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Abstract—The Gomory-Hu tree is a popular optimization al-
gorithm that enables to efficiently find a min-cut (or equivalently,
max-flow) for every pair of nodes in a graph. However, graphs
cannot capture broadcasting and interference in wireless: over
wireless networks we need to resort to the information-theoretical
cut-set to bound the max-flow. Leveraging the submodularity of
mutual information, we show that the Gomory-Hu algorithm can
be used to efficiently find information-theoretic rate characteri-
zations such as the capacity or an approximation to the capacity,
over a number of network scenarios including wireless Gaussian
networks and deterministic relay networks.

Index Terms—Gomory-Hu trees, min-cut, wireless networks

I. INTRODUCTION

THE Gomory-Hu tree is a popular optimization algorithm
that enables to efficiently find the min-cut value (or

equivalently, max-flow) for every pair of nodes in a graph [1].
In particular, for an undirected graph with # nodes, the
Gomory-Hu algorithm creates a cut tree that captures a min-
cut for each of the # (# � 1)/2 pairs of nodes. The main
idea is that, by leveraging submodularity, we can create a cut
tree by solving only # � 1 max-flow problems, thus saving a
factor of #/2 over the brute-force approach. The algorithm
has drawn significant attention since cut trees are widely
used in applications such as routing, graph partitioning, graph
clustering and scheduling [2]–[5].

Gomory-Hu algorithms have also emerged as an important
tool over wireless communications, by using a crude modeling
of wireless networks through graphs. Cut trees are used in
wireless problems such as online virtual network embedding,
resource allocation and scheduling [6]–[8]; in all these cases,
wireless networks are abstracted as graphs. However, graph
theoretic minimum cuts cannot capture wireless broadcasting
and interference that can introduce complex signal interactions
between wireless information flows.

In this work, we address the question: can we use the
Gomory-Hu algorithm over networks that cannot be abstracted
as graphs, such as Gaussian wireless networks with broadcast-
ing and interference?

To do so, we resort to information-theoretical cut-set bounds
that provide upper bounds on the maximum rate possible [9].
Leveraging the submodularity of mutual information, we show
that the Gomory-Hu tree algorithm can be used to efficiently
find information-theoretic rate characterizations such as the
capacity or an approximation to the capacity, over a number
of network scenarios, that include wireless Gaussian networks
and deterministic relay networks.
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Related Work. The Gomory-Hu algorithm was proposed
in [1] and was followed by a rich and extensive literature [10]–
[12], with research improving aspects such as implementation
complexity [13]–[15], and tailoring to applications [2]–[5]. All
these works consider networks abstracted through graphs.

The cut-set bound and capacity approximations for wireless
networks have also attracted significant research effort. [16]
proposed a deterministic model to capture the key wireless
signal interactions and [17] provided polynomial time algo-
rithms to calculate the deterministic capacity. [18] proposed
a strategy that achieves rate within a constant gap of the
cut-set bound in Gaussian relay networks, where the gap is
independent of channel gains and power levels, and depends
on only the number of nodes in the network. [19] showed that
the cut-set bound for any independent input distribution can
be expressed as a submodular optimization problem. All these
works aim to find the capacity (or the approximate capacity)
for a single source-destination pair. In this paper, we build
on these works and the Gomory-Hu algorithm to efficiently
calculate these quantities for all

�#
2

�
source-destination pairs.

Paper Organization. Section II reviews background on the
cut-set bound and presents the modified Gomory-Hu algo-
rithm. Section III introduces our main theorem and Section IV
presents its proof. Secion V concludes the paper.

II. SYSTEM MODEL AND BACKGROUND

We consider a network with a set of nodes denoted by + .
For 8 2 {1, ..., |+ |}, the random variables -8 and .8 denote the
channel input and output at node E8 , respectively where |+ |
is the cardinality of the set + . A cut ⌦ is a subset of + , that
partitions + to two sets, ⌦ and its complement ⌦2; -⌦ denotes
the vector

⇥
-81 , ..., -8|⌦|

⇤) with E8 9 2 ⌦, 9 2 {1, ..., |⌦|}. A
similar definition follows for .⌦.
Information theoretic cut-set bound. This is an upper bound
on the maximum rate (capacity) C that can be sent from a
source B to a destination C over a relay network [9]:

