MPC-as-a-Service: A Customizable Management
Protocol for Running Multi-party Computation on
loT Devices

Oscar G. Bautista and Kemal Akkaya
Department of Electrical and Computer Engineering
Florida International University, Miami, FL, USA

Email: {obaut004, kakkaya}@fiu.edu

Abstract—Techniques to perform computations without disclos-
ing the input values have notably improved in the last decade. One
such technology, called Secure Multiparty Computation (MPC),
where two or more computation nodes hold secret pieces of
private data and jointly execute a protocol to obtain a function
output, has proven effective for preserving privacy in many
applications (e.g., distributed signing, financial scores, machine
learning, and more). Nonetheless, in many cases, the data source
and computation nodes are often assumed to be the same, with
the existence of a manually preconfigured network before they
start the computation. This challenge is typical of many loT
applications where the IoT devices need to collaborate using
MPC but do not have the resources, and thus outsource the
tasks to powerful MPC nodes. Nonetheless, in such a scenario,
the 10T devices do not know the MPC nodes, and vice-versa to
manage the overall process. To fill this gap, we propose an MPC
management protocol that automates the registration and
authentication of a group of clients (i.e., sources and consumers of
data) and MPC servers (the private computation providers), the
requesting of MPC jobs, and receiving the results thereafter. Our
experiments over a cloud environment demonstrate the first
protocol that efficiently and securely automates the management
of MPC systems on many use cases, which would otherwise take
considerable time and effort.

Index Terms—MPC, MPC-as-a-service, multiparty computa-
tion, management protocol, network authentication, encryption

I. INTRODUCTION

The ability to do computation using private data is a critical
technology in the privacy era, where protecting personal or
sensitive data is mandated in increasing number of applications.
One such privacy-preserving computation technology is Secure
Multiparty Computation (MPC) [1], which performs computa-
tion on data secret-shared among n computation nodes such that
at least t < = n nodes are required to reconstruct the underlying
private value (e.g., an input to or output of the computation).

While MPC is suitable for cases where privacy-sensitive data
is owned by or stored in different locations or organizations,
critical challenges hurdle the broad implementation of this
technology. For instance, MPC protocols, in general, have
several security parameters requiring certain knowledge about
the specific computation mechanism to set up the computation
system adequately in advance. Also, the minimum computing
resources needed for an MPC node to complete a particular task
may be more than those of general-purpose computers [2], [3],

and specially of resource-constrained loT devices. Some good
examples are a group of drones collecting terrain information,
or healthcare loT systems, where devices for remote patient
care collect sensitive information and require high processing
computations. In any case, they cannot perform the secure
computation because of significant energy spending, compu-
tation and communication limitations. Therefore they need to
outsource this task to more powerful nodes.

Although secure solutions for outsourcing the data and the
private computation to dedicated MPC nodes already exist [4],
they assume a preexisting network with properly secured chan-
nels interconnecting all the nodes. This assumption bypasses
the challenge of distributing the connection information ofall
participants in the first place. Additionally, the interested
entities have to deploy the computation nodes themselves,
incurring additional costs. While the gained benefit of privacy
can justify certain cost increases, there are cases where a
private computation is only required occasionally, which leads
to under-utilization of the computational resources. MPC-as-a-
Service (MPCaaS) [5] is proposed to solve these challenges,
which means MPC services can be accessed on-demand.

While general architecture and components of an MPCaaS
system, which may vary slightly depending on the specific
needs, are described, there exists no protocol that broadly
describes managing an MPC system in the outsourced setting
(e.g., 10T devices are heavily involved), including MPCaaS.
Specifically, the basic needs of an MPC deployment that a
management protocol can streamline are: 1) Registration and
authentication of devices, and 2) Setting up channels among
MPC servers and clients.

We aim to fill this gap by proposing and defining an MPC
management protocol that covers all stages, from participant
registration with an MPC system, to the MPC execution, and
successful output delivery. We assume a general architecture
where the private or sensitive data resides in a group of clients,
and a group of MPC servers executes the secure computation.
This group of MPC servers is a subset of a larger pool of MPC
servers (e.g., servers hosted on different cloud service providers
(CSP) for resilience and security) categorized by attributes such
as geographical location and computation resources, among
others. This categorization enables a better quality of service
when possible by fulfilling the client’s requirement first and

then randomizing the final selection, assuming enough servers
meet the requirements.

