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Abstract 

 Metal-organic frameworks (MOFs) are promising materials with various applications, and 
machine learning (ML) techniques can enable their design and understanding of structure-property 
relationships. In this paper, we use machine learning (ML) to cluster the MOFs using two different 
approaches. For the first set of clusters, we decompose the data using the textural properties and 
cluster the resulting components. We separately cluster the MOF space with respect to their 
topology. The feature data from each of the clusters were then fed into separate neural networks 
(NNs) for direct learning on an adsorption task (methane or hydrogen). The resulting NNs were 
then used in transfer learning (TL) where only the last NN layer was retrained. The results show 
significant differences in TL performance based on which cluster is chosen for direct learning. We 
find TL performance depends on the Euclidean distance in the decomposed feature space between 
the clusters involved in the direct and TL. Similar results were found when TL was performed 
simultaneously across both types of clusters and adsorption tasks. We note that methane adsorption 
was a better source task than hydrogen adsorption. Overall, the approach also identifies the MOFs 
with the most transferable information paving the way for a more comprehensive understanding 
of the MOF landscape. 

Introduction 

 Metal-organic frameworks (MOFs) are an exciting material class with great potential in a 
myriad of applications. They have been researched for different and broad uses such as drug 
delivery,1-4 supercapacitors,5-8 gas storage,9-11 and separation processes.12-15 This is because MOFs 
are both diverse and highly controllable. MOFs are made of inorganic nodes and organic linkers 
that self-assemble into a network. Generally, MOFs are attractive because their modularity allows 
researchers to control different material features such as pore size and chemistry, making them 
ideal for multitudes of tasks and needs.16-19 The large complexity and scale associated with MOFs 
has led to the use of computational methods to evaluate them.20-28  

 Machine learning (ML) is a growing field that includes different methods to better 
understand and harness data to make predictions and gather insights. One domain of significant 
interest is chemical and material research. Regarding MOFs as a materials subset, there are over 
100,000 that have been experimentally synthesized and reported in the Cambridge Structural 
Database and the number is rapidly increasing with time.29-31 Other databases of note include the 
138,000 hypothetical MOFs (hMOFs)32,33 and those generated by the topologically based crystal 
constructor (ToBaCCo).34-36 Grand canonical Monte Carlo (GCMC) are typically used to 
determine adsorption in porous materials. Briefly, GCMC simulations fix the chemical potential, 
volume, and temperature thus allowing the number of particles to fluctuate. MC moves like 



insertions, deletions, and translations are performed in the simulation and the amount adsorbed is 
determined once the simulation ends at the desired conditions. GCMC simulations have been used 
with great success to characterize adsorption in MOFs and to produce large amounts of data.24,37,38 
Given the large sets of data, ML has played an important role in understanding MOF performance 
and the databases themselves. Strong relationships have been found relating MOF performance to 
their textural properties and their topologies.11,28,39-47 

 One goal of ML is to acquire and treat large amounts of data to make predictions. Often 
the amount of quality data available is the largest determinant of success. One solution is a subset 
of ML applications called transfer learning (TL), which resolves to fix this problem by allowing 
data from related domains to be used in a new one.48-53 TL helps ML performance in applications 
where there is sparse data. Some examples of TL uses are drug efficacy, software defect, and 
cardiac arrhythmia classification tasks.54 The use of TL in this work extends directly from Ma et 
al.55 who analyzed the transfer of gas adsorption tasks in MOFs. In this work, we study TL across 
domains of the MOF space. We first used clustering to determine the MOF domains. 

 Clustering is an unsupervised method of data analysis that involves segmenting data into 
groups with shared similarities based on distances between features, without the need for explicit 
labeling. Two types of clustering are used in this piece, k-means and agglomerative clustering. K-
means clustering partitions the dataset into k clusters by iteratively assigning data points to their 
closest centroid. Agglomerative clustering is a hierarchical technique that merges the most similar 
clusters into larger clusters based on a similarity metric (in our case Euclidean distance).  Cluster 
analysis has recently been used for MOFs with some success. Escobar-Hernandez and coworkers 
used k-means clustering to evaluate MOF models that deal with thermal stability,56 Rosen et al 
employed UMAP to determine quantum properties in MOFs,57 and Wu et al used UMAP and k-
means to condense MOF features into an accessible representation of the space.58 

 Regarding an accessible representation of the space to use in clustering, we utilize principal 
component analysis (PCA) to effectively represent and understand the MOF textural space.  PCA 
is a statistical method used to reduce the dimensionality of a dataset while retaining the most 
important information or patterns present in the data.  Here PCA is used to generate a 2D 
representation of the textural space that will be used to visualize and describe the learning 
performance. 

