transiting exoplanet systems from Kepler.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet catalogs (488); Exoplanet
detection methods (489); Transit photometry (1709); Transits (1711); Search for extraterrestrial intelligence
(2127); Light curves (918)

Supporting material: machine-readable table

1. Introduction

The expanding availability of photometric stellar lightcurves,
for instance from the Kepler and Transiting Exoplanet Survey
Satellite (TESS) missions, has provided the chance to discover
and understand the orbital properties of thousands of exoplanet
systems in recent years. Past studies have been limited to
detection of transiting exoplanets or characterization of
planetary and orbital properties from analysis of collectively
phase-folded transits. The phase-folded shape of an exoplane-
tary transit provides a wealth of information about the planetary
system that produced the transit, but can inherently only
provide insight into the ensemble properties of all the observed
transits of that planet. While some work has been dedicated to
understanding the provenance of unusually shaped transits by
reverse engineering the shape of a transiting body from the
transit (Sandford & Kipping 2019), this has always been done
after phase folding. No past work has comprehensively
searched for and characterized missing or anomalous individual
transits in stellar lightcurve data.

The population variability of exoplanet transits and the nature
and prevalence of unexpected transits is poorly understood. This
represents a major gap in the study of exoplanet populations. For
instance, individual transits can be a powerful tool in studying
stellar surface variability such as starspots (Morris et al. 2017).

In addition, unexpected or anomalous transits represent an
important potential technosignature in the Search for Extra-
terrestrial Intelligence (SETI; Wright & Kipping 2019). Intelli-
gent extraterrestrial civilizations may broadcast their presence by
intentionally or inadvertently modifying the shape of their host
planet’s transit, for example with laser emission or megastruc-
tures (e.g., Arnold 2005; Kipping & Teachey 2016). In addition,
observations discrepant with expectation often drive theoretical
advancement, so the discovery of unusually shaped transits
produced by unexplained phenomena would be scientifically
interesting in and of itself and would necessitate new concepts in
planetary or stellar astrophysics, if not SETI.
We present a new algorithm to analyze lightcurves on a

transit-by-transit basis without phase folding, in order to study
the variability between individual transits and search for transits
that are missing or anomalous. We present the methodology and
results of a search for transits which are apparently missing, or
which exhibit unexpectedly large transit-timing variations
(TTVs) or apparent depths. We find no transits with anomalous
properties which cannot be explained after visual vetting.

2. Data, Preprocessing, and Target Selection

2.1. Data

The Kepler mission (Borucki et al. 2010) has produced
2708 confirmed detections of transiting exoplanet systems.8
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8 As of 2022 June 6, as reported by the NASA Exoplanet Archive (https://
exoplanetarchive.ipac.caltech.edu).
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The program ran from 2009 to 2013, observing approximately
150,000 stars in multiple 90 days quarters, at a cadence of
either 30 minutes or 60 s. The mission prioritized Main
Sequence stars for which Earth-like planets would be
detectable (Batalha et al. 2010). Lightcurves produced by the
Kepler Mission Science Operations Center can be publicly
downloaded from the Barbara A. Mikulski Archive for Space
Telescopes (MAST) archive (STScI 2011). The Kepler Science
Processing Pipeline is described in Jenkins et al. (2010).
Lightcurves comprise measured flux as a function of time.
They often contain extended intervals of missing data (due to
the telescope entering safe mode, rotating toward Earth, or
executing a quarterly roll) as well as individual data
points flagged for quality issues (due to cosmic-ray hits,
reaction wheel zero crossings, impulsive outliers, thruster
firings, etc.).

