
BRAMAC: Compute-in-BRAM Architectures for
Multiply-Accumulate on FPGAs

Yuzong Chen and Mohamed S. Abdelfattah

Department of Electrical and Computer Engineering, Cornell University

{yc2367, mohamed}@cornell.edu

Abstract—Deep neural network (DNN) inference using reduced
integer precision has been shown to achieve significant improve-
ments in memory utilization and compute throughput with little
or no accuracy loss compared to full-precision floating-point.
Modern FPGA-based DNN inference relies heavily on the on-
chip block RAM (BRAM) for model storage and the digital signal
processing (DSP) unit for implementing the multiply-accumulate
(MAC) operation, a fundamental DNN primitive. In this paper,
we enhance the existing BRAM to also compute MAC by propos-
ing BRAMAC (Compute-in-BRAM Architectures for Multiply-
Accumulate). BRAMAC supports 2’s complement 2- to 8-bit
MAC in a small dummy BRAM array using a hybrid bit-serial &
bit-parallel data flow. Unlike previous compute-in-BRAM archi-
tectures, BRAMAC allows read/write access to the main BRAM
array while computing in the dummy BRAM array, enabling
both persistent and tiling-based DNN inference. We explore two
BRAMAC variants: BRAMAC-2SA (with 2 synchronous dummy
arrays) and BRAMAC-1DA (with 1 double-pumped dummy
array). BRAMAC-2SA/BRAMAC-1DA can boost the peak MAC
throughput of a large Arria-10 FPGA by 2.6×/2.1×, 2.3×/2.0×,
and 1.9×/1.7× for 2-bit, 4-bit, and 8-bit precisions, respectively
at the cost of 6.8%/3.4% increase in the FPGA core area.
By adding BRAMAC-2SA/BRAMAC-1DA to a state-of-the-art
tiling-based DNN accelerator, an average speedup of 2.05×/1.7×
and 1.33×/1.52× can be achieved for AlexNet and ResNet-
34, respectively across different model precisions. Our code is
available at: https://github.com/abdelfattah-lab/BRAMAC.

I. INTRODUCTION

Deep neural networks (DNNs) have become ubiquitous

in many important fields such as computer vision, speech

recognition, and natural language processing. However, a

well-trained DNN model for complicated tasks has a huge

model size ranging from several hundreds of megabytes

(e.g., AlexNet classifying ImageNet) to several hundreds of

gigabytes (e.g. GPT3 producing human-like text) [1]–[3].

Accordingly, many researchers have been exploring reduced

numerical precisions to represent DNN model weights and ac-

tivations, especially during inference where reduced-precision

arithmetic incurs little or no accuracy loss compared to full-

precision floating-point (FP) [4], [5]. This low-precision prop-

erty allows better utilization of on-chip memory and com-

putation resources for improved performance. For example,

Nvidia GPUs can obtain a 4-8× inference speedup using INT8

precision compared to FP32 precision [6], and an additional

1.6× speedup using INT4 precision compared to INT8 [7].

In the meanwhile, FPGAs are becoming an increasingly

popular platform for DNN acceleration due to their hardware

programmability that enables customized datapaths and nu-

merical bit-widths suitable for low-precision inference [8]–

[11]. FPGA-based DNN accelerators heavily rely on block

random access memory (BRAM) for model storage and digital

signal processing (DSP) units for implementing multiply-

accumulate (MAC)—the fundamental primitive in DNNs.

Nevertheless, most FPGA vendors’ DSP blocks do not natively

support precisions lower than 18 bits, making them sub-

optimal for implementing low-precision MAC [12]–[14]. For

DNNs to better utilize FPGA’s on-chip resources, researchers

have proposed novel DSP architectures for low-precision MAC

[15], [16]. More recently, some works have proposed to add

compute capability inside BRAMs and enable them to perform

various Boolean and arithmetic operations [17], [18]. This

computing in-memory (CIM) approach does not sacrifice the

performance of existing logic resources on FPGA but rather

complements them to further boost the FPGA’s computing

throughput. In addition, CIM can reduce the routing associated

with data movement between memory and logic units, hence

saving energy and area. This is especially true in DNN accel-

erators where model parameters and activations are frequently

transferred between BRAMs and DSPs to perform massive

computations.
In this paper, we further enhance the FPGA’s compatibility

with low-precision DNNs by proposing BRAMAC, an efficient

compute-in-BRAM architecture for multiply-accumulate. Un-

like previous CIM architectures that compute directly on the

main BRAM array [17], [18], BRAMAC first copies the data

from the main BRAM array to an additional, separate memory

array and then computes on this “dummy” array, which is a

true dual-port BRAM with the same number of columns as

the main BRAM array but only 7 rows. This 7-row dummy

array can be accessed fast with low power consumption due to

a much smaller parasitic load on its bitlines compared to the

main BRAM array which typically has >100 physical rows.

Furthermore, the dummy array allows BRAMAC to function

like a normal BRAM even during CIM operations—the main

BRAM array’s read and write ports are available for use by the

application logic. Finally, BRAMAC is optimized for DNN

MAC operations by performing shared-input multiplication

and in-place accumulation. We enumerate our contributions

below:

1) We propose new peripheral circuits that enable

BRAMAC to compute two MACs (or one MAC2),

P = (W1I1 + W2I2), simultaneously using a hybrid

bit-serial & bit-parallel dataflow.

2) We propose two BRAMAC variants with different area-

throughput trade-offs: BRAMAC with 2 synchronous

dummy arrays (2SA) and BRAMAC with one double-

pumped dummy array (1DA).

52

2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/23/$31.00 ©2023 IEEE
DOI 10.1109/FCCM57271.2023.00015

20
23

 IE
EE

 3
1s

t A
nn

ua
l I

nt
er

na
tio

na
l S

ym
po

siu
m

 o
n

Fi
el

d-
Pr

og
ra

m
m

ab
le

 C
us

to
m

 C
om

pu
tin

g
M

ac
hi

ne
s (

FC
CM

) |
 9

79
-8

-3
50

3-
12

05
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FC
CM

57
27

1.
20

23
.0

00
15

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

3) We design an embedded finite-state machine (eFSM) to

free up the main BRAM ports during MAC2 computa-

tion and to allow simultaneous main BRAM access, thus

enabling efficient tiling-based DNN acceleration.

4) We quantify the benefits of employing BRAMAC in

a tiled FPGA DNN accelerator, which achieves up

to 2.04× and 1.52× performance improvements for

AlexNet and ResNet-34, respectively over the baseline

accelerator without BRAMAC.

II. RELATED WORK

In this section. we discuss previous work that targeted

efficient MAC implementation on FPGAs including logic

block, DSP, and BRAM enhancements.

A. Logic Block with Fast Arithmetic

To efficiently implement arithmetic operations in soft logic,

modern FPGAs contain hardened adder circuitry in their logic

blocks (LBs) [19]. These adders range from simple ripple-

carry adders to more complex variants such as carry-bypass

adders and carry-lookahead adders. In order to reduce the

carry propagation delay, dedicated routing is used to propagate

carry signals between different LBs. Inspired by the superior

efficiency of adopting low-precision in DNN, recent research

started to investigate adding more hardened arithmetic in LBs.

For example, Boutros et al. [20] proposed three LB archi-

tectural enhancements to improve the performance of MAC

implemented in soft logic. Their most promising proposal

increases the MAC density by 1.7× while simultaneously

improving the MAC speed.

B. Low-Precision DSP Architectures

Modern commercial FPGAs include DSP blocks that im-

plement efficient multiplication with additional features such

as pre-addition and accumulation commonly used in signal

processing applications [19]. Nevertheless, most FPGA ven-

dors’ DSP multipliers have a minimum precision of 18-bit,

making them less competitive in accelerating low-precision

DNNs. To address this limitation, researchers have proposed

new DSP architectures to support low-precision MAC. Boutros

et al. [15] introduced an enhanced Intel DSP (eDSP) that

supports four 9-bit or eight 4-bit multiplications without using

additional routing ports. Rasoulinezhad et al. [16] presented

a modified Xilinx DSP, called PIR-DSP, that can carry out

six 9-bit, twelve 4-bit, or twenty-four 2-bit multiplications.

