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Abstract—Mixed-precision quantization is a popular approach
for compressing deep neural networks (DNNs). However, it is
challenging to scale the performance efficiently with mixed-
precision DNNs given the current FPGA architecture and conven-
tional accelerator dataflows. In this work, we enhance the FPGA’s
capability for accelerating mixed-precision DNNs by proposing
M4BRAM, a novel compute-in-block RAM (BRAM) architecture
that can compute mixed-precision matrix-matrix multiplication.
On the precision side, M4ABRAM supports a wide range of mixed-
precision DNN configurations — the weight precision can be 2/4/8
bits while the activation precision can vary from 2 to 8 bits. On
the dataflow side, M4ABRAM leverages a novel in-BRAM data
duplication scheme to achieve high hardware utilization. More-
over, during MABRAM computation, other FPGA resources can
seamlessly access its data without the need for a separate buffer.
Hence, unlike prior compute-in-BRAM proposals, M4BRAM
can simultaneously perform mixed-precision computation and
maintain full functionality as a memory unit to #uly complement
the existing compute resources on FPGAs. Experiments show that
adding M4BRAM to a tiled DNN accelerator can achieve an
average speedup of 2.16x across various DNNs on the ImageNet
classification task while incurring a negligible accuracy loss of
< 0.5%. Compared to the same tiled accelerator that employs a
prior compute-in-BRAM architecture, MABRAM delivers 1.43x
higher performance on average across various DNNs.

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated remark-
able accomplishments in various important fields such as
computer vision and natural language processing. Unfortu-
nately, the scaling of compute performance and storage density
following Moore’s law has fallen far behind the growth of
DNN model size [1], which necessitates model compression to
reduce the storage and computation cost of DNNs. As one of the
key compression techniques, quantization has been widely
explored at both algorithmic [2]-[9] and hardware levels [10]—
[23]. Although uniform low-precision such as binary [2],
ternary [3], and 4-bit [4] quantization can significantly reduce
the model size and improve the computational throughput, it
can lead to a noticeable reduction in model accuracy. To
mitigate such accuracy loss, mixed-precision quantization [6]—
[9], where both weights and activations can have different bit-
widths, has emerged as a promising quantization approach.

In the meanwhile, FPGAs have become an increasingly
popular accelerator platform for DNNs due to their bit-
programmability that allows customized precision and data-
path [24]. Indeed, many mixed-precision DNN accelerators
based on FPGAs have been proposed [12]-[14], [16], [17].
These accelerators mainly rely on the digital signal processing

(DSP) block to implement the multiply-accumulate (MAC)
operation, the fundamental primitive in DNN computing. To
further increase the peak MAC throughput of FPGAs for accel-
erating DNNSs, recent works have suggested adding compute-
in-memory (CIM) capability inside the FPGA block RAM
(BRAM) [21]-[23]. But these proposals either restrict DNN
weights and activations to have the same precision [23], or
have limited flexibility in feeding DSPs as a normal BRAM
[21]-[23]. For example, when the BRAM in [21] and [22] is
configured to the CIM mode, it can no longer be accessed by
DSPs. As a result, the available BRAM resources have to be
partitioned into two groups — one that performs CIM
operations, and the other that feeds data to DSPs. This raises
questions about the effective performance enhancement in
realistic DNN accelerators on FPGAs.

In this work, we address the above limitations to enhance the
capability of FPGAs for accelerating mixed-precision DNNs
by proposing a new CIM architecture called MABRAM, which
can compute Mixed-precision Matrix-Matrix Multiplication
in BRAM. Compared to prior compute-in-BRAM proposals,
M4BRAM has three novel contributions. First, it supports
diverse mixed-precision DNNs whose weights can be 2/4/8
bits, and activations can vary from 2 to 8 bits. The MAC
latency/throughput of M4BRAM can efficiently scale with
lower activation/weight precision. Second, MABRAM only
occupies one BRAM port during in-memory computing, while
another BRAM port is always available for the DSP to receive
data. Therefore, MABRAM can remain as a memory unit
while performing computation to #ruly complement the DSP.
Third, MABRAM employs a novel in-BRAM data duplication
scheme that exploits DNN computational parallelism through
both weight-sharing and activation-sharing to achieve high
hardware utilization.

To demonstrate the flexibility and efficiency of M4ABRAM in
accelerating mixed-precision DNNs, we propose a hetero-
geneous tiled accelerator with MABRAM functioning as a bit-
serial engine and the DSP operating as a bit-parallel engine.
The heterogeneous tiled accelerator significantly outperforms
the baseline tiled accelerator without M4BRAM. Through
activation quantization, it can deliver an average speedup of
2.16x across various DNNs while incurring a negligible
accuracy loss of < 0.5% compared to the floating-point model
on ImageNet classification. The performance gains further
increase by adopting intra-layer weight quantization. Finally,
compared to the heterogeneous accelerator that employs an ex-
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isting compute-in-BRAM architecture, MABRAM can provide
1.43x higher performance on average across various DNNS.