 In this work, we combine clustering with TL to derive new understanding of MOF 
materials. First, we use a clustering algorithm to divide the MOF textural feature domain into 
clusters. Then, we use TL on adsorption tasks across the different clusters, finding different 
efficiencies in the TL performance that depends on the distance between the clusters. Similar 
trends are also observed when we cluster the space based on the MOF topologies.  

Methods 

 Codes for clustering, TL, and data analysis can be found at: https://github.com/Gregory-
Cooper/TL_MOF. The data is also included in the repository. ML techniques were implemented 
using SciKit-learn59 and Pytorch.60 

https://github.com/Gregory-Cooper/TL_MOF
https://github.com/Gregory-Cooper/TL_MOF


Data set 

The data set used in this work was originally generated in a previous report and has also 
been used previously in a transfer learning study. Briefly, over 13,000 MOF structures were 
computationally generated using the topologically based crystal constructor (ToBaCCo).34-36 They 
represent a diverse set of structures from a topology perspective. The textural properties of the 
structures were also determined using a variety of tools. Lastly, GCMC simulations were 
performed to determine pure component methane (298 K, 100 bar) and hydrogen (243 K and 77 
K, 100 bar) adsorption. In this work, we use the topology of the structures and the textural 
properties (void fraction, volumetric surface area, gravimetric surface area, limiting pore diameter, 
largest cavity diameter) for clustering, the same textural properties for training neural networks in 
direct and transfer learning, and the adsorption of methane and hydrogen as the tasks to be learned. 
The data set can also be obtained from the relevant publications and github repositories associated 
with them.34-36,55  

Clustering 

 MOFs were clustered in two separate ways.61 First, a principal component analysis (PCA) 
was performed on the MOF features used for prediction (volumetric surface area, void fraction, 
pore limiting diameter, gravimetric surface area, and largest cavity diameter). PCA generated two 
components that contained 87.7% of the variance and were subsequently used to cluster MOFs. 
K-means was used to cluster them using the two principal components and we refer to them as 
generic clusters in this work. The second type of clustering of the MOFs was done using their 
topologies. The topologies were clustered using the median value of the structures belonging to a 
given topology in the principal component space as later visually represented in Figure 4. For 
example, for 100 MOFs of the same topology, the median PC1 and PC2 components from the set 
were selected to create a point.  All topologies were given a point and these new points were then 
clustered via agglomerative clustering. Since the clusters had an uneven distribution of MOFs, the 
amount of data for learning was kept consistent using the same data as that of the smallest cluster. 
The distribution of structures in the various clusters are summarized in Table 1 below. 

Table 1. Number of MOFs contained in each cluster for generic and topology clusters. 

Generic 
Clusters 

0 1 2 3 4 5 

Number of 
MOFs 

431 1208 2727 3812 3455 1873 

Topology 
Clusters 

0 1 2 3 4 5 

Number of 
MOFs 

4084 1338 1818 561 3288 2417 

 

Direct and transfer learning for adsorption tasks 

 The direct and transfer learning models developed by Ma and coworkers55 were used as a 
starting point in this work. This entailed a three-layer neural network consisting of 5 inputs (MOF 



features) and one output (adsorption prediction). A batch system was employed where one batch 
was 128 randomly selected data points; this gave the best performance compared to other batch 
sizes in terms of time and predictive power. These batches were run until a complete pass was 
made through the dataset, constituting one epoch of data. Hyperparameter optimization for the 
hidden layer size, activation function, and learning rate was also performed. Importantly, the 
optimization was done for the target task (transfer learning), not the source task (direct learning). 
That is, the chosen model was optimal for the complete process including direct and transfer 
learning. The optimizer selected was Adam and the loss function was the mean squared error 
(MSE). The dataset was split into training, validation, and testing, with a ratio of 20:4:1. 