Regarding industry DSP trends, the recent Xilinx Versal and

Intel Agilex devices added support for 8-bit multiplication in

their DSP blocks [21], [22]. In addition, Intel’s latest Stratix-

10 NX device added a new DSP (called AI tensor) block that

contains 30 INT8 multipliers and can also be configured as 60

INT4 multipliers [23].

C. Computing In-BRAM

With the emergence of CIM to overcome the von-Neumann

bottleneck [24], some FPGA researchers suggest augmenting

existing BRAM architectures with compute capability. Wang et

al. [17] proposed a compute-capable BRAM (CCB) that uses

bit-serial arithmetic to enable a high degree of computation

In
p

u
t

C
ro

ss
b

a
r

portA_addr

0xfff

mode
(MEM, CIM)

portB_addr

dataA

4:1 MUX

...=

Column
Decoder A

Column
Decoder B

dataB

opA_addr

40b 40b

160b 160b

160b

opB_addr

Embedded

FSM (eFSM)

rd,wr enable

rd,wr addr

mac_precision

mac_precision

main_dout

dummy_dout

40b

40b

O
u

tp
u

t
C

ro
ss

b
a

r

160b

R
o

w
 D

e
co

d
e

r
A

R
o

w
 D

e
co

d
e

r
B

Port A & B
Sense Amps, Write Drivers

Con g Sign-Ext Mux

Dummy BRAM Array
(7x160 Dual-Port SRAM)

Precision-Con gurable Adder

Cell Cell Cell

Cell Cell Cell

Cell Cell Cell

128x160

Main BRAM

I1,I2,ctrl

Fig. 1: Top-level block diagram of BRAMAC modified from Intel’s
M20K BRAM. New circuit blocks are orange-shaded.

parallelism. However, the circuit implementation of CCB re-

quires an additional voltage supply to mitigate the read-disturb

issue associated with activating two word-lines from one

BRAM port, which is challenging to implement in practice.

Arora et al. [18] later designed a new compute-in-BRAM

architecture called CoMeFa to overcome some limitations of

CCB. CoMeFa also relies on bit-serial arithmetic but exploits

the dual-port nature of BRAM to read out two operands from

two ports, respectively instead of activating two word-lines

from one port, thus eliminating the read-disturb issue.

Both CCB and CoMeFa require transposed data layout for

bit-serial computation, i.e., each word occupies one column

and multiple rows instead of one row and multiple columns

in a conventional data layout. However, transposing data

is expensive in both latency and additional hardware cost

(e.g. a swizzle module in CoMeFa) for online execution.

Furthermore, these two BRAM architectures compute directly

on the main BRAM array and receive the CIM instruction

through a BRAM write port—this prevents tiling. As a result,

these two works are limited to accelerating only persistent-

style DNN inference where the model weights are transposed

offline and remain persistent in the on-chip memory. Different

from CCB and CoMeFa, BRAMAC adopts a hybrid bit-serial

& bit-parallel MAC dataflow that eliminates the requirement

of transposed data layout. In addition, BRAMAC doesn’t

compute on the main BRAM array which is typically large and

therefore, slow and power-hungry. Rather, it copies the main

BRAM’s data to a special, separate dummy BRAM array for

computation. This dummy array has only 7 rows and therefore

can be accessed much faster compared to the main BRAM

array. It can also free up the read and write ports of the main

BRAM during CIM to allow tiling-based DNN acceleration.

III. BRAMAC ARCHITECTURE AND DATAFLOW

A. Overall Architecture

Fig. 1 shows the top-level block diagram of BRAMAC

modified from Intel’s M20K BRAM [25] with added circuit

blocks orange-shaded. The routing interface (i.e., input and

53

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

output crossbar) of BRAMAC is the same as that of M20K.

The main BRAM array’s dimension is 128-row × 160-column,

i.e., 20 kb memory capacity. The 4:1 column multiplexing

feature of M20K is preserved. One additional SRAM cell is

added to select one of the two operation modes of BRAMAC:

1) MEM: In this memory mode, the behavior of BRAMAC

is identical to that of a conventional M20K. The input crossbar

sends the address and data to portA and portB. For memory

reads, the two addresses are decoded by the row and column

decoders. The 40-bit BRAM output data from sense amplifiers

is sent to the output crossbar. For memory writes, the data is

sent to the write drivers for updating the main BRAM.

2) CIM: This is the compute mode where BRAMAC can

compute MAC2, P = (W1I1+W2I2), using 2-bit, 4-bit, or 8-

bit operand precision. The two groups of operands, (W1,W2)
and (I1, I2), can be thought of as weights and inputs of

DNN in the remainder of this paper, respectively. At a high

level, BRAMAC computes MAC2 by keeping weights inside

BRAMAC while streaming inputs from outside.

The main BRAM is automatically configured as a simple

dual-port memory with a maximum data width of 40-bit,

and a depth of 512 to maximize the read/write throughput.

A special address (0xfff) is reserved and compared with

the portA address, and if equal, the 40-bit portA data is

treated as a CIM instruction. The CIM instruction contains

two addresses for reading two 40-bit data from the main

BRAM, respectively. Each 40-bit data is a vector that contains

multiple low-precision W1/W2 elements. The configurable

sign-extension mux sign-extends the 40-bit vectors to 160-bit

before copying them to a dummy BRAM array which is a 7-

row × 160-column true dual-port BRAM without the column

multiplexing feature. The CIM instruction also contains the

two inputs, I1 and I2, and several control signals that are sent

to an eFSM to trigger and control the MAC2 operation. The

precision-configurable adder can read two 160-bit vectors from

the dummy array, performs a single-instruction-multiple-data

(SIMD) add, and writes the sum back to the dummy array.

Since the dummy array has the same number of columns as

the main BRAM array, it can read out 40-bit data similar to

the main BRAM. A 2-to-1 mux is added to select the data

between the main BRAM and the dummy array.

B. Hybrid Bit-Serial & Bit-Parallel MAC Dataflow

BRAMAC computes 2’s complement MAC2 by adopting

a hybrid bit-serial & bit-parallel dataflow [26] as described

in Algorithm 1. The for-loop in line 2-11 iterates through two

inputs bit-by-bit. Each iteration involves multiplying the entire

W1 and W2 by a single bit from I1 and I2, respectively,

followed by a bit-parallel addition to obtain the partial sum

(psum) as shown in line 3. If the current input bit is the most-

significant bit (MSB), then psum is subtracted from P (line 5)

since the MSB is negative in 2’s complement representation.

If the current input bit is not the least-significant bit (LSB),

then P also needs to be shifted left by 1-bit after adding psum

(lines 6, 9).

The hybrid bit-serial & bit-parallel MAC2 algorithm is

efficient for computing matrix-vector multiplication (MVM)

where the nth vector element is multiplied by all elements

Algorithm 1: Hybrid Bit-Serial & Bit-Parallel MAC2

Require : All numbers are integers in 2’s complement
Input : W ∈ Z

2, I ∈ Z
2, precision n ≥ 2

Output : P ∈ Z

1 Initialization P = 0
2 for i = (n− 1) downto 0 do
3 psum = W1 ∗ I1[i] +W2 ∗ I2[i]
4 if i == (n− 1) then
5 P = P + inv(psum) + 1
6 P = P << 1
7 else if i �= 0 then
8 P = P + psum
9 P = P << 1

10 else
11 P = P + psum

12 return P

W1,1 W2,1 W3,1 W4,1 W5,1 W6,1 W7,1 W8,1

W1,2 W2,2 W3,2 W4,2 W5,2 W6,2 W7,2 W8,2

I1

I2

Input
Stream

Weight in Dummy Array

W1,1I1
+ W1,2I2

W2,1I1
+ W2,2I2

W3,1I1
+ W3,2I2

. . . W8,1I1
+ W8,2I2

1st

MAC2

W1,1 W1,2 W1,6

W2,1 W2,2 W2,6

W8,1 W8,2 W8,6

X

I1

I2

I6

..
.

..
. ..

.

..
.

...

...

...

..
.