We offer a comprehensive framework instantiating a pro-
posed set of protocols for participant registration (i.e., clientor
server), Kerberos-like authentication [6], and MPC job
orchestration. This framework suits the need of organizations
that wants to set up their MPC system while temporarily
incorporating computation power from other stakeholders or
third parties. Our experiments with an actual protocol imple-
mentation demonstrate how quick and secure is to set up an
MPC system, eliminating the tedious and time-consuming task
of manually setting up secure channel connections, transferring
encryption keys, etc.

The rest of the paper is organized as follows: Section Il
overviews previous work on MPC management for loT environ-
ments. Section Il presents background information. Section IV
describes the main components of a general MPC architecture
in the outsourced setting. Section V describes in detail our pro-
posed protocols. Section VI discusses our experiment results,
and finally, we present our conclusion in Section VII.

Il. RELATED WORK

M. von Maltitz et al. [7] proposed a management framework
including the initial setup and execution orchestration where the
entities—called peers—holding the data (e.g., sensor platforms)
also perform the computation. Additionally, one of those peers
acts as the gateway coordinating the whole process. Such
architecture is atypical in real-life as these coordination and
management tasks add to the demand of resources from loT
devices. Finally, it lacks the description of the protocols that
accomplish each functionality. Our proposed protocol allows
loT devices to securely outsource the sensitive data and the
private computation to more powerful nodes, releasing them of
computational burden and establishing secure communication
without any previous knowledge of the MPC server’s identity.

H. Gao et al. [8] proposed a blockchain-based MPC scheme
where users (i.e., the clients) negotiate a private computation
contract over the blockchain, and a network of MPC servers
provides the computation service. Although their focus is on
MPC fairness and robustness, their architecture is similar to
ours in that clients outsource the data and the computation
to more powerful nodes. Nonetheless, the users/MPC con-
tract selects MPC servers based essentially on their reputation
(i.e., assumes computation power and location, among other
attributes, are irrelevant). Furthermore, the scheme relies on a
specific MPC protocol, and it is not clear how the privacy of
the inputs is protected when outsourced to the MPC servers.

Barak et al. [9] present an MPC system for low bandwidth
and weak participants with low communication complexity
and small fields (e.g., the size of the secret shares) so that
loT devices can directly run the MPC protocol. The pro-
posed system includes an administrative component that sets
up an MPC computation and invites participants to enroll
using Google or Facebook authentication. Thus, the system
does not provide user identity anonymity. Our proposed MPC
management protocol is, in a sense, an alternative to the

administrative component of the cited work that uses device-
based network authentication and enables automation of the
MPC setup and execution orchestration for any MPC protocol. It
also enables data sources/owners to securely outsource their
sensitive information to powerful MPC servers and receive the
results in the end.

I1l. BACKGROUND INFORMATION

A. Secure Multiparty Computation

In secure multiparty computation [1], two or more intercon-
nected parties which hold pieces (i.e., secret shares) of each
private value jointly evaluate a function without knowing the
actual value of the inputs and outputs. The MPC protocol relies
on a secret-sharing scheme to achieve secrecy. For instance, let
X be a private input and (.) the operator denoting secret-shared
form. Then (x) := (x1, X2, ..., Xn), Where n is the number of
parties performing the secure computation.