The dataset splits were employed twice in the model, before each learning (direct or 
transfer) and no data was saved (out of sample) over the entire process.  For cases where the 
transfer cluster was the same as the direct learning cluster, we allowed for some data to be reused 
in the resulting model. To combat this data leakage into the results, 500 epochs were used for 
training and only the last epoch was used for analysis. This should remove the overlapping 
information from the direct learning and make the transfer learning results generalizable. 

 Results are averaged over 100 trials (100 different data splits and training).  This reduced 
uncertainty in the results and further removed any effects of data leakage between learnings. 

Transfer learning across clusters 

 Transfer learning across clusters (generic and topological) was performed using weight 
percentage of hydrogen adsorption at 100 bar and 243 K as the task. Transfer learning was done 
for the two types of clusters separately. For example, if a generic cluster is used for direct learning, 
then a generic cluster is used to train the transfer learning, never using a topological cluster.  For 
both types of clusters, one cluster was chosen and used in direct learning first. We deem the cluster 
chosen for direct learning as the base cluster. The resulting model is used as a starting point for 
transfer learning to the other clusters. The neural network contains two hidden layers of 250 and 
125 neurons, respectively. A learning rate of 0.005 was used and PReLu was the activation 
function. The transfer learning was done with 500 epochs for direct and transfer learning. A generic 
workflow for transfer learning across clusters can be summarized as follows:  

1. Cluster zero is chosen and its data split into test-training. 
2. A 3-layer neural network is trained using the training data from cluster zero. 
3. Cluster one is selected for transfer learning and its data is split into test-training. 
4. The resulting neural net from cluster zero is used for transfer learning with data from cluster 

one; only the last layer of the neural network is allowed to change its weight with the data 
from cluster one. 

5. Transfer learning into cluster one from cluster zero is analyzed.  

Transfer learning across clusters and adsorption tasks 

 In addition to performing transfer learning of the same adsorption task across clusters, we 
also investigate transfer learning across clusters and adsorption tasks. The adsorption tasks 
considered were hydrogen adsorption at 100 bar and 77 K, hydrogen adsorption at 100 bar and 



243 K, and methane adsorption at 100 bar and 298. We studied all these tasks in their combinations 
as source and target task. For example, we used hydrogen adsorption at 100 bar and 77 K as the 
source adsorption task on cluster 0 and used it for transfer learning of methane adsorption at 100 
bar and 298 K on cluster 1. Outside of this change in the source and target tasks, the transfer 
learning procedure remained the same as when only considering the transfer learning across 
clusters.  

Learning metrics 

 Some metrics were introduced to understand the learning process besides just predictive 
performance. These are obtained from the resulting graphs of R2 versus epoch as in Figure 1. The 
four metrics are: 

1. Net R2: measures the final R2 value obtained.  
2. Worst epoch: measures the change in final versus initial performance. It is calculated by 

the absolute value of subtracting the initial R2 value from the final R2 value. 
3. Learning: measure of learning efficiency. It is calculated from the integral of the curve 

until 95% of the final R2 is reached.  
4. Megabytes: calculated by multiplying the number of epochs by the megabytes per epoch. 

It is the amount of information needed by the model to transfer learn. 

Results 

Generic and topology clusters 

 Generic clusters refer to those generated using only the textural features of the MOFs 
(volumetric surface area, void fraction, pore limiting diameter, gravimetric surface area, and 

 

Figure 1. Learning metrics used to quantify transfer learning performance across clusters and tasks. 
These metrics seek to quantify final performance and learning efficiency. 



largest cavity diameter) without any concern as to their topology. We performed PCA and the first 
two components contain approximately 88% of the variance. These two components were used to 
cluster the space using k-means. Figure 2 shows the data in the principal component (PC) space, 
the resulting clusters, and a bisect plot to show the direction of the PCA.  

 The scales of the components have a range of 12 and 8 units for PC 1 and PC 2, 
respectively. This is on a standardized scale such that a value of 3 represents 3 standard deviations 
from the mean. The kurtosis and skew of the set are -0.53 and -0.06 for PC 1 and 7.89 and 2.09 
for PC 2, showing the deviations from normal distributions for both PCs. This highlights the 
heterogeneity of the properties of MOFs in the data set.  