Fig. 2: Example of MAC2 to compute matrix-vector multiplication.

of the nth matrix column. To exploit this input-sharing in

BRAMAC, two inputs are packed into the CIM instruction that

is sent to BRAMAC, then multiplied by all elements of the

corresponding two matrix columns copied to the dummy array,

respectively. Copying a matrix column requires the weight

matrix to be transposed so that matrix columns correspond to

a BRAM row. This can be easily done offline for DNNs. Fig. 2

illustrates an example of using MAC2 to compute MVM where

the matrix dimension is 8×6. For the first MAC2, the first and

second matrix columns are copied from the main BRAM to the

dummy array. Two vector elements I1 and I2 are streamed to

BRAMAC through the CIM instruction and multiplied by all

8 elements of the first and second matrix columns to obtain 8

partial sums. For large matrices, the number of matrix elements

that can be loaded to the dummy array depends on the MAC

precision. Since the two read ports of the main BRAM have

a total data width of 80-bit, they can copy ten 8-bit, twenty

4-bit, or forty 2-bit weights to a dummy array for one MAC2,

providing a parallelism of 10, 20, or 40 MACs, respectively.

C. Circuit Design to Support MAC2

We now describe the new circuit blocks in BRAMAC to

support MAC2. These circuit blocks are shown in Fig. 3,

including a dual-port “dummy” BRAM array (Fig. 3(a)), a

configurable sign-extension mux (Fig. 3(b)), a 160-bit SIMD

adder implemented using 1-bit full adders, and read/write

circuits (Fig. 3(c)).

1) Dual-Port Dummy BRAM Array: The dual-port dummy

BRAM array is 7-row × 160-column without column mul-

tiplexing as shown in Fig. 3(a). Its SRAM cell is identical

to that used in the main BRAM. Each column contains two

sense amplifiers and two write drivers to allow true dual-port

access. Its 1st row is hard-coded to always store 0. The 2nd

and 3rd rows store the W1 and W2 vectors, respectively that

54

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

160 Columns

W1 + W2

W2

W1

160'b0

7
 R

o
w

s

I2[i], I1[i]

Accumulator

P

Inverter
D

e
c
o

d
e

r
L

o
g

ic
 x

2

2
:4

 D
e

m
u

x

Sense Amps &

Write Drivers

b0

b1

b6

b7

b4

b5

b2

b3

Cin

S

A
B

Cout

A

B

0

1

SRight

SelA

WD1

BLA

B

A

B Cin

WenA

M1

S

BLbA

31 30 9 8 7 6 5 4 3 2 1 0

BLA BLbA

SA1

A A

BLB BLbB

SA2

B B

ramA 1'b0ramB
RdA_addr

B

SelB

BLbB

WenB

M2

BLB

32-bit to Dummy Array

(a) (c)

WrA_addr

RdB_addr

WrB_addr

RenA, RenB

(b)

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

8-bit MAC Mode

4-bit MAC Mode

2-bit MAC Mode

Sign-Extensionb7 b6 b5 b4 b3 b2 b1 b0

D0

D1

D3 D2 D1 D0

D0

8-bit from BRAM

1

0

WD2

Fig. 3: BRAMAC circuit blocks for computing MAC2: (a) dual-port
dummy BRAM array, (b) configurable sign-extension mux (here we
are displaying one out of five identical blocks), (c) 1-bit full-adder
with read/write circuits.

are copied from the main BRAM array. The 4th row stores a

(W1 + W2) vector. The 5th Inverter row is used to store the

temporary inverted psum required by the binary subtraction

(line 5 of Algorithm 1). The 6th row stores the MAC2 result

P. The 7th row is a wide Accumulator to accumulate multiple

MAC2 results that form a large dot product.

The read and write operations of the dummy array are

controlled by address and enable signals (blue signals in Fig.

3(a)) sent from the eFSM as described in Section III-A2. The

access to 1st – 4th rows during MAC2 is managed by both the

decoder logic and a 2-to-4 demux. The 2-bit selection signal

of the demux comes from the current two processing bits of

the two inputs I1 and I2, respectively. This allows calculating

psum (line 3 of Algorithm 1) using a look-up table [27]. If

{I2[i], I1[i]} is 2’b00, then the 1st zero row will be read out

and added to the 6th row P. If {I2[i], I1[i]} is 2’b11, then the

4th row (W1 + W2) will be read out and added to P. If {I2[i],

I1[i]} is 2’b01 or 2’b10, then then the 2nd row W1 or the 3rd

row W2 will be read out and added to P.

Since the dummy array copies data from the main BRAM

array for computation, a coherency issue may arise where

the main BRAM is being updated while the dummy array

is still computing using the stale data. We leave it for the

programmer/compiler to explicitly ensure the memory co-

herency similar to the explicit handling of the read-during-

write behavior of Intel’s BRAM [28].

2) Configurable Sign-Extension Mux: Although not re-

flected in Algorithm 1, the W1 and W2 vectors from the main

BRAM need to be sign-extended before being copied to the

dummy array in order to prevent overflow during MAC2. To

support this, two configurable sign-extension muxes are added

between the main BRAM and the dummy array. Each mux has

five identical blocks, one of which is shown in Fig. 3(b). Since

the main BRAM has a data width of 40 bits, it can copy five

8-bit, ten 4-bit, or twenty 2-bit elements to the dummy array

simultaneously. Each of the five identical mux blocks can sign-

extend one 8-bit element to one 32-bit element (blue crosses

in Fig. 3(b)), or two 4-bit elements to two 16-bit elements

(green crosses in Fig. 3(b)), or four 2-bit elements to four 8-bit

elements (red crosses in Fig. 3(b)). Moreover, since a 2/4/8-bit

MAC2 only requires a maximum bit-width of 5/9/17 bits to

store the result, the proposed sign-extension mux can provide

a higher bit-width required by MAC2. This allows multiple

sequential MAC2 results to be accumulated by adding the 6th

row (that stores the MAC2 result P) and the 7th row (that

stores the Accumulator) of the dummy array.
3) Bit-Parallel SIMD Adder with Read/Write Circuits:

The 160-bit SIMD adder in BRAMAC is designed using the

conventional 1-bit full adder as shown in Fig. 3(c). It supports

bit-parallel SIMD addition by configuring itself to twenty 8-

bit adders, ten 16-bit adders, and five 32-bit adders for 2-

bit, 4-bit, and 8-bit MAC2, respectively, giving a worst-case

delay equal to 32-bit addition. The two operands A and B

of the SIMD adder come from two sense amplifiers, SA1 and

SA2 that compare the voltage differential of two bit-line pairs,

(BLA, BLbA) and (BLB, BLbB). To support the addition

followed by 1-bit shift-left operation (required in lines 6 and

9 of Algorithm 1), a write-back mux M1 before the write

driver WD1 is used to select either sum S from the current

full adder or sum from the right full adder SRight. M1 can

also select ramA to copy the first data W1 from the main

BRAM. Similarly, a write-back mux M2 before the write

driver WD2 is used to select between three signals: B-bar

to perform inverting, ramB to copy the second data W2 from

the main BRAM, and 1’b0 to initialize either P (line 1) or the

Accumulator. Both M1 and M2 are controlled by the eFSM.

IV. BRAMAC VARIANTS

A. BRAMAC with Two Synchronous Dummy Arrays (2SA)

This variant, called BRAMAC-2SA, has two synchronous

dummy arrays that share the same clock domain as the main

BRAM. In this architecture, each dummy array is fed by one

port of the main BRAM during weight copy. Since BRAMAC

intrinsically supports multiplying the same input with many

weights as discussed in Section III-B, this variant adopts an

input-sharing approach to balance the data reuse. Specifically,

in each MAC2 iteration, the two dummy arrays copy the same

weights but process different inputs. The first dummy array

receives two inputs I1, I2 and calculates W1I1 +W2I2, while

the second dummy array receives another two inputs I3, I4
and calculates W1I3 +W2I4.

