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Abstract

Function approximation (FA) has been a critical component
in solving large zero-sum games. Yet, little attention has
been given towards FA in solving general-sum extensive-
form games, despite them being widely regarded as being
computationally more challenging than their fully competi-
tive or cooperative counterparts. A key challenge is that for
many equilibria in general-sum games, no simple analogue to
the state value function used in Markov Decision Processes
and zero-sum games exists. In this paper, we propose learn-
ing the Enforceable Payoff Frontier (EPF)—a generalization
of the state value function for general-sum games. We ap-
proximate the optimal Stackelberg extensive-form correlated
equilibrium by representing EPFs with neural networks and
training them by using appropriate backup operations and
loss functions. This is the first method that applies FA to the
Stackelberg setting, allowing us to scale to much larger games
while still enjoying performance guarantees based on FA er-
ror. Additionally, our proposed method guarantees incentive
compatibility and is easy to evaluate without having to de-
pend on self-play or approximate best-response oracles.

1 Introduction
A central challenge in modern game solving is to handle
large game trees, particularly those too large to traverse or
even specify. These include board games like Chess, Poker
(Silver et al. 2018, 2016; Brown and Sandholm 2017, 2019;
Moravčı́k et al. 2017; Bakhtin et al. 2021; Gray et al. 2021)
and modern video games with large state and action spaces
(Vinyals et al. 2019). Today, scalable game solving is fre-
quently achieved via function approximation (FA), typically
by using neural networks to model state values and harness-
ing the network’s ability to generalize its evaluation to states
never encountered before (Silver et al. 2016, 2018; Moravčı́k
et al. 2017; Schmid et al. 2021). Methods employing FA
have achieved not only state-of-the-art performance, but also
exhibit more human-like behavior (Kasparov 2018).

Surprisingly, FA is rarely applied to solution concepts
used in general-sum games such as Stackelberg equilib-
rium, which are generally regarded as being more difficult to
solve than the perfectly cooperative/competitive Nash equi-
librium. Indeed, the bulk of existing literature centers around
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on methods such as exact backward induction (Bosanský
et al. 2015; Bošanskỳ et al. 2017), incremental strategy gen-
eration (Černỳ, Bošanskỳ, and Kiekintveld 2018; Cermak
et al. 2016; Karwowski and Mańdziuk 2020), and mathe-
matical programming (Bosansky and Cermak 2015).1 While
exact, these methods rarely scale to large game trees, espe-
cially those too large to traverse, severely limiting our abil-
ity to tackle general-sum games that are of practical inter-
est, such as those in security domains like wildlife poaching
prevention (Fang et al. 2017) and airport patrols (Pita et al.
2008). For non-Nash equilibrium in general-sum games, the
value of a state often cannot be summarized as a scalar (or
fixed sized vector), rendering the direct application of FA-
based zero-sum solvers like (Silver et al. 2018) infeasible.

In this paper, we propose applying FA to model the En-
forceable Payoff Frontier (EPF) for each state and using it to
solve for the Stackelberg extensive-form correlated equilib-
rium (SEFCE) in two-player games of perfect information.
Introduced in (Bošanskỳ et al. 2017; Bosanský et al. 2015;
Letchford and Conitzer 2010), EPFs capture the tradeoff be-
tween player payoffs and is analogous to the state value in
zero-sum games.2 Specifically, we (i) study the pitfalls that
can occur with using FA in general-sum games, (ii) pro-
pose a method for solving SEFCEs by modeling EPFs using
neural networks and minimizing an appropriately designed
Bellman-like loss, and (iii) provide guarantees on incentive
compatibility and performance of our method. Our approach
is the first application of FA in Stackelberg settings with-
out relying on best-response oracles for performance guar-
antees. Experimental results show that our method can (a)
approximate solutions in games too large to explicitly tra-
verse, and (b) generalize learned EPFs over states in a re-
peated setting where game payoffs vary based on features.

2 Preliminaries and Notation
A 2-player perfect information game G is represented by a
finite game tree with game states s ∈ S given by vertices and
action space A(s) given by directed edges starting from s.

1Meta-game solving (Lanctot et al. 2017; Wang et al. 2019) is
used in zero-sum games, but not general-sum Stackelberg games.

2The idea of an EPF was initially used by (Letchford and
Conitzer 2010) to give a polynomial time solution for SSEs. How-
ever, they (as well as other work) do not propose any naming.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5764



Each state belongs to either player P1 or P2; we denote these
disjoint sets by S1 and S2 respectively. Every leaf (terminal
state) ℓ ∈ L ⊆ S of G is associated with payoffs, given by
ri(ℓ) for each player i. Taking action a ∈ A(s) at state s ̸∈ L
leads to s′ = T (a; s), where s′ ∈ S is the next state and T
is the deterministic transition function. Let C(s) = {s′ |
T (a; s) = s′, a ∈ A(s)} denote the immediate children of
s. We say that state s precedes (⊏) state s′ if s ̸= s′ and s
is an ancestor of s′ in G, and write ⊑ if allowing s = s′.
An action a ∈ A(s) leads to s′ if s ⊏ s′ and T (a; s) ⊑ s′.
With a slight abuse of notation, we denote T (a; s) ⊑ s′ by
a ⊏ s′ or (s, a) ⊏ s′. Since G is a tree, for states s, s′ where
s ⊏ s′, exactly one a ∈ A(s) such that (s, a) ⊑ s′. We use
the notation ⊒ and ⊐ when the relationships are reversed.