C  C = max

?(-[1:|+ | ] )
min

⌦
� (-⌦;.⌦2 |-⌦2 ) , (1)

where B 2 ⌦, C 2 ⌦2, ?
�
-[1: |+ | ]

�
is the input probability

distribution and � (-⌦;.⌦2 |-⌦2 ) is the mutual information
between -⌦ and .⌦2 conditioned on -⌦2 . For a fixed input
distribution, the bound in (1) can be written as

min

⌦
� (-⌦;.⌦2 |-⌦2 ) . (2)

[19] showed that the mutual information in (2) is a submodu-
lar function (under some encoding independence assumptions)
and if it can be evaluated efficiently, the submodular opti-
mization problem in (2) can be solved in polynomial time.
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Throughout the letter, we assume that any cut ⌦ ⇢ + satisfies

� (-⌦;.⌦2 |-⌦2 ) = � (-⌦2 ;.⌦ |-⌦) . (3)

For brevity, we will use W(⌦) = � (-⌦;.⌦2 |-⌦2 ), and denote
the min-cut value in (2) for the B � C pair by

_B,C = min

⌦:B2⌦,C 2⌦2
W(⌦). (4)

A similar definition follows for _D,E with any pair D, E 2 + .
For general wireless relay networks, it is nontrivial to com-

pute the cut-set bound in (1) even when the input distribution
is fixed. However, the capacity C is well characterized for:
(a) Deterministic networks [16]:

C = min

⌦
rank ( ⌦) , (5)

where  ⌦ is the transfer matrix that relates -⌦ to .⌦2 . For i.i.d
uniform input distribution over a finite field with ? elements,
the information theoretic min-cut in (2) is equal to C in (5).
(b) Gaussian relay networks [18]: An approximate capacity
characterization CG was derived as

CG = min

⌦
log det

⇣
� + % ⌦ 

†

⌦

⌘
, C  CG +$ ( |+ |), (6)

where  †

⌦ is the conjugate transpose of  ⌦, and % is the
average power constraint per node. The approximate capacity
CG is equal to the information theoretic min-cut in (2) for i.i.d
Gaussian input distribution with mean 0 and variance %.

We note that in Gaussian networks, reciprocal channels (a
standard assumption in wireless) are sufficient for condition (3)
to be satisfied. Thus, for example, we assume that  is
Hermitian, i.e.,  =  †.

A. Gomory-Hu Algorithm
Consider an undirected edge-weighted graph G(+ , ⇢) with

# = |+ | nodes and edges with capacities (or weights) n : ⇢ !
R+. To define a Gomory-Hu tree T = (+T , ⇢T) for (G, n), we
first define fundamental cuts in trees.

Definition 1. Let T = (+T , ⇢T) be a tree and 4 2 ⇢T . Then,
the set of nodes ⇠4 in any of the two connected components
in (+T , ⇢T � 4) is called a fundamental cut for 4.

Definition 2. A Gomory-Hu tree for G(+ , ⇢) is a tree
T = (+T , ⇢T) with +T = + such that every DE 2 ⇢T , the
fundamental cut ⇠DE is a minimum D � E cut in G.

Definition 2 states that the Gomory-Hu tree gives a min-
cut for every node pair that constitutes an edge in the tree.
However, [1] proves that the tree also gives a min-cut for any
distinct D, E 2 + . Particularly, if ?D,E is the path between D
and E on the tree and 4 is the edge with the minimum weight
on ?D,E , then the fundamental cut ⇠4 is a minimum D � E cut.

In Algorithm 1, we present the modified Gomory-Hu algo-
rithm that fits the wireless setup. The algorithm proceeds in
steps, and each step establishes one edge of the tree between
two nodes. A node in the tree can be one of the nodes in +
or it can be contraction of some nodes in + , i.e., it may be
a “contracted” node that represents a group of nodes in + .
However, at the end of the algorithm, there are no contracted

Algorithm 1 Gomory-Hu Algorithm (Wireless)
Input: A wireless network with a set of nodes + .
Output: A Gomory-Hu tree T for the input network.
+T is a single node contracting all nodes in the
networks, ⇢T  ;.
while There is some * 2 +T such that |* | � 2 do