2.2. Preprocessing

Before transits can be identified and anomalies detected, we
first process each target lightcurve. For each planetary system,
we download lightcurve data from the MAST using the
interface provided by the LightKurve package. We use the
default Presearch Data Conditioning Simple Aperture Photo-
metry (PDCSAP) flux values that have been cotrended by the
Kepler team using the PDC cotrending algorithm (Smith et al.
2012; Stumpe et al. 2012, 2014). Kepler’s observing run is
divided into quarters, punctuated by rolls of the telescope. We
fit and remove a linear trend from each quarter, and stitch the
quarters into one continuous lightcurve (see Figure 1). We then
mask out data with quality issues flagged during Kepler data
acquisition. Each lightcurve corresponds to one stellar target
which may or may not be host to more than one exoplanet. So,
for each target planet we mask out any additional transits from
“sibling planets,” which might interfere with our fitting
process. This masking uses a folding and Box-Least-Squares
fitting approach, and so relies on the first-order assumption that
all transits appear near their expected locations. We acquire a
list of sibling planets by querying the NASA Exoplanet

Archive database9 (NASA Exoplanet Archive 2019). On very
rare occasions, key parameters returned from the NASA
exoplanet archive were null, preventing the masking of a
sibling planet. In these cases, sibling transits that are not
properly masked can interfere with the fitting. This failure
mode is vetted in Section 4 by querying the Simbad archive
when additional siblings are suspected.

2.3. Target Selection

Because we analyze transits individually, we are strongly
limited by the depth and duration of the transit signal relative to
the local noise. In order to maximize the statistical significance
of any characterization we make, we sort all confirmed Kepler
targets by the ratio of the expected transit depth to the scatter in
the flux (defined as the the median rolling standard deviation
(SD) of the flux values, with a window size of 10 timesteps),
and take only the best 10% of targets. This corresponds to a
threshold ratio of 6.73. We choose 10% as our threshold
because targets below this cutoff tend to have transits with
depths similar to the lightcurve noise (less than a few times the
noise), and thus are not good candidates for unambiguous
detection of missing transits. If the expected depth for a
particular transiting system is near or below the average scatter
of the lightcurve, we cannot make any significant statement
about the nature of an individual transit. This produces 228
targets. We determine the expected depth by fitting the
ensemble of transits together for each planet to produce an
average transit model for that planet. We download the
reported transit properties (period, semimajor axis, inclination,
eccentricity, argument of periastron, impact parameter, transit
duration, ephemeris, and planet and star radii) for each
planetary system from the NASA Exoplanet Archive, and use
these as initial parameters for fitting. We perform the transit
fitting using a Batman transit model wrapped in Python’s
lmfit method. The Batman package (described fully by
Kreidberg 2015) produces a transit model based on input

Figure 1. Example detrended, stitched, and masked lightcurves. Orange points are data that have been removed from our analysis due to quality issues flagged by the
Kepler pipeline.

9 Database was queried on 01/06/22 10:20pm PT, returning 2363 rows.
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planetary and orbital parameters, and lmfit allows us to fit
for the best Batman transit model using a brute-force method
over a grid of points. The ensemble fit parameters sometimes
differ significantly from the reported NASA transit parameters.
Because we are concerned only with deviations in the transit
depth or midpoint for individual transits, we are not concerned
with defining physically accurate transit parameters, but rather
with defining the model that best represents the depth and
timing of transits for each planetary system as a whole. We take
the depth of this ensemble model as the expected transit depth
for each individual transit. By selecting the systems with the
highest ratio of expected transit depth to flux scatter, we aim to
produce the highest confidence results possible.

3. Methods

3.1. Expected Transit Parameters

Before fitting individual transits, we must first define a set of
expected parameters to serve as initial guesses for individual
transit fits. We take the preliminary set of parameters
determined for the purpose of target selection (as described in
Section 2.3), and inspect the fits produced by those parameters
by eye. In the case of a poor fit, we manually update the fit
parameters to produce a better expected transit shape. This
allows us to have high confidence that the expected transit
models well represent an “average” transit, and thus provide a
good baseline from which to define unusual transit shapes. We
refer to this set of parameters as the “ensemble fit parameters”
because they provide our best fit to the entire ensemble of
transits for a planet.