A strategy πi, where i ∈ {P1,P2}, is a map-
ping from state s ∈ Si to a distribution over ac-
tions A(s), i.e.,

∑
a∈A(s) πi(a; s) = 1. Given

strategies π1 and π2, the probability of reaching
ℓ ∈ L starting from s is given by p(ℓ|s;π1, π2) =∏

i∈{P1,P2}
∏

(s′,a);s⊑s′,(s′,a)⊏ℓ,s′∈Si
πi(a; s

′), and
player i’s expected payoff starting from s is
Ri(s;π1, π2) =

∑
ℓ∈L p(ℓ|s;π1, π2)ri(ℓ). We use as

shorthand p(ℓ;π1, π2) and Ri(π1, π2) if s is the root.
A strategy π2 is a best response to a strategy π1 if
R2(π1, π2) ≥ R2(π1, π

′
2) for all strategies π′

2. The set of
best responses to π1 is written as BRS2(π1).

The grim strategy argminπ1
maxπ2

R2(π1, π2) of P1

towards P2 is one which guarantees the lowest pay-
off for P2. Conversely, the joint altruistic strategy
argmaxπ1,π2

R2(π1, π2) is one which maximizes P2’s pay-
off. We restrict grim and altruistic strategies to those which
are subgame-perfect, i.e., they remain the optimal if the
game was rooted at some other state.3 Grim and altruistic
strategies ignore P1’s own payoffs and can be computed by
backward induction. For each state, we denote by V (s) and
V (s) the internal values of P2 for grim and altruistic strate-
gies obtained via backward induction.

2.1 Stackelberg Equilibrium in Perfect
Information Games

In a Strong Stackelberg equilibrium (SSE), there is a dis-
tinguished leader and follower, which we assume are P1

and P2 respectively. The leader commits to any strategy π1

and the follower best responds to the leader, breaking ties
by selecting π2 ∈ BRS2(π1) such as to benefit the leader.
4 Solving for the SSE entails finding the optimal commit-
ment for the leader, i.e., a pair π = (π1, π2) such that
π2 ∈ BRS2(π1) and R1(π1, π2) is to be maximized.

It is well-known that the optimal SSE will perform no
worse (for the leader) than Nash equilibrium, and often
much better. Consider the game in Figure 1a with k1 = k2 =
0. If the expected follower payoff from staying is less than 0,

3This is to avoid strategies which play arbitrarily at states which
have 0 probability of being reached.

4Commitment rights are justified by repeated interactions. If the
P1 reneges on its commitment, P2 plays another best response,
which is detrimental to the leader. This setting is unlike (De Jonge
and Zhang 2020) which uses binding agreements.

then it would exit immediately. Hence, solutions such as the
subgame perfect Nash gives a leader payoff of 0. The opti-
mal Stackelberg solution is for the leader to commit to a uni-
form strategy—this ensures that staying yields the follower
a payoff of 0, which under the tie-breaking assumptions of
SSE nets the leader a payoff of 4.5.

Stackelberg Extensive-Form Correlated Equilibrium
For this paper, we will focus on a relaxation of the SSE
known as the Stackelberg extensive-form correlated equili-
birum (SEFCE), which allows the leader to explicitly rec-
ommend actions to the follower at the time of decision mak-
ing. If the follower deviates from the recommendation, the
leader is free to retaliate—typically with the grim strategy.
In a SEFCE, P1 takes and recommends actions to maximize
its reward, subject to the constraints that the recommenda-
tions are sufficiently appealing to P2 relative to threat of P2

facing the grim strategy after any potential deviation.
Definition 1 (Minimum required incentives). Given s ∈ S2,
s′ ∈ C(s), we define the minimum required incentive τ(s′) =
maxs!∈C(s);s! ̸=s′ V (s!), i.e., the minimum amount that P1

needs to promise P2 under s′ for it to be reached.

Definition 2 (SEFCE). A strategy pair π = (π1, π2) is a
SEFCE if it is incentive compatible, i.e., for all s ∈ S2, a ∈
A(s), π2(a; s) > 0 =⇒ R2(T (a; s);π1, π2) ≥ τ(T (a; s)).
Additionally, π is optimal if R1(π1, π2) is maximized.

In Section 3, we describe how optimal SEFCE can be
computed in polynomial time for perfect information games.