II. RELATED WORKS

A. FPGA Acceleration of Mixed-Precision DNNs

The FPGA’s bit-level programmability makes it a competi-
tive acceleration platform for mixed-precision DNNs. Colan-
gelo et al. [13] assigned two separate precisions to weights
and activations, respectively, and quantified the effects on
accuracy, throughput, and FPGA resource utilization. Wang et
al. [14] and Sun et al. [16] investigated accelerating inter-layer
and intra-layer mixed-precision DNNs on FPGA, respectively.
Another recent study, MSD [17], proposed quantizing DNN
weights using two number representations, which can take ad-
vantage of the heterogeneous computing resources on FPGA to
perform bit-serial and bit-parallel computation simultaneously.

To efficiently utilize the high-precision DSP multiplier for
mixed-precision DNNs, these FPGA accelerators commonly
employ DSP-packing [25] to combine multiple low-precision
multiplications into one DSP. Unlike these works based on
the existing FPGA architecture, our proposed M4ABRAM is a
new BRAM architecture that can complement DSP-packing to
further improve the performance of mixed-precision DNNs.

B. Compute-In-Memory for Mixed-Precision DNNs

CIM has emerged as a new computing paradigm that
achieves higher performance and energy efficiency than con-
ventional Von-Neumann architectures by performing compu-
tation closer to the data. Although many CIM variants for
mixed-precision DNNs have been proposed as ASICs [18]—
[20], they suffer from limited precision support, such as [20]
that only supports 1-/2-bit DNN inference and [18] that allows
arbitrary weight precision but fixed 16-bit activation precision.

On the other hand, two recent BRAM-based CIM archi-
tectures, CCB [21] and CoMeFa [22], can compute with any
precision using bit-serial arithmetic. However, during the CIM
mode, their BRAM cannot support double-buffering which is
a widely used technique in FPGA accelerators for DNNs [12]-
[14], [16], [17]. A later compute-in-BRAM work, BRAMAC
[23], performs CIM operations in a small dummy BRAM array
that is decoupled from the main BRAM array. It proposes
two variants, BRAMAC-2SA with two synchronous dummy
BRAM arrays and BRAMAC-1DA with one double-pumped
dummy BRAM array. In addition, the dummy BRAM array
is controlled by an embedded finite-state machine (eFSM)
to enable double-buffering. Nevertheless, BRAMAC requires
weights and activations to have the same precision in 2-
/4-/8-bit, limiting its applicability to only uniform-precision
DNNSs. Our proposed MABRAM extends some concepts from
BRAMALC to support variable activation precision from 2 to 8
bits with linearly scaled MAC latency. Moreover, M4BRAM
simplifies interoperability with DSPs and improves hardware
utilization through a novel data duplication scheme that can ex-
tract DNN computation parallelism from both weight-sharing
and activation-sharing.
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Fig. 1: (a) Packing 4 multiplications onto one DSP. The achievable
packing factor (N) and resulting DSP utilization (U tilpsp) depend
on weight precision (Pw ), activation precision (P;), and the DSP
multiplier size (Pa,s and Pc), which can vary across different FPGA
vendors: (b) Xilinx 25x18-bit and (c) Intel 18x18-bit.

III. MOTIVATION
A. DSP-Packing is Sub-Optimal for Mixed-Precision DNNs

As described in Section II-A, DSP-packing is widely
adopted in FPGA accelerator design. Fig. 1(a) shows an
example of packing four multiplications between two weights
(W1 and W,) and two activations (/1 and />) onto one
DSP following the method in [25]. In general, the achievable
packing factor and resulting DSP utilization depend on the
operand precision and the DSP multiplier size, with the latter
varying across different FPGA vendors.

Fig. 1(b) and (c) show the DSP utilization of packing mixed-
precision multiplications on Xilinx and Intel DSPs, respec-
tively. The decreasing part in a line reflects a 2 x reduction in
the achievable packing factor. First, given the same weight
precision, reducing the activation precision cannot increase
MAC throughput in most cases since the packing factor
does not change, although one purpose of quantization is to
scale the performance proportionally with reduced activation
precision [10]. Second, given the same activation precision,
reducing the weight precision by 2x also does not change
the packing factor in many cases, although theoretically, a 2 x
throughput improvement is expected and can be achieved in
some ASIC accelerators [11]. Based on these observations, it is
necessary to design new FPGA blocks that can scale the
performance with fine-grained quantization to get measurable
hardware speedup for diverse mixed-precision DNNs.

B. CIM Should Complement DSPs

To fully exploit the potential of CIM on FPGA, BRAM
should remain as a memory unit to feed the DSPs while
performing CIM operations. Unfortunately, a pure bit-serial
arithmetic approach (similar to CCB [21] and CoMeFa [22])
requires a transposed data layout, where each data word is
stored along the BRAM column as shown in Fig. 2 (a) and
(b), respectively. Hence, when a BRAM block is operating
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Fig. 2: Top-level dataflow of (a) CCB, (b) CoMeFa, (c) BRAMAC.
The data word is assumed to be 4-bit.

in the CIM mode, a DSP can no longer access its data,
therefore requiring a separate BRAM block configured as
normal memory to feed the DSP. This can be wasteful and
inefficient, especially when the data within the BRAM can be
reused by more than one type of processing element as in
heterogeneous DNN accelerators [17].