B. Kerberos Protocol

Kerberos [6] is a computer network authentication proto-
col where users and services authenticate to each other overan
insecure network. The basic components of the Kerberos
ecosystem are the Authentication Server (AS), the Ticket Grant-
ing Server (TGS), the Service, and the User. A user request
access to a service by sending a request to AS, which verifies
that the user exists, returns a response that includes a ticket-
granting session key and a ticket-granting ticket (TGT). The
first message is encrypted with the user’s private key, and the
second one is encrypted with the TGS’s private key. Next, the
user sends a couple of messages to TGS requesting access to
the service. The user’s request is encrypted with the session
key generated by AS. The TGS recovers the same session key
included in the TGT by the AS so that the user and the TGS
can communicate securely. At this point, the TGS verifies that
the service exists and replies to the user with two messages: a
service session key encrypted with the ticket-granting session
key and a service ticket (ST) which also contains the service
session key and is encrypted with the service’s secret key.
Finally, the user authenticates to the service repeating the same
procedure but using the newly generated keys. Since the user
and the service now have a common service session key, they
can communicate securely.

IV. MPC ARCHITECTURE IN THE OUTSOURCED SETTING

We assume an MPC scenario as depicted in Fig. 1, where
entities (i.e., clients) that own private (i.e., personal or con-
fidential) data differ from the computing parties. Therefore,
they need to outsource the data (e.g., (x),{y), etc.) and the
computation securely to MPC servers or parties. In this section,
we describe the components of such general MPC system ar-
chitecture and provide insights about how it applies to different
scenarios including multiple loT nodes sensing and transmitting
sensitive information.

Pool of MPC Servers

BPi@Sp

Command and
Control

Clients

C*": Data source client

C°°": Data consumer client
Management Server

Fig. 1. General Architecture of an MPC system in the Outsourced Setting

A. MPC Servers

These are the nodes that execute the private computation. The
MPC servers hold specific attributes that help categorize them,
such as computation resources (i.e., CPUs, RAM), geograph-
ical location, and other characteristics which may impact the
performance. For example, some MPC jobs require evaluating
large amounts of data or computing more complex functions,
which makes it preferable to select more powerful computation
servers. Generally, MPC protocols are semi-synchronous. They
execute in rounds where each server receives all messages from
their peers for the current round before moving on to the next
round. This means that if a server is slower than the others, it
will dictate the speed of the MPC execution. At the same time,
faster servers will underutilize their resources by exhibiting
more significant idle times. For this reason, the selection of
servers should favor servers with similar capabilities to carry
out a specific task.

Any stakeholders associated with the privacy-preserving ap-
plication can deploy MPC servers. Additionally, third parties
can also offer their computation resources for a fee. A client
may request servers in a specific country or region to perform
a particular MPC job. This might be useful in cases where one
needs to comply with data processing regulations [10]. There
is, nonetheless, a performance-based reason to prefer MPC
servers in the same region. Having regional deployments helps
minimize the communication delay among the computation
nodes and reduce the total execution time [3], [11], [12].

B. Clients

These entities or nodes provide the private input or get the
output of the computation. We refer to those nodes as source
clients (C®¢) and consumer clients (C®°"), respectively. An
Cs"¢ is commonly characterized for having limited resources,
hence, they need to outsource their data and secure compu-
tation. For instance, a source client could be a cluster-head in
an loT sensor networks, or one the I[oT devices itself in
healthcare for remote patient monitoring. In other applications,
the source and consumer client can be the same physical device,

such as a server holding a group of pictures from which they
want to find specific objects using an ML-trained model offered
by another organization and receive back the results of the
automated object identification. In this example, one participant
wants to keep its proprietary ML model private, and the other
wants the same with the content of the pictures.

C. Management Server

This server, referred to as M, oversees the whole MPC
ecosystem. Some of its functions are registering new partic-
ipants (i.e., MPC servers or clients) and authenticating and
authorizing them to set up adequately secured network con-
nections among them before an MPC job execution. It also
enables monitoring of participants and thus could intervene
when needed (e.g., failure recovery). The management server |P
is the only address known by the participants at the beginning. In
practice, the management server role can be implemented
using Anycast [13] to address a group of geographically
distributed servers using a single IP address while eliminating
the single point of failure. The stakeholders requiring a private
computation can deploy these servers as they will maintain
a database with each participant’s authentication information.
Note that the management servers do not learn anything about
the private inputs. As we describe in the next section, the
secret input shares are transmitted directly from clients to MPC
servers.