2.2 Function Approximation of State Values
When finding Nash equilibrium in perfect information
games, the value vs of a state is a crucial quantity which
summarizes the utility obtained from s onward, assuming
optimal play from all players. It contains sufficient informa-
tion for one to obtain an optimal solution after using them
to ‘replace’ subtrees. Typically vs should only rely on states
s′ ⊒ s. In zero-sum games, vs = V s while in coopera-
tive games, vs = V s. Knowing the true value of each state
immediately enables the optimal policy via one-step looka-
head. While vs can be computed over all states by backward
induction, this is not feasible when G is large. A standard
workaround is to replace vs with an approximate ṽs which
is then used in tandem with some search algorithm (depth-
limited search, Monte-Carlo tree search, etc.) to obtain an
approximate solution. Today, ṽs is often learned. By repre-
senting ṽ with a rich function class over state features (typ-
ically using a neural network), modern solvers are able to
generalize ṽ across large state spaces without explicitly vis-
iting every state, thus scaling to much larger games.

Fitted Value Iteration. A class of methods closely related
to ours is Fitted Value Iteration (FVI) (Lagoudakis and Parr
2003; Dietterich and Wang 2001; Munos and Szepesvári
2008). The idea behind FVI is to optimize for parameters
such as to minimize the Bellman loss over sampled states
by treating it as a regular regression problem. 5 Here, the

5We distinguish RL and FVI in that the transition function is
known explicitly and made used of in FVI.
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Figure 1: (a) Game tree to illustrate computation of SEFCE. Leader , follower and leaf □ states are vertices and edges are
actions. (b-d) EPFs at s′, after exiting and s. The x and y axes are follower (µ2) and leader payoffs (Us(µ)). In (b) the pink
regions give P2 too little and are truncated. In (d), the pink regions are not part of the upper concave envelope and removed.

Bellman loss measures the distance between ṽs and the es-
timated value using one-step lookahead using ṽ. If this dis-
tance is 0 for all s, then ṽ matches the optimal v. In practice,
small errors in FA accumulate and cascade across states,
lowering performance. Thus, it is important to bound per-
formance as a function of the Bellman loss over all s.

2.3 Related Work
Some work has been done in generalizing state values in
general-sum games, but few involve learning them. Related
to ours is (Murray and Gordon 2007; MacDermed et al.
2011; Dermed and Charles 2013), which approximate the
achievable set of payoffs for correlated equilibrium, and
eventually SSE (Letchford et al. 2012) in stochastic games.
These methods are analytical in nature and scale poorly.
(Pérolat et al. 2017; Greenwald et al. 2003) propose a Q-
learning-like algorithm over general-sum Markov games,
but do not apply FA and only consider stationary strategies
which preclude strategies involving long range threats like
the SSE. (Zinkevich, Greenwald, and Littman 2005) show
a class of general-sum Markov games where value-iteration
like methods will necessarily fail. (Zhong et al. 2021) study
reinforcement learning in the Stackelberg setting, but only
consider followers with myopic best responses. (Castelletti,
Pianosi, and Restelli 2011) apply FVI in a multiobjective
setting, but do not consider the issue of incentive compati-
bility. Another approach is to apply reinforcement learning
and self-play (Leibo et al. 2017). Recent methods account
for the nonstationary environment each player faces during
training (Foerster et al. 2017; Perolat et al. 2022); however
they have little game theoretical guarantees in terms of in-
centive compatibility, particularly in non zero-sum games.

3 Review: Solving SEFCE via Enforceable
Payoff Frontiers

In Section 2, we emphasized the importance of the value
function v in solving zero-sum games. In this section, we
review the analogue for SEFCE in the general-sum games,
which we term as Enforceable Payoff Frontiers (EPF). Intro-
duced in (Letchford and Conitzer 2010), the EPF at state s is
a function Us : R 7→ R∪ {−∞}, such that Us(µ2) gives the
maximum leader payoff for a SEFCE for a game rooted at s,
on condition that P2 obtains a payoff of µ2. All leaves s ∈ L

have degenerate EPFs Us(r2(s)) = r1(s) and −∞ every-
where else. EPFs capture the tradeoff in payoffs between P1

and P2, making them useful for solving SEFCEs. We now
review the two-phase algorithm of (Bošanskỳ et al. 2017)
using the example game in Figure 1a with k1 = k2 = 0.
This approach forms the basis for our proposed FA method.

Phase 1: Computing EPF by Backward Induction. The
EPF at s′ is given by the line segment connecting payoffs of
its children EPF and −∞ everywhere else. This is because
the leader is able to freely mix over actions. To compute Us,
we consider in turn the EPFs after staying or exiting. Case
1: P1 is recommending P2 to stay. For incentive compati-
bility, it needs to promise P2 a payoff of at least 0 under
T (stay; s) = s′. Thus, we left-truncate the regions of the
EPF at s′ which violate this promise, leaving behind the blue
segment (Figure 1b), which represents the payoffs at s′ that
are enforceable by P1. Case 2: P1 is recommending P2 to
exit. To discourage P2 from staying, it commits to the grim
strategy at s′ if P2 chooses to stay instead, yielding P2 a
payoff of −1 ≤ k2 = 0. Hence, no truncation is needed and
the set of enforceable payoffs is the (degenerate) blue line
segment (Figure 1c). Finally, to recover Us, observe that we
can achieve payoffs on any line segment connecting point
across the EPFs of s’s children. This union of points on such
lines (ignoring those leader-dominated) is given by the up-
per concave envelope of the blue segments in Figure 1b and
1c; this removes {(0, 0)}, giving the EPF in Figure 1d.