BRAMAC [23] solves the data layout issue by storing data
words along the BRAM row, as shown in Fig. 2(c). However,
when running in CIM mode, its two BRAM ports are both
occupied by the in-BRAM MAC unit. Therefore, a DSP has to
either receive data from a separate BRAM configured as
normal memory or read the same operand being used by the
in-BRAM MAC unit, resulting in constrained dataflow and
limited parallelism. To overcome these challenges, a new CIM
architecture that allows random access by the DSP while
performing in-BRAM computation is desirable.

IV. M4ABRAM ARCHITECTURE AND DATAFLOW

A. Overview

Fig. 3 shows the top-level architecture of M4BRAM based
on the Intel M20K BRAM [26] with added circuit blocks
colored in orange. The routing interface (i.e., input and output
crossbar) of MABRAM is the same as that of M20K. The
configuration SRAM cell, mode-sram, allows M4BRAM to
operate in the memory mode or the compute mode. During
the memory mode, MABRAM is identical to a conventional
BRAM with configurable depth and data width. During the
compute mode, MABRAM can perform two MAC operations
simultaneously, which is called a MAC2 operation [23] and
defined as P = (W1l1 + Wa2l2). The MAC2 operation is
performed by 4 in-BRAM processing elements (BPEs) that
are decoupled from the main BRAM array. This approach of
decoupling computation from the main BRAM array is
similar to that of BRAMAC. However, unlike BRAMAC,
M4BRAM only occupies one port (port-A) of the main BRAM
array to communicate with BPEs. A new duplication shuffler
can reorder and replicate the weight vector read from the
main BRAM array, which allows the 4 BPEs to compute 4
independent MAC2 operations, respectively. The rest of this
section details M4ABRAM’s novel dataflow and new circuit
blocks that make it much easier to be integrated within a DNN
accelerator, surpassing prior works in terms of flexibility and
hardware utilization.
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Fig. 3: Top-level architecture of MABRAM modified from the Intel
M20K BRAM. The added circuit blocks are highlighted in orange.

B. In-BRAM Compute Dataflow

In the compute mode, MABRAM is automatically config-
ured as a simple dual-port memory with a depth of 512 and a
data width of 32 bits, which is the BRAM data width
supported by both Intel [26] and Xilinx [27]. The main BRAM
array’s port-A and port-B are configured as write and read
ports, respectively. Conventionally, the write-enable signal of
the read port now becomes “don’t care”. This idle signal,
however, is reused in M4ABRAM to dynamically indicate a
CIM instruction. If the write-enable signal wenB of the read
port-B is asserted, then the write port-A’s data dataA and
address addrA will be treated as a CIM instruction and sent to
the eFSM. This controls the 4 BPEs, each can compute an
independent MAC2 operation between weights W and
activations I. The weight precision Pw is pre-defined in
configuration SRAM while the activation precision is run-time
configurable through the CIM instruction as described later in
Section IV-E.

To start a MAC2 operation, a 32-bit weight vector consisting
of multiple low-precision weight elements is copied from
the main BRAM array to 4 BPEs through port-A’s read
circuits. The duplication shuffler can select a subset of the
weight vector and duplicate it multiple times depending on
the duplication factor stored in configuration SRAM DP-sram.
The activation vector is sent from outside (e.g., an activation
buffer) to the eFSM through dataA, and then fed to the 4
BPEs. Since the read port-B is not occupied by BPE and eFSM
during the entire MAC2 operation, it can continue to send the
main BRAM array’s data to other logic resources such as DSP.
After MABRAM finishes computing, port-B is used to read
out the final result from BPE. The 2-to-1 mux MO selects the
output data between BPE and the main BRAM array.

C. In-BRAM Processing Element (BPE)

The circuit design of BPE is based on the dummy BRAM
array of BRAMAC [23] but with a different physical geom-
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Fig. 4: Different parallelism configurations supported by M4BRAM
for 8-bit weight precision: (a) Nw =4, N/=1; (b) Nw =2, N;=2; (c)
Nw=1, N;=4.

etry. In BRAMAC, the dummy BRAM array has a physical
geometry of 7 rows x 160 columns. It can multiply the same
activation with five 8-bit, ten 4-bit, or twenty 2-bit weights. In
M4BRAM, however, each BPE contains a dummy array with 7
rows x 32 columns! that can multiply the same activation with
one 8-bit, two 4-bit, or four 2-bit weights.

Another key difference between M4BRAM BPE and
BRAMAC is the supported parallelism configuration defined
by Nw and N,;, where Ny represents the number of weights
multiplied by one activation and N, represents the number of
activations multiplied by one weight. BRAMAC only exploits
the computation parallelism of DNNs through activation-
sharing, i.e., it can only multiply the same activation with
many weights by keeping N 1 and scaling Nw . On
the other hand, the 4 BPEs in M4BRAM can receive dif-
ferent activations and multiply them with the same weight to
also exploit weight-sharing. Fig. 4 shows three different
parallelism configurations supported by M4ABRAM when the
weight precision is 8 bits. The color-shaded area in each
configuration represents 4 MAC2 that can be computed by 4
BPEs, respectively.