An example 4-bit MAC2 operation for one dummy array

of BRAMAC-2SA is illustrated in Fig. 4. Note that we are

displaying 2 out of 10 lanes with 10-bit sign-extension due to

space limitation (instead of 16-bit sign-extension as described

in Section III-C2). In Cycle 1 and Cycle 2, W1 and W2 are

sign-extended and copied to the dummy array. During these

two cycles, the two inputs for each dummy array are also sent

to BRAMAC-2SA through the CIM instruction and latched for

further processing. In Cycle 3, W1 and W2 are read out and

added. The sum is written back to the 4th row to store (W1 +

W2). Simultaneously, the 6th row P can also be initialized to

zero. In Cycle 4, the MSB of two inputs is streamed to the

dummy array. The selected row W1 is inverted to prepare for

55

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

0000000000 0000000000

x x

0 01011 0100

1111111011

Sign-Ext Mux

0000000100

Cycle 1: Copy W1

1111111011 0000000100

0000000111 1111111101

Cycle 3: (W1 + W2). Initialize P

0000000010 0000000001

0

W1

W2

W1+W2

Inverter

P

Cycle 4: Stream {I2[3], I1[3]} = 01.

Inverting.

0

W1

W2

W1+W2

Inverter

P

Cycle 5: (Inverter + P + 1).

Shift-left 1-bit.

0111 1101

Sign-Ext Mux

Cycle 2: Copy W2

0000000000 0000000000

0000000100 1111111011

0000000010 0000000001

0000000111 1111111101

1111111011 0000000100

0 0

0000001010 1111111000

0000000100 1111111011

0000000010 0000000001

0000000111 1111111101

1111111011 0000000100

0 0

Cycle 6: Stream {I2[2], I1[2]} = 00.

(0 + P) & shift-left 1-bit.

0000010100 1111110000

0000000100 1111111011

0000000010 0000000001

0000000111 1111111101

1111111011 0000000100

0 0

Cycle 7: Stream {I2[1], I1[1]} = 10.

(W2 + P) & shift-left 1-bit.

0

W1

W2

W1+W2

Inverter

P 0000110110 1111011010

0000000100 1111111011

0000000010 0000000001

0000000111 1111111101

1111111011 0000000100

0 0

Cycle 8: Stream {I2[0], I1[0]} = 11.

(W1 + W2 + P). No shift.

0000111000 1111011011

0000000100 1111111011

0000000010 0000000001

0000000111 1111111101

1111111011 0000000100

0 0

Cycle 9: Add P to Accumulator.

0000111000 1111011011

0000000100 1111111011

0000000010 0000000001

0000000111 1111111101

1111111011 0000000100

0 0

Accumulator Accumulator

0000000111 1111111101

1011 0111

0100 1101
X

1001

0011
=

-5 +7

+4 -3
X

-7

+3X
I1
I2

W1

= =
+56

-37
w11 w12

w21 w22

W2

+56 -37
+ +

Fig. 4: Example operation of one dummy array in BRAMAC-2SA
for 4-bit MAC2. We are displaying 2 out of 10 lanes with 10-bit sign
extension instead of 16 bits (due to space limitation).

the binary subtraction. In Cycle 5, Inverter is added to P. The

sum is shifted left by 1-bit and written back to P. The input

streaming continues to Cycle 8 where the LSB of two inputs

is processed and the correct MAC2 result P is obtained. In

Cycle 9, P is added to the 7th Accumulator row. Then it can

be initialized for the subsequent MAC2.
The above example indicates that BRAMAC-2SA can com-

plete a 4-bit MAC2 using 9 cycles. However, during the write-

back phase of the last two cycles, i.e., Cycle 8 and Cycle 9,

the current two weights W1 and W2 are no longer needed in

the dummy array since the current MAC2 result P is already

obtained at the bit-parallel adder’s output. As a result, these

two cycles can also be used to copy the next two weights

W3 and W4, respectively as illustrated in Fig. 5(a). Therefore,

the 4-bit MAC2 in BRAMAC-2SA only requires 7 cycles to

complete. This pipelining can also be applied to 2-bit and 8-

bit MAC2. The only difference between 2-bit, 4-bit, and 8-bit

MAC2 is the number of cycles spent for processing every input

bit as described in line 2-11 of Algorithm 1. Thus, 2-bit and

8-bit MAC2 can take 5 and 11 cycles to complete, respectively.

B. BRAMAC with One Double-Pumped Dummy Array (1DA)

This variant, called BRAMAC-1DA, has only one dummy

array to reduce the area overhead. Using one dummy array

degrades the MAC throughput by 2× compared to BRAMAC-

2SA, however, we propose to double-pump the dummy array

with a 2× main BRAM clock frequency. Memory multi-

pumping is a commonly used technique in FPGA design to

improve the system throughput [29], [30]. The double-pumped

dummy array doesn’t add any additional area overhead com-

pared to a synchronous dummy array. Rather, it only requires

a separate clock routing during compilation.
Because the main BRAM and the dummy array only interact

during weight copy, synchronization between them can be

(a) BRAMAC-2SA Pipeline for 4-bit MAC2

Cycle # 1 2 3 4 5 - 7 8 9 10

1st MAC2

2nd MAC2

...

W3+W4

Init P

Rd W1

Copy
Rd W2

Copy

W1+W2

Init P
Invert

Add P

Shi
Add P Accum

Cycle # 1 2 3 4

1st MAC2

2nd MAC2

...

Invert
Add P

Shi

Add P

Shi

Overlap

Add P

Shi

Invert
Add P

Shi
Add P Accum

11 12 - 14 15 16

5 6

W3,W4

Copy

W3+W4

Init P

Add P Accum
W1,W2

Copy

W1+W2

Init P

Read W3, W4

from BRAM

Rd W1, W2

from BRAM

(b) BRAMAC-1DA Pipeline for 4-bit MAC2

Overlap

Rd W3

Copy

Rd W4

Copy

Main BRAM Busy

Main BRAM Idle

Fig. 5: Pipeline diagram of 4-bit MAC2 in (a) BRAMAC-2SA and
(b) BRAMAC-1DA.

(a) CIM Instruc on Format for BRAMAC-2SA

0 - 1 2 3 4 5 7 8 - 14 15 - 16

prec inType reset start copy done

17 - 24 25 - 32

bramRow bramCol input_1 input_2

0 - 1 2 3 4 5 6 7 - 13

prec inType reset start copy done bramRow_1

14 - 20

bramRow_2

21 - 22

bramCol

23 - 30 31 - 38

input_1 input_2

(b) CIM Instruc on Format for BRAMAC-1DA

w1_w2

6

Fig. 6: CIM instruction format for (a) BRAMAC-2SA and (b)
BRAMAC-1DA.

easily handled. Fig. 5(b) shows the pipeline diagram of 4-

bit MAC2 for BRAMAC-1DA. In Cycle 1, the main BRAM

reads out two weights W1 and W2. In the first half of Cycle

2, the dummy array copies W1 and W2 using its two write

ports. Then the dummy array can compute the MAC2 using

the same operation flow as BRAMAC-2SA, except that every

cycle in BRAMAC-2SA is now half a cycle in BRAMAC-

1DA. Similar to the pipelining optimization for BRAMAC-

2SA, the main BRAM can start to read the next two weights

W3 and W4 in Cycle 5 while the dummy array is computing.

As a result, the 4-bit MAC2 can be completed using 4 cycles.

This pipelining can also be applied to 2-bit and 8-bit MAC2.

Hence, 2-bit and 8-bit MAC2 can take 3 and 6 cycles to

complete, respectively.

C. Embedded FSM to Free Up BRAM Ports

Since the dummy array’s behavior is deterministic for

computing MAC2, we propose to control it using an eFSM.

This eFSM receives a CIM instruction to trigger the MAC2

computation and control the dummy array’s read/write access.

The CIM instruction is only required when the main BRAM

needs to send data to the dummy array (indicated by the red

boxes in Fig. 5). As a result, the main BRAM is busy for

2 cycles in BRAMAC-2SA and 1 cycle in BRAMAC-1DA.

When the main BRAM is idle, it can perform normal read

operations to feed LBs/DSPs or write operations to load the

next tile of weights from off-chip DRAM, allowing tiling-

based DNN acceleration. This is different from CCB and

CoMeFa whose BRAM ports are always busy during CIM.