3.2. Anomaly Search

After preprocessing, the lightcurves are ready to be searched
for missing or unusual transits. For each star, we iterate over
each transit. For each expected transit midpoint (with midpoints
determined using the period and ephemeris provided by the
NASA Exoplanet Archive in the Kepler KOI table (Thompson
et al. 2018), we define a window spanning three times the
expected transit duration on either side of the expected
midpoint. If insufficient data (defined as less than 70% of the
expected number of data points in the window) is present in a
given transit’s window due to data gaps or data quality issues,
we ignore that transit. Even so, missing or sparse data is one of
the most common reasons for poor fitting of individual transits.

We then fit the transit with a Batman transit model. We first
mask the expected location of the transit in order to fit and
remove a linear trend as a first-order correction for stellar
variability. Short-timescale nonlinear stellar variability is not
removed, and this is another common reason for poor fitting.
Next, we produce a preliminary model of the transit in order to
update the expected midpoint, and repeat the process of
masking the transit and removing a linear trend. This helps
avoid errors in baseline trend removal when the transit is not
centered at the expected location. We then fit a final Batman
model to the transit to produce a set of fit parameters, using the
ensemble model parameters as initial guesses.

As a reference of comparison for individual transits, we take
the median of each parameter produced in this final Batman fit
over all transits and refer to this set of parameters as the
“median fit parameters.” This set of median fit parameters
provides the standard against which we define which individual
transits are considered anomalous.

Once each transit has been fit, we flag the transits that meet
certain requirements. We define three flags: (1) transits that
appear “missing,” (2) transits that appear unusually deep, and
(3) transits that appear to have unexpectedly large TTVs. These
are defined quantitatively as follows:

1. Fit transit depth shallower than 3 times the flux SD, and
greater than 3σ away from the median of the fit transit
depths (the transit is effectively indistinguishable from a
flat section of lightcurve).

2. Fit transit depth exceeds the median fit transit depth by
more than 3σ.

3. Fit transit TTV exceeds the median fit TTV by more than
5σ. We choose 5σ in this case to prevent flagging
expected large TTVs due to coherent variation in transit
timing from sibling planets.

Defining the flagging criteria based on the actual distribution
of fitted transit properties circumvents issues with small
discrepancies between the ensemble and mean fit parameters
that sometimes arise due to imperfect expected parameter
values. It also allows us to flag TTVs even in several-planet
systems which are often expected to have large TTVs due to
the gravitational effects of planets on their siblings’ orbits.
Figure 2 demonstrates the threshold applied for each flag.

3.3. Signal Injection and Recovery

In order to assess our confidence in flags produced by our
anomaly search for any given planetary system, we perform an
injection and recovery of simulated transits and evaluate both
the accuracy with which we can recover their depths and
timings, and the accuracy of the flagging processes. We would
like to be able to reject flagged transits in systems for which the
injection and recovery shows it is difficult to accurately
determine the transit parameters, or systems for which many
transits are erroneously flagged.
We inject transits into each lightcurve as follows. First, we

define a set of 1000 injection locations chosen randomly across
the lightcurve under the requirement that sufficient data is
present in the surrounding window to perform a Batman fit.
We then choose a sample randomly from a distribution of
depths and TTVs without replacement to produce the injection
parameters. The depth parameter space spans from zero to 3.5σ
above the median fit depth, and the TTV parameter space spans
from zero to 1.1 times the size of the fitting window. We
choose this range to ensure that we sample from all regions that
should produce flags, as well as regions expected to
erroneously produce flags. We inject each transit by defining
a Batman model using the chosen depth and TTV, and median
fit parameter values for the other parameters, and add the
injection model onto the existing lightcurve in order to preserve
noise and stellar variability.
We then attempt to recover each injection by performing the

fitting exactly as described in Section 3.2. Once all injections
are fit the flags are defined exactly as described above, using
the median and standard deviation of the real individual transit
fits to determine the threshold values for flagging. We calculate
the rms error between the injected and recovered depths and
TTVs for each planet, and produce diagnostic plots to visualize
the recovery accuracy (as shown in Figure 3). For this paper,
we define “true positive” injections to be injections whose
injected depth or TTV is within the region that should produce
a flag, and whose recovered depth or TTV does in fact produce
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the expected flag. We define “true negative” flags analogously,
as transits whose injected parameters should not produce a flag,
and whose recovered parameters indeed are not flagged. “False
positive” injections are those whose parameters should not
produce a flag, yet the recovery is inaccurate and the recovered
transit is flagged. Similarly, “false negative” injections are
those whose parameters should produce a flag, but due to poor
recovery are not flagged.