V. MPC MANAGEMENT PROTOCOL SUITE

This section describes the protocols that collectively realize
the MPC management framework. We also briefly discuss
how the design considerations relate to different applications,
making the proposed framework flexible enough to fit most
currently known use cases.

As with any service, the first step for a node to participate
in any capacity is registering with the system and agreeing on
an identity that will get authorization for future requests. We
differentiate between the registration procedure for clients and
MPC servers. Then, the authentication of both types of
participants is very similar. Finally, we describe a high level
(application) protocol for MPC job request and execution
details.

A. MPC Server Registration Protocol

Recall that third parties can deploy the MPC servers in
exchange for a fee. Additionally, MPC servers are untrusted
by default. They participate in the MPC ecosystem because of
their computation resources without providing data. Therefore,
they do not necessarily need a public identity. We propose
that the MPC system can identify and authenticate any single
MPC server at any time using the identity created during the
registration.

The MPC server registration protocol consists of two com-
munication rounds. In the first round, the MPC server sends a
registration request along with its public key to the management
server, which responds with the newly created identity (i.e., a
name and a symmetric key) and a request to learn MPC server’s

attributes. In the second round, the MPC server provides the
requested attributes, which include at least its computational
capabilities and geographical location, but may also include
customized attributes such as the list of MPC protocols that it
can execute. At the end of this registration process, the MPC
server and the management server will share a symmetric key
that will be used for authentication and to communicate
securely and efficiently hereafter.

The management server also stores the MPC servers’ IP
addresses so that it has the option to allow only authentication
requests from the IP address which was used by an MPC server
during registration. Once registered, the MPC server initiates
the authentication protocol (see Section V-C) and establishes a
secure control channel with the management server.

B. Client Registration Protocol

The clients have a more restricted treatment when registering
them with the MPC system. This is because there may be
various attacks through fake clients registered in the system.
For example, they could learn the output, which in some cases
could be sensitive. In another case, a fake client could provide
false data and and affect the computation results’ accuracy.

When it comes to client registration and association to an
MPC application, the proposed MPC management framework
uses an application 1D (A'9) that associates a group of clients
and specific private data labels so that when a consumer client
requests an MPC job, the MPC system knows which source
clients are associated with such A’ and orchestrates the MPC
accordingly.

We propose two methods to validate the registration request
from clients to the MPC system: The first method assumes
the availability of a set of authorization codes which the
management server generates using the information provided
by the 10T application’s administrator. Such authorization codes
can be distributed out-of-band and be optionally associated with a
predefined device name or IP address. The second method
provides a single authorization code to all clients. In this case,
the management server is open to new registrations for the
specific A'd during a particular period or for a maximum
number of clients. The selected mechanism would depend on
the use case particularities. The first one offers more control
over the individual clients authorized and is suitable when we
do not have direct control about when the client registration will
happen, while the second one guarantees that after the initial
registration, no additional node would get access as part of the
same application.

The client registration protocol differs from the MPC server
registration mainly in two aspects. First, it requires the client
and server to run a key agreement protocol (e.g., Diffie-
Hellman) that can be executed by resource-constrained devices,
then they can share a symmetric key which the client will use
to prove its identity. Second, client and server derive this key
from a long string made concatenating the application ID, client
name, and a password. This is done to be flexible on how the
end loT devices manage their credentials (e.g., local key storage
or user login with a password). The design consideration for

Protocol 1 MPC Server Authentication
Require: An MPC server P holding P "®™€ and
1: P sends an unencrypted connection request message to M. This
message contains P "*™€ if the IP address changed

2: M looks up the requester’s IP address in its database and fetches
[smk

Psmk

3: M sends a counter or similar challenge along with P"*™€ in a
message encrypted using P $™&

4: P decrypts the received message using its P *™* to recover the
counter

5: P assembles a new message including a timestamp, the counter
incremented, and encrypts it using P *™* and sends it to M

6: M decrypts the message, confirms the counter increment and
verifies that timestamp is within a permissible range

7: If all is in order, M sends a confirmation message to P and the
control connection is established.

this protocol includes using only symmetric key cryptography,
which allows for the registration of constrained-resource loT
devices. Nonetheless, in the case of more powerful devices
(e.g., computers, externally powered remote devices) register-
ing as clients, they can also use a variation of the protocol
based on public-key infrastructure.