Fig. 6(a) and (b) show the proposed CIM instruction format

for BRAMAC-2SA and BRAMAC-1DA, respectively. For

BRAMAC-2SA, bramRow and bramCol are combined to

form one BRAM address during each copy operation. On

the other hand, BRAMAC-1DA needs to receive two BRAM

56

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Resource Counts and Area Ratio of the Baseline

Arria 10 GX900 FPGA.

Resource Count Area Ratio

Logic Blocks (LBs) 33920 70.4%

DSP Units 1518 9.5%

BRAMs (M20K) 33920 20.1%

addresses at the same time. This is achieved by using two

BRAM row addresses bramRow1 and bramRow2 with a

shared column address bramCol.

The two BRAMAC variants share some common control

signals. The 2-bit prec specifies one of the three supported

MAC2 precisions. The inType is used to indicate whether

the two inputs are signed or unsigned. If the inputs are

unsigned, then the inverting cycle can be skipped to improve

performance. The reset resets the dummy array to the initial

state and writes zero to its accumulator. When the start

is enabled, BRAMAC is triggered to perform MAC2. The

copy tells BRAMAC to copy the data read from the main

BRAM to the dummy array, and an additional w1 w2 signal

is needed for BRAMAC-2SA to indicate the currently copied

data is W1 or W2. These two signals also allow the efficient

pipelining optimization in Fig. 5 where the weight copy of

the next MAC2 can be overlapped with computing the current

MAC2. The done indicates whether to read out the dummy

array’s accumulator. When it’s enabled, the bramCol is used

to select 40-bit data from the dummy array’s accumulator row

every cycle. As a result, between every two dot products, the

main BRAM needs to be busy for 8 and 4 cycles to read

out the accumulator in BRAMAC-2SA and BRAMAC-1DA,

respectively. However, as the dummy array’s accumulator has a

size of 8/16/32-bit for 2/4/8-bit MAC precisions, it can process

a maximum dot product size of 16/256/2048 before being read

out to amortize this cost.

V. CIRCUIT-LEVEL EVALUATION

A. Tools and Baseline FPGA

We use COFFE [31], an automatic FPGA transistor sizing

tool, to model and optimize the area and delay of all BRAMAC

components except for the eFSM which is implemented in

SystemVerilog to verify its functionality. We use Synopsys

Design Compiler with TSMC 28-nm technology to synthesize

and get the area of the eFSM, which are 137 µm2 and 81 µm2

for BRAMAC-2SA and BRAMAC-1DA, respectively after

scaling to 22-nm. We get the area of an M20K block from

COFFE by interpolating between 16 kb and 32 kb BRAMs.

For delay estimation, COFFE runs Hspice simulations using

the 22 nm Predictive Technology Model [32].

For the baseline FPGA in the remainder of this paper, we

use an Arria-10 GX900 device [33] at the fastest speed grade

(10AX090H1F34E1SG) whose resource information is shown

in Table I. The Arria-10 device family is fabricated using 20-

nm technology similar to COFFE’s simulation setup. The area

ratio for each resource type is estimated based on the area

model in [34]. The proposed BRAMAC architecture enhances

the baseline FPGA by replacing all M20K blocks with either

BRAMAC-2SA or BRAMAC-1DA.

Fig. 7: Comparison between RCA, CBA, and CLA: (a) Delays vs.
precision. (b) Area and power at 32-bit precision.

B. Design Choice for Adder

As the SIMD adder in BRAMAC has a worst-case delay of

32-bit addition during 8-bit MAC2, a ripple-carry adder (RCA)

can significantly increase the critical path delay of the dummy

array and become the frequency bottleneck of BRAMAC.

Hence, we also explore two variants of fast adders [35]:

Carry Lookahead Adder (CLA) with a 4-bit carry lookahead

generator using mirror implementation, and Carry Bypass

Adder (CBA) with 4-bit Manchester carry chain using dynamic

logic. We use COFFE to automatically size the carry-out

generator, the carry lookahead generator, and the Manchester

carry chain to obtain the best area-delay trade-off for RCA,

CLA, and CBA, respectively.

Fig. 7 illustrates the performance, area, and power of three

different adders RCA, CBA, and CLA based on COFFE

simulations. As shown in Fig. 7(a), the performance gap

between RCA and two other fast adders CBA/CLA becomes

larger as the adder precision increases. At the highest adder

precision, i.e., 32-bit accumulation during 8-bit MAC, RCA

has a delay of 393.6 ps, which is 2.8× slower than CBA (139.6

ps) and 2.5× slower than CLA (157.6 ps). As illustrated in

Fig. 7(b), all three adders have similar areas, but CBA has

the highest power consumption of 50.2 µW, which is 4.44×
and 2.86× higher than RCA (11.3 µW) and CLA (17.6 µW),

respectively. This is because that CBA employs the dynamic

Manchester carry chain which is faster but more power-hungry

than static CMOS logic. Overall, CLA has the best trade-

off between delay, area, and power. Hence, we adopt CLA

in BRAMAC for the remainder of our evaluation.

C. BRAMAC Area and Frequency

Fig. 8(a) illustrates the area breakdown of BRAMAC’s

dummy array. The total area of a dummy array is 975.6 µm2,

which represents an area increase of 16.9% compared to the

baseline M20K. Since M20K constitutes 20.1% area of the

baseline FPGA, this area overhead is equivalent to only 3.4%

increase in the FPGA core area. Note that we ignore the area

overhead of eFSM in our later evaluation because COFFE’s

area model doesn’t include any BRAM control logic and

some M20K components such as error correction circuits [25].

Given that the eFSMs of BRAMAC-2SA/BRAMAC-1DA are

equivalent to only 1.4%/2.4% of the baseline M20K area, it’s

expected that the area overhead of BRAMAC doesn’t change

compared to the baseline M20K when a more accurate area

model is adopted.

57

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Key Features of BRAMAC and Prior State-of-the-art MAC Architectures for FPGA

Architecture eDSP
[15]

PIR-DSP
[16]

CCB
[17]

CoMeFa-D
[18]

CoMeFa-A
[18]

BRAMAC-
2SA

BRAMAC-
1DA

Modified FPGA Block DSP DSP BRAM BRAM BRAM BRAM BRAM

Supported MAC Precision (-bit) 4, 8 2, 4, 8 Arbitrary Arbitrary Arbitrary 2, 4, 8 2, 4, 8

Area Overhead (Block) 12% 28% 16.8% 25.4% 8.1% 33.8% 16.9%

Area Overhead (Core) 1.1% 2.7% 3.4% 5.1% 1.6% 6.8% 3.4%

Clock Period Overhead
over the Baseline FPGA Block

0% 30% 60% 25% 150% 10% 46%

of MACs in Parallel /

MAC Latency (Cycles) 1

2-bit 8 / 1 24 / 1 160 / 16 160 / 16 160 / 16 80 / 5 40 / 3

4-bit 8 / 1 12 / 1 160 / 42 160 / 42 160 / 42 40 / 7 20 / 4

8-bit 4 / 1 6 / 1 160 / 113 160 / 113 160 / 113 20 / 11 10 / 6

Design Complexity Very Low Very Low High Low Medium Low Medium

1 For DSP architectures, the accumulator size for each MAC precision is the same as that in the baseline DSP.
For BRAM architectures, the accumulator sizes for 2-bit, 4-bit, and 8-bit MACs are 8-bit, 16-bit, and 27-bit, respectively. The MAC latency
is reported based on unsigned multiplication for CCB and CoMeFa, and 2’s complement multiplication for BRAMAC.

Fig. 8: (a) Area and (b) delay breakdown of the dummy array.

Fig. 8(b) shows the critical path delay breakdown of

BRAMAC’s dummy array. With only 7 rows, the dummy

array’s bitline parasitic load is significantly reduced compared

to the main BRAM. As a result, it can precharge and discharge

much faster, giving less than 1 ns critical path delay. This

suggests that the dummy array itself is able to run at a

maximum frequency (Fmax) of 1 GHz independent from M20K

whose Fmax is 730 MHz in Arria-10 [28]. For BRAMAC-1DA,

this limits the Fmax of M20K to 500 MHz in CIM mode. While

this is less than the typical BRAM Fmax, realistic FPGA delays

are usually constrained by soft logic and routing, and it is

unlikely that a design on Arria-10 will achieve a frequency

higher than 500 MHz. For BRAMAC-2SA, the critical path

occurs during the weight copy where the write-back phase

can only start after reading out data from the main BRAM.