More generally, let g1 and g2 be functions such that
gj : R 7→ R ∪ {−∞}. We denote by g1

∧
g2 their up-

per concave envelope, i.e., inf{h(µ) | h is concave and h ≥
max{g1, g2} over R}. Since

∧
is associative and commuta-

tive, we use as shorthand
∧

{·} when applying
∧

repeatedly
over a finite set of functions. In addition, we denote g ▷ t
as the left-truncation of the g with threshold t ∈ R, i.e.,
[g ▷ t](µ) = g(µ) if µ ≥ t and −∞ otherwise. Note that
both

∧
and ▷ are closed over concave functions. For any

s ∈ S , its EPF Us can be concisely written in terms of its
children EPF Us′ (where s′ ∈ C(s)) using

∧
, ▷ and τ(s′).

Us(µ) =


[∧

s′∈C(s) Us′

]
(µ) if s ∈ S1[∧

s′∈C(s) Us′ ▷ τ(s
′)
]
(µ) if s ∈ S2

, (1)

which we apply in a bottom-up fashion to complete Phase 1.

5766



Phase 2: Extracting Strategies from EPF. Once Us has
been computed for all s ∈ S , we can recover the optimal
strategy π1 by applying one-step lookahead starting from
the root. First, we extract (OPT2,OPT1), the coordinates of
the maximum point in Uroot, which contain payoffs under the
optimal π. Here, this is (0, 4.5). We initialize µ2 = OPT2,
which represents P1’s promised payoff to P2 at the current
state s. Next, we traverse G depth-first. By construction,
Us(µ2) > −∞ and the point (µ2, Us(µ2)) is the convex
combination of either 1 or 2 points belonging to its chil-
dren EPFs. The mixing factors correspond to the optimal
strategy π(a; s). If there are 2 distinct children s′, s′′ with
mixing factor α′, α′′, we repeat this process for s′, s′′ with
µ′
2 = µ2/α

′, µ′′
2 = µ2/α

′′, otherwise we repeat the process
for s′ and µ′

2 = µ2. For our example, we start at s, µ2 = 0,
which was obtained by P2 playing ‘stay’ exclusively, so we
keep µ2 and move to s′. At s′, µ = 0 by mixing uniformly,
which gives us the result in Section 2.

Theorem 1 ((Bošanskỳ et al. 2017; Bosanský et al. 2015)).
(i) Us is piecewise linear concave with number of knots6

no greater than the number of leaves beneath s. (ii) Using
backward induction, SEFCEs can be computed in polyno-
mial time (in |S|) even in games with chance. EPFs continue
to be piecewise linear concave.

Markovian Property. Just like state values vs in zero-sum
games, we can replace any internal vertex s in G with its EPF
while not affecting the optimal strategy in all other branches
of the game. This can done by adding a single leader vertex
with actions leading to terminal states with payoffs corre-
sponding to the knots of Us. Since Us is obtained via back-
ward induction, it only depends on states beneath s. In fact,
if two games G and G′ (which could be equal to G) shared a
common subgame rooted in s and s′ respectively, we could
reuse the Us found in G for Us′ in G′. This observation un-
derpins the inspiration for our work—if s and s′ are similar
in some features, then Us and Us′ are likely similar and it
should be possible to learn and generalize EPFs over states.

4 Challenges in Applying FA to EPF
We now return to our original problem of applying FA to
find SEFCE. Our idea, outlined in Algorithm 1 and 2 is a
straightforward extension of FVI. Suppose each state has
features f(s)—in the simplest case this could be a state’s
history. We design a neural network Eϕ(f) parameterized
by ϕ. This network maps state features f(s) to some repre-
sentation of Ũs, the approximated EPFs. To achieve a good
approximation, we optimize ϕ by minimizing an appropriate
Bellman-like loss (over EPFs) based on Equation (1) while
using our approximation Ũs in lieu of Us. Despite its sim-
plicity, there remain several design considerations.

EPFs are the ‘right’ object to learn. Unlike state values,
representing an exact EPF at a state s could require more
than constant memory since the number of knots could be
linear in the number of leaves underneath it (Theorem 1).
Can we get away with summarizing a state with a scalar or a

6Knots are where the slope of the EPF changes.