C. Authentication Protocol

Registered participants authenticate to the management
server establishing a secure channel to submit requests and
receive responses (for clients) or orchestrate and monitor the
MPC execution (for MPC servers). As indicated, during the reg-
istration, the participants get a unique name as their identifier,
and they can authenticate to the management server using a
challenge-response authentication mechanism (CRAM) along
with the unique symmetric key they share to prevent replay
attacks.

The authentication protocol is very similar for clients and
MPC servers. The only difference is that clients can optionally
derive the symmetric key from a password. Additionally, MPC
servers can use the IP address as their identifier if the option
to allow only known IP addresses is enabled. Protocol 1 shows
the details of the authentication of MPC servers. The equivalent
client authentication is essentially the same as mentioned and
is not included due to space constraints.

D. MPC Request and Setup Protocol

Recall that MPC consists of a group of computation nodes
executing a protocol jointly. Therefore, they need to set upa
network (i.e., intranet) to exchange messages. Additionally,
each source client needs to establish a direct secure connection
between itself and every MPC server to securely distribute
their shares, as shown in Fig. 1. Since the registration phase
only enables connectivity between each participant and the
management server, we need an automated MPC setup pro-
tocol to enable a participant to identify and establish secure
communication with the rest.

Note that the communication setup is specific for each MPC
job requested. Therefore, the management server carries it
whenever a consumer client makes such a request. We propose

a new protocol whose details are shown in Protocol 2, and
Fig. 2 shows the corresponding message exchange sequence.

Protocol 2 MPC Setup Protocol
Require: An MPC system comprising a pool of MPC servers Sp =
{P4,...,P,} and source and consumer clients.

1: A consumer client C°°" sends an encrypted message requesting
a new MPC job with some specifications JP2"™

2: M creates a Job Id J' and proceeds to notify the related C*"¢
about the data request.

3: Each C*"¢ acknowledges the notification and responds with the
size of the data available for the specific job.

4: M matches online P; parameters with JP*"™, and sends them a
job request with the input data size.

5: Each Pi responds with their availability status and any other
customized status codes to M.

6: M sends a message to C°°" containing J ¢ along with the request
confirmation or a counteroffer. The protocol exits if C°°" rejects
the counteroffer.

7: C°°" sends M a message confirmation or aborting the MPC job
request.

8: M distributes the IP addresses and identities (signature verifica-
tion keys) among the MPC group for this J .

9: M creates and distributes to each C;"“: (1) new symmetric session
keys Piff:kj for each Pi— C3"° connection; and (2) session tickets
Tp,,c; containing the key from (1) and encrypted with P$™¥ that
authenticates C5"¢ to Pi.

10: Once M receives a confirmation of setup complete from each P;,

M replies commanding each P; to start the MPC job execution.

It starts with the consumer client requesting some desired pa-
rameters, such as the number and location of the MPC servers,
which influence the security and performance of the execution.
Additionally, when the pool of MPC servers have a varying
computation capacity, the servers are categorized which allows
us to group those with similar computation resources. All
servers in the computation perform mostly the same operations.
Therefore, choosing servers that possess identical capabilities
maximizes resource usage. The requester could also choose the
specific MPC algorithm to execute. The deployment allows for
more customization adding requirements or options as needed.
Upon receiving the request in step 1, the management server
executes step 2, verifying which source clients are online, and
each available client responds with the size of the data they have
in step 3. Next, the management server computes a match of
the requirements versus the online MPC servers and sends out
a round of reservation messages (step 4), to which they respond
with their availability status (step 5). In step 6, the management
server reports the configuration of MPC servers and source
clients to the requester (i.e., the specific consumer client). This
response is a counteroffer that could be less than the original
request (e.g., more online servers need to meet the specific
requirements). At this point, the requester can abort and try
later or accept the counteroffer. In step 7, the requester confirms
the job execution so that the management server shares the
identities of the MPC servers among themselves (step 8) and
generates and distributes credentials for each input client to
authenticate to each MPC server (step 9).