The reasoning behind supporting different parallelism con-
figurations is that scaling only N can lead to low hardware
utilization for DNNs that do not exhibit enough activation-
sharing parallelism, as demonstrated in a recent study from
Intel [28]. The study compares the hardware utilization of a
tiled DNN accelerator across various parallelism configura-
tions and DNNSs, and shows that finding a balanced parallelism
configuration based on the DNN’s topology can significantly
improve the hardware utilization and performance. Hence,
compared to BRAMAC which only supports one parallelism
configuration (i.e., N; = 1), MABRAM has the potential to
achieve higher performance by flexibly adjusting its paral-
lelism configuration for specific DNNs. Section V-E will quan-
tify the benefits of MABRAM over BRAMAC for accelerating
various DNNGs.

D. Duplication Shuffler

In conventional FPGA accelerators with the compute engine
consisting of only DSP and soft logic, the same weight read
from BRAM can be routed to different processing elements
and multiplied by different activations to effectively increase
N;. In other words, the same weight must be duplicated in
different processing elements to enable weight-sharing. To
realize such weight duplication in M4BRAM, we propose

' As described later in Section IV-G, we also propose a second MABRAM
variant with a 7-row x 64-column dummy BRAM array in each BPE.
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Fig. 6: MABRAM’s CIM instruction format.

a duplication shuffler as shown in Fig. 5. The duplication
shuffler is composed of four 4-to-1 mux, all controlled by a
decoder. The 32-bit weight vector read from the main BRAM
array is divided into 4 slices (A, B, C, D) and sent to all 4-to-1
muxes. The decoder receives a 2-bit address addrDP to select a
weight slice and duplicates it 1, 2, or 4 times depending on
the duplication factor DP-sram (i.e., N;). For example, if DP-
sram = 1, then addrDP is ignored and the 4 BPEs will receive
A, B, C, D, respectively, which gives the parallelism
configuration shown in Fig. 4(a). On the other hand, if DP-
sram = 4, then an 8-bit weight slice will be selected based on
addrDP and broadcast to all BPEs, which gives the parallelism
configuration shown in Fig. 4(c).

E. CIM Instruction Design

Fig. 6 shows M4BRAM’s CIM instruction format. Before
starting a MAC2 operation, the eFSM needs 2 cycles to
receive 2 CIM instructions, which contain information for 2
weight/activation vectors, respectively. The port-A address
contains row and column addresses (addrRow and addrCol)
of a weight vector that needs to be copied from the main
BRAM array to BPE. It also includes a 2-bit addrDP to
control the duplication shuffler. The port-A data contains 4
input activations to be multiplied by the weight vector in 4
BPEs. Additional control information is encoded in each
BRAM’s 4-bit byte-enable signal which is supported by both
Intel and Xilinx BRAMSs. The inClr can be any M20K control
signal that is unused by the main BRAM array during the
compute mode. When inClr is activated, the input activation
sign and precision can be changed to support layer-wise mixed
activation precision. When inClr is deactivated, the byte-
enable will contain flags to control the MAC2 operation.

F. Mixed-Precision Support

The proposed CIM instruction design allows M4BRAM’s
BPE to compute MAC2 with 2-/4-/8-bit weights and 2- to 8-bit
activations chosen dynamically. Fig. 7(a) shows the diagram
of a BPE consisting of a 7-row x 32-column dummy BRAM
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array and peripheral circuits. The BPE performs computation
on sign-extended weight vectors and uses a look-up table
approach to generate the partial sum [19]. In every cycle,
based on the received two activation bits {/2[n], I1[n]}, the
partial sum is chosen from one of the first four BRAM rows
and added to the MAC2 result P. The /INV row is used to
store a temporary inverted partial sum if the activation is a
signed number. The final MAC2 result P is added to the last
BRAM row for accumulation. More details on the above bit-
serial MAC2 dataflow, as well as the circuit design of different
components, are detailed in [23].

With bit-serial processing of activations, the MAC2 oper-
ation in M4BRAM takes (n + 2) cycles for n-bit activation
when the BPE is synchronous with the main BRAM array, and
this latency can be further reduced to (n/2 + 2) by double-
pumping the BPE with a 2x main BRAM clock frequency
[23]. Furthermore, a lower weight precision improves MAC2
throughput because the 32-bit weight vector copied from
the main BRAM array can contain more elements. As a
result, MABRAM can provide measurable hardware speedup
for diverse mixed-precision DNNs through both activation
quantization and weight quantization.

G. M4BRAM Variants

To explore the trade-off between the MAC throughput gain
and the area overhead, we propose two M4BRAM variants,
called M4ABRAM-S and M4BRAM-L, whose BPEs contain
small and large dummy BRAM arrays, respectively. The BPE
of MABRAM-S has the same structure as the one described in
Section IV-F. Fig. 7(b) shows the parallelism configurations
supported by M4BRAM-S for different weight precision.
Reducing the weight precision allows multiplying the same
activation with more weights, leading to higher Nw . This
variant has a smaller area overhead and offers moderate MAC
throughput gain.

Fig. 7(c) shows the architecture of MABRAM-L whose BPE
contains a large dummy BRAM array with 7 rows and 64
columns. Compared to MABRAM-S, MABRAM-L can achieve
2 x higher weight-sharing parallelism as shown in Fig. 7(b).
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But it also requires 2 x read bandwidth to copy more weights
from the main BRAM array. To achieve this, we apply memory
banking to divide the main BRAM array into two 64-row x
160-column banks so that each can provide a 32-bit weight
vector. Note that the read bandwidth is increased only internal to
the BRAM, an additional 2-to-1 mux selects between two
banks during normal BRAM access.