We perform this injection and recovery process for each
planetary system. We can then use the accuracy of the injection
recovery to inform vetting of flagged transits.

4. Results

We run the individual transit fitting algorithm described in
Section 3.2 on each of the 228 planetary targets described in
Section 2. The Batman model fails to converge for 10 of these
targets, leaving 218 which we can search for anomalous
transits. This means we search 39,879 total transits. Using the
flags defined above, we flag six transits as apparently missing,
92 as unexpectedly deep, and 51 as having unexpectedly
large TTVs.
We then visually inspect these flagged transits. We reject

flagged transits using several criteria, which vary slightly for

Figure 2. Demonstration of the thresholds used for flagging fit transit parameters for an example planet (Kepler-696b). Each data point represents one transit.

Figure 3. Scatter plot demonstrating injection and recovery accuracy for a sample lightcurve. Each point represents the injected properties of recovered transits. In the
left-hand plot, orange triangles represent transits flagged for large TTVs, and the orange filled area represents the region of parameter space which should produce a
TTV flag. In the right-hand plot, orange triangles represent transits flagged as missing, blue squares represent transits flagged for large depths, and the orange and blue
regions represent the corresponding regions of parameter space expected to produce flags. Not all transits injected in the shaded regions are flagged due to imperfect
recovery of the injected properties.
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each flag. In fitting individual transits, we are often challenged
by the sparsity of data around the expected transit. Thus, all
flags have some false positives when the transit is truly present
in the data with its expected shape, but a good fit to the transit
cannot be produced due to missing or sparse data. Another
complication for all flags arises from sibling transits which fall
within the fitting window. Though sibling transits are masked
before fitting, in a few cases sibling transits with large TTVs
cannot be perfectly masked beforehand and can interfere with
fitting.

4.1. Transits Flagged as Missing

Our primary interest is to identify and examine potentially
“missing” transits. In general, we find that despite the noisiness
and sparseness of data for individual transits, we are able to
accurately determine that a transit is present at each expected
location and to fit its depth and TTV. However, some transits
are flagged as missing.

For such missing transits, one possible false positive comes
from poor fitting due to missing or sparse data in the region
around the transit. Four of the six transits flagged as missing are
clearly present in the data on visual inspection, but are fit
poorly due to missing data and/or stellar variability. These are
shown in Figure 4.

The two remaining candidates are both transits of the planet
Kepler-1655b (Figure 5). For these two, the transit is not
visually identifiable in the processed data. The first step for
further visual vetting is an inspection of the unprocessed (i.e.,
with no linear detrending) lightcurve in a wider window around
the flagged transit. When inspected this way, transit 22 has a
visually identifiable feature at the location of the fit transit that
matches the expected transit shape, and this can be identified as

the transit itself. A wide section of missing data beginning three
data points to the right of the transit egress, in conjunction with
local stellar variability, impairs accurate linear trend removal.
The trend that is removed artificially raises, and therefore
obscures, the transit. For transit 17, the cause of the flag is
somewhat less clear. However, inspecting the wider region
around the transit reveals stellar variability on the same order as
the expected transit depth. This is an edge case for which the
timescale of the stellar variability was too short to be detrended,
yet too long to be included in the calculation of the SD. Thus
we must also reject this transit as a statistically significant
“missing” transit.
Though we are most interested in potentially missing

transits, our data set is also highly amendable to a search for
transits with unusually large depths or TTVs. These are
discussed in the following two sections.