Algorithm 1: Training Pipeline

1: Sample trajectory s
(1)
new, . . . , s

(t)
new

2: Update replay buffer B with s(1), . . . , s(t)

3: for i ∈ {1, . . . , t} do
4: Sample batch S = {s(1), . . . s(n)} ⊆ B
5: ℓ← COMPUTELOSS(S;Eϕ)
6: Update ϕ using ∂ℓ/∂ϕ

Algorithm 2: COMPUTELOSS(S;Eϕ)

1: for i ∈ {1 . . . n} do
2: Ũs(i) ← Eϕ(f(s

(i)))

3: Ũ
s
(j)
next
← Eϕ(f(s

(j)
next)) for all s(j)next ∈ C(s(i))

4: Compute Ũ target
s(i)

using Equation (1) and {Ũ
s
(j)
next
}

5: return
∑

i L(Ũs(i) , Ũ
target
s(i)

)

small vector? Unfortunately, any ‘lossless summary’ which
enjoys the Markovian property necessarily encapsulates the
EPF. To see why, consider the class of games Gk in Fig-
ure 1a with k1 = −2 and k = k2 ∈ [−1, 1]. The optimal
leader payoff for any Gk is 9−11k

2 , which is precisely Us′(k)
(Figure 1b). Now consider any lossless summary for s′ and
use it to solve every Gk. The resultant optimal leader payoffs
can recover Us′(µ2) between µ2 ∈ [−1, 1]. This implies that
no lossless summary more compact than the EPF exists.

Unfulfillable Promises Arising from FA Error. Consider
the game in Figure 2a with k1 = −10, k2 = −1. The exact
Us′ is the line segment combining the points (−1, 10) and
(1−ϵ,−1), shown in green in Figure 3a. However, let us sup-
pose that due to function approximation we instead learned
the blue line segment containing (−1, 10) and (1,−1). Per-
forming Phase 2 using Ũ , the policy extracted at s′ is once
again the uniform policy and requires us to promise the fol-
lower a utility of 1 in s′′. However, achieving a payoff of 1
is impossible regardless of how much the leader is willing
to sacrifice, since the maximum outcome under s′′ is 1 − ϵ.
Since this is an unfulfillable promise, the follower’s best re-
sponds by exiting in s, which gives the leader a payoff of
−10. In general, unfulfillable promises due to small FA error
can lead to arbitrarily low payoffs. In fact, one could argue
that Ũ does not even define a valid policy.

Costly Promises. Consider the case where k1 =
−30, k2 = 1 while keeping Ũs′ the same. Here, the promise
of 1 at s′′ is fulfillable, but involves incurring a cost of
−30, which is even lower than having follower staying (Fig-
ure 3b). In general, this problem of costly promises stems
from the EPF being wrongly estimated, even for a small
range of µ2. We can see how costly promises arise even
from small ϵ is. The underlying issue is that in general,
Us can have large Lipschitz constants (e.g., proportionate to
(maxs r1(s)−mins r1(s)) /(min |r2(s)−r2(s)|)). The ex-
istence of costly payoffs rules out EPF representations based
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s
s′

(10,−1)
s′′

(k1, k2) (−1, 1− ϵ)

(−10, 0)

(a) Game tree to illustrate unful-
fillable and costly promises.

s

s′

(0, 0) (−1,−1)

refuse

(q1,−q2)

accede

(b) Stage game used in the
TANTRUM game.

Figure 2: Games used in Sections 4 and 6. Leader , fol-
lower and leaf □ states are vertices and edges are actions.

(a) Unfulfillable promise. (b) Costly promise. .

Figure 3: EPFs for (a) unfulfillable promises and (b) costly
promises. Blue lines are estimated EPFs Ũs′ , solid and dot-
ted green lines are true EPFs Us′ , Us′′ . In both cases, FA
error leads us to believe that the payoff given by the blue
square at (0, 4.5) can be achieved by mixing the endpoints
of Ũs′ with probability α′ = α′′ = 0.5 (black curves).

on discretizing the space of µ2, since small errors incurred
by discretization could lead to huge drops in performance.

5 FA of EPF with Performance Guarantees
We now design our method using the insights from Sec-
tion 4. We learn EPFs without relying on discretization over
P2 payoffs µ2. Unfulfillable promises are avoided entirely
by ensuring that the set of µ2 where Ũs(µ2) > −∞ lies
within some known set of achievable P2 payoffs, while
costly promises are mitigated by suitable loss functions.

Representing EPFs using Neural Networks. Our pro-
posed network architecture represents EPFs by a small set of
m ≥ 2 points Pϕ(s) = {(xj , yj)}, for j ∈ [m]. Here, m is a
hyperparameter trading off complexity of the neural network
Eϕ with its representation power. The approximated EPF Ũs

is the linear interpolation of these m points; and Ũs = −∞
if µ2 > maxj xj or µ2 < minj xj . For now, we make the as-
sumption that follower payoffs under the altruistic and grim
strategy (V (s) and V (s)) are known exactly for all states.
Through the architecture of Eϕ that for all j ∈ [m], we have
V (s) ≤ xj ≤ V (s). As we will see, this helps avoid unful-
fillable promises and allows for convenient loss functions.