H. Heterogeneous Accelerator with M4BRAM and DSP

During a MAC2 operation, the BPE and eFSM of
M4BRAM only occupy the main BRAM array’s write port
(for 2 cycles) to receive operands, while the DSP can continue to
randomly access the main BRAM array through the read port.
Hence, the BPE and DSP can receive data from a shared
M4BRAM cache and complement each other in a
heterogeneous fashion, where the BPE is a bit-serial engine
with its latency proportional to the activation precision, and
the DSP is a bit-parallel engine with fixed 1-cycle latency.

To illustrate how the BPE and DSP can coordinate in a
tiled accelerator, we use Intel’s Deep Learning Accelerator
(DLA) [28] as an example. Fig. 8(a) shows how a CNN can be
partitioned into tiles along different dimensions in DLA, where
Cvec/Kv ec represents the tile size along the input/output
channel, Rv £ ¢ represents the tile size along the filter height
and width (assuming square filter), and Py ec/Qv ec rep-
resents the tile size along output height/width. In order for
the BPE and DSP to work in parallel, the workload can be
distributed along Qyec so that they will receive/compute
different inputs/output features (indicated by blue and red
cubes in Fig. 8(a)). It is also possible to partition the workload
along other dimensions, which is left for future work.

Fig. 8(b) shows the proposed heterogeneous accelerator
(Hetero-DLA) that enhances DLA by using M4BRAM to
store data. The input buffer sends two sets of input features to
the BPE and DSP, respectively. The filter data stored in
M4BRAM’s main BRAM array can be randomly accessed by
both the BPE and DSP. For example, if the DSP computes
faster, it can start to compute the next tile, C2, along the input
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Fig. 8: (a) Partitioning a CNN into tiles along different dimensions
in DLA. The tile is distributed to BPE and DSP along Qv ec. (b)
Proposed heterogeneous DLA. (c) Inter-tile pipelined dataflow.

channel while the BPE is still computing on C1. The final
results from the two engines are sent to the output buffer.

Existing tiled CNN accelerators commonly apply double-
buffering to reduce or hide off-chip DRAM access latency
[12]-[14], [16], [17]. Double-buffering allows an accelerator
to pipeline three stages: loading inputs and filters, computing
convolution, and storing outputs, as illustrated in Fig. 8(c).
Similar to BRAMAC, M4BRAM supports double-buffering
during the compute mode — when the eFSM is not receiving a
CIM instruction, the main BRAM array’s write port is free and
can be used to load the next tile. During convolution, the tile
latency is determined by the slower latency between the BPE
and DSP. In addition, when the BPE completes a dot product,
the result needs to be read out through the main BRAM’s read
port, forcing the DSP to stall for 4 cycles and 8 cycles in
M4BRAM-S and M4BRAM-L, respectively given a 32-bit
BRAM data width. Fortunately, this stall overhead can be
amortized over many MAC2 operations in the BPE since the
dot product size is usually large in real-world CNNs. For
example, our performance simulator (discussed in Section V-A)
shows that such DSP stalls contribute to an average of only
4.8% of the total execution time for VGG-16 with 8-bit
weights and the activation varying from 4 to 8 bits.

V. EVALUATION
A. Experimental Setup

M4BRAM modeling: We use COFFE [29] with 22-nm pre-
dictive technology to model the area and delay of the baseline
M20K as well as new M4BRAM circuits. For M4ABRAM’s
eFSM, we write SystemVerilog and synthesize it using Syn-
opsys Design Compiler with TSMC 28-nm technology and
scale the reported area to 22-nm technology.

DNN benchmarks: We choose AlexNet, VGG-16, ResNet-18,
ResNet-34, and one self-attention module from the base Vision
Transformer (ViT-Base) [30]. For DNNs used in the mixed-
precision training experiments, we train them on ImageNet
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TABLE I: Properties of the baseline Stratix-10 FPGAs

GX400 GX650
Resources Count Area(%)! Count Area(%)!
Logic Block 12816 55.6 20736 54.7
DSP 648 15.7 1152 17.0
M20K BRAM 1537 28.7 2489 28.3

! Calculated based on the normalized area metrics in [32].

classification. The baseline 32-bit floating-point (FP32) models
are taken from PyTorchCV [31] and quantized to fixed-
point using uniform symmetric quantization. The quantiza-
tion clipping thresholds are determined by minimizing the
mean absolute error on the original weights and activations,
where activation statistics are estimated with a large random
training batch. For experiments involving intra-layer weight
quantization, the weights are partitioned into two slices along
the output dimension and then quantized individually with
the above method. The models are then fine-tuned using the
default Adam optimizer with a learning rate of le-5 for 20
epochs following a cosine decay learning rate schedule.