Hence, the Fmax of BRAMAC-2SA is dependent on M20K.

Specifically, the dummy array’s write driver has a delay of

165 ps, leading to a 1.1× lower Fmax compared to the baseline

M20K.

D. Comparison with Other MAC Architectures on FPGA

We compare BRAMAC with other state-of-the-art architec-

tures for MAC on FPGA, including eDSP [15], PIR-DSP [16],

CCB [17], and CoMeFa [18]. All architectures use the same

baseline Arria-10 FPGA as described in Section V-A. Each

architecture replaces the corresponding FPGA block in the

baseline with its proposed new block. The key features for

each studied architecture are summarized in Table II.
Due to bit-serial arithmetic, CCB and CoMeFa have the

highest flexibility in the supported precision. However, their

proposed bit-serial algorithms for fixed-point multiplication

only work for unsigned numbers, while eDSP, PIR-DSP,

and BRAMAC can support 2’s complement MAC. Although

BRAMAC-2SA has the highest area overhead, it achieves

the highest frequency compared to other BRAM architec-

tures. The two DSP architectures have the lowest design

complexity as they can be implemented in digital CAD flow,

while BRAM design typically involves analog components and

manual layout effort [31]. Among all BRAM architectures,

CCB has the highest design complexity as it needs an extra

voltage supply. CoMeFa-A and BRAMAC-1DA have medium

design complexity since they require novel timing design

techniques—sense amplifier cycling and a double-pumped

clock, respectively.

VI. APPLICATION-LEVEL EVALUATION

A. Peak MAC Throughput Comparison

We compare the peak MAC throughput of the baseline

FPGA with those of enhanced FPGAs that employ BRAMAC

and other MAC architectures studied in Section V-D. We

consider three MAC precisions: 2-bit multiply (with an 8-bit

accumulator), 4-bit multiply (with a 16-bit accumulator), and

8-bit multiply (with a 27-bit accumulator). The peak MAC

throughput of each resource type is determined as follows:

(1) LB: We synthesize, place, and route one MAC unit

using only LBs in Quartus to obtain its Fmax and resource

utilization. We then follow the same methodology as [17],

[18] to calculate the total MAC throughput by optimistically

assuming that all LBs can be used at the same Fmax.

(2) DSP: The Arria-10 DSP has two 18×19 multipliers, each

can implement one 8-bit MAC, two 4-bit MACs, or four 2-bit

MACs using DSP packing described in [36]. We run Quartus

to generate a DSP in m18x18 sumof2 mode and find its Fmax

to be 549 MHz. We use the same Fmax for eDSP but a 1.3×
lower Fmax for PIR-DSP based on its reported Fmax.

(3) BRAM: We use Quartus to generate the baseline M20K

in simple dual-port mode and find its Fmax to be 645

MHz. BRAMAC-2SA and BRAMAC-1DA would run at 586

MHz (1.1× lower) and 500 MHz, respectively, while CCB,

CoMeFa-D, and CoMeFa-A would run 1.6×, 1.25×, and 2.5×
slower, respectively based on their reported Fmax degradation.

Fig. 9 shows the peak MAC throughput breakdown in

TeraMACs/sec for different architectures and MAC preci-

sions. Compared to the baseline Arria-10 device, BRAMAC-

2SA/BRAMAC-1DA can improve the peak throughput by

58

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Peak MAC throughput of different architectures for various MAC precisions: (a) 2-bit, (b) 4-bit, (c) 8-bit.

Fig. 10: Comparison of BRAM utilization efficiency for DNN model
storage at different precisions.

2.6×/2.1×, 2.3×/2.0×, and 1.9×/1.7× for 2-bit, 4-bit, and 8-

bit MAC, respectively. Although CCB and CoMeFa can com-

pute 160 MACs in parallel, they suffer from long-latency bit-

serial arithmetic, leading to lower throughput than BRAMAC.

Compared to low-precision DSP architectures, BRAMAC-2SA

can deliver higher MAC throughput across all precisions, while

BRAMAC-1DA’s throughput is only slightly lower than PIR-

DSP for 8-bit MAC. Note that BRAMAC is an enhanced

BRAM architecture, therefore doesn’t preclude the use of

eDSP or PIR-DSP on the same FPGA. The combination of

BRAMAC and eDSP/PIR-DSP can further boost an FPGA’s

MAC throughput.

B. BRAM Utilization Efficiency for DNN Model Storage

Since BRAMAC computes MAC in a separate dummy array

that is fully decoupled from the main BRAM, it can store

a DNN model efficiently. Fig. 10 compares the BRAM uti-

lization efficiency between BRAMAC, CCB, and CoMeFa for

storing DNN models with different precisions from 2- to 8-bit.

Here, utilization efficiency is defined as the effective capacity

ratio of a BRAM that can be used to store weight. A higher

utilization efficiency can store the DNN model using fewer

BRAM blocks, saving both area and power consumption. For

CCB, we examine two variants, CCB-Pack-2 and CCB-Pack-

4, that map 2 and 4 sequential bit-serial MACs to the same

BRAM column, respectively.
BRAMAC can achieve 100% utilization for 2-bit, 4-bit, and

8-bit precisions. Other precisions can be stored in BRAMAC

with lower efficiency by sign-extending them to 4-bit or 8-

bit. Despite this, BRAMAC still achieves the highest average

BRAM utilization efficiency which is 1.3× and 1.1× better

compared to CCB and CoMeFa, respectively. This is because

CCB and CoMeFa use extra BRAM space to store temporary

products and partial sums, while BRAMAC stores temporary

results only in the dummy array. For CCB, a higher packing

factor computes more sequential MACs before a slow in-

memory reduction, giving a higher performance at the cost of

more BRAM usage to save a copy of the input vector. On the

other hand, CoMeFa offers a one-operand-outside-RAM mode

that streams the input vector, avoiding a copy to BRAM which

improves utilization efficiency when compared to CCB.

C. Performance Improvement over CCB and CoMeFa

We use general matrix-vector multiplication (GEMV) to

benchmark and compare the application performance of

BRAMAC, CCB, and CoMeFa. We choose BRAMAC-1DA

for this experiment because it has a similar BRAM area and

frequency overhead as CCB/CoMeFa. We assume that there is

only one BRAM block available to perform the computation.

This approach captures the performance of an architecture

normalized to BRAM utilization. We consider both persistent

and non-persistent (tiling-based) computations that exclude

and include the cycles needed for loading the matrix data to

the single BRAM block, respectively. Since the data mapping

and computation flow of the three studied architectures are

deterministic, we use a detailed analytical model to map a

given GEMV workload to each architecture and count the

number of cycles required. In addition to the latency of MAC,

our analytical model accounts for latency associated with

copying the input vector and reading out the accumulation

results in each architecture.

Fig. 11 illustrates the speedup of BRAMAC-1DA over

CCB and CoMeFa when performing GEMV with different

matrix sizes, precisions (2-bit, 4-bit, 8-bit), and computation

styles (persistent and non-persistent). Overall, BRAMAC-

1DA achieves up to 3.3×/2.8×/2.4× (and 4.1×/3.4×/2.8×)

speedups for 2/4/8-bit persistent (and non-persistent) GEMV.

At the same precision, BRAMAC-1DA achieves higher

speedup for non-persistent computation thanks to its eFSM

that allows loading the next matrix tile while computing on

the current tile. Regarding different precisions, the speedup

of BRAMAC-1DA decreases as the precision increases. This

is because a higher precision directly reduces the compu-

tation parallelism of BRAMAC-1DA by 2×, and it takes

more cycles to process more input bits. On the other hand,

CCB/CoMeFa only sacrifice latency but not parallelism at

higher precision. Nevertheless, BRAMAC-1DA still achieves

better performance for all cases due to its overall MAC

throughput improvement over CCB/CoMeFa as discussed in

59

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Speedup (based on cycles) of BRAMAC-1DA over
CCB/CoMeFa for GEMV with different matrix sizes, precisions, and
computation styles.