4.2. Transits Flagged as Unexpectedly Deep

One possible false positive for transits flagged as unexpect-
edly deep comes from poor fitting due to missing or sparse
data. In the case of missing data, there is an additional failure
mode that occurs when the midpoint is fit inside a region of
missing data, and the depth is then essentially unbounded. Of
the 92 flagged transits, 23 are rejected as false positives for this
reason. An additional 31 are rejected because nonlinear stellar
variability results in a mischaracterization of the local baseline,
and thus an apparently deeper transit. Also, 19 transits are
rejected because the scatter in the out-of-transit lightcurve is
large compared to the difference between the fit depth and
expected depth; thus, the excess depth could be explained by
random variability rather than a true increase in transit depth.

Figure 4. Four of the six transits flagged as missing are clearly present on visual inspection of the data. Top left: Kepler-314c, transit 166, is flagged as missing but is
clearly visible in the raw data. Missing data at the edge of the fit window and short-timescale stellar variability make the fitting difficult and produce a false positive.
Top right: Kepler-472, transit 92 is flagged as missing yet is clearly present on visual inspection. Bottom left: Kepler-564, transit 105 is mis-fit due to two quality
masked data points exactly at the transit minimum, which effectively hide the transit. Bottom right: similarly, the model fits adjacent stellar variability instead of transit
63 of Kepler-732b because of a single missing data point in the fit, as well as short-timescale stellar variability which alters the shape of the transit.
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Large instrumental scatter can also make the linear detrending
unreliable for these transits.

Another class of false positive comes from sibling transits
which overlap with the target transit, deepening the apparent
transit. Though we attempt to mask these sibling transits, we
are unable to initially mask a sibling transit properly in cases
when the transit exhibits a very large TTV, or in the rare case
that a search of the NASA exoplanet archive returns null
parameters. We vet for the first failure mode by overplotting the
individually fit midpoints of resolved sibling planets, and reject
a single transit (Kepler-247c transit 113), which clearly has an
overlapping sibling. To check for the second failure mode, we
manually search the Simbad database for siblings and in two
cases find an unmasked sibling planet. From this we can reject
five flagged transits of Kepler-18c, because visual inspection
reveals the transits of Kepler-18d clearly move in and out of the
fitting window. Similarly, we reject Kepler-51b transit 30
because an additional sibling (Kepler-51d) is reported in
Simbad and has an expected transit midpoint that directly
overlaps.

We reject another four transits because analysis of the
injection and recovery process reveals that accurate recovery of
transit parameters is difficult. If for a given system we are
unable to recover injected deep transits, or we flag normal
transits as unusually deep, we cannot have high confidence in
any transit flagged for that system and so must reject it. We
impose a threshold on the fraction of false positive injections,
out of the total number of injections which should not be
flagged. We choose that threshold to be 10% in order to reject
the clear tail of outliers with especially poor injection recovery,
while retaining the majority of transits. This test allows us to
reject transits of Kepler-25c, Kepler-17b, Kepler-685b, and
Kepler-506b. This leaves nine transits.

The next step for visual vetting is an inspection of the
unprocessed (i.e., with no linear detrending) lightcurve flux in a

wider window around the flagged transit. When inspected this
way, several transits can be clearly rejected based on one of the
previously identified failure modes. When the predetrending
lightcurve is inspected in a wider window, it becomes apparent
that Kepler-314c transit 109 and Kepler-682b transit 41 have
short-timescale stellar variability with a timescale comparable
to the transit duration and with amplitude comparable to the

Figure 5. Kepler-1655b transits 17 (top) and 22 (bottom) are flagged as “missing” and are not obviously present on visual inspection, but are ultimately rejected due to
poor linear trend removal and due to stellar variability which could mask a present transit.

Figure 6. Kepler-40b transit 201 and Kepler-548b transit 132 are flagged for
large TTVs and pass the visual inspection of the fit.
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difference between the fit and expected depth. Thus, the
apparently large depth could be caused by unfortunately timed
stellar variability.