Let B, C be any two distinct nodes in *.
Let V1, V2, ..., V: be the connected components of T �*.
For 1  8  : , contract the nodes of + represented in
nodes in V8 to a single node U8 , and obtain a new network
H from the input network.
Find an information theoretic minimum B� C cut ⌦ in H

by solving (2) and let � = * \⌦ and ⌫ = * �⌦.
+T  (+T �*) [ {�, ⌫}.
for each edge 4 = *, 2 ⇢T incident with * do

Let 8 be such that , 2 V8 .
if U8 2 ⌦ then 40  �, , else 40  ⌫, .
⇢T  (⇢T � {4}) [ {40}, n (40)  n (4).

end for
⇢T  ⇢T [ {�⌫}, n (�⌫)  _B,C .

end while
Return (+T ; ⇢T).

Fig. 1: A Gaussian wireless network with channel matrix  .

nodes in the final tree and each node belongs to + . We
illustrate the steps of the algorithm with an example.
Example 1. We apply Algorithm 1 to the Gaussian network
in Fig. 1 for power % = 1. The initial tree is a single
node contracting all nodes + in the network (Fig. 2a). Thus,
[Iteration 1] The first iteration chooses * = {1, 2, 3, 4} and
we arbitrarily choose the nodes B = 1 and C = 3. In T � *,
there are no connected components, thus H is the same as
our initial network. We find the minimum B � C cut ⌦ = {1}

in H by solving (6) and find C� = 3.59. Then, we construct
� = * \⌦ = {1} and ⌫ = * �⌦ = {2, 3, 4}, and modify +T

such that +T  (+T �*) [ {�, ⌫}. We add a new edge �⌫
with weight 3.59 as in Fig. 2b. [Iteration 2] In the next step,
the algorithm chooses * = {2, 3, 4} from +T , and choose
B = 2 and C = 4. In T �*, we have one connected component
V1 = {1}, thus H is the same as our initial network. We find
the minimum B � C cut ⌦ = {1, 2, 3} with C� = 3.17. Thus,
� = {2, 3} and ⌫ = {4}. We modify +T , and add an edge
�⌫ with weight 3.17. Since U1 2 ⌦, we place the edge with
weight 3.59 (from the previous step) between � and {1}. The
resulting tree is shown in Fig. 2c. [Iteration 3] We next choose
* = {2, 3}, and we choose B = 2 and C = 3. In T � *, we
have two connected components: V1 = {1} and V2 = {4}, thus
H is the same as our initial network. We solve (6) to find
the minimum B � C cut ⌦ = {1, 2, 4} with C� = 3.70. Thus,
� = {2} and ⌫ = {3}. We modify +T and add an edge �⌫.
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(a) Initial tree T . (b) T after the first iteration. (c) T after the second iteration. (d) The final cut tree T .

Fig. 2: The Gomory-Hu tree construction steps.

Since the edge between {1} and {2, 3} in Fig. 2c is incident
to * and U1 2 ⌦, we place this edge between {1} and �. In
the same manner, the edge between {4} and {2, 3} in Fig. 2c
is incident to * and U2 2 ⌦, thus we place this edge between
{4} and �. The resulting tree shown in Fig. 2d is a cut tree.

III. MAIN RESULTS

Theorem 1 states that a Gomory-Hu tree T gives an infor-
mation theoretic min-cut for every node pair that constitutes
an edge in the tree. By leveraging Theorem 1 and Lemma 1,
Lemma 2 proves that T gives an information theoretic min-
cut for every pair of nodes in the network (not only the ones
connected through edges). We prove Theorem 1 in Section IV.

Theorem 1. The Gomory-Hu tree algorithm can construct a
tree T = (+T , ⇢T) for a wireless network such that for every
DE 2 ⇢T , the fundamental cut ⇠DE is the information theoretic
minimum D � E cut in (2), i.e., W(⇠DE) = _D,E .

Remark 1. Theorem 1 presents our results for the information
theoretic min-cut given in (2). The results still hold for the
capacity characterization in (5), and the approximate capacity
characterization in (6) since these are computed for specific
input distributions in (2) as discussed in Section II.