Baseline and enhanced accelerator: We choose two baseline
FPGAs from Intel’s Stratix-10 family: GX400 and GX650
(Table I). We apply Hetero-DLA described in Section IV-H to
evaluate the DNN benchmarks. We compare the performance
of Hetero-DLA to that of DLA, which has normal BRAM
instead of M4ABRAM. The matrix multiplication operation
in the self-attention module of ViT-Base is converted to 1D
convolution [28]. To maximize each accelerator’s performance,
we develop a design space exploration tool to find the optimal
tiling configuration for every DNN, following a similar ap-
proach used in prior FPGA accelerator works [16], [28]. The
optimization target is set to perf x (perf/area) to balance
the performance and area cost. We build a cycle-accurate
simulator to obtain the latency of the DSP and BPE based on a
given tiling configuration that splits the workload distribution
between the MABRAM and DSP along the Qy ¢ ¢ dimension.

B. M4BRAM Area and Frequency

Compared to M20K, the area overhead of M4BRAM-S
comes from the duplication shuffler, eFSM, and 4 BPEs,
which are 42 um?, 238 um?, and 856 um? respectively.
This represents an area increase of 19.6% over M20K. For
M4BRAM-L, the area of BPE and duplication shuffler double 2,
leading to a 33.4% area increase compared to M20K. With
M20K constituting “29% of the core area in the two baseline
FPGAs, MABRAM-S and M4ABRAM-L will increase the FPGA
core area by 5.6% and 9.5%, respectively, which are higher
than those reported in the previous works [21]-[23] mainly
because our baseline FPGAs have a higher M20K:DSP ratio.
Furthermore, Section V-F will show that using the same area,
M4BRAM will outperform DSP for accelerating mixed-
precision DNNs, thus offering a better area vs. performance
scaling.

2We do not consider the area overhead associated with memory banking as
it is a feature already employed in some commercial BRAMs. The COFFE
paper on BRAM [29] reports all results based on 2-bank architecture.
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TABLE II: Comparison between MABRAM and prior compute-in-BRAM architectures

Property CCB CoMeFa BRAMAC M4BRAM
Variant - D A 1DA 2SA S L
# of dummy arrays - - - 1 2 4 4
Dummy array size - - - 7x160 7x160 Tx32 7x64
Weight precision (-bit) Arbitrary | Arbitrary | Arbitrary 2,4,8 2,4,8 2,4,8 2,4,8
Activation precision (-bit) Arbitrary | Arbitrary | Arbitrary 2,4,8 2,4, 8 2-8 2-8
Weight-sharing factor N 1 1 1 1 2 1,2, 4 1,2,4
Use transposed data layout v v v X X X X
Allow DSP access during CIM X X X X X v v
Support mixed-precision v v v X X N N
Support multi-pumping X X N N X J J
# of occupied main BRAM ports Two Two Two Two Two One One
M20K area overhead 168% | 254% 8.1% 169% | 338% 196% | 334%
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Fig. 9: Model accuracy and speedup over DLA for various DNNs. The weight precision is

0.5% Top-1 accuracy loss compared to the baseline FP32 model.

The baseline M20K has a maximum frequency of 730 MHz
in 20-nm technology [33]. With COFFE’s 22-nm technology,
the BPE’s critical path delays are 903 ps and 925 ps in
M4BRAM-S and M4BRAM-L, respectively, which are lower
compared to BRAMAC (958 ps) because of the smaller
dummy BRAM array size. When the BPE is double-pumped,
M4BRAM-S and M4BRAM-L will limit M20K’s frequency to
553 MHz and 540 MHz, respectively, which are @1.26x lower
than the baseline. A lower M20K frequency is not a concern
because realistic FPGA delays are usually constrained by soft
logic and routing, and it is unlikely that an FPGA accelerator
will run more than 500 MHz even on Stratix-10 with a more
advanced 14-nm technology [34].

C. Comparison with Prior CIM Architectures

Table II shows the architectural differences between
M4BRAM and prior CIM architectures for FPGA, including
CCB [21], CoMeFa [22] and BRAMAC [23]. Both CCB and
CoMeFa require a transposed BRAM data layout that can not
be accessed by DSP, leading to restricted dataflow and limited
throughput improvement. Although M4BRAM shares a few
common features with BRAMAC, such as using a dummy
BRAM array (but with different sizes) to compute MAC2, it
can perform mixed-precision computation as opposed to
BRAMAC. Furthermore, unlike other works that only support a
fixed N;, MABRAM can flexibly adjust its N, based on a
DNN’s topology to improve the utilization efficiency. Notably,
BRAMAC-2SA with N; = 2 can cause significant under-
utilization for DNNs that involve matrix-vector multiplication,

ResNet-18 Activation

75

ResNet-34 Activation

8-bit. The dash-dotted black line represents a

e.g., unbatched long short-term memory (LSTM) networks or
attention-based models that require N, = 1. Finally, M4BRAM
only occupies one main BRAM port when performing CIM
operations, thus offering more efficient interoperability with
DSP compared to other CIM architectures.

D. Mixed-Precision Accuracy vs. Performance Trade-off

Accuracy, performance vs. activation quantization: Since
the computation latency of M4BRAM scales linearly with
the activation precision, we first evaluate the model accuracy
and performance by sweeping the activation precision from 4
to 8 bits while keeping the weight precision at 8 bits. We
choose the GX650 FPGA in this experiment. For Hetero-DLA,
we consider three MABRAM configurations — M4BRAM-S
with double-pumped BPE (DP-M4S), and M4BRAM-L with
synchronous (SY-M4L) or double-pumped BPE (DP-MA4L).