This leaves five remaining transits (Kepler-685b transit 791,
Kepler-422b transit 99, Kepler-74b transit 56, Kepler-433b
transit 248, and Kepler-41b transit 616). Although these transits
do not fall under any of the failure modes described above, they
are not anomalous enough to warrant further investigation. All
five of these transits appear to fall on the tail of a normal
distribution of fit depths for their respective systems, or result
from small coherent trends in an otherwise normal fit depth
distribution (which may occur due to moving starspots or other
stellar surface features).

4.3. Transits Flagged for Large TTVs

As in the previous two cases, for transits flagged for large
TTVs a possible false positive comes from poor fitting due
to missing or sparse data near the transit. We reject 27 of the
51 transits flagged for large TTVs for this reason. We reject
another 12 that were fit poorly due to short-timescale stellar
variability or single missing data points that bias the fitting. For
a further set of five, short-timescale stellar variability produces
a feature that mimics the expected transit shape enough to
“fool” the Batman model into fitting the variability rather than
the transit itself.

Another class of false positive comes from sibling transits
present in the fitting window, which are fit instead of the target

transit. We reject the same five transits of Kepler-18c described
in Section 4.2 because a Simbad search reveals a sibling planet
unresolved in the NASA Exoplanet Archive whose transits
coincide with the flagged transits.
This leaves two remaining transits, which are shown in

Figure 6.
Transit 201 is only 5% above the 5σ threshold, but does not

obviously fall on the expected tail of a normal distribution of
TTVs, as shown in Figure 7. However, Kepler-40b is a rotating
variable subgiant star, and thus likely to exhibit starspots.
Transit 201 is consistent with the shape expected from
contamination due to the exoplanet crossing a starspot feature
(Morris et al. 2017).
Kepler-548b transit 132 is flagged for its large TTV, but is

most unusual in its dramatically reduced depth. Transits in the
system are generally fit well, and no other transit exhibits a
shallow depth. No unexpected sibling transit appears in the
fitting window (nor could this explain both the large TTV and
the shallow depth), and the lightcurve appears free of stellar
flaring or other activity which could give the transit an
apparently shallower depth. However, when the lightcurve for
this transit is created using the raw (SAP) flux values (Twicken
et al. 2010; Morris et al. 2020), rather than the PDCSAP flux
values, the transit no longer appears unusually shallow
(Figure 8). This appears to be a rare case in which cotrending
applied to the PDCSAP values significantly modifies the shape
of a transit, producing a spurious flag.

Figure 7. Kepler-40b transit 201 is barely above the threshold for flagging, and consistent with contamination from stellar variability.

Figure 8. Kepler-548b, transit 132, is an apparently very unusual transit with both a large TTV and a shallow depth. However, the transit appears to have a normal
shape when viewed using the precotrending SAP flux values, and thus the anomaly can be credited to artifact of the Kepler cotrending process.
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5. Discussion and Conclusions

To the best of our knowledge, no past work has attempted to
characterize the shapes of transits individually in stellar
lightcurves, though some have searched individually for TTVs.
We have developed and implemented an algorithm to search
stellar lightcurves for unusual transits, and have performed a
search for such transits on 218 Kepler transiting exoplanet
systems. We find and vet six candidate transits flagged by our
algorithm as missing, 51 flagged as having an unusually large
TTV, and 92 flagged as having an unusually large depth. We
visually inspect all flagged transits, and reject each as a likely
indication of new astrophysics or extraterrestrial intelligence.

Our nondetection allows us to put a useful upper limit on the
occurrence rate of transits with inexplicably anomalous
properties. Zero of 218 stars host a transit which passed our
search algorithm and could not be rejected via manual
inspection; the upper limit on detections at 95% confidence
with zero detected is 2.99. We conclude that less than 2.99 per
218 Kepler stars, or less than 1.4%, host transits with
inexplicably large depths or TTVs, or transits which appear
to be missing. In choosing our sample we are biased toward
planets with deep transits and lightcurves with low flux
uncertainties, but this should not bias our detection rates. We
are however only sensitive to a small subset of all transits of
each planet due to finite Kepler observing times. The median
duration of a lightcurve in our target set is 1459.5 days. Thus,
our upper limit should be understood to reflect an occurrence
rate per 1459.5 days.