Lemma 1. Let E1, ..., E: be any set of : � 2 distinct nodes.
Then, we have the following relationship

_E1 ,E: � min

18:�1

_E8 ,E8+1
. (7)

Proof. The proof of Lemma 1 is delegated to Appendix A. ⇤

Lemma 2. For any distinct D, E 2 + , let ?D,E be the unique
path between D and E on a Gomory-Hu tree T . Let edge 01 2
?D,E give min8 92?D,E _8, 9 . Then, we have _D,E = _0,1 and ⇠01

gives an information theoretic minimum D � E cut.

Proof. The proof of Lemma 2 is delegated to Appendix B. ⇤

Together, these results imply that we can use Algorithm 1 to
find an information theoretic min-cut for every pair of nodes in
a wireless network by solving only |+ | � 1 min-cut problems.

IV. PROOF OF THEOREM 1
We prove Theorem 1 by following similar steps to the proof

of the original Gomory-Hu algorithm [20]. The main differ-
ence is that we use the submodularity of mutual information
in the following lemma that plays a central role in the proof.

Lemma 3. Let B, C 2 + be distinct nodes and set ⌦1 be an
information theoretic minimum B � C cut. Let D, E be distinct
nodes such that D, E 8 ⌦1 (we allow that either D or E is either

B or C). Then, there exists an information theoretic minimum
D � E cut ⌦2 such that ⌦1 ✓ ⌦2 or ⌦1 \⌦2 = ;.

Proof. The proof of Lemma 3 is delegated to Appendix C. ⇤

The proof of Theorem 1 uses the loop invariant in Lemma 4.

Lemma 4. Initially and after each iteration, for any edge
,/ 2 ⇢T (, , / are potentially contracted nodes), there is
some B 2 , , C 2 / such that the set of nodes of + represented
in nodes in the fundamental cut ⇠,/ is an information
theoretic minimum B � C cut (i.e., n (,/) = _B,C ).

Proof. In the beginning of the algorithm, the tree is a single
node without any edges, thus the statement is trivial. We show
that it is not violated in other iterations. We look at a specific
iteration 8 of Algorithm 1 for fixed *, B, C,⌦, � and ⌫. We
assume that Lemma 4 holds before starting the iteration 8, and
B 2 ⌦ (otherwise, rename B and C). Thus, B 2 � = * \ ⌦. We
first show that Lemma 4 holds for the new edge �⌫.

Claim 1. If we expand the contracted nodes that reside in ⌦,
we obtain an information theoretic minimum B � C cut.

Since B 2 �, C 2 ⌫ and the set mentioned in Claim 1 is the
set of nodes of + represented in nodes in ⇠�⌫ (at the end of
iteration 8), the statement in Lemma 4 holds for the edge �⌫.
Proof of Claim 1. For 0  9  : , let H 9 be the net-
work arise from the original network by constructing each
of U1, U2, ..., U: one by one. H: corresponds to H in the
algorithm and H0 is the original network. The proof by
induction uses Lemma 3 and the fact that the nodes of +
represented in each U 9 is an information theoretic min-cut for
some B 9 � C 9 pair (by loop invariant). Thus, H contains an B� C
cut with capacity _B,C , and expanding the contracted nodes in
⌦ gives an information theoretic minimum B � C cut. ⇤

In Algorithm 1, we also replace the edges of the form *,
with �, or ⌫, . We assume *, is replaced by �, (the other
case can be proven in the same manner). Due to Lemma 4,
there is some ? 2 * and @ 2 , such that the set of nodes of
+ represented in nodes in ⇠*, (before the modification of T )
is a minimum ? � @ cut. This set is also the set of nodes of +
represented in nodes in ⇠�, (after the modification). Thus, if
? 2 �, Lemma 4 holds for edge �, . Hence, suppose ? 2 ⌫.

Claim 2. _B,@ = _?,@ .

This completes the analysis because B 2 �, @ 2 , and
minimum cut value given by the set of nodes of + represented
in nodes in ⇠�, is equal to _?,@ = _B,@ . Hence, the set gives
an information theoretic minimum B � @ cut.
Proof of Claim 2. Let ⌦ ✓ + be the set obtained from ⌦ by
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expanding the contracted nodes in ⌦. Claim 1 states that ⌦ is
an information theoretic minimum B � C cut. Moreover, since
B, @ 2 ⌦, there is an information theoretic minimum B � @
cut which contains + � ⌦ or it is disjoint from + � ⌦ due to
Lemma 3. If the min-cut contains + � ⌦, it is also a cut for
?�@ pair since C, ? 2 ⌫ ✓ + �⌦. Thus, we have _B,@ � _?,@ .
If the min-cut is disjoint from +�⌦, it is a cut for B�C pair and
we have _B,@ � _B,C . Since the minimum B� C cut ⌦ separates
? and @, it is also a cut for ?�@ pair and we have _B,C � _?,@ .
If we combine these two results: _B,@ � _?,@ . Thus, in both
cases, we have _B,@ � _?,@ . Moreover, n (*,) is the value
of an B � @ cut, thus we have _B,@  n (*,) = _?,@ . If we
combine the two inequalities, we have _B,@ = _?,@ . ⇤