We were inspired by the Kerberos [6] protocol to work with
this specific architecture. Specifically, referring to the original

src src

ceon {Ci v &)} M {P1,..., Pn}
1

RUNMPC{JP?"™}

DATAREQUEST{J®, fixp}

-

REPORTDSIZE{J'Y, dsize, fixp}
-

MPCREQUEST{J'Y, dsize, fixp}
-

REQUESTACK{J '}
-

MPCSETUP{J'?, setup}

ACKMPC{J9}

IDENTITIES{J'Y, keys}

n-—>

CREDENTIALS{J'Y, session tickets}
-

READY{J %}

-
RUNMPC{J'¢, dsize}
| ’

Fig. 2. MPC Setup Protocol Message Exchange

protocol described in Section Il1-B, the TGS was removed,
and the management server generates and distributes a Service
Ticket for each client-MPC server pair. This is summarized
as step 9 in Protocol 2. Finally, the MPC servers set up the
network among themselves and notify the management server
when they are ready to start carrying out the MPC job so thatall
can start simultaneously.

VI. IMPLEMENTATION AND EXPERIMENTS

We implemented and tested our MPC management frame-
work in Python 3. The source code is available at our GitHub
repository [14].

A. Experiment Setup

We conducted experiments locally (i.e., using the local-
host and a WLAN) and over a WAN. We deployed three
MPC servers on the cloud using three different Cloud Service
Providers (CSP) (i.e., GCP, AWS, and Azure) using VMs with
two vCPUs and 2 to 4 GB of RAM. We also set up six clients
to measure the protocol execution time, assuming a distributed
loT deployment.

B. Participants Registration

In this experiment, we added new participants to the MPC
framework. First, we conducted an experiment running the
participants (i.e., MPC server and client) and the management
server in the same host equipped with an Intel(R) Core i7-
10750H processor, and measured the time it takes for each
type of participant to register. Then we repeated the experiment
running the participants on a different device inside the same
WiFi network. This experiment gives us an idea of the portion of
time due to network communication delay.

Table | shows the time measurement results for both types
of participants in both experiments. In the case of the MPC
server, the execution includes the time it takes to generate

a private-public key pair and the corresponding encryption
and decryption operations as defined by the protocol. Note
that in the case of client registration, the protocol uses only
symmetric encryption, which is a design consideration suitable
for constrained-resource devices.

TABLE |
PARTICIPANT REGISTRATION TIME

Participant Type Running on Localhost Over WiFi
MPC server 833 ms 881ms
Client 60 ms 111ms

C. MPC Network Setup Protocol

Once a consumer client makes and MPC job request, the
management server begins executing Protocol 2. We ran exper-
iments with two and three MPC servers and three to five data
source clients in addition to the consumer client.

We measured the protocol execution time on the management
server side to have a common clock reference. Specifically,
referring to Protocol 2, we start the timer after receiving the
message from step 1 and stop it at step 10.

We conducted experiments in two scenarios. First, with the
source clients running over WAN, and second with the source
clients deployed on a WiFi network in the same location as
the management server. The MPC servers, the management
server, and the consumer client have the same location in
both scenarios. Table Il shows the participants’ locations in
the WAN scenario (i.e., including the source clients). For the
second scenario, the clients run from several wireless devices,
including one Raspberry Pi 3B, which communicate through
WiFi with the management server.

TABLE 1l
TYyPE AND LOCATION OF PARTICIPANTS IN THE WAN SETTING

Type | CSP/Location || Type | CSP/Location
Mgmt. server Local/Miami Src. client 1 GCP/Los Angeles
MPC server 1 GCP/lowa Src. client 2 AWS/Ohio
MPC server 2 | AWS/N.California Src. client 3 Azure/Texas
MPC server 3 Azure/Virginia Src. client 4 | GCP/Salt Lake city
Consu. client GCP/N.Virginia Src. client5 GCP/S.Carolina

Table Ill shows the time measured for both WiFi and WAN
scenarios, where in each scenario, the delay variations changing
the number of participants are minor. Furthermore, there is
almost no difference for 1oT devices (i.e., RPi over WiFi) to
setup.