Our search is designed to be agnostic to the cause of any
anomalous transit shapes. We attempt to reject known
astrophysical causes, for instance by rejecting transits where
sibling planets, stellar flares, or short-timescale stellar varia-
bility can cause apparent anomalies. However, had we been
unable to reject any flagged transits an unexpected astro-
physical explanation would still be possible. Our search would
also be sensitive to nonastrophysical transit anomalies, which
represent a possible technosignature. A civilization might
choose to cloak its transits from known neighbors, or else
broadcast its presence intentionally or unintentionally by
modifying its transit shape with megastructures or lasers
(Wright & Kipping 2019). While Kipping & Teachey (2016)
have noted directed emission from a laser could “cloak” or
modify a transit of a planet in the Kepler band using technology
presently available, multiband detection of transits would be
able to distinguish this type of variability compared to
megastructures. In addition, if an intelligent civilization aware
of life near our Sun were to attempt to send a beacon or
information toward the Sun, it would have to choose the best
time to do so. The interval in which the civilization’s home
planet transits between its host star and the Sun would be clever
choice of timing if this civilization expects others to be actively
studying the transits of exoplanets for non-SETI purposes.
Thus, the interval around a transit is an especially important
time to search for SETI signals (Franz et al. 2022).

5.1. Future Directions

The techniques implemented in the work could be readily
applied to other large data sets, such as the TESS catalog of
transiting exoplanet lightcurves (Borucki et al. 2010). In

addition, the set of transit fits produced as a result of this work
could be very useful as a training data set in a machine-learning
search for unexpected transits in stellar lightcurves. Past
exoplanet searches miss transits from planets with periods
longer than the survey observing time, comets or asteroids, or
rogue planets. The nature and prevalence of unexpected transits
is poorly understood. This represents a major gap in our
understanding of the occurrence rate of long-period exoplanets.
These long-period planets are likely to be gas giants whose key
role in the formation and evolution of planetary systems is an
active area of research. Each fit transit from this work can
become a labeled positive observation, and fit section of
lightcurve with no known transit labeled negative observations,
to train a machine-learning algorithm to search pixel by pixel
through stellar lightcurves for transits which appear where none
is expected.
Future work could improve on some of the methods used

here in order to reduce the need for visual vetting, or to expand
the transit fitting approaches. For instance, a more sophisticated
method of jointly fitting transits and stellar variability using
Gaussian processes or wavelet analysis could better detrend
each transit fitting window and thus mitigate some false
positive candidates we encountered. In addition, a future work
might benefit from jointly fitting the transits of each sibling
planet in a system in order to avoid the necessity of masking
the transits of sibling transits in each fitting.
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Appendix
Summary Table

Table 1 contains a summary of the transit fitting parameters
and results of injection and recovery.
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Table 1
System Information, Including Median Transit Fit Parameter Values, and Injection and Recovery Statistics for each Exoplanet in our Sample

Median Fit Parameters Injection/recovery Summary

Name Siblings # Transits Rp/Rs Semimajor Inc. Ecc. Arg. of Rel. Depth Recovery TTV recovery
axis [AU] [Deg] Periastron Depth RMS [Days] RMS

Kepler-117 b c 77 0.046 21.55 89.47 0.0 254.3 0.00252 0.00041 0.313
Kepler-396 c b 16 0.049 79.64 89.47 0.0 0.0 0.00245 0.00115 0.437
Kepler-782 b None 9 0.026 104.61 90.0 0.0 0.0 0.00085 0.00014 0.49
Kepler-39 b None 66 0.091 23.72 88.42 0.0 98.9 0.00887 0.00139 0.252
Kepler-108 c b 7 0.031 70.92 89.47 0.0 0.0 0.00101 0.00016 0.595

Note. A subset is shown here as an example.

(The full table is available in machine readable format)
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