Concretely, our network Eϕ(f(s);V (s), V (s)) takes in as
inputs state features f(s), lower and upper bounds V (s) ≤
V (s) and outputs a matrix in Rm×2 representing {(xj , yj)}
where x1 = V (s) and xm = V (s). For simplicity, we use a
multilayer feedforward network with depth d, width w and

ReLU activations for each layer. Serious applications should
utilize domain specific architectures. Denoting the output of
the last fully connected layer by h(d)(f(s)) ∈ Rw, for j ∈
{2 . . .m− 1} and k ∈ [m] we set

xj = σ
(
zTx,jh

(d)(f(s)) + bx,j

)
·
(
V (s)− V (s)

)
+ V (s),

yk = zTy,kh
(d)(f(s)) + by,k,

and x1 = V (s) and xm = V (s), where σ(x) = 1/(1 +
exp(−x)). Here, zx,j , zy,k ∈ Rw and bx,j , by,k ∈ R are
weights and biases, which alongside the parameters from
feedforward network form the network parameters ϕ to be
optimized. Since Ũs is represented by its knots (given by
Pϕ(s)),

∧
and consequently, (1) may be performed explic-

itly and efficiently, returning an entire EPF represented by
its knots (as opposed to the EPF evaluated at a single point).
This is crucial, since the computation is performed every
state every iteration (Line 4 of Algorithm 2).

Loss Functions for Learning EPFs. Given 2 EPFs Ũs, Ũ
′
s

we minimize the following loss to mitigate costly promises,

L∞(Ũs, Ũ
′
s) = max

µ2

|Ũs(µ2)− Ũ ′
s(µ2)|.

L∞ was chosen specifically to incur a large loss if the ap-
proximation is wildly inaccurate in a small range of µ2 (e.g.,
Figure 3b). Achieving a small loss requires that Ũs(µ2)

approximates Ũ ′
s(µ2)) well for all µ2. This design deci-

sion is particularly important. For example, contrast L∞
with another intuitive loss L2(Ũs, Ũ

′
s) =

∫
µ2
(Ũs(µ2) −

Ũ ′
s(µ2))

2dµ2. Observe that L2 is exceedingly small in the
example of Figure 3b — in fact, when ϵ is small enough
leads to almost no loss, even though the policy as discussed
in Section 4 is highly suboptimal. This phenomena leads to
costly promises, which was indeed observed in our tests.

Our Guarantees. Any learned Ũ implicitly defines a pol-
icy π̃ by one-step lookahead using Equation (1) and the
method described in Phase 2 (Section 3). Extracting π̃ need
not be done offline for all s ∈ S; in fact, when G is too
large it is necessary that we only extract π̃(·; s) on-demand.
Nonetheless, π̃ enjoys some important properties.

Theorem 2 (Incentive Compatibility). For any policy π̃ ob-
tained using our method, any s ∈ S2 and a ∈ A(s), we have
π̃s(a; s) > 0 =⇒ R2(T (a; s); π̃) ≥ τ(T (a; s)).

Theorem 3 (FA Error). If L∞(Ũs, Ũ
target
s ) ≤ ϵ for all s ∈ S ,

then |R1(π̃)−R1(π
∗)| = O(Dϵ) where D is the depth of G

and π∗ is the optimal strategy.

Here, T (a; s) is transition function (Section 2). Recall
from Section 2 that for π to be an optimal SEFCE, we re-
quire (i) incentive compatibility and (ii) R1(π) to be max-
imized. Theorems 2 and 3 illustrate how our approach dis-
entangles these criteria. Theorem 2 guarantees that P2 will
always be incentivized to follow P1’s recommendations, i.e.,
there will be no unexpected outcomes arising from unfulfil-
lable promises. Crucially, this is a hard constraint which is
satisfied solely due to our choice of network architecture,
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which ensures that Ũs(µ2) = −∞ when µ2 > V s for any
π̃ obtained from Ũ . Conversely, Theorem 3 shows that the
goal of maximizing R1 subject to incentive compatibility is
achieved by attaining a small FA error across all states. This
distinction is important. Most notably, incentive compatibil-
ity is no longer dependent on convergence during training.
This explicit guarantee stands in contrast with methods em-
ploying self-play reinforcement learning agents; there, in-
centive compatibility follows implicitly from the apparent
convergence of a player’s strategy. This guarantee has practi-
cal implications, for example, evaluating the quality of π̃ can
be done by estimating R1(π̃) based on sampled trajectories,
while implicit guarantees requires incentive compatibility to
be demonstrated using some approximate best-response or-
acle and usually involves expensive training of a RL agent.

The primary limitation of our method is when V and V
(and hence τ ) are not known exactly. As it turns out, we
can instead use upper and lower approximations while still
retaining incentive compatibility. Let π̃grim

1 be an approx-
imate grim strategy. Define V˜ (s) to be the expected fol-
lower payoffs at s when faced best-responding to π̃grim

1 , i.e.,
R2(s; π̃

grim
1 , π2), where π2 ∈ BRS2(π̃

grim
1 ). Following Def-

inition 1, the approximate minimum required incentive is
τ̃(s′) = maxs!∈C(s);s! ̸=s′ V˜ (s!) for all s ∈ S2, s′ ∈ C(s).
Similarly, let π̃alt be an approximate joint altruistic strategy
and its resultant internal payoffs in each state be Ṽ (s).