 The differences observed in the MOF textural properties, as observed in Figure 2, drive 
their performance in various adsorption tasks. Figure 3 shows how adsorption performance, 
hydrogen at 100 bar and 243 K, is related to the PCs and how the various clusters occupy the space. 
Adsorption performance is normalized in the plot. Figure 3 also shows how performance is 
expected to behave in the various clusters. For example, cluster 0 does not show performance 
above 0.2. The performance differences across the clusters are clearly related to the features that 
make up the clusters. We expect the performance in transfer learning across the clusters will be 
related to the distance between the clusters as we can clearly see trends in the PC space and in the 
adsorption space. We expect transfer learning to work well for the uses found in the paper.  It has 
been used previously in the MOF adsorption space in previous works.  We found correlation with 
respect to the whole space between adsorption tasks from 0.97 to 0.99, suggesting transfer learning 
a valid procedure.  Correlation data for the total MOF space and with respect to each generic cluster 
can be found in the SI. 

  

Figure 2. Clustering in principal component space. The left panel shows the top two principal 
components and how the space was clustered. The right panel shows a bisect plot revealing how the 
different features are represented in the principal components. 



 We also clustered MOFs according to their topology through agglomeration. Figure 4 
illustrates the process. To cluster them, the median values in the PC space of all the structures of 
a given topology (top panel, Figure 4) are used. Then, the distance between the median values of 
the topologies is used to define new clusters in an agglomerative fashion. We found that six clusters 
provide a good balance between the total amount of clusters and the number of structures within 
each cluster.  

 

Figure 4. Clustering of MOF structures based on their topology.  Top right panel shows all structures in 
one family of MOFs (colored using generic clusters). Bottom right panel shows the median values after 
transforming one family in the PC space of selected topologies. Left panel shows dendrogram create by 

 

Figure 3. Standardized adsorption performance for hydrogen at 100 bar and 243 K with respect to 
each PC. Different clusters clearly occupy different areas of the adsorption space with respect to PC1 
and PC2. 



agglomerative clustering using the median values distances. Six clusters resulted from this process. Red 
dashed lines in right panels are to delineate outline of the MOF space. 

 Another way to understand and describe the topology clusters is by looking at what 
percentage of the generic clusters make them up. The results can be seen in Table 2. This provides 
insights into the relationships between the topologies and the resulting textural features of MOFs. 
For example, topology cluster 0 is mostly comprised of MOFs in generic clusters 3, 4, and 5. 
Similarly, topology cluster 3 is mostly comprised of generic clusters 0, 1, and 2.   

Table 2. Percentage of generic clusters in topology clusters. 

Topology 
Cluster 

% Generic 
Cluster 0 

% Generic 
Cluster 1 

% Generic 
Cluster 2 

% Generic 
Cluster 3 

% Generic 
Cluster 4 

% Generic 
Cluster 5 

0 0.1 6.0 6.0 27.6 34.3 26.0 
1 0.1 1.1 2.7 13.9 24.5 55.8 
2 1.9 10.5 23.5 39.3 24.7 0.0 
3 29.6 25.7 42.6 2.1 0.0 0.0 
4 6.5 17.5 38.8 31.1 6.1 0.1 
5 0.6 1.8 19.4 30.1 45.6 2.6 

 

Transfer learning across generic clusters 

 Figure 5 below shows a representative case of transfer learning across the generic clusters. 
We used hydrogen adsorption at 100 bar and 243 K as the task to be transferred across clusters. 
We report the mean R2 of the resulting models for 100 trials of learning and the bars are the 
standard deviation. Figure 5 shows how the transfer learning performed using cluster 1 as the base 
for direct learning and transferring to the rest of the clusters. Though performance is high in all 
clusters, the general trend is that the model performance resulting from transfer learning is 
inversely correlated with distance in the PC space. We also observe the standard deviation is 
positively correlated with PCA distance. This trend is observed using all the clusters as bases for 
transfer learning. The plots for the rest of the clusters are shown in the SI.  