Section VI-A. Note that CCB/CoMeFa’s bit-serial algorithms

for fixed-point multiplication only support unsigned numbers.

It’s expected that they require much higher latency when

supporting 2’s complement MAC.
Along the matrix row size, the speedup of BRAMAC-

1DA is mainly affected by the vectorization efficiency, and

this effect is more pronounced at a lower precision. For

example, consider the 2-bit persistent case in Fig. 11(a), where

BRAMAC-1DA can compute 20 outputs simultaneously. If the

matrix row size is 64, i.e., the first column in Fig. 11(a), then

at least 4 iterations are required to compute an output vector

of size 64, with only 64/80 = 80% useful computation in

BRAMAC-1DA. On the other hand, if the matrix row size

is 160, i.e., the fourth column in Fig. 11(a), then the output

vector divides perfectly into 8 iterations at 100% efficiency,

thus giving better speedup as indicated by the darker color of

the fourth column compared to the first column. Similar trends

exist in 4-bit and 8-bit cases but are less pronounced.
Along the matrix column size, the speedup of BRAMAC-

1DA is determined by not only the vectorization efficiency

but also the achievable packing factor of CCB/CoMeFa. For

example, consider the 8-bit non-persistent case in Fig. 11(f). If

the matrix column size is 480, i.e., the top row in Fig. 11(f),

then CCB/CoMeFa can perform 3 sequential MACs on the

same BRAM column before a slow in-memory reduction to

amortize the reduction’s latency cost. On the other hand, if the

matrix column size is 128, i.e., the bottom row in Fig. 11(f),

then a reduction is necessary for CCB/CoMeFa after every bit-

serial MAC, resulting in much longer latency. On the contrary,

BRAMAC’s dummy array doesn’t require a special reduction

operation. Rather, it performs in-place accumulation at the end

of every MAC2.

D. Case Study: Employ BRAMAC to Intel’s DLA

To demonstrate the feasibility of BRAMAC for tiling-based

DNN inference with non-persistent weight storage, we employ

Fig. 12: DLA’s (a) architecture and (b) computation parallelism across
different axes for CNNs. (c) The architecture of DLA-BRAMAC
(with one PE shown).

BRAMAC to Intel’s Deep Learning Accelerator (DLA) [9],

[10] and develop a cycle-accurate simulator to model DLA

in both the baseline FPGA and the enhanced FPGA with

BRAMAC (which we call DLA-BRAMAC). The original

DLA is designed to accelerate convolutional neural networks

(CNNs) as shown in Fig. 12(a). It has a processing element

(PE) array organized in a 1D systolic structure, a stream buffer

to store input and output features, and a filter cache to store

weights. It can be parameterized by Cvec, Qvec, and Kvec

which represent the computation parallelism per cycle in input

depth, output width dimension, and output depth, respectively

as illustrated in Fig. 12(b). For DLA-BRAMAC, the stream

buffer can send different input features to the PE array and the

BRAMAC-based filter cache simultaneously as shown in Fig.

12(c). In this way, BRAMAC can complement the PE array

to calculate different outputs along the Qvec dimension.

Similar to the approach used in the original DLA [9], we

conduct design space exploration to find the optimal DLA

and DLA-BRAMAC configurations (i.e., Cvec, Qvec, and

Kvec) for two popular CNN models: Alexnet and ResNet-

34. Our analytical model is set to optimize the target function

perf ∗ (perf/area) to balance performance and area cost.

It assumes that all multipliers are implemented using DSPs,

and each DSP can pack one 8-bit, two 4-bit, or four 2-bit

multiplications using the DSP-packing technique in [36]. For

area modeling, we use the DLA area model from [9] to

estimate the number of DSPs and BRAMs required for a

specific configuration. We ignore the number of ALMs in our

area modeling since they are mainly used to implement non-

compute-intensive operations and are expected to be similar in

DLA and DLA-BRAMAC. To evaluate the performance, our

cycle-accurate simulator accounts for the latency associated

with the MAC2 computation and the dummy array’s accu-

mulator readout. Note that BRAMAC’s eFSM can effectively

pipeline adjacent MAC2 operations to hide the latency of the

weight copy, except for the first MAC2 of every CNN layer

60

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Optimal Configurations of DLA and DLA-BRAMAC for AlexNet and ResNet-34

DLA DLA-BRAMAC-2SA DLA-BRAMAC-1DA
Model

Accelerator
Config1 DSPs BRAMs Config2 DSPs BRAMs Config2 DSPs BRAMs

AlexNet

2-bit (2, 16, 96) 1152 352 (1+2, 24, 140) 1260 1128 (2+2, 16, 100) 1200 816

4-bit (3, 16, 32) 1152 544 (1+2, 16, 100) 1200 1600 (1+1, 12, 130) 1170 1080

8-bit (3, 12, 24) 1296 868 (2+2, 10, 50) 1500 1740 (1+1, 8, 100) 1200 1664

ResNet-34

2-bit (4, 12, 72) 1296 792 (1+2, 16, 140) 840 832 (2+2, 22, 80) 1320 924

4-bit (3, 8, 64) 1152 736 (2+2, 12, 70) 1260 972 (1+1, 16, 90) 1080 1056

8-bit (3, 4, 64) 1152 1452 (2+2, 6, 65) 1170 1530 (1+1, 12, 65) 1170 1788

1 The configuration value for DLA has the form of (Qvec, Cvec, Kvec).
2 The configuration value for DLA-BRAMAC has the form of (Qvec1+Qvec2, Cvec, Kvec), where Qvec1 and Qvec2 are the numbers of

output features computed by DSP and BRAMAC, respectively.

Fig. 13: Comparison between DLA and DLA-BRAMAC for accelerating AlexNet and ResNet at different precisions: a) performance, (b)
utilized DSP-plus-BRAM area, (c) performance per area.

where an additional 2 cycles are required to start the initial

weight copy. However, this overhead is negligible given that

each CNN layer takes thousands of cycles to complete.

Table III summarizes the optimal configuration for each

(accelerator, model, precision) case. The performance and

utilized DSP-plus-BRAM area of DLA-BRAMAC, normalized

to those of DLA, are shown in Fig. 13. The utilized DSP-

plus-BRAM area is calculated based on the area overhead of

BRAMAC and the area model from [34]. On average, com-

pared to the baseline DLA for AlexNet, employing BRAMAC-

2SA/BRAMAC-1DA achieves 2.05×/1.7× speedup at the cost

of 2.01×/1.52× DSP-plus-BRAM area, giving 1.01×/1.12×
performance gains per utilized area. For ResNet-34, employing

BRAMAC-2SA/BRAMAC-1DA achieves a lower speedup of

1.33×/1.52× on average at the cost of 1.2×/1.22× DSP-plus-

BRAM area, which corresponds to 1.11×/1.25× performance

gains per utilized area. The larger DSP-plus-BRAM area is

mainly attributed to more BRAM usage for computation and

BRAMAC’s area overhead.

In general, BRAMAC-2SA and BRAMAC-1DA achieve

higher speedup for AlexNet compared to ResNet-34 as shown

in Fig. 13(a). This is because that BRAMAC is better at

supporting a higher Kvec that allows the same input fea-

ture to be multiplied by many kernels. The early and most

compute-intensive residual blocks of ResNet-34 only have

an output channel depth of 64, while the first convolution

layer of AlexNet has an output channel depth of 96. The

latter gives more freedom for DLA-BRAMAC to optimize its

configuration with high vectorization efficiency. However, a

higher speedup for AlexNet comes with a larger utilized area

as illustrated in Fig. 13(b). Comparing the two BRAMAC

variants, BRAMAC-2SA has a lower performance gain per

utilized area for all model-precision combinations as observed

from Fig. 13(c). Although the MAC throughput of BRAMAC-

2SA is slightly improved over BRAMAC-1DA, it has 2×
BRAM area overhead compared to BRAMAC-1DA. While our

results more than justify the area overhead of BRAMAC, we

expect higher gains for a DNN accelerator that is: (1) purpose-

built around the capabilities of BRAMAC, and (2) used to

accelerate DNNs with more matrix multiplications such as

transformers [37]—we will work on both aspects in the future.