TABLE 111
MPC REQUEST AND SETUP PrROTOCOL RUN TIME

of MPC # of Run time on Run time on
Servers Clients WAN [ms] WiFi [ms]
2 3 406 402
2 4 442 510
2 5 449 512
3 3 486 496
3 4 490 527
3 5 494 542

Although the main benefit of the MPC setup protocol is
reducing time and effort before the actual computation while
fulfilling the MPC system parameter requirements, its fast
execution may become critical in applications requiring an
autonomous setup for recurrent and short, secure computations.
These experimental results show that our proposed protocol can
meet those requirements.

VII.

We proposed a comprehensive management framework
for MPC in the outsourced setting (including MPC-as-a-
Service) which integrates protocols for participant registration,
Kerberos-like authentication, and MPC job orchestration. This
framework saves time and effort for owners and administrators
of 10T applications collaborating with other stakeholders while
keeping their information private. Furthermore, our experiments
on local and national deployments show that our framework
sets up autonomously a secure MPC network in less than
one second over an insecure network without any previous
knowledge of the MPC servers identities.

CONCLUSION

ACKNOWLEDGMENT

This research was supported by the U.S. National Science
Foundation, award number US-NSF-1663051.

REFERENCES

[1] Y. Lindell, “Secure multiparty computation,” Commun. ACM, vol. 64,
no. 1, p. 86-96, dec 2020.

[2] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast secure
Two-Party deep neural network inference,” in 31st USENIX Security
Symposium (USENIX Security 22), Aug. 2022, pp. 809-826.

[3] S. Wagh, D. Gupta, and N. Chandran, “Securenn: Efficient and private
neural network training,” IACR Cryptol. ePrint Arch., p. 442, 2018.

[4] |. Damgéard, K. Damgard, K. Nielsen, P. S. Nordholt, and T. Toft, “Confi-
dential benchmarking based on multiparty computation,” in International
Conference on Financial Cryptography and Data Security. Springer,
2016, pp. 169-187.

[5] P. B. Foundation, “Mpc techniques series, part 10: Mpc-as-a-service
— the partisia blockchain infrastructure,” 2021. [Online]. Available:
https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-
mpc-as-a-service-the-partisia-blockchain-infrastructure-9b4833e77965

[6] C. Neuman, USC-ISI, T. Yu, S. Hartman, and K. Raeburn, “The kerberos
network authentication service (v5),” RFC, 2005. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4120

[7] M. von Maltitz et al., “A management framework for secure multiparty
computation in dynamic environments,” in NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, 2018, pp. 1-7.

[8] H. Gao, Z. Ma, S. Luo, and Z. Wang, “Bfr-mpc: A blockchain-based fair
and robust multi-party computation scheme,” |IEEE Access, vol. 7, pp.
110439-110450, 2019.

[9] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, “An end-to-end system for

large scale p2p mpc-as-a-service and low-bandwidth mpc for weak

participants,” in Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’18, 2018, p. 695-712.

Intersoft Consulting, “General data protection regulation (gdpr),” 2023.

[Online]. Available: https://gdpr-info.eu/

[11] O. G. Bautista and K. Akkaya, “Network-efficient pipelining-based secure

multiparty computation for machine learning applications,” in 2022 IEEE

47th Conference on Local Computer Networks (LCN), 2022, pp. 205-213.

M. Byali, C. Hazay, A. Patra, and S. Singla, “Fast actively secure five-

party computation with security beyond abort,” ser. CCS '19. New York,

NY, USA: Association for Computing Machinery, 2019, p. 1573—-1590.

J. Abley, A. Canada, and K. Lindqvist, “Operation of anycast services,”

RFC, 2006. [Online]. Available: https://www.rfc-editor.org/rfc/rfc4786

0. G. Bautista, “Mpc management framework,” GitHub, 2023. [Online].

Available: https://github.com/adwise-fiu/mpc-mgmt-cmdl

[10]

[12]

[13]

[14]