 

 Similar trends were observed for learning metrics beyond the predictive power of the 
transfer learning model. Figure 6 below shows the results for learning and megabytes, quantities 
introduced in the methods section. The panel on the left shows how clusters closer to the base 
cluster require comparatively fewer MOFs to complete the transfer learning process. The right 
panel of figure 6 shows how variable the model was depending on the distance from the base 

 

Figure 5. Example of how transfer model performs in different clusters, using cluster 1 as the base 
for direct learning. An increase in the PCA distance between clusters leads to lower performance of 
the resulting model.   

 

Figure 6. Transfer learning performance using direct learning on cluster 1 and transferring to the rest 
of the clusters. The left panel shows the information needed to achieve a good model increases with 
increasing PC distance. The right panel shows the average learning and standard deviation increase 
with PC distance.  



cluster; closer clusters have smaller standard deviations and average learning values. Similar trends 
are observed when using all the clusters as the base clusters; the plots can be found in the SI.  

 All this analysis implies that there are differences in the transfer learning performance 
depending on which cluster is chosen for direct learning. Figure 7 shows our analysis using the 
average R2 and Megabytes needed for each base during the transfer learning across all clusters. 
We find cluster 4 was the best performing base cluster and cluster 0, the worst. An interpretation 
of this observation is that certain areas of the feature space contain information that better represent 
the whole feature space and are thus better suited for transfer learning. This interpretation also 
explains why cluster 0 is the worst performer. When looking back at figures 2 and 3, we see cluster 
0 is near one of the extremes in the PC space, so it makes sense its data poorly encodes the rest of 
the feature space. Interestingly, although cluster 3 is nearest to the center of the PC space, cluster 
4 was still found to be the top performer.  

Transfer learning across topological clusters 

 Figure 8 shows the transfer learning performance using the topological cluster 3 as the base 
cluster for transfer learning. Overall, the same trends that were observed for the generic clusters 
are observed for the topological cluster: increasing the distance in the PC space between the base 
cluster and the ones for transfer learning decreases performance and increases variance. 

 

Figure 7. Transfer learning performance as a function of base cluster. The left panel shows the 
average transfer learning performance in terms of R2 while the right panel shows the amount of 
information required for transfer learning. Based on these metrics, we find cluster 4 to be the best 
while cluster 0 is the worst.  



 As done with the generic clusters, different base topological clusters show varying 
performance. Figure 9 shows the results. Cluster 2 shows the best performance while cluster 3 
shows the worst. The resulting performance can be analyzed using the generic clusters. Table 2 
shows the composition of the topological clusters from the generic clusters. Topological cluster 2 
performed so well because 98% of its data comes from generic clusters 1-4, which are near the 
center of the PC space. Conversely, topological cluster 3 only has around 2% of its data from the 
information-rich area of the generic clusters. Interestingly, when comparing the performance of 
the generic clusters versus the topological clusters, we see the topological clusters produced better 
models in the transfer learning. This is because the various topological clusters are comprised of 
the generic ones, spanning multiple generic clusters in the PC space.  This is previously shown in 
Figure 4. Given these differences we see that the generic clusters serve to probe relationships in 
the feature space. The topology clusters, as they contain more general information from the feature 
space, instead provide insights as to how the families of MOFs relate to each other in the transfer 
learning environment.  

 

 

Figure 8. Transfer learning performance using direct learning on topological cluster 3 and 
transferring to the rest of the clusters as a function of PC distance from the base cluster. Panel a 
show the performance of the model produced from transfer learning. Panel b shows learning, panel 
c shows amount of information and panel d shows the worst epoch. All the metrics show worsening 
performance as the PC distance from the base cluster increases.   



 

Transfer learning of adsorption tasks across clusters 

 We also studied transfer learning performance using the generic and topology clusters 
where we transfer knowledge to a new cluster for a different adsorption task. For instance, we train 
on cluster 0 for hydrogen adsorption at 243 K and 100 bar and do transfer learning on cluster 1 for 
methane adsorption at 298 K and 100 bar. Given what we have learned so far when transferring 
across clusters, any difference that is observed can be attributed to the adsorption tasks on which 
we train.  