Under the mild assumption that π̃alt always benefits P2

more than the π̃grim
1 , i.e., Ṽ (s) ≥ V˜ (s) for all s, we can re-

place the τ, V and V with τ̃, V˜ and Ṽ and maintain incentive
compatibility (Theorem 2). The intuition is straightforward:
if P2’s threats are ‘good enough’, parts of the EPF will still
be enforceable. Furthermore, promises will always be fulfil-
lable since EPFs domains are now limited to be no greater
than Ṽ (s), which we know can be achieved by definition.
Unfortunately, Theorem 3 no longer holds, not even in terms
of maxs |τ̃(s) − τ(s)|. This is again due to the large Lips-
chitz constants of Us. However, we have the weaker guar-
antee (whose proof follows that of Theorem 3) that perfor-
mance is close to that predicted at the root.
Theorem 4 (FA Error with Weaker Bounds).
If L∞(Ũs, Ũ

target
s ) ≤ ϵ for all s ∈ S , then

|R1(π̃) − ÕPT2| = O(Dϵ) where D is the depth of
G and ÕPT2 = maxµ2

Ũroot(µ2).

Remark. The key technical difficulty here is finding Ṽ . In
our experiments, π̃grim

1 can be found analytically. In general
large games, we can approximate π̃grim

1 , Ṽ by searching over
S2, but use heuristics when expanding nodes in S1.

Implementation Details. (i) We use several techniques
typically used to stabilize training such as target networks
(Arulkumaran et al. 2017; Mnih et al. 2015) and prioritized
experience replay (Schaul et al. 2015). (ii) In practice, in-
stead of L∞, we found it easier to train a loss based on the
sum of the squared distances at the x-coordinate of the knots
in Ũs and Ũ ′

s, i.e., L =
∑

µ2∈{knots}[Ũs(µ2) − Ũ ′
s(µ2)]

2.
Since L upper bounds L2

∞, using it also avoids costly

promises and allows us to enjoys a similar FA guarantee. (iii)
If G has a branching factor of β, then (1) in Algorithm 2 can
be executed inO(βm) time. In practice, we use a brute force
method better suited for batch GPU operations which runs in
O((βm)3). (iv) We train using only the decreasing portions
of Ũs. This does not lead to any loss in performance since
payoffs in the increasing portion of an Ũs are Pareto domi-
nated. We do not want to ‘waste’ knots on learning the mean-
ingless increasing portion. (v) Training trajectories were ob-
tained by taking actions uniformly at random. Specifics for
all implementation details are in the Appendix.

6 Experiments
We focused on the following two synthetic games. Game
details and experiment environments are in the Appendix.
Code is at https://github.com/lingchunkai/learn-epf-sefce.

Tantrum. TANTRUM is the game in Figure 2b repeated
n times, with q1 > 0, q2 ≥ 1, and rewards accumulated
over stages. The only way P1 can get positive payoffs is
by threatening to throw a trantrum with the mutually de-
structive (−1,−1) outcome. Since q2 > 1, P2 has to use
threats spanning over stages to sufficiently entice P2 to ac-
cede. Even though TRANTRUM has O(3n) leaves, it is clear
that the grim (resp. altruistic) strategy is to throw (resp. not
throw) a tantrum at every step. Hence V and V are known
even when n is large, making TANTRUM a good testbed. The
raw features f(s) is a 5-dimensional vector, the first 3 are the
occurrences count of outcomes for previous stages, and the
last 2 being a one-hot vector indicating the current state.

Resource Collection. RC is played on a J × J grid with
a time horizon n. Each cell contains varying quantities of 2
different resources r1(x, y), r2(x, y) ≥ 0, both of which are
collected (at most once) by either players entering. Players
begin in the center and alternately choose to either move to
an adjacent cell or stay put. Each Pi is only interested in re-
source i, and players agree to pool together resources when
the game ends. RC gives P1 the opportunity to threaten
P2 with going ‘on strike’ if P2 does not move to the cells
that P1 recommends. RC has approximatelyO(25n) leaves.
The grim strategy is for P1 to stay put. However, unlike
TANTRUM, computing V and V still requires search (at least
for P2) at each state, which is still computationally expen-
sive. We use as features (a) one-hot vector showing past vis-
ited locations, (b) the current coordinates of each player and
whose turn it is (c) the amount of each resource collected,
and (d) the number of rounds remaining.