Fig. 9 presents the Top-1 model accuracy vs. performance
trade-off for various DNNs. For each DNN, we observe a drop in
speedup when the activation becomes 5 bits, which is due to a
2 x increase in the DSP-packing factor as described in Sec-tion
III-A. However, 5-bit activation causes a non-negligible
accuracy loss of > 0.5% for all three evaluated DNNs, with a
maximum of 0.94% for ResNet-18. This highlights that solely
relying on DSP-packing cannot provide an optimal accuracy
vs. performance trade-off for mixed-precision DNNs.

When the activation precision is 6-bit, the three M4BRAM
configurations deliver an average speedup of 2.16x across
all evaluated DNNs, while incurring an accuracy loss of <
0.5%. Specifically, the average speedups achieved by DP-
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Fig. 10: Speedup of MABRAM and BRAMAC over Intel’s DLA for single-precision DNNS.

TABLE III: Top-1 accuracy of ResNet-34 under different %
of 8-bit filters and the speedup of SY-M4L vs. all-4b DLA.

Model Weight Activation Top-1 Speedup vs.
Config Precision Precision ~ Accuracy 4b DLA
Baseline 32b 32b 75.16% N.A.
Retrain 32b 32b 75.49% N.A.
Mixed 95% 4b+ 5% 8b 6b75.22% 2.33 x Mixed

85% 4b +{15% 8b 6b 75.26% 2.02 x Mixed

75% 4b +[25% 8b 6b 75.37% 2.02 x

M4S, SY-M4L, and DP-M4L are 1.92x, 2.26x, and 2.31x,
respectively. When considering cases where the activation
precision changes from 8 to 6 bits, the performance of SY-
MA4L linearly increases, while the double-pumping feature of
DP-M4S leads to an incremental speedup for every 2-bit
reduction in the activation precision. Interestingly, DP-M4L
shows nearly identical speedup. We attribute this to the much
higher MAC throughput of DP-M4L compared to DSP, which
causes the tile latency to be bottlenecked by the latter.

Accuracy, performance vs. weight quantization: As de-
scribed in Section IV-F, the MAC throughput of MABRAM
can be scaled by 2x with a 2x lower weight precision. This
can lead to further performance improvement through intra-
layer weight quantization. Recent work has demonstrated that
an FPGA-friendly intra-layer quantization approach is to have
two filter groups with 4-bit and 8-bit precision, respectively, in
every layer [16]. By properly choosing a uniform activation
precision and tuning the ratio R of the 8-bit filters, it is possible to
achieve higher performance than the pure 8-bit model while
maintaining accuracy comparable to the FP32 model.

To evaluate the potential of Hetero-DLA for intra-layer
weight quantization, we choose the GX400 FPGA employing
M4BRAM-L with synchronous BPE and follow the approach
in [16] by dividing the FPGA resources into two groups.
Each group utilizes MABRAM-L to store either 4-bit or 8-bit
filters and computes convolution using the available DSP and
M4BRAM-L resources. We conduct intra-layer weight
quantization experiments on ResNet-34 as a case study. Since
we have shown that 6-bit activation precision has negligible
accuracy loss compared to the FP32 model, we set all activa-
tion to 6-bit during mixed-precision training.

Table III shows the Top-1 accuracy of ResNet-34 under dif-
ferent mixtures of 4-bit and 8-bit filters, as well as the resulting
speedup achieved by Hetero-DLA over the all 4-bit model

on DLA. All mixed-precision configurations achieve < 0.3%
accuracy loss compared to the retrained FP32 model. When the
ratio of 8-bit filters R increases from 5% to 15%, the accuracy
increases by only 0.04%, but the speedup reduces from 2.33x to
2.02x. This is because with R = 15% 8-bit filters, the
number of DSPs on the GX400 FPGA cannot achieve the
same tiling configuration as R = 5%. Specifically, the optimal
tiling configuration for R = 5% consumes 816 M4ABRAM and
612 DSP. To maintain the same tiling configuration when R =
15%, the resource utilization will increase to 912 M4BRAM
and 666 DSP, which exceeds the number of DSP available on
the GX400 FPGA. These results demonstrate that combin-ing
M4BRAM and DSP on a heterogeneous accelerator can
provide a good trade-off between accuracy and performance
when quantizing both weights and activations

E. M4BRAM vs. BRAMAC

BRAMAC is the state-of-the-art compute-in-BRAM archi-
tecture and has outperformed other prior approaches. We
therefore focus on comparing the performance of M4ABRAM
and BRAMAC for accelerating real-world DNNs. We follow
the same evaluation methodology of BRAMAC [23] by using
DLA as the baseline accelerator, and calculate the execution
time of DLA that employs BRAMAC. We consider precision
configurations where weights and activation have the same
precision in 2-/4-/8-bit. For VGG-16, ResNet-18, and ResNet-
34, the 8-bit configurations are evaluated using the GX650
FPGA due to the need for a larger buffer based on DLA’s
BRAM usage model [35]. Other DNNs and precision config-
urations are evaluated using the GX400 FPGA. In addition,
we apply double-pumping to M4BRAM-S to ensure a fair
comparison with BRAMAC-1DA since these two architectures
have similar M20K area overhead.