 First, we perform the transfer learning with hydrogen adsorption at 77 K and 100 bar as 
the source task and hydrogen adsorption at 243 K and 100 bar as the target task, and vice versa, 
using the generic clusters. We find similar trends as before, where performance decreases with 
increasing distance between the clusters. Though, higher variances in general across all metrics 
are observed. We also find cluster 4 is the top performer while clusters 0 and 1 are the worst. 
Interestingly, we found a better performance when using hydrogen adsorption at 243 K and 100 
bar as the source adsorption task. When looking at the same exercise, but instead using the 
topology clusters, the general trends with distance in the PC space remain. However, we no longer 
see a preferential source adsorption task.  

 

Figure 9. Transfer learning performance as average R2 value as a function of base topological cluster. 
Overall we find cluster 2 to be the top performer while 3, the worst. The performance of the 
topological clusters in transfer learning was better than for the generic clusters.  



 The transfer learning exercise using methane adsorption at 298 K and 100 bar and hydrogen 
adsorption at 243 K and 100 bar as both source and target tasks in the generic clusters revealed 
interesting trends. We find that hydrogen was a less effective source task, as one cluster could not 
learn the methane task (negative R2) with remaining clusters showing relatively lower R2 values 
extending from 0.47 to 0.72.  This can be seen in the right side of Figure 10.  Methane though, 
performed well as the source task, with resulting transfer learning models for hydrogen adsorption 
with R2 values ranging from 0.88 to 0.98; figures are in the SI. Despite the clear similarities in the 
features that govern methane and hydrogen adsorption,55 our results suggest that the information 
may not always be transferable when looking at different regions of the feature space.  

Digging deeper into this phenomenon, we investigated the results of the transfer clusters.  
Considering the two cases (transfer to and transfer from methane), it can be observed that the 
distance becomes a much more important factor in transferring to methane from hydrogen.  That 
is, the further the cluster from the direct learning cluster, the worse the performance. This is 
emphasized by looking at the residuals from the resulting models using hydrogen as the source in 
the TL across clusters (Figure 11). In the SI, we also show transfer from hydrogen at different 
temperatures to see if temperature was a factor in the transfer; we observe similar performance, 
showing it is not a factor.  With this data, we currently cannot place the exact reason for inherent 
differences in the information transfer between hydrogen and methane; this merits further 
investigation.  Additional graphs and analysis can be found in the SI.  

 

Figure 10. Task Transfer learning performance as average R2 value as a function of base generic 
cluster.  On the left is transfer from hydrogen at 77 K to hydrogen at 243 K at 100 bar, and mirrors 
figure 7’s non-task transfer results.  On the right is transfer from hydrogen at 243 K to methane at 
298 K.  Note the change in scale of the vertical axis. 

 



 

 

Performance in the topology clusters also shows methane is a better source task than 
hydrogen, but now the performance of both tasks is much better with all clusters being capable of 
learning (SI). The reason is, as seen before, that the topology clusters contain information from 
across the feature space.  This makes them more resistant to the effects seen in the generic clusters. 

Conclusion 

 A topologically diverse set of MOFs were clustered using their features and their topologies 
and transfer learning was studied using those clusters. The clusters that were determined strictly 
using the textural properties of the MOFs allowed us to understand transfer learning performance 
in that feature space while the clustering using the topologies allowed us to understand the 
relationship between various MOF families. In general, we find that certain clusters are better 
suited to transfer learning than others. The performance as the base cluster is related to their 
position in the principal component space. Transfer learning performance was also found to be 
correlated with the distance between the clusters; the closer the clusters are, the better the 
performance. Lastly, we find that when performing transfer learning across clusters and adsorption 
task, performance depends also on the source adsorption task that is used. We find transfer learning 
performance was better using methane as the source task as opposed to hydrogen. All taken 
together, our study reveals there are regions of the MOF space and adsorption tasks that are better 
suited to be the source task in the context of transfer learning. More broadly, this study suggests 
there are a particular set of MOFs and adsorbates that are well-suited as source of information that 

 

Figure 11. TL performance using hydrogen adsorption as the source and methane as the target task 
across clusters. TL from cluster 0 to cluster 1 performs well, but not for cluster 5.  



can be transferred to other MOFs and other adsorbates. Efforts to understand these relationships 
could be crucial in future design and discovery of MOFs in new adsorption applications. 
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