The remaining edges and their fundamental cuts do not
change, thus Lemma 4 holds for them. ⇤

Lemma 4 holds at the end of the last iteration and there
are no contracted nodes in the final tree, thus for every edge
DE 2 ⇢T , ⇠DE is an information theoretic minimum D � E cut.

We can illustrate Lemma 4 in Example 1. The edge between
, = {1} and / = {2, 3, 4} in Fig. 2b has a fundamental cut
⇠,/ = {1} which is the information theoretic min-cut for
B = 1 2 , and C = 3 2 / . In the second step, Lemma 4
holds for the edge between ,1 = {1}, /1 = {2, 3} due to
the previous step. For the edge between ,2 = {2, 3} and
/2 = {4}, the nodes of + represented in ⇠,2/2

is {1, 2, 3}

which is the min-cut for pair B = 2 2 ,2, C = 4 2 /2. It’s not
difficult to see Lemma 4 holds at the last iteration as well.

V. CONCLUSION

In this letter, we showed that the Gomory-Hu algorithm
that efficiently finds a min-cut for every pair of nodes in
a graph can be extended to wireless networks that cannot
be abstracted as graphs. In particular, we showed that the
Gomory-Hu algorithm can find the information-theoretic rate
characterizations such as the capacity or an approximation to
the capacity in a number of wireless network classes.
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APPENDIX A
PROOF OF LEMMA 1

The proof of Lemma 1 is similar to in [21]. Let ⌦ be an
information theoretic minimum E1 � E: cut and without loss
of generality E1 2 ⌦ and E: 8 ⌦. There is some 1  9  : �1

such that E 9 2 ⌦ and E 9+1 8 ⌦. Thus, the set ⌦ is also a
E 9 � E 9+1 cut and _E 9 ,E 9+1

 _E1 ,E: . Since min18:�1 _E8 ,E8+1


_E 9 ,E 9+1
, this concludes the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

For the sequence of nodes on ?D,E , due to Lemma 1, we
have _D,E � _0,1. Moreover, due to Theorem 1, the capacity
of ⇠01 is equal to _0,1 and ⇠01 is also a D � E cut. Thus, we
have _D,E  _0,1. When we combine these two inequalities,
we obtain _D,E = _0,1. Hence, ⇠01 is an information theoretic
minimum D � E cut. This concludes the proof of Lemma 2.

APPENDIX C
PROOF OF LEMMA 3

Let ⌦2 be an information theoretic minimum D � E cut. We
assume ⌦1 * ⌦2 and ⌦1\⌦2 < ; (otherwise, Lemma 3 holds).
Without loss of generality, we suppose B 2 ⌦1 (rename it if
necessary) and B 2 ⌦2 (otherwise, replace ⌦2 with + � ⌦2).
Again by renaming D and E if necessary, we assume D 2 ⌦2.
By the submodularity of mutual information [19], we have
W(⌦1) +W(⌦2) � W(⌦1\⌦2) +W(⌦1[⌦2). Since B 2 ⌦1\⌦2

and C 8 ⌦1\⌦2, ⌦1\⌦2 is an B�C cut. Since ⌦1 is a minimum
B� C cut, we have W(⌦1)  W(⌦1\⌦2). Due to this result and
the submodularity, we have W(⌦1 [ ⌦2)  W(⌦2). Moreover,
D 2 ⌦1 [ ⌦2 and E 8 ⌦1 [ ⌦2, thus ⌦1 [ ⌦2 is a D � E cut.
Since W(⌦1[⌦2)  W(⌦2), ⌦1[⌦2 is an information theoretic
minimum D�E cut that contains ⌦1. This concludes the proof.
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