VII. CONCLUSION

This paper proposes BRAMAC, a compute-in-BRAM ar-

chitecture for MAC on FPGAs. To the best of our knowl-

edge, BRAMAC is the first compute-in-BRAM architecture

that: (1) adopts a hybrid bit-serial & bit-parallel dataflow

to support variable-precision MAC using 2’s complement

representation, (2) computes in a separate dummy array

which improves the main BRAM array’s utilization efficiency,

(3) employs an embedded finite-state machine to free up

the main BRAM ports during in-memory computation. The

two proposed variants, BRAMAC-2SA/BRAMAC-1DA, boost

the peak MAC throughput of a large Arria 10 FPGA by

2.6×/2.1×, 2.3×/2.0×, and 1.9×/1.7× for 2-bit, 4-bit, and

8-bit precisions, respectively at the cost of 6.8%/3.4% in-

crease in FPGA core area. BRAMAC also improves the

BRAM utilization efficiency by 1.3× and 1.1× compared

to two recent compute-in-BRAM architectures, CCB and

CoMeFa, respectively while significantly outperforming both

architectures on matrix-vector multiplications. Combining

BRAMAC-2SA/BRAMAC-1DA with Intel’s DLA, a tiling-

based DNN accelerator, an average speedup of 2.05×/1.7×
and 1.33×/1.52× can be achieved for AlexNet and ResNet-

34, respectively. With its ability to support both persistent and

tiling-based DNN acceleration, BRAMAC has the potential

to be a highly practical and valuable addition to future AI-

optimized FPGAs.

61

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, 2012.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A Large-Scale Hierarchical Image Database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp.
248–255.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language Models are Few-Shot Learners,” in Advances
in Neural Information Processing Systems, 2020, pp. 1877–1901.

[4] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, “A White Paper on Neural Network Quantization,”
arxiv:abs/2106.08295, 2021.

[5] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference,” in Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 2704–2713.

[6] H. Wu, “Low Precision Inference on GPU,” 2019. [Online]. Available:
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/
presentation/s9659-inference-at-reduced-precision-on-gpus.pdf

[7] Nvidia, “INT4 Precision for AI Inference,” 2019. [Online]. Available:
https://developer.nvidia.com/blog/int4-for-ai-inference/

[8] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-
Scale DNN Processor for Real-Time AI,” ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pp. 1–14,
2018.

[9] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCL™ Deep Learning Accelerator on Arria 10,” ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
2017.

[10] M. S. Abdelfattah, D. Han, A. Bitar, R. Dicecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling, and G. R. Chiu,
“DLA: Compiler and FPGA Overlay for Neural Network Inference
Acceleration,” 28th International Conference on Field Programmable
Logic and Applications (FPL), pp. 411–4117, 2018.

[11] Intel, “Intel Stratix 10 NX FPGA Overview,” 2020. [Online].
Available: https://www.intel.com/content/www/us/en/products/details/
fpga/stratix/10/nx.html

[12] Xilinx, “UltraScale Architecture DSP Slice User Guide, (UG579
v1.11),” 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
ug579-ultrascale-dsp

[13] Intel, “Intel Stratix 10 Variable Precision DSP Blocks User Guide
(UG-S10-DSP),” 2021. [Online]. Available: https://www.intel.com/
programmable/technical-pdfs/683832.pdf

[14] Achronix, “Speedcore eFPGAs).” [Online]. Available:
https://www.achronix.com/sites/default/files/docs/Speedcore eFPGA
Product Brief PB028.pdf

[15] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing Diversity:
Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs,”
28th International Conference on Field Programmable Logic and Ap-
plications (FPL), pp. 35–42, 2018.

[16] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. W. Leong, “PIR-
DSP: An FPGA DSP Block Architecture for Multi-precision Deep
Neural Networks,” IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 35–44, 2019.

[17] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi,
C. Augustine, R. R. Iyer, and R. Das, “Compute-Capable Block RAMs
for Efficient Deep Learning Acceleration on FPGAs,” IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 88–96, 2021.

[18] A. Arora, T. Anand, A. Borda, R. Sehgal, B. Hanindhito, J. Kulkarni, and
L. K. John, “CoMeFa: Compute-in-Memory Blocks for FPGAs,” IEEE
30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 1–9, 2022.

[19] A. Boutros and V. Betz, “FPGA Architecture: Principles and Progres-
sion,” IEEE Circuits and Systems Magazine, vol. 21, pp. 4–29, 2021.

[20] M. Eldafrawy, A. Boutros, S. Yazdanshenas, and V. Betz, “FPGA Logic
Block Architectures for Efficient Deep Learning Inference,” ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), vol. 13, pp.
1–34, 2020.

[21] Xilinx, “DSP58 Architecture,” 2022. [Online]. Available: https://docs.
xilinx.com/r/en-US/am004-versal-dsp-engine/DSP58-Architecture

[22] Intel, “Intel Agilex Variable Precision DSP Blocks User Guide,”
2021. [Online]. Available: https://www.intel.com/programmable/
technical-pdfs/683037.pdf

[23] M. Langhammer, E. Nurvitadhi, S. Gribok, and B. M. Pasca, “Stratix
10 NX Architecture,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 15, pp. 1 – 32, 2022.

[24] M. Horowitz, “Computing’s Energy Problem (and what we can do
about it),” IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), pp. 10–14, 2014.

[25] D. M. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,
T. Vanderhoek, and H. Yu, “Architectural Enhancements in Stratix V,”
in ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), 2013.

[26] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep neural
network computing,” 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1–12, 2016.

[27] C.-F. Lee, C. Lu, C.-E. Lee, H. Mori, H. Fujiwara, Y.-C. Shih, T.-
L. Chou, Y. D. Chih, and T.-Y. J. Chang, “A 12nm 121-TOPS/W
41.6-TOPS/mm2 All Digital Full Precision SRAM-based Compute-in-
Memory with Configurable Bit-width For AI Edge Applications,” IEEE
Symposium on VLSI Technology and Circuits, pp. 24–25, 2022.

[28] Intel, “Intel Arria 10 Core Fabric and General Purpose
I/Os Handbook,” 2022. [Online]. Available: https://www.intel.com/
programmable/technical-pdfs/683461.pdf

[29] J. Choi, K. Nam, A. Canis, J. H. Anderson, S. D. Brown, and
T. S. Czajkowski, “Impact of Cache Architecture and Interface on
Performance and Area of FPGA-Based Processor/Parallel-Accelerator
Systems,” IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 17–24, 2012.

[30] R. Shi, Y. Ding, X. Wei, H. Li, H. Liu, H. K.-H. So, and C. Ding, “FTDL:
A Tailored FPGA-Overlay for Deep Learning with High Scalability,”
57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.

[31] S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t Forget the Mem-
ory: Automatic Block RAM Modelling, Optimization, and Architec-
ture Exploration,” ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 115–124, 2017.

[32] Arizona State University, “Predictive Technology Model,” 2012.
[Online]. Available: http://ptm.asu.edu/

[33] Intel, “Arria 10 Device Overview,” 2022. [Online]. Available:
https://www.intel.com/programmable/technical-pdfs/683332.pdf

[34] R. Rashid, J. G. Steffan, and V. Betz, “Comparing performance, produc-
tivity and scalability of the TILT overlay processor to OpenCL HLS,”
International Conference on Field-Programmable Technology (FPT), pp.
20–27, 2014.

[35] University of California, Berkeley, “ECE241, Lecture 18 Adders,” 2003.
[Online]. Available: http://bwrcs.eecs.berkeley.edu/Classes/icdesign/
ee241 s03/Lectures/lecture18-adders.pdf

[36] J. Sommer, M. A. Özkan, O. Keszocze, and J. Teich, “DSP-
Packing: Squeezing Low-precision Arithmetic into FPGA DSP Blocks,”
arxiv.org/abs/2203.11028, 2022.

[37] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is All you Need,”
arxiv:abs/1706.03762, 2017.

62

Authorized licensed use limited to: Cornell University Library. Downloaded on February 13,2024 at 21:04:33 UTC from IEEE Xplore. Restrictions apply.