6.1 Experimental Setup
Games with Fixed Parameters. We run 3 sub-
experiments. [RC] We experimented with RC with
J = 7, n = 4 over 10 different games. Rewards ri were
generated using a log-Gaussian process over (x, y) to
simulate spatial correlations (details in Appendix). We also
report the payoffs from a ‘non-strategic’ P1 which optimizes
only for resources it collects, while letting P2 best respond.
[TANTRUM] We ran TANTRUM with n = 25, q1 = 1 and
q2 chosen randomly. These games have > 1e12 states;
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# ∆OPT ∆SP ∆non

RC 10 -.0247 .200 .265
TANTRUM 5 -.0262 8.89 N/A

RC+ 3 N/A N/A .421

(a) Results for fixed parameter games

5.5 6.5 7.5 8.5 9.5 10.5
6.4

7.4

8.4

9.4

Exact
Predicted
Lookahead

(b) EPF after 100k epochs

5.5 6.5 7.5 8.5 9.5 10.5
6.4

7.4

8.4

9.4

Exact
Predicted
Lookahead

(c) EPF after 2M epochs

-26.5 -26 -25.5

0

1

Target
Lookahead

(d) Failure case

Figure 4: (a) Results for games with fixed parameters averaged over # specifies # trials. ∆OPT, ∆SP, and ∆non is the average
difference between our method and the optimal SEFCE, subgame perfect Nash, and non-strategic leader commitment. (b)-(c)
Learned EPFs at the root for RC. (d) A failure case in TANTRUM, even though learned policies are still near-optimal.

however, we can still obtain the optimal strategy due to the
special structure of the game (note the subgame perfect
equilibrium gives P1 zero payoff). [RC+] We ran RC with
J = 9, n = 6. Since G is large, we use approximates (τ̃ , Ṽ ,
V˜ ) obtained from π̃grim

1 and π̃alt. π̃grim
1 is for P2 to stay put,

while V˜ is obtained by applying search online (i.e., when s
appears in training) for P2 starting from s. Thus τ̃(s) can
also be computed online from V˜ . π̃alt is obtained by running
exact search to a depth of 4 (counted from the root) and then
switching to a greedy algorithm. On the rare occasion that
Ṽ (s) < V˜ (s), we set Ṽ (s) ← V˜ (s). We report results in
Figure 4a, which show the difference between P1’s payoff
for our method and (i) the optimal SEFCE, (ii) the subgame
perfect Nash, and (iii) the non-strategic leader commitment.

Featurized TANTRUM. We allow q1, q2 to vary between
stages of G, giving vectors qi ∈ [1,∞]n. Each trajec-
tory uses different qi, which we append as features to our
network, alongside the payoffs already collected for each
player. For training, we draw i.i.d. samples of qj

i ∼ exp(1)+
1. The evaluation metric is κ = R1(π̃)/OPT, i.e., the ra-
tio of P1’s payoffs under π̃ compared to the optimal π.
For each n, we test on 100 q-vectors not seen during train-
ing and compare their κ against a ‘greedy’ strategy which
recommends P2 to accede as long as there are sufficient
threats in the remainder of the game for P1 (details in Ap-
pendix). We also stress test π̃ on a different test distribution
q̂j
i ∼ exp(1) + 4. We report results in Figure 5a and 5b.

6.2 Results and Discussion
For fixed parameter games whose optimal value can be com-
puted, we observe near optimal performance which signifi-
cantly outperforms other baselines. For [RC], the average
value of each an improvement of .5 is approximately equal
to moving an extra half move. In [TANTRUM], the sub-
game perfect equilibrium is vacuous as P1 is unable to issue
threats and gets a payoff of 0. In [RC+], we are unable to
fully expand the game tree, however, we still significantly
outperform the non-strategic baseline.

For featurized TANTRUM, we perform near-optimally for
small n, even when stress tested with out-of-distribution q’s
(Figure 5a). Performance drops as n becomes larger, which
is natural as EPFs become more complex. While perfor-
mance degrades as n increases, we still significantly outper-

n κ grd-κ str-κ
5 .993 .828 .997
6 .982 .773 .982
7 .968 .778 .921

10 .938 .775 .898

(a)
(b)

Figure 5: Results for Featurized TRANTRUM as depth n
varies, based on κ, the ratio of the leader’s payoff to the
true optimum. (a) grd-κ and str-κ denote results for the base-
line greedy method and our results when stress tested with
q drawn from a distribution from training. (b) Proportion of
trials which give κ < κthresh.

form the greedy baseline. The stress test suggests that the
network is not merely memorizing data.

Figures 4b and 4c shows the learned EPFs at the root
for epochs 100k and 2M, obtained directly or from one-
step lookahead. As explained in Section 5, we only learn the
decreasing portions of EPFs. After 2M training epochs, the
predicted EPFs and one-step lookahead mirrors the true EPF
in the decreasing portions, which is not the case at the begin-
ning. At the beginning of training, many knots (red markers)
are wasted on learning the ‘useless’ increasing portions on
the left. After 2M epochs, knots (blue markers) were learn-
ing the EPF at the ‘useful’ decreasing regions.

Figure 4d gives an state in TANTRUM whose EPF yields
high loss even after training. This failure case is not rare
since TANTRUM is large. Yet, the resultant action is still
optimal—in this case the promise to P2 was µ2 = −25.5
which is precisely V (s). Like MDPs, policies can be near-
optimal even with high Bellman losses in some states.

7 Conclusion
We proposed a novel method of performing FA on EPFs that
allows us to efficiently solve for SEFCE. This is to the best
of our knowledge, the first time a such an object has been
learned from state features, leading to a FA-based method
of solving Stackelberg games with performance guarantees.
We hope that our approach will help to close the current gap
between solving zero-sum and general-sum games.
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