Overall performance comparison: Fig. 10 shows the
overall speedup over the baseline DLA after replacing the
normal BRAM with BRAMAC or M4BRAM. On average,
M4BRAM outperforms BRAMAC by 1.43x across vari-
ous DNNs. Specifically, BRAMAC-1DA and BRAMAC-2SA
achieve an average speedup of 1.35x and 1.67x over DLA, re-
spectively. MABRAM-S and M4ABRAM-L provide even higher
speedups over DLA, reaching 2.16x and 2.13x on average,
respectively. These additional performance gains of MABRAM
are attributed to allowing DSP to freely access the main
BRAM array and supporting different parallelism configura-
tions. Among the evaluated DNNs, AlexNet and ViT-Base
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Fig. 11: Speedup over BRAMAC-1DA for when M4BRAM-S sup-
ports different sets of parallelism configurations.

show higher speedup since they contain more output channels
in each layer, thus exhibiting higher Ny that is well exploited
by both BRAMAC and M4BRAM. On the other hand, VGG-
16, ResNet-18, and ResNet-34 contain relatively fewer output
channels in their first several layers. As a result, continuing to
increase Nw as in BRAMAC won’t benefit performance due
to low hardware utilization, while M4BRAM can exploit
weight-sharing (by increasing N, ) to achieve higher hardware
utilization and speedup.

Performance ablation study: The performance benefits of
M4BRAM are twofold: better interoperability with DSP by
using only one BRAM port for CIM, and flexible parallelism
configurations through in-BRAM data duplication. To further
investigate the effects of these two features, we conduct ab-
lation studies to compare the performance of double-pumped
M4BRAM-S and BRAMAC-1DA. We restrict the supported
parallelism configurations of M4BRAM by changing the
weight-sharing factor N, in our design space exploration
tool. To test the performance benefits of M4BRAM’s better
interoperability with DSP, we simply set N; = 1, which
effectively disables the in-BRAM data duplication scheme.

Fig. 11 shows the resulting speedup of M4ABRAM-S over
BRAMAC-1DA across three DNNs. When N, = 1, ie.,
without in-BRAM data duplication, M4BRAM-S achieves
slightly better performance (1.06x on average) compared to
BRAMAC-1DA. It is important to note that the total dummy
array size of BRAMAC-1DA is 7 x 160, which provides
1.25x higher peak performance than MABRAM-S with a total
dummy array size of 7 x 128. But the better interoperability
between DSP and M4BRAM enables a more efficient dataflow,
effectively compensating for the lower peak performance. On
the other hand, as M4BRAM-S supports more parallelism
configurations, the speedup over BRAMAC-1DA becomes
higher. When supporting all three parallelism configurations
shown in Fig. 4, MABRAM-S achieves an average speedup of
1.64x over BRAMAC-1DA. These results demonstrate the
additional performance that is enabled by the flexibility within
M4BRAM, despite its lower peak performance compared to
BRAMAC.

F. M4BRAM vs. DSP

This section shows that MABRAM can outperform DSP in
terms of performance per area. As described in Section V-B,
the area overhead of M4BRAM-L translates to a 9.5%
increase in the FPGA core area. On the GX650 FPGA, this is
equivalent to 640 DSPs. To compare the performance of
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Fig. 12: Speedup over GX-DSP when GX-M4 employs M4ABRAM-L
with (a) synchronous and (b) double-pumped BPE. The weight
precision is 8-bit.

M4BRAM and DSP given the same area budget, we use two
GX650-like FPGAs. The first is called GX-M4 with 2489
M4BRAM-L but no DSP, and another is called GX-DSP
containing 2489 normal BRAM and 640 DSP. We analytically
model the performance of these two FPGAs for accelerating
AlexNet, ResNet-18, and ResNet-34 with 8-bit weight. Fig. 12
shows the speedup of GX-M4 over GX-DSP when sweeping
the activation precision from 4 to § bits. On average GX-M4
offers 1.98x and 2.95x higher performance than GX-DSP
across various DNNs. These results highlight that MABRAM
can offer a better performance vs. area scaling compared to
DSP, whose high-precision multiplier suffers from significant
under-utilization for low-precision multiplications.

VI. CONCLUSION

In this paper, we have proposed a new compute-in-BRAM
architecture, called M4BRAM, to enhance the FPGA’s ca-
pability for accelerating mixed-precision DNNs. M4BRAM
supports diverse mixed-precision configurations with 2-/4-/8-
bit weights and 2- to 8-bit activations to enable effective
performance vs. accuracy trade-off. Evaluation results on
various mixed-precision DNNs demonstrate that by employ-
ing M4BRAM to a tiled accelerator, an average speedup of
2.16x can be achieved with negligible accuracy loss of <
0.5% with the mixed-precision DNN compared to the FP32
baseline. Furthermore, MABRAM offers different parallelism
configurations and better interoperability with DSPs, making it
outperform a state-of-the-art compute-in-BRAM architecture by
1.43x on average across various DNNs. Finally, compared to
DSPs, we show that M4BRAM can be more efficient for
accelerating mixed-precision DNNs. With continuous ad-
vancements in mixed-precision quantization of DNNs, we
believe that adding M4BRAM to future Al-optimized FPGAs
can be highly valuable.
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